Boosting Electrocatalytic Activity of Single Atom Catalysts Supported on Nitrogen‐Doped Carbon through N Coordination Environment Engineering

Nonprecious group metal (NPGM)‐based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structur...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 10; pp. e2105329 - n/a
Main Authors Zhang, Xiaoran, Xu, Xiaomin, Yao, Sixian, Hao, Chao, Pan, Can, Xiang, Xue, Tian, Zhi Qun, Shen, Pei Kang, Shao, Zongping, Jiang, San Ping
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nonprecious group metal (NPGM)‐based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structure of SACs, and consequently their electrocatalytic performance, have been largely ignored. Here, by adopting a precursor modulation strategy, the authors successfully synthesize single cobalt atom catalysts embedded in nitrogen‐doped carbon, Co–N/C, with similar overall Co and N concentrations but different N types, that is, pyridinic N (NP), graphitic N (NG), and pyrrolic N (NPY). Co–N/C with the Co–N4 moieties coordinated with NG displays far superior activity for oxygen reduction (ORR) and evolution reactions, and superior activity and stability in both zinc–air batteries and proton exchange membrane fuel cells. Density functional theory calculation indicates that coordinated N species in particular NG functions as electron donors to the Co core of Co–N4 active sites, leading to the downshift of d‐band center of Co–N4 and weakening the binding energies of the intermediates on Co–N4 sites, thus, significantly promoting catalytic kinetics and thermodynamics for ORR in a full pH range condition. Cobalt single atom catalysts embedded in nitrogen‐doped carbon (Co–N/C) with the controlled N types, that is, pyridinic N (NP), graphitic N (NG), and pyrrolic N (NPY), are successfully synthesized via a precursor modulation strategy. Co–N/C with the Co–N4 moieties coordinated with NG displays superior activities for oxygen reduction and evolution reactions in wide pH ranges.
AbstractList Nonprecious group metal (NPGM)-based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structure of SACs, and consequently their electrocatalytic performance, have been largely ignored. Here, by adopting a precursor modulation strategy, the authors successfully synthesize single cobalt atom catalysts embedded in nitrogen-doped carbon, Co-N/C, with similar overall Co and N concentrations but different N types, that is, pyridinic N (N ), graphitic N (N ), and pyrrolic N (N ). Co-N/C with the Co-N moieties coordinated with N displays far superior activity for oxygen reduction (ORR) and evolution reactions, and superior activity and stability in both zinc-air batteries and proton exchange membrane fuel cells. Density functional theory calculation indicates that coordinated N species in particular N functions as electron donors to the Co core of Co-N active sites, leading to the downshift of d-band center of Co-N and weakening the binding energies of the intermediates on Co-N sites, thus, significantly promoting catalytic kinetics and thermodynamics for ORR in a full pH range condition.
Nonprecious group metal (NPGM)‐based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structure of SACs, and consequently their electrocatalytic performance, have been largely ignored. Here, by adopting a precursor modulation strategy, the authors successfully synthesize single cobalt atom catalysts embedded in nitrogen‐doped carbon, Co–N/C, with similar overall Co and N concentrations but different N types, that is, pyridinic N (NP), graphitic N (NG), and pyrrolic N (NPY). Co–N/C with the Co–N4 moieties coordinated with NG displays far superior activity for oxygen reduction (ORR) and evolution reactions, and superior activity and stability in both zinc–air batteries and proton exchange membrane fuel cells. Density functional theory calculation indicates that coordinated N species in particular NG functions as electron donors to the Co core of Co–N4 active sites, leading to the downshift of d‐band center of Co–N4 and weakening the binding energies of the intermediates on Co–N4 sites, thus, significantly promoting catalytic kinetics and thermodynamics for ORR in a full pH range condition.
Nonprecious group metal (NPGM)‐based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structure of SACs, and consequently their electrocatalytic performance, have been largely ignored. Here, by adopting a precursor modulation strategy, the authors successfully synthesize single cobalt atom catalysts embedded in nitrogen‐doped carbon, Co–N/C, with similar overall Co and N concentrations but different N types, that is, pyridinic N (N P ), graphitic N (N G ), and pyrrolic N (N PY ). Co–N/C with the Co–N 4 moieties coordinated with N G displays far superior activity for oxygen reduction (ORR) and evolution reactions, and superior activity and stability in both zinc–air batteries and proton exchange membrane fuel cells. Density functional theory calculation indicates that coordinated N species in particular N G functions as electron donors to the Co core of Co–N 4 active sites, leading to the downshift of d ‐band center of Co–N 4 and weakening the binding energies of the intermediates on Co–N 4 sites, thus, significantly promoting catalytic kinetics and thermodynamics for ORR in a full pH range condition.
Nonprecious group metal (NPGM)‐based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively exploited to boost their catalytic activity, while the coordination environment of dopant, which also significantly affects the electronic structure of SACs, and consequently their electrocatalytic performance, have been largely ignored. Here, by adopting a precursor modulation strategy, the authors successfully synthesize single cobalt atom catalysts embedded in nitrogen‐doped carbon, Co–N/C, with similar overall Co and N concentrations but different N types, that is, pyridinic N (NP), graphitic N (NG), and pyrrolic N (NPY). Co–N/C with the Co–N4 moieties coordinated with NG displays far superior activity for oxygen reduction (ORR) and evolution reactions, and superior activity and stability in both zinc–air batteries and proton exchange membrane fuel cells. Density functional theory calculation indicates that coordinated N species in particular NG functions as electron donors to the Co core of Co–N4 active sites, leading to the downshift of d‐band center of Co–N4 and weakening the binding energies of the intermediates on Co–N4 sites, thus, significantly promoting catalytic kinetics and thermodynamics for ORR in a full pH range condition. Cobalt single atom catalysts embedded in nitrogen‐doped carbon (Co–N/C) with the controlled N types, that is, pyridinic N (NP), graphitic N (NG), and pyrrolic N (NPY), are successfully synthesized via a precursor modulation strategy. Co–N/C with the Co–N4 moieties coordinated with NG displays superior activities for oxygen reduction and evolution reactions in wide pH ranges.
Author Yao, Sixian
Hao, Chao
Xu, Xiaomin
Pan, Can
Xiang, Xue
Tian, Zhi Qun
Zhang, Xiaoran
Shao, Zongping
Jiang, San Ping
Shen, Pei Kang
Author_xml – sequence: 1
  givenname: Xiaoran
  surname: Zhang
  fullname: Zhang, Xiaoran
  organization: Curtin University
– sequence: 2
  givenname: Xiaomin
  surname: Xu
  fullname: Xu, Xiaomin
  organization: Curtin University
– sequence: 3
  givenname: Sixian
  surname: Yao
  fullname: Yao, Sixian
  organization: Ministry of Education
– sequence: 4
  givenname: Chao
  surname: Hao
  fullname: Hao, Chao
  organization: Ministry of Education
– sequence: 5
  givenname: Can
  surname: Pan
  fullname: Pan, Can
  organization: Ministry of Education
– sequence: 6
  givenname: Xue
  surname: Xiang
  fullname: Xiang, Xue
  organization: Ministry of Education
– sequence: 7
  givenname: Zhi Qun
  surname: Tian
  fullname: Tian, Zhi Qun
  email: tianzhiqun@gxu.edu.cn
  organization: Ministry of Education
– sequence: 8
  givenname: Pei Kang
  surname: Shen
  fullname: Shen, Pei Kang
  organization: Ministry of Education
– sequence: 9
  givenname: Zongping
  surname: Shao
  fullname: Shao, Zongping
  email: Zongping.shao@curtin.edu.au
  organization: Curtin University
– sequence: 10
  givenname: San Ping
  orcidid: 0000-0002-7042-2976
  surname: Jiang
  fullname: Jiang, San Ping
  email: s.jiang@curtin.edu.au
  organization: Curtin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35023622$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOwzAQRS1URB-wZYkssW7xI49mWUJ5SKUsCuvIdZzWVWIH2ynqjj-Ab-RLcGkpSxajGV2duaO5XdBSWgkAzjEaYITIla3KckAQwSikJDkCHRxh2o-GJGkdZozaoGvtCiGKSRCfgDYNEaERIR3wca21dVIt4LgU3BnNmWPlxkkOR9zJtXQbqAs480Qp4MjpCqY_hHUWzpq61saJHGoFp9JvL4T6ev-80bXXUmbmXndLo5vFEk5hqrXJpWJOenms1tJoVQnl_LyQSgjjj5yC44KVVpztew-83I6f0_v-5OnuIR1N-pwOUdKPEMOIhLTgImIk5iyPQ8ZYPgyDMKFBiLjgNIh4HCPKCh8BjYb-_ZjggtHcVw9c7nxro18bYV220o1R_mRGIhqHKA4S7KnBjuJGW2tEkdVGVsxsMoyybf7ZNv_skL9fuNjbNvNK5Af8N3APJDvgTZZi849dNnucTP7MvwEJ35c0
CitedBy_id crossref_primary_10_1002_smll_202207603
crossref_primary_10_1021_acs_energyfuels_2c04025
crossref_primary_10_1002_smll_202305390
crossref_primary_10_1039_D3DT01324C
crossref_primary_10_1016_j_cej_2024_148735
crossref_primary_10_1016_j_ensm_2023_01_030
crossref_primary_10_1007_s12274_022_4800_x
crossref_primary_10_3390_catal13020330
crossref_primary_10_1016_j_apsusc_2024_160215
crossref_primary_10_1007_s40820_023_01231_1
crossref_primary_10_1016_j_cej_2022_139820
crossref_primary_10_1039_D3CE00117B
crossref_primary_10_3390_nano14040366
crossref_primary_10_1021_acsami_3c15627
crossref_primary_10_1002_smll_202307776
crossref_primary_10_1002_smtd_202201371
crossref_primary_10_1016_j_jcis_2022_11_118
crossref_primary_10_1039_D3SE01275A
crossref_primary_10_3390_catal13071132
crossref_primary_10_1002_anie_202308686
crossref_primary_10_3390_nano12244432
crossref_primary_10_1002_cssc_202201947
crossref_primary_10_3390_catal13020406
crossref_primary_10_1007_s40843_023_2464_8
crossref_primary_10_1021_acs_energyfuels_2c00099
crossref_primary_10_1002_smll_202310694
crossref_primary_10_3390_catal13010166
crossref_primary_10_1002_smll_202305782
crossref_primary_10_1039_D2MA00292B
crossref_primary_10_1002_smll_202202660
crossref_primary_10_3390_polym15030734
crossref_primary_10_1039_D2CC06113A
crossref_primary_10_1002_smll_202400357
crossref_primary_10_1002_smtd_202300100
crossref_primary_10_1002_adma_202209644
crossref_primary_10_3390_catal14050327
crossref_primary_10_1016_j_chemosphere_2023_139937
crossref_primary_10_1002_advs_202200614
crossref_primary_10_3390_catal13060937
crossref_primary_10_1039_D3QM00558E
crossref_primary_10_1016_j_seppur_2023_124990
crossref_primary_10_3390_catal12121515
crossref_primary_10_1007_s41061_023_00434_9
crossref_primary_10_1016_j_apcatb_2024_124060
crossref_primary_10_1016_j_jece_2024_112397
crossref_primary_10_1021_acsami_3c06886
crossref_primary_10_3390_molecules28124597
crossref_primary_10_1016_j_jcis_2024_02_092
crossref_primary_10_1016_j_cej_2024_153671
crossref_primary_10_1021_acsnano_3c09559
crossref_primary_10_3390_catal12121608
crossref_primary_10_1002_adfm_202305268
crossref_primary_10_1002_anie_202401386
crossref_primary_10_1016_j_jallcom_2024_174599
crossref_primary_10_1039_D3CP06077B
crossref_primary_10_1016_j_jallcom_2023_171722
crossref_primary_10_1039_D4TA03518F
crossref_primary_10_1016_j_cej_2023_144272
crossref_primary_10_1016_j_nanoen_2023_109149
crossref_primary_10_1007_s40242_022_2219_2
crossref_primary_10_1016_j_jcis_2024_05_182
crossref_primary_10_1002_advs_202203391
crossref_primary_10_3390_molecules27227851
crossref_primary_10_3390_catal12121490
crossref_primary_10_1016_j_diamond_2023_110095
crossref_primary_10_1021_acsaem_3c01880
crossref_primary_10_1016_j_ccr_2024_215952
crossref_primary_10_1002_smll_202206367
crossref_primary_10_1021_acsnano_2c01748
crossref_primary_10_1039_D3TA03701K
crossref_primary_10_1039_D3TA00576C
crossref_primary_10_1021_acs_energyfuels_4c00477
crossref_primary_10_1002_ange_202401386
crossref_primary_10_1021_acsanm_3c05126
crossref_primary_10_1002_celc_202400034
crossref_primary_10_3390_nano13182612
crossref_primary_10_1016_j_jcis_2022_04_098
crossref_primary_10_1021_acsanm_3c00827
crossref_primary_10_1002_cctc_202201579
crossref_primary_10_1016_j_jcis_2022_04_059
crossref_primary_10_1039_D3CP04215D
crossref_primary_10_1039_D2TA09788E
crossref_primary_10_1039_D3GC02151C
crossref_primary_10_1021_acsnano_2c09838
crossref_primary_10_1155_2023_6016603
crossref_primary_10_3390_cryst13010074
crossref_primary_10_1021_acs_langmuir_2c03359
crossref_primary_10_1002_ange_202308686
crossref_primary_10_3390_nanoenergyadv3010004
crossref_primary_10_1007_s12274_023_6404_5
Cites_doi 10.1016/j.elecom.2010.09.017
10.1002/aenm.201100371
10.1021/am507744y
10.1021/jacs.9b03811
10.1002/cssc.202000048
10.1016/0013-4686(95)00423-8
10.1002/anie.201706602
10.1002/adfm.201601492
10.1038/s41563-019-0571-5
10.1002/adma.201807615
10.1016/j.cej.2021.129096
10.1016/j.electacta.2021.137712
10.1016/j.jcis.2021.03.074
10.1039/c0jm03613g
10.1002/adfm.201606497
10.1002/smll.201703118
10.1021/jacs.9b11852
10.1002/celc.202100599
10.1007/s12274-017-1455-0
10.1039/C9TA06949F
10.1016/j.apcatb.2019.118347
10.1021/ar400011z
10.1021/acsami.8b06153
10.1002/adma.201706758
10.1021/ja810045y
10.1021/jacs.7b10385
10.1016/j.nanoen.2015.12.032
10.1016/j.pnsc.2015.11.008
10.1126/science.aan2255
10.1002/advs.201802066
10.1002/smtd.201800440
10.1039/C8EE02656D
10.1002/anie.202017288
10.1002/adfm.201803330
10.1039/C9CS00903E
10.1016/j.jpowsour.2007.03.061
10.1039/C4TA03986F
10.1016/j.nanoen.2018.08.003
10.1021/jz1016284
10.1002/adfm.201201244
10.1002/anie.201405314
10.1021/acs.chemrev.9b00220
10.1021/acscatal.5b00524
10.1021/cs3000864
10.1016/j.ijhydene.2019.09.073
10.1021/cr068437y
10.1039/C4NR04357J
10.1002/anie.201504707
10.1021/acs.chemrev.0c00594
10.1016/j.apsusc.2020.148325
10.1039/C4CS00470A
10.1002/aenm.201703487
10.1126/science.aad0832
10.1002/adfm.201606190
10.1002/cctc.201500411
10.1021/acsenergylett.8b00303
10.1021/acsenergylett.9b00804
10.1039/C5CC02218E
10.1021/jacs.7b10194
10.1016/j.ces.2021.116544
10.1038/s41467-019-12510-0
10.1038/ncomms9668
10.1126/science.1200832
10.1021/nn103584t
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.202105329
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList PubMed
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202105329
35023622
SMLL202105329
Genre article
Journal Article
GrantInformation_xml – fundername: Guangxi Science and Technology
  funderid: AB16380030; AA17204083
– fundername: National Natural Science Foundation of China
  funderid: 22075055
– fundername: Australian Research Council
– fundername: Discovery Project Scheme
  funderid: DP180100731; DP180100568
– fundername: National Natural Science Foundation of China
  grantid: 22075055
– fundername: Guangxi Science and Technology
  grantid: AB16380030
– fundername: Discovery Project Scheme
  grantid: DP180100731
– fundername: Guangxi Science and Technology
  grantid: AA17204083
– fundername: Discovery Project Scheme
  grantid: DP180100568
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
EJD
FEDTE
GODZA
HVGLF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3809-60a10253fce6a27cad75aaad854593450cec346c7703af681368003721fa3dfa3
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Sat Dec 14 04:11:13 EST 2024
Fri Dec 06 06:04:12 EST 2024
Sat Sep 28 08:22:17 EDT 2024
Sat Aug 24 00:56:50 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords N coordination environment engineering
polymer electrolyte membrane fuel cells
oxygen reduction reactions
Zn-air batteries
single atom catalysts
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3809-60a10253fce6a27cad75aaad854593450cec346c7703af681368003721fa3dfa3
ORCID 0000-0002-7042-2976
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/smll.202105329
PMID 35023622
PQID 2637507491
PQPubID 1046358
PageCount 16
ParticipantIDs proquest_journals_2637507491
crossref_primary_10_1002_smll_202105329
pubmed_primary_35023622
wiley_primary_10_1002_smll_202105329_SMLL202105329
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – sequence: 0
  name: Wiley Subscription Services, Inc
References 2019; 7
2020 2015; 49 3
2015; 6
2018 2007; 30 107
2019; 31
2020 2012 2019; 142 22 3
2013; 46
2020; 263
2018 2016 2015 2019; 3 26 7 141
2017 2021 2018 2018 2018; 27 14 10 28
2019 2018; 10 8
2015; 54
2015 2015 2020; 5 44 2020
2017; 357
2011 2018; 5 52
2020; 19
2017; 139
2021 2021; 236 540
1996 2011 2019; 41 332 6
2020 2020 2020 2015 2019; 120 120 13 25 44
2017 2014; 27 6
2011 2015; 2 51
2007; 170
2016 2011 2012; 29 1 2
2017; 10
2019 2015; 4 7
2021 2021 2021; 370 416 8
2017; 56
2011; 21
2021; 594
2018; 11
2021; 60
2009 2010; 131 12
2016; 351
2014; 53
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_3_5
e_1_2_8_5_3
e_1_2_8_7_1
Zhang J. (e_1_2_8_1_3) 2020; 2020
e_1_2_8_3_4
e_1_2_8_5_2
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_17_3
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_36_2
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_32_2
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_6_3
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
Yan L. (e_1_2_8_33_2) 2021
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_18_1
e_1_2_8_16_4
e_1_2_8_33_4
e_1_2_8_35_2
e_1_2_8_14_1
e_1_2_8_33_3
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_33_5
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 49 3
  start-page: 3484 1752
  year: 2020 2015
  publication-title: Chem. Soc. Rev. J. Mater. Chem. A
– volume: 131 12
  start-page: 7086 1646
  year: 2009 2010
  publication-title: J. Am. Chem. Soc. Electrochem. Commun.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 594
  start-page: 466
  year: 2021
  publication-title: J. Colloid Interface Sci.
– volume: 357
  start-page: 479
  year: 2017
  publication-title: Science
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 236 540
  year: 2021 2021
  publication-title: Chem. Eng. Sci. Appl. Surf. Sci.
– volume: 30 107
  start-page: 1745
  year: 2018 2007
  publication-title: Adv. Mater. Chem. Rev.
– volume: 27 6
  year: 2017 2014
  publication-title: Adv. Funct. Mater. Nanoscale
– volume: 142 22 3
  start-page: 2404 4584
  year: 2020 2012 2019
  publication-title: J. Am. Chem. Soc. Adv. Funct. Mater. Small Methods
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 3 26 7 141
  start-page: 1183 5708 3808 9664
  year: 2018 2016 2015 2019
  publication-title: ACS Energy Lett. Adv. Funct. Mater. ChemCatChem J. Am. Chem. Soc.
– volume: 5 52
  start-page: 4350 307
  year: 2011 2018
  publication-title: ACS Nano Nano Energy
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 10 8
  start-page: 4585
  year: 2019 2018
  publication-title: Nat. Commun. Adv. Energy Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 27 14 10 28
  year: 2017 2021 2018 2018 2018
  publication-title: Adv. Funct. Mater. Carbon Energy Small ACS Appl. Mater. Interfaces Adv. Funct. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 370 416 8
  start-page: 3262
  year: 2021 2021 2021
  publication-title: Electrochim. Acta Chem. Eng. J. ChemElectroChem.
– volume: 6
  start-page: 8668
  year: 2015
  publication-title: Nat. Commun.
– volume: 41 332 6
  start-page: 1689 443
  year: 1996 2011 2019
  publication-title: Electrochim. Acta Science Adv. Sci.
– volume: 29 1 2
  start-page: 83 1205 864
  year: 2016 2011 2012
  publication-title: Nano Energy Adv. Energy Mater. ACS Catal.
– volume: 4 7
  start-page: 1619 4048
  year: 2019 2015
  publication-title: ACS Energy Lett. ACS Appl. Mater. Interfaces
– volume: 5 44 2020
  start-page: 4643 2060 15
  year: 2015 2015 2020
  publication-title: ACS Catal. Chem. Soc. Rev. Research
– volume: 19
  start-page: 436
  year: 2020
  publication-title: Nat. Mater.
– volume: 21
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 263
  year: 2020
  publication-title: Appl. Catal., B
– volume: 46
  start-page: 1878
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 2 51
  start-page: 295
  year: 2011 2015
  publication-title: J. Phys. Chem. Lett. Chem. Commun.
– volume: 60
  start-page: 9516
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 351
  start-page: 361
  year: 2016
  publication-title: Science
– volume: 11
  start-page: 3375
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 2508
  year: 2017
  publication-title: Nano Res.
– volume: 170
  start-page: 85
  year: 2007
  publication-title: J. Power Sources
– volume: 120 120 13 25 44
  start-page: 1184 2484 545
  year: 2020 2020 2020 2015 2019
  publication-title: Chem. Rev. Chem. Rev. ChemSusChem Prog. Nat. Sci.: Mater. Int. Int. J. Hydrogen Energy
– ident: e_1_2_8_36_2
  doi: 10.1016/j.elecom.2010.09.017
– ident: e_1_2_8_2_2
  doi: 10.1002/aenm.201100371
– ident: e_1_2_8_8_2
  doi: 10.1021/am507744y
– ident: e_1_2_8_16_4
  doi: 10.1021/jacs.9b03811
– ident: e_1_2_8_3_3
  doi: 10.1002/cssc.202000048
– ident: e_1_2_8_6_1
  doi: 10.1016/0013-4686(95)00423-8
– ident: e_1_2_8_13_1
  doi: 10.1002/anie.201706602
– ident: e_1_2_8_16_2
  doi: 10.1002/adfm.201601492
– ident: e_1_2_8_7_1
  doi: 10.1038/s41563-019-0571-5
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201807615
– ident: e_1_2_8_17_2
  doi: 10.1016/j.cej.2021.129096
– ident: e_1_2_8_17_1
  doi: 10.1016/j.electacta.2021.137712
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jcis.2021.03.074
– ident: e_1_2_8_25_1
  doi: 10.1039/c0jm03613g
– ident: e_1_2_8_20_1
  doi: 10.1002/adfm.201606497
– ident: e_1_2_8_33_3
  doi: 10.1002/smll.201703118
– ident: e_1_2_8_5_1
  doi: 10.1021/jacs.9b11852
– ident: e_1_2_8_17_3
  doi: 10.1002/celc.202100599
– ident: e_1_2_8_10_1
  doi: 10.1007/s12274-017-1455-0
– ident: e_1_2_8_14_1
  doi: 10.1039/C9TA06949F
– ident: e_1_2_8_9_1
  doi: 10.1016/j.apcatb.2019.118347
– ident: e_1_2_8_21_1
  doi: 10.1021/ar400011z
– ident: e_1_2_8_33_4
  doi: 10.1021/acsami.8b06153
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.201706758
– ident: e_1_2_8_36_1
  doi: 10.1021/ja810045y
– ident: e_1_2_8_28_1
  doi: 10.1021/jacs.7b10385
– ident: e_1_2_8_2_1
  doi: 10.1016/j.nanoen.2015.12.032
– ident: e_1_2_8_3_4
  doi: 10.1016/j.pnsc.2015.11.008
– ident: e_1_2_8_12_1
  doi: 10.1126/science.aan2255
– ident: e_1_2_8_6_3
  doi: 10.1002/advs.201802066
– ident: e_1_2_8_5_3
  doi: 10.1002/smtd.201800440
– ident: e_1_2_8_18_1
  doi: 10.1039/C8EE02656D
– year: 2021
  ident: e_1_2_8_33_2
  publication-title: Carbon Energy
  contributor:
    fullname: Yan L.
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.202017288
– ident: e_1_2_8_33_5
  doi: 10.1002/adfm.201803330
– ident: e_1_2_8_4_1
  doi: 10.1039/C9CS00903E
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jpowsour.2007.03.061
– ident: e_1_2_8_4_2
  doi: 10.1039/C4TA03986F
– ident: e_1_2_8_24_2
  doi: 10.1016/j.nanoen.2018.08.003
– ident: e_1_2_8_32_1
  doi: 10.1021/jz1016284
– ident: e_1_2_8_5_2
  doi: 10.1002/adfm.201201244
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.201405314
– ident: e_1_2_8_3_2
  doi: 10.1021/acs.chemrev.9b00220
– ident: e_1_2_8_1_1
  doi: 10.1021/acscatal.5b00524
– ident: e_1_2_8_2_3
  doi: 10.1021/cs3000864
– ident: e_1_2_8_3_5
  doi: 10.1016/j.ijhydene.2019.09.073
– ident: e_1_2_8_19_2
  doi: 10.1021/cr068437y
– ident: e_1_2_8_20_2
  doi: 10.1039/C4NR04357J
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.201504707
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.chemrev.0c00594
– ident: e_1_2_8_35_2
  doi: 10.1016/j.apsusc.2020.148325
– ident: e_1_2_8_1_2
  doi: 10.1039/C4CS00470A
– ident: e_1_2_8_15_2
  doi: 10.1002/aenm.201703487
– ident: e_1_2_8_31_1
  doi: 10.1126/science.aad0832
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.201606190
– ident: e_1_2_8_16_3
  doi: 10.1002/cctc.201500411
– ident: e_1_2_8_16_1
  doi: 10.1021/acsenergylett.8b00303
– volume: 2020
  start-page: 15
  year: 2020
  ident: e_1_2_8_1_3
  publication-title: Research
  contributor:
    fullname: Zhang J.
– ident: e_1_2_8_8_1
  doi: 10.1021/acsenergylett.9b00804
– ident: e_1_2_8_32_2
  doi: 10.1039/C5CC02218E
– ident: e_1_2_8_26_1
  doi: 10.1021/jacs.7b10194
– ident: e_1_2_8_35_1
  doi: 10.1016/j.ces.2021.116544
– ident: e_1_2_8_15_1
  doi: 10.1038/s41467-019-12510-0
– ident: e_1_2_8_29_1
  doi: 10.1038/ncomms9668
– ident: e_1_2_8_6_2
  doi: 10.1126/science.1200832
– ident: e_1_2_8_24_1
  doi: 10.1021/nn103584t
SSID ssj0031247
Score 2.6760023
Snippet Nonprecious group metal (NPGM)‐based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively...
Nonprecious group metal (NPGM)-based single atom catalysts (SACs) hold a great potential in electrocatalysis and dopant engineering has been extensively...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2105329
SubjectTerms Carbon
Catalytic activity
Chemical synthesis
Cobalt
Coordination
Density functional theory
Donors (electronic)
Dopants
Electronic structure
Functionals
Mathematical analysis
Metal air batteries
N coordination environment engineering
Nanotechnology
Nitrogen
oxygen reduction reactions
polymer electrolyte membrane fuel cells
Proton exchange membrane fuel cells
Reaction kinetics
Single atom catalysts
Zinc-oxygen batteries
Zn–air batteries
Title Boosting Electrocatalytic Activity of Single Atom Catalysts Supported on Nitrogen‐Doped Carbon through N Coordination Environment Engineering
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202105329
https://www.ncbi.nlm.nih.gov/pubmed/35023622
https://www.proquest.com/docview/2637507491
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4PwoFeUBiSpvaeTRj6UMVajtQKnWLHCeRKtqkatIBJv4B_EZ-CWc7SVsYkGDIkMi2HN_Z99m--w6h27rOnAYxmBaCfdMMFjCxDuqaB1BfXvs4tghwHgyt3th4mJiTjSh-xQ9RHLiJmSHXazHBmZfU1qShyXwmrg5gy2JSIiL46tQWPn3tx4I_ioLxktlVwGZpgngrZ23USW27-rZV-gE1t5GrND3dA8TyTiuPk-fqKvWq_PUbn-N__uoQ7We4FDeVIh2hnSA6RnsbbIUn6P0-jhPhJY07KneOPPp5gQq4yVUSChyHeAQlZgFupvEct2SJJE2wyB4q_Hp9HEd4OIXaoLmfbx_teAHfWmzpwfcsaRAe4lYMm-KpOqnEnXUwHt7o0SkadztPrZ6W5XPQOG3ojmbpDOCMSUMeWIzYnPm2yRjzG4DiHGqYOg84NSxuwyrEQpAXtRqCH4fUQ0Z9eM5QKYqj4AJhCsAGlIx6Il-NB4uQ5_sGmFqHG75phEEZ3eXydBeKtsNVBM3EFUPsFkNcRpVc3G42fROXWKBLAK6cehmdKxUomqGmIN0npIyIFOQv7bujQb9fvF3-pdIV2iUi6EJ6vlVQKV2ugmuAQql3I9X9C7teAnk
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29btswED6kydB2aNOftE7zw6FAJ9kSSUnW6Do2nMT2UNtAN4GiJCBIYgWRMrRT36B5xjxJ7khLidshQDtokEASFO_I-3g8fgfw2XNV1OVSOTnaN0eqTNE66DoJQn1z7BOFdMF5Mg1GC3ny3a-jCekujOWHaBxuNDPMek0TnBzSnQfW0PLygs4OcM_iCx49gy2c8x5FdR19axikBJovk18FrZZD1Fs1b6PLO-v11-3SX2BzHbsa4zN8DUndbRtzct6-qZK2_vkHo-N__dc2vFpBU9azuvQGNrLlW3j5iLDwHfz-WhQlBUqzgU2fY7w_P7AC62mbh4IVOZthiYuM9arikvVNibIqGSUQpdDelBVLNj3D2qi8d79uj4or_NZX1wl-X-UNYlPWL3BffGadlWzwcB-PPerRe1gMB_P-yFmldHC06LqRE7gKEY0vcp0FiodapaGvlEq7COQiIX1XZ1rIQIe4EKkcBSaCLlHkcC9XIsVnBzaXxTL7CEwgtkE9EwmlrElwHUrSVKK1jbRMfZlnLfhSCzS-sswdseVo5jENcdwMcQv2annHqxlcxjwQCKZCGXkt-GB1oGlG-MS7z3kLuJHkE-3Hs8l43Lzt_kulQ3g-mk_G8fh4evoJXnC6g2EC4fZgs7q-yfYRGVXJgdH9e-ujBpo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2Jey-oDEKZDaTtIcSxexlAqxSNwix0kkBDQVSQ9w4g_gG_kSxnYbWjggwSGHRB7L8Yw9z_b4DcBexRZ-lXJhJejfLC5ioeZB2woR6utjH99TF5zPO-7xDT-9dW5HbvEbfohiw02NDD1fqwHei5LDL9LQ7PFBHR3gksVh1J-EKe5SX7HnNy4LAimG3kunV0GnZSnmrSFto00Px-XH3dIPrDkOXbXvac2DGLbahJzcH_Tz8EC-fCN0_M9vLcDcAJiSmrGkRZiIu0swO0JXuAxvR2maqTBp0jTJc_TezzMKkJo0WShImpArLPEQk1qePpK6LpHlGVHpQ1Vgb0TSLuncoTSa7sfreyPt4be6eArx-yBrEOmQeoqr4juzVUmaX7fxyEiLVuCm1byuH1uDhA6WZFXbt1xbIJ5xWCJjV1BPishzhBBRFWGcz7hjy1gy7koPpyGRoL6YW1UEObSSCBbhswqlbtqN14EwRDZoZSxUCWtCnIXCKOLoa33JI4cncRn2h_oMeoa3IzAMzTRQXRwUXVyGraG6g8H4zQLqMoRSHvcrZVgzJlBUwxzFuk9pGahW5C_1B1fn7XbxtvEXoV2Yvmi0gvZJ52wTZqi6gKGj4LaglD_1422ERXm4oy3_E9XgBUk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+Electrocatalytic+Activity+of+Single+Atom+Catalysts+Supported+on+Nitrogen%E2%80%90Doped+Carbon+through+N+Coordination+Environment+Engineering&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhang%2C+Xiaoran&rft.au=Xu%2C+Xiaomin&rft.au=Yao%2C+Sixian&rft.au=Hao%2C+Chao&rft.date=2022-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=18&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202105329&rft.externalDBID=10.1002%252Fsmll.202105329&rft.externalDocID=SMLL202105329
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon