Boosting Electrocatalytic Activity of Single Atom Catalysts Supported on Nitrogen‐Doped Carbon through N Coordination Environment Engineering
Nonprecious group metal (NPGM)‐based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structur...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 10; pp. e2105329 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nonprecious group metal (NPGM)‐based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structure of SACs, and consequently their electrocatalytic performance, have been largely ignored. Here, by adopting a precursor modulation strategy, the authors successfully synthesize single cobalt atom catalysts embedded in nitrogen‐doped carbon, Co–N/C, with similar overall Co and N concentrations but different N types, that is, pyridinic N (NP), graphitic N (NG), and pyrrolic N (NPY). Co–N/C with the Co–N4 moieties coordinated with NG displays far superior activity for oxygen reduction (ORR) and evolution reactions, and superior activity and stability in both zinc–air batteries and proton exchange membrane fuel cells. Density functional theory calculation indicates that coordinated N species in particular NG functions as electron donors to the Co core of Co–N4 active sites, leading to the downshift of d‐band center of Co–N4 and weakening the binding energies of the intermediates on Co–N4 sites, thus, significantly promoting catalytic kinetics and thermodynamics for ORR in a full pH range condition.
Cobalt single atom catalysts embedded in nitrogen‐doped carbon (Co–N/C) with the controlled N types, that is, pyridinic N (NP), graphitic N (NG), and pyrrolic N (NPY), are successfully synthesized via a precursor modulation strategy. Co–N/C with the Co–N4 moieties coordinated with NG displays superior activities for oxygen reduction and evolution reactions in wide pH ranges. |
---|---|
AbstractList | Nonprecious group metal (NPGM)-based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structure of SACs, and consequently their electrocatalytic performance, have been largely ignored. Here, by adopting a precursor modulation strategy, the authors successfully synthesize single cobalt atom catalysts embedded in nitrogen-doped carbon, Co-N/C, with similar overall Co and N concentrations but different N types, that is, pyridinic N (N
), graphitic N (N
), and pyrrolic N (N
). Co-N/C with the Co-N
moieties coordinated with N
displays far superior activity for oxygen reduction (ORR) and evolution reactions, and superior activity and stability in both zinc-air batteries and proton exchange membrane fuel cells. Density functional theory calculation indicates that coordinated N species in particular N
functions as electron donors to the Co core of Co-N
active sites, leading to the downshift of d-band center of Co-N
and weakening the binding energies of the intermediates on Co-N
sites, thus, significantly promoting catalytic kinetics and thermodynamics for ORR in a full pH range condition. Nonprecious group metal (NPGM)‐based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structure of SACs, and consequently their electrocatalytic performance, have been largely ignored. Here, by adopting a precursor modulation strategy, the authors successfully synthesize single cobalt atom catalysts embedded in nitrogen‐doped carbon, Co–N/C, with similar overall Co and N concentrations but different N types, that is, pyridinic N (NP), graphitic N (NG), and pyrrolic N (NPY). Co–N/C with the Co–N4 moieties coordinated with NG displays far superior activity for oxygen reduction (ORR) and evolution reactions, and superior activity and stability in both zinc–air batteries and proton exchange membrane fuel cells. Density functional theory calculation indicates that coordinated N species in particular NG functions as electron donors to the Co core of Co–N4 active sites, leading to the downshift of d‐band center of Co–N4 and weakening the binding energies of the intermediates on Co–N4 sites, thus, significantly promoting catalytic kinetics and thermodynamics for ORR in a full pH range condition. Nonprecious group metal (NPGM)‐based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structure of SACs, and consequently their electrocatalytic performance, have been largely ignored. Here, by adopting a precursor modulation strategy, the authors successfully synthesize single cobalt atom catalysts embedded in nitrogen‐doped carbon, Co–N/C, with similar overall Co and N concentrations but different N types, that is, pyridinic N (N P ), graphitic N (N G ), and pyrrolic N (N PY ). Co–N/C with the Co–N 4 moieties coordinated with N G displays far superior activity for oxygen reduction (ORR) and evolution reactions, and superior activity and stability in both zinc–air batteries and proton exchange membrane fuel cells. Density functional theory calculation indicates that coordinated N species in particular N G functions as electron donors to the Co core of Co–N 4 active sites, leading to the downshift of d ‐band center of Co–N 4 and weakening the binding energies of the intermediates on Co–N 4 sites, thus, significantly promoting catalytic kinetics and thermodynamics for ORR in a full pH range condition. Nonprecious group metal (NPGM)‐based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structure of SACs, and consequently their electrocatalytic performance, have been largely ignored. Here, by adopting a precursor modulation strategy, the authors successfully synthesize single cobalt atom catalysts embedded in nitrogen‐doped carbon, Co–N/C, with similar overall Co and N concentrations but different N types, that is, pyridinic N (NP), graphitic N (NG), and pyrrolic N (NPY). Co–N/C with the Co–N4 moieties coordinated with NG displays far superior activity for oxygen reduction (ORR) and evolution reactions, and superior activity and stability in both zinc–air batteries and proton exchange membrane fuel cells. Density functional theory calculation indicates that coordinated N species in particular NG functions as electron donors to the Co core of Co–N4 active sites, leading to the downshift of d‐band center of Co–N4 and weakening the binding energies of the intermediates on Co–N4 sites, thus, significantly promoting catalytic kinetics and thermodynamics for ORR in a full pH range condition. Cobalt single atom catalysts embedded in nitrogen‐doped carbon (Co–N/C) with the controlled N types, that is, pyridinic N (NP), graphitic N (NG), and pyrrolic N (NPY), are successfully synthesized via a precursor modulation strategy. Co–N/C with the Co–N4 moieties coordinated with NG displays superior activities for oxygen reduction and evolution reactions in wide pH ranges. |
Author | Yao, Sixian Hao, Chao Xu, Xiaomin Pan, Can Xiang, Xue Tian, Zhi Qun Zhang, Xiaoran Shao, Zongping Jiang, San Ping Shen, Pei Kang |
Author_xml | – sequence: 1 givenname: Xiaoran surname: Zhang fullname: Zhang, Xiaoran organization: Curtin University – sequence: 2 givenname: Xiaomin surname: Xu fullname: Xu, Xiaomin organization: Curtin University – sequence: 3 givenname: Sixian surname: Yao fullname: Yao, Sixian organization: Ministry of Education – sequence: 4 givenname: Chao surname: Hao fullname: Hao, Chao organization: Ministry of Education – sequence: 5 givenname: Can surname: Pan fullname: Pan, Can organization: Ministry of Education – sequence: 6 givenname: Xue surname: Xiang fullname: Xiang, Xue organization: Ministry of Education – sequence: 7 givenname: Zhi Qun surname: Tian fullname: Tian, Zhi Qun email: tianzhiqun@gxu.edu.cn organization: Ministry of Education – sequence: 8 givenname: Pei Kang surname: Shen fullname: Shen, Pei Kang organization: Ministry of Education – sequence: 9 givenname: Zongping surname: Shao fullname: Shao, Zongping email: Zongping.shao@curtin.edu.au organization: Curtin University – sequence: 10 givenname: San Ping orcidid: 0000-0002-7042-2976 surname: Jiang fullname: Jiang, San Ping email: s.jiang@curtin.edu.au organization: Curtin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35023622$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtOwzAQRS1URB-wZYkssW7xI49mWUJ5SKUsCuvIdZzWVWIH2ynqjj-Ab-RLcGkpSxajGV2duaO5XdBSWgkAzjEaYITIla3KckAQwSikJDkCHRxh2o-GJGkdZozaoGvtCiGKSRCfgDYNEaERIR3wca21dVIt4LgU3BnNmWPlxkkOR9zJtXQbqAs480Qp4MjpCqY_hHUWzpq61saJHGoFp9JvL4T6ev-80bXXUmbmXndLo5vFEk5hqrXJpWJOenms1tJoVQnl_LyQSgjjj5yC44KVVpztew-83I6f0_v-5OnuIR1N-pwOUdKPEMOIhLTgImIk5iyPQ8ZYPgyDMKFBiLjgNIh4HCPKCh8BjYb-_ZjggtHcVw9c7nxro18bYV220o1R_mRGIhqHKA4S7KnBjuJGW2tEkdVGVsxsMoyybf7ZNv_skL9fuNjbNvNK5Af8N3APJDvgTZZi849dNnucTP7MvwEJ35c0 |
CitedBy_id | crossref_primary_10_1002_smll_202207603 crossref_primary_10_1021_acs_energyfuels_2c04025 crossref_primary_10_1002_smll_202305390 crossref_primary_10_1039_D3DT01324C crossref_primary_10_1016_j_cej_2024_148735 crossref_primary_10_1016_j_ensm_2023_01_030 crossref_primary_10_1007_s12274_022_4800_x crossref_primary_10_3390_catal13020330 crossref_primary_10_1016_j_apsusc_2024_160215 crossref_primary_10_1007_s40820_023_01231_1 crossref_primary_10_1016_j_cej_2022_139820 crossref_primary_10_1039_D3CE00117B crossref_primary_10_3390_nano14040366 crossref_primary_10_1021_acsami_3c15627 crossref_primary_10_1002_smll_202307776 crossref_primary_10_1002_smtd_202201371 crossref_primary_10_1016_j_jcis_2022_11_118 crossref_primary_10_1039_D3SE01275A crossref_primary_10_3390_catal13071132 crossref_primary_10_1002_anie_202308686 crossref_primary_10_3390_nano12244432 crossref_primary_10_1002_cssc_202201947 crossref_primary_10_3390_catal13020406 crossref_primary_10_1007_s40843_023_2464_8 crossref_primary_10_1021_acs_energyfuels_2c00099 crossref_primary_10_1002_smll_202310694 crossref_primary_10_3390_catal13010166 crossref_primary_10_1002_smll_202305782 crossref_primary_10_1039_D2MA00292B crossref_primary_10_1002_smll_202202660 crossref_primary_10_3390_polym15030734 crossref_primary_10_1039_D2CC06113A crossref_primary_10_1002_smll_202400357 crossref_primary_10_1002_smtd_202300100 crossref_primary_10_1002_adma_202209644 crossref_primary_10_3390_catal14050327 crossref_primary_10_1016_j_chemosphere_2023_139937 crossref_primary_10_1002_advs_202200614 crossref_primary_10_3390_catal13060937 crossref_primary_10_1039_D3QM00558E crossref_primary_10_1016_j_seppur_2023_124990 crossref_primary_10_3390_catal12121515 crossref_primary_10_1007_s41061_023_00434_9 crossref_primary_10_1016_j_apcatb_2024_124060 crossref_primary_10_1016_j_jece_2024_112397 crossref_primary_10_1021_acsami_3c06886 crossref_primary_10_3390_molecules28124597 crossref_primary_10_1016_j_jcis_2024_02_092 crossref_primary_10_1016_j_cej_2024_153671 crossref_primary_10_1021_acsnano_3c09559 crossref_primary_10_3390_catal12121608 crossref_primary_10_1002_adfm_202305268 crossref_primary_10_1002_anie_202401386 crossref_primary_10_1016_j_jallcom_2024_174599 crossref_primary_10_1039_D3CP06077B crossref_primary_10_1016_j_jallcom_2023_171722 crossref_primary_10_1039_D4TA03518F crossref_primary_10_1016_j_cej_2023_144272 crossref_primary_10_1016_j_nanoen_2023_109149 crossref_primary_10_1007_s40242_022_2219_2 crossref_primary_10_1016_j_jcis_2024_05_182 crossref_primary_10_1002_advs_202203391 crossref_primary_10_3390_molecules27227851 crossref_primary_10_3390_catal12121490 crossref_primary_10_1016_j_diamond_2023_110095 crossref_primary_10_1021_acsaem_3c01880 crossref_primary_10_1016_j_ccr_2024_215952 crossref_primary_10_1002_smll_202206367 crossref_primary_10_1021_acsnano_2c01748 crossref_primary_10_1039_D3TA03701K crossref_primary_10_1039_D3TA00576C crossref_primary_10_1021_acs_energyfuels_4c00477 crossref_primary_10_1002_ange_202401386 crossref_primary_10_1021_acsanm_3c05126 crossref_primary_10_1002_celc_202400034 crossref_primary_10_3390_nano13182612 crossref_primary_10_1016_j_jcis_2022_04_098 crossref_primary_10_1021_acsanm_3c00827 crossref_primary_10_1002_cctc_202201579 crossref_primary_10_1016_j_jcis_2022_04_059 crossref_primary_10_1039_D3CP04215D crossref_primary_10_1039_D2TA09788E crossref_primary_10_1039_D3GC02151C crossref_primary_10_1021_acsnano_2c09838 crossref_primary_10_1155_2023_6016603 crossref_primary_10_3390_cryst13010074 crossref_primary_10_1021_acs_langmuir_2c03359 crossref_primary_10_1002_ange_202308686 crossref_primary_10_3390_nanoenergyadv3010004 crossref_primary_10_1007_s12274_023_6404_5 |
Cites_doi | 10.1016/j.elecom.2010.09.017 10.1002/aenm.201100371 10.1021/am507744y 10.1021/jacs.9b03811 10.1002/cssc.202000048 10.1016/0013-4686(95)00423-8 10.1002/anie.201706602 10.1002/adfm.201601492 10.1038/s41563-019-0571-5 10.1002/adma.201807615 10.1016/j.cej.2021.129096 10.1016/j.electacta.2021.137712 10.1016/j.jcis.2021.03.074 10.1039/c0jm03613g 10.1002/adfm.201606497 10.1002/smll.201703118 10.1021/jacs.9b11852 10.1002/celc.202100599 10.1007/s12274-017-1455-0 10.1039/C9TA06949F 10.1016/j.apcatb.2019.118347 10.1021/ar400011z 10.1021/acsami.8b06153 10.1002/adma.201706758 10.1021/ja810045y 10.1021/jacs.7b10385 10.1016/j.nanoen.2015.12.032 10.1016/j.pnsc.2015.11.008 10.1126/science.aan2255 10.1002/advs.201802066 10.1002/smtd.201800440 10.1039/C8EE02656D 10.1002/anie.202017288 10.1002/adfm.201803330 10.1039/C9CS00903E 10.1016/j.jpowsour.2007.03.061 10.1039/C4TA03986F 10.1016/j.nanoen.2018.08.003 10.1021/jz1016284 10.1002/adfm.201201244 10.1002/anie.201405314 10.1021/acs.chemrev.9b00220 10.1021/acscatal.5b00524 10.1021/cs3000864 10.1016/j.ijhydene.2019.09.073 10.1021/cr068437y 10.1039/C4NR04357J 10.1002/anie.201504707 10.1021/acs.chemrev.0c00594 10.1016/j.apsusc.2020.148325 10.1039/C4CS00470A 10.1002/aenm.201703487 10.1126/science.aad0832 10.1002/adfm.201606190 10.1002/cctc.201500411 10.1021/acsenergylett.8b00303 10.1021/acsenergylett.9b00804 10.1039/C5CC02218E 10.1021/jacs.7b10194 10.1016/j.ces.2021.116544 10.1038/s41467-019-12510-0 10.1038/ncomms9668 10.1126/science.1200832 10.1021/nn103584t |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/smll.202105329 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202105329 35023622 SMLL202105329 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Guangxi Science and Technology funderid: AB16380030; AA17204083 – fundername: National Natural Science Foundation of China funderid: 22075055 – fundername: Australian Research Council – fundername: Discovery Project Scheme funderid: DP180100731; DP180100568 – fundername: National Natural Science Foundation of China grantid: 22075055 – fundername: Guangxi Science and Technology grantid: AB16380030 – fundername: Discovery Project Scheme grantid: DP180100731 – fundername: Guangxi Science and Technology grantid: AA17204083 – fundername: Discovery Project Scheme grantid: DP180100568 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AASGY AAYOK ACBWZ ASPBG AVWKF AZFZN BDRZF EJD FEDTE GODZA HVGLF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3809-60a10253fce6a27cad75aaad854593450cec346c7703af681368003721fa3dfa3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 |
IngestDate | Sat Dec 14 04:11:13 EST 2024 Fri Dec 06 06:04:12 EST 2024 Sat Sep 28 08:22:17 EDT 2024 Sat Aug 24 00:56:50 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | N coordination environment engineering polymer electrolyte membrane fuel cells oxygen reduction reactions Zn-air batteries single atom catalysts |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3809-60a10253fce6a27cad75aaad854593450cec346c7703af681368003721fa3dfa3 |
ORCID | 0000-0002-7042-2976 |
OpenAccessLink | https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/smll.202105329 |
PMID | 35023622 |
PQID | 2637507491 |
PQPubID | 1046358 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2637507491 crossref_primary_10_1002_smll_202105329 pubmed_primary_35023622 wiley_primary_10_1002_smll_202105329_SMLL202105329 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – sequence: 0 name: Wiley Subscription Services, Inc |
References | 2019; 7 2020 2015; 49 3 2015; 6 2018 2007; 30 107 2019; 31 2020 2012 2019; 142 22 3 2013; 46 2020; 263 2018 2016 2015 2019; 3 26 7 141 2017 2021 2018 2018 2018; 27 14 10 28 2019 2018; 10 8 2015; 54 2015 2015 2020; 5 44 2020 2017; 357 2011 2018; 5 52 2020; 19 2017; 139 2021 2021; 236 540 1996 2011 2019; 41 332 6 2020 2020 2020 2015 2019; 120 120 13 25 44 2017 2014; 27 6 2011 2015; 2 51 2007; 170 2016 2011 2012; 29 1 2 2017; 10 2019 2015; 4 7 2021 2021 2021; 370 416 8 2017; 56 2011; 21 2021; 594 2018; 11 2021; 60 2009 2010; 131 12 2016; 351 2014; 53 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_3_5 e_1_2_8_5_3 e_1_2_8_7_1 Zhang J. (e_1_2_8_1_3) 2020; 2020 e_1_2_8_3_4 e_1_2_8_5_2 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_17_3 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_32_2 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_8_2 e_1_2_8_6_3 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 Yan L. (e_1_2_8_33_2) 2021 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_18_1 e_1_2_8_16_4 e_1_2_8_33_4 e_1_2_8_35_2 e_1_2_8_14_1 e_1_2_8_33_3 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_33_5 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 49 3 start-page: 3484 1752 year: 2020 2015 publication-title: Chem. Soc. Rev. J. Mater. Chem. A – volume: 131 12 start-page: 7086 1646 year: 2009 2010 publication-title: J. Am. Chem. Soc. Electrochem. Commun. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 594 start-page: 466 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 357 start-page: 479 year: 2017 publication-title: Science – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 236 540 year: 2021 2021 publication-title: Chem. Eng. Sci. Appl. Surf. Sci. – volume: 30 107 start-page: 1745 year: 2018 2007 publication-title: Adv. Mater. Chem. Rev. – volume: 27 6 year: 2017 2014 publication-title: Adv. Funct. Mater. Nanoscale – volume: 142 22 3 start-page: 2404 4584 year: 2020 2012 2019 publication-title: J. Am. Chem. Soc. Adv. Funct. Mater. Small Methods – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 3 26 7 141 start-page: 1183 5708 3808 9664 year: 2018 2016 2015 2019 publication-title: ACS Energy Lett. Adv. Funct. Mater. ChemCatChem J. Am. Chem. Soc. – volume: 5 52 start-page: 4350 307 year: 2011 2018 publication-title: ACS Nano Nano Energy – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 10 8 start-page: 4585 year: 2019 2018 publication-title: Nat. Commun. Adv. Energy Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 27 14 10 28 year: 2017 2021 2018 2018 2018 publication-title: Adv. Funct. Mater. Carbon Energy Small ACS Appl. Mater. Interfaces Adv. Funct. Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 370 416 8 start-page: 3262 year: 2021 2021 2021 publication-title: Electrochim. Acta Chem. Eng. J. ChemElectroChem. – volume: 6 start-page: 8668 year: 2015 publication-title: Nat. Commun. – volume: 41 332 6 start-page: 1689 443 year: 1996 2011 2019 publication-title: Electrochim. Acta Science Adv. Sci. – volume: 29 1 2 start-page: 83 1205 864 year: 2016 2011 2012 publication-title: Nano Energy Adv. Energy Mater. ACS Catal. – volume: 4 7 start-page: 1619 4048 year: 2019 2015 publication-title: ACS Energy Lett. ACS Appl. Mater. Interfaces – volume: 5 44 2020 start-page: 4643 2060 15 year: 2015 2015 2020 publication-title: ACS Catal. Chem. Soc. Rev. Research – volume: 19 start-page: 436 year: 2020 publication-title: Nat. Mater. – volume: 21 year: 2011 publication-title: J. Mater. Chem. – volume: 263 year: 2020 publication-title: Appl. Catal., B – volume: 46 start-page: 1878 year: 2013 publication-title: Acc. Chem. Res. – volume: 2 51 start-page: 295 year: 2011 2015 publication-title: J. Phys. Chem. Lett. Chem. Commun. – volume: 60 start-page: 9516 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 351 start-page: 361 year: 2016 publication-title: Science – volume: 11 start-page: 3375 year: 2018 publication-title: Energy Environ. Sci. – volume: 10 start-page: 2508 year: 2017 publication-title: Nano Res. – volume: 170 start-page: 85 year: 2007 publication-title: J. Power Sources – volume: 120 120 13 25 44 start-page: 1184 2484 545 year: 2020 2020 2020 2015 2019 publication-title: Chem. Rev. Chem. Rev. ChemSusChem Prog. Nat. Sci.: Mater. Int. Int. J. Hydrogen Energy – ident: e_1_2_8_36_2 doi: 10.1016/j.elecom.2010.09.017 – ident: e_1_2_8_2_2 doi: 10.1002/aenm.201100371 – ident: e_1_2_8_8_2 doi: 10.1021/am507744y – ident: e_1_2_8_16_4 doi: 10.1021/jacs.9b03811 – ident: e_1_2_8_3_3 doi: 10.1002/cssc.202000048 – ident: e_1_2_8_6_1 doi: 10.1016/0013-4686(95)00423-8 – ident: e_1_2_8_13_1 doi: 10.1002/anie.201706602 – ident: e_1_2_8_16_2 doi: 10.1002/adfm.201601492 – ident: e_1_2_8_7_1 doi: 10.1038/s41563-019-0571-5 – ident: e_1_2_8_11_1 doi: 10.1002/adma.201807615 – ident: e_1_2_8_17_2 doi: 10.1016/j.cej.2021.129096 – ident: e_1_2_8_17_1 doi: 10.1016/j.electacta.2021.137712 – ident: e_1_2_8_23_1 doi: 10.1016/j.jcis.2021.03.074 – ident: e_1_2_8_25_1 doi: 10.1039/c0jm03613g – ident: e_1_2_8_20_1 doi: 10.1002/adfm.201606497 – ident: e_1_2_8_33_3 doi: 10.1002/smll.201703118 – ident: e_1_2_8_5_1 doi: 10.1021/jacs.9b11852 – ident: e_1_2_8_17_3 doi: 10.1002/celc.202100599 – ident: e_1_2_8_10_1 doi: 10.1007/s12274-017-1455-0 – ident: e_1_2_8_14_1 doi: 10.1039/C9TA06949F – ident: e_1_2_8_9_1 doi: 10.1016/j.apcatb.2019.118347 – ident: e_1_2_8_21_1 doi: 10.1021/ar400011z – ident: e_1_2_8_33_4 doi: 10.1021/acsami.8b06153 – ident: e_1_2_8_19_1 doi: 10.1002/adma.201706758 – ident: e_1_2_8_36_1 doi: 10.1021/ja810045y – ident: e_1_2_8_28_1 doi: 10.1021/jacs.7b10385 – ident: e_1_2_8_2_1 doi: 10.1016/j.nanoen.2015.12.032 – ident: e_1_2_8_3_4 doi: 10.1016/j.pnsc.2015.11.008 – ident: e_1_2_8_12_1 doi: 10.1126/science.aan2255 – ident: e_1_2_8_6_3 doi: 10.1002/advs.201802066 – ident: e_1_2_8_5_3 doi: 10.1002/smtd.201800440 – ident: e_1_2_8_18_1 doi: 10.1039/C8EE02656D – year: 2021 ident: e_1_2_8_33_2 publication-title: Carbon Energy contributor: fullname: Yan L. – ident: e_1_2_8_30_1 doi: 10.1002/anie.202017288 – ident: e_1_2_8_33_5 doi: 10.1002/adfm.201803330 – ident: e_1_2_8_4_1 doi: 10.1039/C9CS00903E – ident: e_1_2_8_34_1 doi: 10.1016/j.jpowsour.2007.03.061 – ident: e_1_2_8_4_2 doi: 10.1039/C4TA03986F – ident: e_1_2_8_24_2 doi: 10.1016/j.nanoen.2018.08.003 – ident: e_1_2_8_32_1 doi: 10.1021/jz1016284 – ident: e_1_2_8_5_2 doi: 10.1002/adfm.201201244 – ident: e_1_2_8_22_1 doi: 10.1002/anie.201405314 – ident: e_1_2_8_3_2 doi: 10.1021/acs.chemrev.9b00220 – ident: e_1_2_8_1_1 doi: 10.1021/acscatal.5b00524 – ident: e_1_2_8_2_3 doi: 10.1021/cs3000864 – ident: e_1_2_8_3_5 doi: 10.1016/j.ijhydene.2019.09.073 – ident: e_1_2_8_19_2 doi: 10.1021/cr068437y – ident: e_1_2_8_20_2 doi: 10.1039/C4NR04357J – ident: e_1_2_8_27_1 doi: 10.1002/anie.201504707 – ident: e_1_2_8_3_1 doi: 10.1021/acs.chemrev.0c00594 – ident: e_1_2_8_35_2 doi: 10.1016/j.apsusc.2020.148325 – ident: e_1_2_8_1_2 doi: 10.1039/C4CS00470A – ident: e_1_2_8_15_2 doi: 10.1002/aenm.201703487 – ident: e_1_2_8_31_1 doi: 10.1126/science.aad0832 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.201606190 – ident: e_1_2_8_16_3 doi: 10.1002/cctc.201500411 – ident: e_1_2_8_16_1 doi: 10.1021/acsenergylett.8b00303 – volume: 2020 start-page: 15 year: 2020 ident: e_1_2_8_1_3 publication-title: Research contributor: fullname: Zhang J. – ident: e_1_2_8_8_1 doi: 10.1021/acsenergylett.9b00804 – ident: e_1_2_8_32_2 doi: 10.1039/C5CC02218E – ident: e_1_2_8_26_1 doi: 10.1021/jacs.7b10194 – ident: e_1_2_8_35_1 doi: 10.1016/j.ces.2021.116544 – ident: e_1_2_8_15_1 doi: 10.1038/s41467-019-12510-0 – ident: e_1_2_8_29_1 doi: 10.1038/ncomms9668 – ident: e_1_2_8_6_2 doi: 10.1126/science.1200832 – ident: e_1_2_8_24_1 doi: 10.1021/nn103584t |
SSID | ssj0031247 |
Score | 2.6760023 |
Snippet | Nonprecious group metal (NPGM)‐based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively... Nonprecious group metal (NPGM)-based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2105329 |
SubjectTerms | Carbon Catalytic activity Chemical synthesis Cobalt Coordination Density functional theory Donors (electronic) Dopants Electronic structure Functionals Mathematical analysis Metal air batteries N coordination environment engineering Nanotechnology Nitrogen oxygen reduction reactions polymer electrolyte membrane fuel cells Proton exchange membrane fuel cells Reaction kinetics Single atom catalysts Zinc-oxygen batteries Zn–air batteries |
Title | Boosting Electrocatalytic Activity of Single Atom Catalysts Supported on Nitrogen‐Doped Carbon through N Coordination Environment Engineering |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202105329 https://www.ncbi.nlm.nih.gov/pubmed/35023622 https://www.proquest.com/docview/2637507491 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4PwoFeUBiSpvaeTRj6UMVajtQKnWLHCeRKtqkatIBJv4B_EZ-CWc7SVsYkGDIkMi2HN_Z99m--w6h27rOnAYxmBaCfdMMFjCxDuqaB1BfXvs4tghwHgyt3th4mJiTjSh-xQ9RHLiJmSHXazHBmZfU1qShyXwmrg5gy2JSIiL46tQWPn3tx4I_ioLxktlVwGZpgngrZ23USW27-rZV-gE1t5GrND3dA8TyTiuPk-fqKvWq_PUbn-N__uoQ7We4FDeVIh2hnSA6RnsbbIUn6P0-jhPhJY07KneOPPp5gQq4yVUSChyHeAQlZgFupvEct2SJJE2wyB4q_Hp9HEd4OIXaoLmfbx_teAHfWmzpwfcsaRAe4lYMm-KpOqnEnXUwHt7o0SkadztPrZ6W5XPQOG3ojmbpDOCMSUMeWIzYnPm2yRjzG4DiHGqYOg84NSxuwyrEQpAXtRqCH4fUQ0Z9eM5QKYqj4AJhCsAGlIx6Il-NB4uQ5_sGmFqHG75phEEZ3eXydBeKtsNVBM3EFUPsFkNcRpVc3G42fROXWKBLAK6cehmdKxUomqGmIN0npIyIFOQv7bujQb9fvF3-pdIV2iUi6EJ6vlVQKV2ugmuAQql3I9X9C7teAnk |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29btswED6kydB2aNOftE7zw6FAJ9kSSUnW6Do2nMT2UNtAN4GiJCBIYgWRMrRT36B5xjxJ7khLidshQDtokEASFO_I-3g8fgfw2XNV1OVSOTnaN0eqTNE66DoJQn1z7BOFdMF5Mg1GC3ny3a-jCekujOWHaBxuNDPMek0TnBzSnQfW0PLygs4OcM_iCx49gy2c8x5FdR19axikBJovk18FrZZD1Fs1b6PLO-v11-3SX2BzHbsa4zN8DUndbRtzct6-qZK2_vkHo-N__dc2vFpBU9azuvQGNrLlW3j5iLDwHfz-WhQlBUqzgU2fY7w_P7AC62mbh4IVOZthiYuM9arikvVNibIqGSUQpdDelBVLNj3D2qi8d79uj4or_NZX1wl-X-UNYlPWL3BffGadlWzwcB-PPerRe1gMB_P-yFmldHC06LqRE7gKEY0vcp0FiodapaGvlEq7COQiIX1XZ1rIQIe4EKkcBSaCLlHkcC9XIsVnBzaXxTL7CEwgtkE9EwmlrElwHUrSVKK1jbRMfZlnLfhSCzS-sswdseVo5jENcdwMcQv2annHqxlcxjwQCKZCGXkt-GB1oGlG-MS7z3kLuJHkE-3Hs8l43Lzt_kulQ3g-mk_G8fh4evoJXnC6g2EC4fZgs7q-yfYRGVXJgdH9e-ujBpo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2Jey-oDEKZDaTtIcSxexlAqxSNwix0kkBDQVSQ9w4g_gG_kSxnYbWjggwSGHRB7L8Yw9z_b4DcBexRZ-lXJhJejfLC5ioeZB2woR6utjH99TF5zPO-7xDT-9dW5HbvEbfohiw02NDD1fqwHei5LDL9LQ7PFBHR3gksVh1J-EKe5SX7HnNy4LAimG3kunV0GnZSnmrSFto00Px-XH3dIPrDkOXbXvac2DGLbahJzcH_Tz8EC-fCN0_M9vLcDcAJiSmrGkRZiIu0swO0JXuAxvR2maqTBp0jTJc_TezzMKkJo0WShImpArLPEQk1qePpK6LpHlGVHpQ1Vgb0TSLuncoTSa7sfreyPt4be6eArx-yBrEOmQeoqr4juzVUmaX7fxyEiLVuCm1byuH1uDhA6WZFXbt1xbIJ5xWCJjV1BPishzhBBRFWGcz7hjy1gy7koPpyGRoL6YW1UEObSSCBbhswqlbtqN14EwRDZoZSxUCWtCnIXCKOLoa33JI4cncRn2h_oMeoa3IzAMzTRQXRwUXVyGraG6g8H4zQLqMoRSHvcrZVgzJlBUwxzFuk9pGahW5C_1B1fn7XbxtvEXoV2Yvmi0gvZJ52wTZqi6gKGj4LaglD_1422ERXm4oy3_E9XgBUk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+Electrocatalytic+Activity+of+Single+Atom+Catalysts+Supported+on+Nitrogen%E2%80%90Doped+Carbon+through+N+Coordination+Environment+Engineering&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhang%2C+Xiaoran&rft.au=Xu%2C+Xiaomin&rft.au=Yao%2C+Sixian&rft.au=Hao%2C+Chao&rft.date=2022-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202105329&rft.externalDBID=10.1002%252Fsmll.202105329&rft.externalDocID=SMLL202105329 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |