Climate change impacts on the potential productivity of corn and winter wheat in their primary United States growing regions
We calculate the impacts of climate effects inferred from three atmospheric general circulation models (GCMs) at three levels of climate change severity associated with change in global mean temperature (GMT) of 1.0, 2.5 and 5.0 degrees C and three levels of atmospheric CO2 concentration ({CO2})-365...
Saved in:
Published in | Climatic change Vol. 41; no. 1; pp. 73 - 107 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer
1999
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We calculate the impacts of climate effects inferred from three atmospheric general circulation models (GCMs) at three levels of climate change severity associated with change in global mean temperature (GMT) of 1.0, 2.5 and 5.0 degrees C and three levels of atmospheric CO2 concentration ({CO2})-365 (no CO2 fertilization effect), 560 and 750 ppm-on the potential production of dryland winter wheat (Triticum aestivum L.) and corn (Zea mays L.) for primary (current) U.S. growing regions of each crop. |
---|---|
AbstractList | We calculate the impacts of climate effects inferred from three atmospheric general circulation models (GCMs) at three levels of climate change severity associated with change in global mean temperature (GMT) of 1.0, 2.5 and 5.0 °C and three levels of atmospheric CO2 concentration ([CO2]) - 365 (no CO2 fertilization effect), 560 and 750 ppm - on the potential production of dryland winter wheat (Triticum aestivum L.) and corn (Zea mays L.) for the primary (current) U.S. growing regions of each crop. This analysis is a subset of the Global Change Assessment Model (GCAM) which has the goal of integrating the linkages and feedbacks among human activities and resulting greenhouse gas emissions, changes in atmospheric composition and resulting climate change, and impacts on terrestrial systems. A set of representative farms was designed for each of the primary production regions studied and the Erosion Productivity Impact Calculator (EPIC) was used to simulate crop response to climate change. The GCMs applied were the Goddard Institute of Space Studies (GISS), the United Kingdom Meteorological Transient (UKTR) and the Australian Bureau of Meteorological Research Center (BMRC), each regionalized by means of a scenario generator (SCENGEN). The GISS scenarios have the least impact on corn and wheat production, reducing national potential production for corn by 6% and wheat by 7% at a GMT of 2.5 °C and no CO2 fertilization effect; the UKTR scenario had the most severe impact on wheat, reducing production by 18% under the same conditions; BMRC had the greatest negative impact on corn, reducing production by 20%. A GMT increase of 1.0°C marginally decreased corn and wheat production. Increasing GMT had a detrimental impact on both corn and wheat production, with wheat production suffering the greatest losses. Decreases for wheat production at GMT 5.0 and [CO2] = 365 ppm range from 36% for the GISS to 76% for the UKTR scenario. Increases in atmospheric [CO2] had a positive impact on both corn and wheat production. AT GMT 1.0, an increase in [CO2] to 560 ppm resulted in a net increase in corn and wheat production above baseline levels (from 18 to 29% for wheat and 2 to 5% for corn). Increases in [CO2] help to offset yield reductions at higher GMT levels; in most cases, however, these increases are not sufficient to return crop production to baseline levels. Three general circulation models were used to assess the impact of climate change on corn and winter wheat productivity within the major US growing regions. The models were set at three levels of severity and three levels of carbon dioxide fertilization. EPIC was used as the crop-growth simulator. Results show that the general circulation models projected different temperature and precipitation changes, and simulation results are presented to indicate the effects of climate-change scenario, the effects of climate-change severity, and effects of CO sub(2) concentration on farm-level yields of corn and winter wheat. None of the scenarios reduced potential crop production by more than 10% at a severity associated with a temperature increase of 1 degree C. The overall results suggest that CO sub(2) fertilization may significantly reduce the negative impacts of climate change on the two crops, especially in the earliest stages of climate change. As climate change becomes more severe, however, this fertilization effect may become less mitigative. We calculate the impacts of climate effects inferred from three atmospheric general circulation models (GCMs) at three levels of climate change severity associated with change in global mean temperature (GMT) of 1.0, 2.5 and 5.0 degrees C and three levels of atmospheric CO2 concentration ({CO2})-365 (no CO2 fertilization effect), 560 and 750 ppm-on the potential production of dryland winter wheat (Triticum aestivum L.) and corn (Zea mays L.) for primary (current) U.S. growing regions of each crop. We calculate the impacts of climate effects inferred from three atmospheric general circulation models (GCMs) at three levels of climate change severity associated with change in global mean temperature (GMT) of 1.0, 2.5 and 5.0 degrees C and three levels of atmospheric CO sub(2) concentration ([CO sub(2) ])-365 (no CO sub(2) fertilization effect), 560 and 750 ppm--on the potential production of dryland winter wheat (Triticum aestivum L.) and corn (Zea mays L.) for the primary (current) U.S. growing regions of each crop. This analysis is a subset of the Global Change Assessment Model (GCAM) which has the goal of integrating the linkages and feedbacks among human activities and resulting greenhouse gas emissions, changes in atmospheric composition and resulting climate change, and impacts on terrestrial systems. A set of representative farms was designed for each of the primary production regions studied and the Erosion Productivity Impact Calculator (EPIC) was used to simulate crop response to climate change. The GCMs applied were the Goddard Institute of Space Studies (GISS), the United Kingdom Meteorological Transient (UKTR) and the Australian Bureau of Meteorological Research Center (BMRC), each regionalized by means of a scenario generator (SCENGEN). The GISS scenarios have the least impact on corn and wheat production, reducing national potential production for corn by 6% and wheat by 7% at a GMT of 2.5 degrees C and no CO sub(2) fertilization effect; the UKTR scenario had the most severe impact on wheat, reducing production by 18% under the same conditions; BMRC had the greatest negative impact on corn, reducing production by 20%. A GMT increase of 1.0 degrees C marginally decreased corn and wheat production. Increasing GMT had a detrimental impact on both corn and wheat production, with wheat production suffering the greatest losses. Decreases for wheat production at GMT 5.0 and [CO sub(2) ] = 365 ppm range from 36% for the GISS to 76% for the UKTR scenario. Increases in atmospheric [CO sub(2) ] had a positive impact on both corn and wheat production. At GMT 1.0, an increase in [CO sub(2) ] to 560 ppm resulted in a net increase in corn and wheat production above baseline levels (from 18 to 29% for wheat and 2 to 5% for corn). Increases in [CO sub(2) ] help to offset yield reductions at higher GMT levels; in most cases, however, these increases are not sufficient to return crop production to baseline levels. |
Author | ROSENBERG, N. J BROWN, R. A |
Author_xml | – sequence: 1 givenname: R. A surname: BROWN fullname: BROWN, R. A organization: Pacific Northwest National Laboratory, 901 D Street, SW, Washington D.C 20024, United States – sequence: 2 givenname: N. J surname: ROSENBERG fullname: ROSENBERG, N. J organization: Pacific Northwest National Laboratory, 901 D Street, SW, Washington D.C 20024, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1846866$$DView record in Pascal Francis |
BookMark | eNqF0UtvFDEMAOAIFYlt4cw1QghOA_Yk8WS4VSteUiUO0PMqZDy7qWaTJclSVeLHk8KeONCTffhsy_a5OIspshDPEd4g9Ort5TsEMFqPqHpS6pFYoRlUh9rCmVgBkukAYHwizku5uc-Gnlbi13oJe1dZ-p2LW5Zhf3C-FpmirDuWh1Q51uAWechpOvoafoZ6J9MsfcpRujjJ2xArZ3m7Y1dl-FMWcuOtbb6T1zFUnuTX2mYUuc2p8a3MvA0plqfi8eyWws9O8UJcf3j_bf2pu_ry8fP68qrzykLtkBD0qAfz3bNySLMjmGZFDGR45LauQZhGj0QD0mQmQmY3kJ5n6_To1IV4_bdvW-LHkUvd7EPxvCwucjqWzaAVaWPANvnqv7JHZbDRByHa9pQR4WGoDQzW3sMX_8CbdMyx3WWDozWAg-obenlCrni3zNlFH8rmdO02VZMlUr8BnsCk1w |
CODEN | CLCHDX |
CitedBy_id | crossref_primary_10_1104_pp_105_073957 crossref_primary_10_1061__ASCE_0733_9496_2008_134_3_205 crossref_primary_10_1556_CRC_33_2005_1_8 crossref_primary_10_3390_app12073407 crossref_primary_10_1007_s42976_023_00369_3 crossref_primary_10_1111_j_1399_3054_2008_01136_x crossref_primary_10_1007_s40888_020_00172_x crossref_primary_10_14249_eia_2013_22_1_001 crossref_primary_10_1080_21606544_2014_963165 crossref_primary_10_1556_CRC_34_2006_1_101 crossref_primary_10_1139_CJSS_2017_0044 crossref_primary_10_3354_cr01074 crossref_primary_10_1029_2001JD900034 crossref_primary_10_2134_jeq2005_0259 crossref_primary_10_1088_1748_9326_acb27f crossref_primary_10_1073_pnas_0906865106 crossref_primary_10_1016_j_still_2010_11_002 crossref_primary_10_1007_s10705_018_9916_8 crossref_primary_10_1080_02571862_2015_1006271 crossref_primary_10_3390_land10121339 crossref_primary_10_1016_j_plantsci_2019_05_006 crossref_primary_10_1016_S0380_1330_02_70609_6 crossref_primary_10_1061__ASCE_0733_9496_2007_133_3_275 crossref_primary_10_2166_wcc_2024_498 crossref_primary_10_1002_hyp_9379 crossref_primary_10_1007_s00382_015_2543_z crossref_primary_10_1111_j_1529_8817_2003_00767_x crossref_primary_10_1007_s10584_005_3612_9 crossref_primary_10_1007_s12892_016_0019_2 crossref_primary_10_1098_rstb_2005_1749 crossref_primary_10_1002_wcc_585 crossref_primary_10_1007_s10584_011_0175_9 crossref_primary_10_1016_S0168_1923_03_00024_8 crossref_primary_10_2134_jeq2001_303822x crossref_primary_10_1016_j_orggeochem_2017_07_020 crossref_primary_10_1016_j_ecolmodel_2005_07_010 crossref_primary_10_1016_j_fcr_2018_07_013 crossref_primary_10_3390_agronomy12051133 crossref_primary_10_3390_s23062891 crossref_primary_10_17221_29_2010_SWR crossref_primary_10_5194_hess_13_1467_2009 crossref_primary_10_1515_quageo_2017_0008 crossref_primary_10_1016_j_fcr_2020_107756 crossref_primary_10_2134_agronj2013_0388 crossref_primary_10_3280_QU2014_004009 crossref_primary_10_1016_j_agwat_2018_04_034 crossref_primary_10_1016_j_mcm_2009_10_030 crossref_primary_10_1016_j_jclepro_2024_141793 crossref_primary_10_2139_ssrn_990886 crossref_primary_10_1007_s10584_014_1185_1 crossref_primary_10_1016_S0168_1923_03_00025_X crossref_primary_10_1016_j_agsy_2005_09_011 crossref_primary_10_1016_j_crm_2014_05_001 crossref_primary_10_1007_s10584_005_3609_4 crossref_primary_10_1556_CRC_2014_0009 crossref_primary_10_1038_srep43122 crossref_primary_10_3390_agriculture6030047 crossref_primary_10_1016_j_agsy_2013_01_005 crossref_primary_10_1016_j_jafr_2024_101241 crossref_primary_10_1007_s11269_013_0367_3 crossref_primary_10_1016_j_agee_2008_09_012 crossref_primary_10_2747_0272_3646_30_1_27 crossref_primary_10_3390_rs12172857 crossref_primary_10_1007_s12892_013_0106_6 crossref_primary_10_3390_s7102297 crossref_primary_10_2134_agronj2011_0321 crossref_primary_10_1007_s10584_010_9851_4 crossref_primary_10_2104_ag060023 crossref_primary_10_1016_j_fufo_2023_100216 crossref_primary_10_1016_S0167_8809_99_00115_2 crossref_primary_10_1186_s12302_015_0061_6 crossref_primary_10_1007_s10584_006_9122_6 crossref_primary_10_1126_science_1114722 crossref_primary_10_1093_ajae_aau157 crossref_primary_10_1016_S1161_0301_02_00097_7 |
ContentType | Journal Article |
Copyright | 1999 INIST-CNRS Kluwer Academic Publishers 1999 |
Copyright_xml | – notice: 1999 INIST-CNRS – notice: Kluwer Academic Publishers 1999 |
DBID | IQODW 3V. 7ST 7TG 7TN 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W F28 FR3 FRNLG F~G GNUQQ GUQSH H97 HCIFZ K60 K6~ KL. KR7 L.- L.G L6V M0C M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PQBIZ PQBZA PQEST PQQKQ PQUKI PTHSS PYCSY Q9U R05 SOI |
DOI | 10.1023/A:1005449132633 |
DatabaseName | Pascal-Francis ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ABI/INFORM Collection (ProQuest) ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ABI/INFORM Global Research Library (ProQuest) Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Environment Abstracts |
DatabaseTitle | ProQuest Business Collection (Alumni Edition) Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Natural Science Collection Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ABI/INFORM Global (Corporate) University of Michigan ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Environment Abstracts Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Agriculture |
EISSN | 1573-1480 |
EndPage | 107 |
ExternalDocumentID | 39758212 1846866 |
Genre | Feature |
GeographicLocations | United States North America America United States--US USA |
GeographicLocations_xml | – name: United States--US – name: United States – name: USA |
GroupedDBID | -5A -5G -5~ -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29B 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5GY 5QI 5VS 67M 67Z 6J9 6NX 6TJ 78A 7WY 7XC 88I 8FE 8FG 8FH 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGAY AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTV ABHLI ABHQN ABJCF ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIHN ACIPQ ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKOMP BKSAR BPHCQ CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECGQY EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HZ~ I09 IHE IJ- IKXTQ IQODW ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LLZTM M0C M2O M2P M4Y M7R M7S MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OVD P0- P19 P62 PATMY PCBAR PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R05 R4E R89 R9I RHV RNI RNS ROL RPX RSV RXW RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UQL UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 X6Y XJT Y6R YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8O Z8P Z8Q Z8S Z8T Z8U Z8W Z8Z Z92 ZCA ZMTXR ZY4 ~02 ~EX ~KM 7ST 7TG 7TN 7UA 7XB 8FD 8FK AACDK AAHBH AAJBT AASML ABAKF ABJNI ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU C1K F1W F28 FR3 H97 HVGLF KL. KR7 L.- L.G MBDVC PQBZA PQEST PQUKI Q9U SOI AAYZH |
ID | FETCH-LOGICAL-c380t-161049475bce3a16fa60df36e065e9e326510d9c166716d5d61eea764ff8a49a3 |
IEDL.DBID | 8FG |
ISSN | 0165-0009 |
IngestDate | Fri Oct 25 09:38:51 EDT 2024 Fri Oct 25 03:28:08 EDT 2024 Fri Oct 25 04:50:18 EDT 2024 Fri Oct 25 03:24:41 EDT 2024 Thu Oct 10 21:05:30 EDT 2024 Sun Oct 29 17:11:00 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Validation Monocotyledones Zea mays Gramineae Angiospermae Regional scope Spermatophyta Yield Simulation model Climate modification Cereal crop Triticum aestivum |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-161049475bce3a16fa60df36e065e9e326510d9c166716d5d61eea764ff8a49a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 198501732 |
PQPubID | 23462 |
PageCount | 35 |
ParticipantIDs | proquest_miscellaneous_743645508 proquest_miscellaneous_21351455 proquest_miscellaneous_18102910 proquest_miscellaneous_14507880 proquest_journals_198501732 pascalfrancis_primary_1846866 |
PublicationCentury | 1900 |
PublicationDate | 1999 19990101 |
PublicationDateYYYYMMDD | 1999-01-01 |
PublicationDate_xml | – year: 1999 text: 1999 |
PublicationDecade | 1990 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Climatic change |
PublicationYear | 1999 |
Publisher | Springer Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Nature B.V |
SSID | ssj0009726 |
Score | 1.94002 |
Snippet | We calculate the impacts of climate effects inferred from three atmospheric general circulation models (GCMs) at three levels of climate change severity... Three general circulation models were used to assess the impact of climate change on corn and winter wheat productivity within the major US growing regions.... |
SourceID | proquest pascalfrancis |
SourceType | Aggregation Database Index Database |
StartPage | 73 |
SubjectTerms | Agricultural and forest climatology and meteorology. Irrigation. Drainage Agricultural and forest meteorology Agricultural production Agriculture Agronomy. Soil science and plant productions Arid zones Atmospheric circulation Biological and medical sciences Carbon dioxide Climate Climate change Climate effects Climatic models of plant production Corn Crop production Crops Emissions Environmental impact Farm buildings Farms Fundamental and applied biological sciences. Psychology General agronomy. Plant production General circulation models Generalities. Techniques. Climatology. Meteorology. Climatic models of plant production Global temperatures Greenhouse effect Greenhouse gases Laboratories Mathematical models Meteorological research Natural resources Primary production Productivity Regions Triticum aestivum Vegetables Wheat Winter Winter wheat Zea mays |
Title | Climate change impacts on the potential productivity of corn and winter wheat in their primary United States growing regions |
URI | https://www.proquest.com/docview/198501732 https://search.proquest.com/docview/14507880 https://search.proquest.com/docview/18102910 https://search.proquest.com/docview/21351455 https://search.proquest.com/docview/743645508 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NSx0xEB9avbSIWKt0_ZyD9LZ0v_KxJ1HxKYJSSgVvj7wkKw9k93XfEy_-8c4kq9IWPYad3Q0zyeQ3SWZ-AAdGGzNxQqTO5j6tlPWpKS05Q1s0RhaZtBnnO19eyfPr6uJG3Ax3c-bDtcpnnxgctess75H_oOBY0Ogpi8PZn5RJo_hwdWDQ-AjLeaEUx156dPZac1cFtjVO2OHk6fqfyj4EVqqagjHJpLkrMzMnpTSRzeI_xxxWm9EarA4wEY-iXb_AB9-uw-ej234oleHXIbkkvNv1YVscv-PJ3ZTAZ2h9hcfY8hjzejHmQs6xa5EAH866BV8Soh_MYsHXwCCBXYMUi7ZoWocPXEeixwf21TgNr017Eg-1KTAiVYxIFW8plKcVEJnkgQbxBlyPTn-fnKcDz0JqS50tUgJ9XCVGiYn1pcklGSlzTSk9wRNfe9IQTVxX21xKiq6ccDL33ihZNY02VW3KTVhqu9Z_A8z1xAphnDKZrZRTtP5pUUv6bObLWucJ7P6l6PHQ7zEFmlJLmcD2s-LHw2Saj19Mn8D-y1OaBXy0YVrf3ZNIRbiWXNE7EpoMT9jobYmCyQorIRLANyQIbUnOAtdb73ZzGz7F4g68UbMDS4v-3u8SdFlM9sIA3YPl49Orn7-eAMZY8wA |
link.rule.ids | 315,783,787,4031,12777,21400,27935,27936,27937,33385,33386,33756,33757,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB2azSEppTRf1N2mmUPpzcReW7J8KmlI2LbZpZQEcjNaSV4Wgr31bsilP74zlpLQluQoPLaFPkZvJM17AB-10npmhYitSV2cF8bFOjPkDM2o1nKUSJNwvvNkKsdX-bdrcR3u5qzCtcp7n9g7atsa3iM_puBY0OjJRp-Xv2IWjeLD1aCgsQGbzFRFsdfml7Ppj5-PrLtFr7fGKTucPl3-w-1DcCUvKRyTLJv7aqlX1Cy117P4zzX36835G3gdgCKe-J7dgReu2YWXJ_MukGW4XYgmhHjbrt8Yx094erMg-NmX9uC3Lzn0mb3osyFX2DZIkA-X7ZqvCdEPlp7ytdeQwLZGikYb1I3FO2aS6PCOvTUu-tcWHZn37BTosSp6rIpzCuZpDUSWeaBhvA9X52eXp-M4KC3EJlPJOibYxzwxhZgZl-lUUjclts6kI4DiSkctRFPXliaVkuIrK6xMndOFzOta6bzU2QEMmrZxbwFTNTNCaFvoxOSFLWgFVKKU9NnEZaVKIzj8q6GrUO-KQk2ppIxgeN_wVZhOq-qh8yM4enhK84APN3Tj2lsyyQnZkjN6xkJRxxM6etpixHKFuRAR4BMWhLck54Grd89W8wi2xpeTi-ri6_T7ELY91QNv27yHwbq7dYcEZNazD2G4_gG-w_W3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61i4SKEGp5qIFumUPFLSLZ2I5zQstjRR-sEAKJW-S1HbRSlSzZRVz48YxjQwUVHKNMHrLH429sz_cB_FBSqYnhPDY6tTHLtY1VpikY6kGlxCAROnH1zmdjcXrFfl3z60ApNA_HKp9iYheoTaPdGvk-JcecvCcb7FfhVMT58ehgdhs7ASm30RrUND7CUs5ElvRg6fBkfH7xj4E377TXXPmOK6UuXvH8EHRhBaVmwknors7UnJqo8toW_4Xpbu4ZfYa1ABpx6Hv5C3yw9TqsDG_aQJxh1yE6I_TbtN0iOe7h0d8pQdHuagMe_JVFX-WLvjJyjk2NBP9w1izckSH6wMzTv3Z6EthUSJlpjao2eO9YJVq8d5Ebp91j05bMO6YK9LgVPW7FG0rsaT5EJ_lALr0JV6OTy6PTOKguxDqTySImCOg4Y3I-0TZTqaAuS0yVCUtgxRaWWoiGsSl0KgTlWoYbkVqrcsGqSipWqGwLenVT26-AqZxozpXJVaJZbnKaDSUvBL02sVkh0wj6Lxq6DP9dUtoppBAR7Dw1fBmG1rx8doQIdp_v0phwGx2qts0dmTBCuRSY3rGQ1PGElN62GDjpQsZ5BPiGBWEv4WrC5fa7v7kLy-Sp5Z-f49878MmzPrgVnG_QW7R3tk-YZjH5Hrz1Ef34-eU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Climate+change+impacts+on+the+potential+productivity+of+corn+and+winter+wheat+in+their+primary+United+States+growing+regions&rft.jtitle=Climatic+change&rft.au=BROWN%2C+R.+A&rft.au=ROSENBERG%2C+N.+J&rft.date=1999&rft.pub=Springer&rft.issn=0165-0009&rft.eissn=1573-1480&rft.volume=41&rft.issue=1&rft.spage=73&rft.epage=107&rft_id=info:doi/10.1023%2FA%3A1005449132633&rft.externalDBID=n%2Fa&rft.externalDocID=1846866 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0009&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0009&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0009&client=summon |