Messenger RNA typing of environmental RNA (eRNA): A case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates
As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and is widely used for the biomonitoring of wildlife. However, the interpretation of eDNA results has been limited to the presence/absence or biom...
Saved in:
Published in | Environmental DNA (Hoboken, N.J.) Vol. 3; no. 1; pp. 14 - 21 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
John Wiley & Sons, Inc
01.01.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and is widely used for the biomonitoring of wildlife. However, the interpretation of eDNA results has been limited to the presence/absence or biomass/abundance of the target species because of uncertainty regarding the dynamics of eDNA in natural environments. This limitation may be ameliorated by targeting environmental RNA (eRNA). RNA is more prone to degrade than DNA and the pattern of messenger RNA (mRNA) expression changes depending on physiological conditions, meaning that the presence or concentration of mRNA could reflect the organism's presence with higher temporal resolution and provide information beyond simple presence/absence. Technical developments in the detection of eRNA focusing on mRNA with these distinct features could permit the advanced usage of genetic materials in water. In advancing this technique, we initiated this study asking that if we can detect elevated levels of eRNA whose genes are specific to a tissue source (e.g., gills or skin), then could not we infer the tissue origin of the genetic material detected. To this end, we developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription–polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. The result of our experiment confirmed that the specific target tissues can be the source of genetic materials detected in water and with that we offer a proof of concept for eRNA analysis targeting specific mRNAs of aquatic vertebrates. In this commentary, we provide information on the experimental steps used for mRNA typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA typing of eRNA in the future.
We developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription‐polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. This commentary provides information on the experimental steps used for mRNA‐typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA‐typing of eRNA in the future. |
---|---|
AbstractList | Abstract
As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and is widely used for the biomonitoring of wildlife. However, the interpretation of eDNA results has been limited to the presence/absence or biomass/abundance of the target species because of uncertainty regarding the dynamics of eDNA in natural environments. This limitation may be ameliorated by targeting environmental RNA (eRNA). RNA is more prone to degrade than DNA and the pattern of messenger RNA (mRNA) expression changes depending on physiological conditions, meaning that the presence or concentration of mRNA could reflect the organism's presence with higher temporal resolution and provide information beyond simple presence/absence. Technical developments in the detection of eRNA focusing on mRNA with these distinct features could permit the advanced usage of genetic materials in water. In advancing this technique, we initiated this study asking that if we can detect elevated levels of eRNA whose genes are specific to a tissue source (e.g., gills or skin), then could not we infer the tissue origin of the genetic material detected. To this end, we developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription–polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. The result of our experiment confirmed that the specific target tissues can be the source of genetic materials detected in water and with that we offer a proof of concept for eRNA analysis targeting specific mRNAs of aquatic vertebrates. In this commentary, we provide information on the experimental steps used for mRNA typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA typing of eRNA in the future. As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and is widely used for the biomonitoring of wildlife. However, the interpretation of eDNA results has been limited to the presence/absence or biomass/abundance of the target species because of uncertainty regarding the dynamics of eDNA in natural environments. This limitation may be ameliorated by targeting environmental RNA (eRNA). RNA is more prone to degrade than DNA and the pattern of messenger RNA (mRNA) expression changes depending on physiological conditions, meaning that the presence or concentration of mRNA could reflect the organism's presence with higher temporal resolution and provide information beyond simple presence/absence. Technical developments in the detection of eRNA focusing on mRNA with these distinct features could permit the advanced usage of genetic materials in water. In advancing this technique, we initiated this study asking that if we can detect elevated levels of eRNA whose genes are specific to a tissue source (e.g., gills or skin), then could not we infer the tissue origin of the genetic material detected. To this end, we developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription–polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. The result of our experiment confirmed that the specific target tissues can be the source of genetic materials detected in water and with that we offer a proof of concept for eRNA analysis targeting specific mRNAs of aquatic vertebrates. In this commentary, we provide information on the experimental steps used for mRNA typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA typing of eRNA in the future. As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and is widely used for the biomonitoring of wildlife. However, the interpretation of eDNA results has been limited to the presence/absence or biomass/abundance of the target species because of uncertainty regarding the dynamics of eDNA in natural environments. This limitation may be ameliorated by targeting environmental RNA (eRNA). RNA is more prone to degrade than DNA and the pattern of messenger RNA (mRNA) expression changes depending on physiological conditions, meaning that the presence or concentration of mRNA could reflect the organism's presence with higher temporal resolution and provide information beyond simple presence/absence. Technical developments in the detection of eRNA focusing on mRNA with these distinct features could permit the advanced usage of genetic materials in water. In advancing this technique, we initiated this study asking that if we can detect elevated levels of eRNA whose genes are specific to a tissue source (e.g., gills or skin), then could not we infer the tissue origin of the genetic material detected. To this end, we developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription–polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. The result of our experiment confirmed that the specific target tissues can be the source of genetic materials detected in water and with that we offer a proof of concept for eRNA analysis targeting specific mRNAs of aquatic vertebrates. In this commentary, we provide information on the experimental steps used for mRNA typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA typing of eRNA in the future. We developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription‐polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. This commentary provides information on the experimental steps used for mRNA‐typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA‐typing of eRNA in the future. Abstract As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and is widely used for the biomonitoring of wildlife. However, the interpretation of eDNA results has been limited to the presence/absence or biomass/abundance of the target species because of uncertainty regarding the dynamics of eDNA in natural environments. This limitation may be ameliorated by targeting environmental RNA (eRNA). RNA is more prone to degrade than DNA and the pattern of messenger RNA (mRNA) expression changes depending on physiological conditions, meaning that the presence or concentration of mRNA could reflect the organism's presence with higher temporal resolution and provide information beyond simple presence/absence. Technical developments in the detection of eRNA focusing on mRNA with these distinct features could permit the advanced usage of genetic materials in water. In advancing this technique, we initiated this study asking that if we can detect elevated levels of eRNA whose genes are specific to a tissue source (e.g., gills or skin), then could not we infer the tissue origin of the genetic material detected. To this end, we developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription–polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. The result of our experiment confirmed that the specific target tissues can be the source of genetic materials detected in water and with that we offer a proof of concept for eRNA analysis targeting specific mRNAs of aquatic vertebrates. In this commentary, we provide information on the experimental steps used for mRNA typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA typing of eRNA in the future. |
Author | Minamoto, Toshifumi Shimada, Yasuhito Tsuri, Kenji Ikeda, Shizuya Hirohara, Takaya Yamanaka, Hiroki |
Author_xml | – sequence: 1 givenname: Kenji surname: Tsuri fullname: Tsuri, Kenji organization: Ryukoku University – sequence: 2 givenname: Shizuya surname: Ikeda fullname: Ikeda, Shizuya organization: Ryukoku University – sequence: 3 givenname: Takaya surname: Hirohara fullname: Hirohara, Takaya organization: Ryukoku University – sequence: 4 givenname: Yasuhito orcidid: 0000-0002-4111-8262 surname: Shimada fullname: Shimada, Yasuhito organization: Mie University Zebrafish Drug Screening Center – sequence: 5 givenname: Toshifumi orcidid: 0000-0002-5379-1622 surname: Minamoto fullname: Minamoto, Toshifumi organization: Kobe University – sequence: 6 givenname: Hiroki orcidid: 0000-0002-6193-1656 surname: Yamanaka fullname: Yamanaka, Hiroki email: yamanaka@rins.ryukoku.ac.jp organization: Ryukoku University |
BookMark | eNp1kd1qFDEYhgepYK0FLyHgST2YNn8zyXi2tFULtYLoccgmX3azTpNpktllvSVv0pndIp54koTk4Xm_8L6uTkIMUFVvCb4kGNMrsIFdkrZ7UZ3Slomad5yd_HN-VZ3nvMETSgTBjJxWv79AzhBWkNC3hwUq-8GHFYoOQdj6FMMjhKL7w9sFTOv7D2iBjM6AchntHsWAfsEyaefzGhUdfqKdLpNs58saDZDyAKb4LWTkYkJlDciNZUyALGyhj8PsP8TNCTrofp99nq36adTFG7SFVOaAAvlN9dLpPsP5835W_fh4-_36c33_9dPd9eK-NkziruaWWGOWDDPBGqCNdVIDs4IxSyV3BkxjGGmslE0rrOkw5pzQlvK2k50THTur7o5eG_VGDck_6rRXUXt1uIhppXSaZutBtcuOUE4FEUB4o6WkUi-NZdYJ5iQXk-vd0TWk-DRCLmoTxzT9MyvKhRSSkpZO1MWRMinmnMD9TSVYzc2quVk1NTuh9RHd-R72_-XU7c0Dm_k__RSmcw |
CitedBy_id | crossref_primary_10_1016_j_cbpb_2021_110629 crossref_primary_10_1002_edn3_405 crossref_primary_10_3390_w13081113 crossref_primary_10_1002_edn3_308 crossref_primary_10_1093_dnares_dsac018 crossref_primary_10_1007_s44211_023_00382_w crossref_primary_10_1021_acs_est_3c03737 crossref_primary_10_1111_1755_0998_13667 crossref_primary_10_1007_s00114_024_01904_w crossref_primary_10_1007_s10142_023_01269_9 crossref_primary_10_1111_mec_17152 crossref_primary_10_1002_ajb2_16120 crossref_primary_10_1111_jfb_15687 crossref_primary_10_1007_s11356_023_31776_y crossref_primary_10_1002_edn3_253 crossref_primary_10_1111_2041_210X_14369 crossref_primary_10_1002_edn3_178 crossref_primary_10_1002_edn3_476 crossref_primary_10_1002_edn3_531 crossref_primary_10_1007_s10661_024_12535_z crossref_primary_10_1186_s12859_021_04180_x crossref_primary_10_1016_j_pt_2022_12_010 crossref_primary_10_3389_fmars_2023_1121088 crossref_primary_10_1021_acs_est_1c07638 crossref_primary_10_1002_edn3_316 crossref_primary_10_1016_j_fawpar_2022_e00183 crossref_primary_10_1111_mec_16659 crossref_primary_10_1002_edn3_459 crossref_primary_10_1002_ece3_9234 crossref_primary_10_1002_edn3_334 crossref_primary_10_1016_j_scitotenv_2021_146891 crossref_primary_10_2331_suisan_WA3082_9 crossref_primary_10_1002_edn3_532 crossref_primary_10_1038_s41598_021_03899_0 crossref_primary_10_1016_j_scitotenv_2021_148810 crossref_primary_10_1111_1755_0998_13857 crossref_primary_10_1007_s12237_022_01080_y crossref_primary_10_1111_raq_12870 crossref_primary_10_1016_j_envadv_2023_100457 crossref_primary_10_1016_j_scitotenv_2023_162322 crossref_primary_10_1111_brv_12859 crossref_primary_10_1002_edn3_386 crossref_primary_10_3389_fmars_2023_1193083 crossref_primary_10_1007_s10750_022_05036_y crossref_primary_10_1016_j_gecco_2024_e02888 crossref_primary_10_1007_s00425_023_04267_0 crossref_primary_10_1016_j_ese_2024_100441 |
Cites_doi | 10.1163/157075407779766750 10.1371/journal.pone.0041732 10.1021/acs.est.6b03114 10.1007/s12686-015-0465-z 10.1111/2041-210X.12709 10.1007/s10750-018-3750-5 10.1016/j.biocon.2014.11.017 10.1111/1365-2664.12306 10.1371/journal.pone.0149786 10.1371/journal.pone.0023398 10.1111/j.1365-294X.2011.05418.x 10.1093/nar/gkl595 10.1007/BF00216384 10.1016/j.cbpc.2004.05.009 10.1371/journal.pone.0088786 10.1242/jeb.203.12.1817 10.1111/mec.14350 10.1111/1755-0998.12900 10.1007/s00424-014-1614-z 10.1016/j.biocon.2014.11.023 10.1017/CBO9780511542084 10.1111/1755-0998.12159 10.1038/jid.2010.388 10.1016/j.gep.2011.01.003 10.1016/j.gene.2014.03.007 10.1007/s10592-015-0775-4 10.1111/2041-210X.12595 10.1210/me.2014-1256 10.1038/srep06653 10.1899/13-046.1 10.1074/jbc.271.18.10892 10.1016/j.envres.2011.02.001 10.1038/s42003-019-0330-9 10.1021/es404734p 10.1016/j.ygcen.2010.07.008 10.1016/B978-0-444-50913-0.50009-6 10.1095/biolreprod.111.094730 10.1016/j.biocon.2014.11.019 10.1111/bij.12516 10.1111/1365-2664.12392 10.1111/1755-0998.12285 10.1371/journal.pone.0113346 10.1186/1471-2199-9-102 10.1016/j.biocon.2016.03.010 10.1080/03632415.2017.1276329 10.1002/edn3.21 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Ltd 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Ltd – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ M2P PATMY PIMPY PQEST PQQKQ PQUKI PRINS PYCSY Q9U DOA |
DOI | 10.1002/edn3.169 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley Free Archive CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Agriculture & Environmental Science Database ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Science Journals Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Environmental Science Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2637-4943 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_6b91242717e145a8828abcd3df73f847 10_1002_edn3_169 EDN3169 |
Genre | commentary Commentary |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GrantInformation_xml | – fundername: Joint Research Center for Science and Technology Fund of Ryukoku University – fundername: Japan Society for the Promotion of Science funderid: 17H03735; 20H03326; 26840152 |
GroupedDBID | 0R~ 1OC 24P 88I AAHHS ABUWG ACCFJ ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ATCPS AVUZU AZQEC BENPR BHPHI CCPQU DWQXO EBS EDH EJD GNUQQ GROUPED_DOAJ HCIFZ IAO IEP M2P M~E OK1 PATMY PIMPY PQQKQ PYCSY WIN AAYXX CITATION ITC 3V. 7XB 8FK PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c3809-4d1dccb303735e25df8ae3d733d284fcec5c315d88567dc90044126246989f793 |
IEDL.DBID | 24P |
ISSN | 2637-4943 |
IngestDate | Tue Oct 22 15:13:29 EDT 2024 Thu Oct 10 18:59:29 EDT 2024 Thu Sep 26 15:45:02 EDT 2024 Sat Aug 24 01:04:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3809-4d1dccb303735e25df8ae3d733d284fcec5c315d88567dc90044126246989f793 |
ORCID | 0000-0002-5379-1622 0000-0002-6193-1656 0000-0002-4111-8262 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fedn3.169 |
PQID | 2478782162 |
PQPubID | 4570191 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6b91242717e145a8828abcd3df73f847 proquest_journals_2478782162 crossref_primary_10_1002_edn3_169 wiley_primary_10_1002_edn3_169_EDN3169 |
PublicationCentury | 2000 |
PublicationDate | January 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Environmental DNA (Hoboken, N.J.) |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 42 2015; 15 2017; 8 2015; 183 2017; 26 2006; 34 2015; 467 2019; 2 2019; 826 2019; 1 2010; 169 2015; 52 2008; 9 2014; 48 2011; 11 2019; 19 2005 2016; 50 2004 2002 2016; 17 2011; 6 2015; 7 2011; 111 2011; 131 2016; 11 2016; 7 2004; 138 2014; 4 1993; 38 2015; 29 2015; 115 2001 2013; 32 2000; 203 1996; 271 2014; 14 2018 2007; 4 2014 2014; 9 2014; 51 2012; 7 2016; 197 2012; 21 2012; 86 2014; 541 Yang R. Y. (e_1_2_9_48_1) 2018 e_1_2_9_31_1 Pidgeon R. (e_1_2_9_29_1) 2004 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 Turner C. R. (e_1_2_9_44_1) 2014 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 |
References_xml | – volume: 111 start-page: 978 issue: 7 year: 2011 end-page: 988 article-title: From molecules to management: Adopting DNA‐based methods for monitoring biological invasions in aquatic environments publication-title: Environmental Research – volume: 183 start-page: 93 year: 2015 end-page: 102 article-title: Fish environmental DNA is more concentrated in aquatic sediments than surface water publication-title: Biological Conservation – volume: 197 start-page: 131 year: 2016 end-page: 138 article-title: Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system publication-title: Biological Conservation – volume: 6 issue: 8 year: 2011 article-title: Persistence of environmental DNA in freshwater ecosystems publication-title: PLoS One – year: 2005 – volume: 7 start-page: 1299 issue: 11 year: 2016 end-page: 1307 article-title: Critical considerations for the application of environmental DNA methods to detect aquatic species publication-title: Methods in Ecology and Evolution – volume: 138 start-page: 391 issue: 4 year: 2004 end-page: 398 article-title: Sequence, linkage mapping and early developmental expression of the intestinal‐type fatty acid‐binding protein gene ( ) from zebrafish (Danio rerio) publication-title: Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology – volume: 541 start-page: 60 issue: 1 year: 2014 end-page: 66 article-title: Transcriptional divergence of the duplicated hypoxia‐inducible factor alpha genes in zebrafish publication-title: Gene – volume: 2 start-page: 1 issue: 1 year: 2019 end-page: 3 article-title: Rapid progression and future of environmental DNA research publication-title: Communications Biology – volume: 9 start-page: 102 issue: 1 year: 2008 article-title: Characterization of housekeeping genes in zebrafish: Male‐female differences and effects of tissue type, developmental stage and chemical treatment publication-title: BMC Molecular Biology – volume: 14 start-page: 109 issue: 1 year: 2014 end-page: 116 article-title: Factors influencing detection of eDNA from a stream‐dwelling amphibian publication-title: Molecular Ecology Resources – volume: 4 start-page: 47 issue: 1 year: 2007 end-page: 63 article-title: Evaluation of seven aquatic sampling methods for amphibians and other aquatic fauna publication-title: Applied Herpetology – volume: 271 start-page: 10892 issue: 18 year: 1996 end-page: 10896 article-title: A polymorphism in the human intestinal fatty acid binding protein alters fatty acid transport across Caco‐2 cells publication-title: Journal of Biological Chemistry – volume: 42 start-page: 90 issue: 2 year: 2017 end-page: 99 article-title: Comparative Cost and Effort of Fish Distribution Detection via Environmental DNA Analysis and Electrofishing publication-title: Fisheries – year: 2014 article-title: Particle size distribution and optimal capture of aqueous macrobial eDNA publication-title: BioRxiv – year: 2004 – volume: 183 start-page: 46 year: 2015 end-page: 52 article-title: Monitoring the near‐extinct European weather loach in Denmark based on environmental DNA from water samples publication-title: Biological Conservation – volume: 32 start-page: 792 issue: 3 year: 2013 end-page: 800 article-title: Environmental DNA as a new method for early detection of New Zealand mudsnails ( ) publication-title: Freshwater Science – year: 2018 article-title: A systematic survey of human tissue‐specific gene expression and splicing reveals new opportunities for therapeutic target identification and evaluation publication-title: BioRxiv – volume: 86 start-page: 73 issue: 3 year: 2012 article-title: Ontogenic expression profiles of gonadotropins (FSHB and LHB) and growth hormone (GH) during sexual differentiation and puberty onset in female Zebrafish publication-title: Biology of Reproduction – volume: 11 issue: 3 year: 2016 article-title: Environmental DNA as a ‘Snapshot’ of fish distribution: A case study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan publication-title: PLoS One – volume: 51 start-page: 1450 issue: 5 year: 2014 end-page: 1459 article-title: REVIEW: The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology publication-title: Journal of Applied Ecology – volume: 50 start-page: 10456 issue: 19 year: 2016 end-page: 10464 article-title: Quantification of Environmental DNA (eDNA) shedding and decay rates for three marine fish publication-title: Environmental Science & Technology – volume: 21 start-page: 2565 issue: 11 year: 2012 end-page: 2573 article-title: Monitoring endangered freshwater biodiversity using environmental DNA publication-title: Molecular Ecology – volume: 7 start-page: 639 issue: 3 year: 2015 end-page: 641 article-title: Environmental DNA particle size distribution from Brook Trout ( ) publication-title: Conservation Genetics Resources – volume: 8 start-page: 646 issue: 5 year: 2017 end-page: 655 article-title: An environmental DNA‐based method for monitoring spawning activity: A case study, using the endangered Macquarie perch ( ) publication-title: Methods in Ecology and Evolution – volume: 169 start-page: 48 issue: 1 year: 2010 end-page: 57 article-title: Elevation of Kiss2 and its receptor gene expression in the brain and pituitary of grass puffer during the spawning season publication-title: General and Comparative Endocrinology – volume: 7 issue: 8 year: 2012 article-title: Detection of a diverse marine fish fauna using environmental DNA from seawater samples publication-title: PLoS One – volume: 1 start-page: 99 issue: 2 year: 2019 end-page: 108 article-title: The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection publication-title: Environmental DNA – volume: 17 start-page: 1 issue: 1 year: 2016 end-page: 17 article-title: The ecology of environmental DNA and implications for conservation genetics publication-title: Conservation Genetics – volume: 203 start-page: 1817 issue: 12 year: 2000 article-title: Tissue‐specific expression of zebrafish (Danio rerio) heat shock factor 1 mRNAs in response to heat stress publication-title: Journal of Experimental Biology – volume: 9 issue: 2 year: 2014 article-title: Transport distance of invertebrate environmental DNA in a natural river publication-title: PLoS One – volume: 29 start-page: 76 issue: 1 year: 2015 end-page: 98 article-title: Genetic analysis of Zebrafish gonadotropin (FSH and LH) functions by TALEN‐mediated gene disruption publication-title: Molecular Endocrinology – volume: 467 start-page: 1769 issue: 8 year: 2015 end-page: 1781 article-title: Identification and characterization of the zebrafish ClC‐2 chloride channel orthologs publication-title: Pflugers Archiv: European Journal of Physiology – volume: 26 start-page: 5872 issue: 21 year: 2017 end-page: 5895 article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities publication-title: Molecular Ecology – volume: 15 start-page: 216 issue: 1 year: 2015 end-page: 227 article-title: Distance, flow and PCR inhibition: EDNA dynamics in two headwater streams publication-title: Molecular Ecology Resources – volume: 38 start-page: 1 issue: 1 year: 1993 end-page: 10 article-title: Cloning of the beta 2‐microglobulin gene in the zebrafish publication-title: Immunogenetics – volume: 183 start-page: 4 year: 2015 end-page: 18 article-title: Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity publication-title: Biological Conservation – volume: 48 start-page: 1819 issue: 3 year: 2014 end-page: 1827 article-title: Environmental conditions influence eDNA persistence in aquatic systems publication-title: Environmental Science & Technology – year: 2002 – volume: 115 start-page: 750 issue: 3 year: 2015 end-page: 766 article-title: How will the ‘molecular revolution’ contribute to biological recording? publication-title: Biological Journal of the Linnean Society – volume: 826 start-page: 25 issue: 1 year: 2019 end-page: 41 article-title: Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds publication-title: Hydrobiologia – volume: 4 year: 2014 article-title: Zebrafish as a model to study live mucus physiology publication-title: Scientific Reports – volume: 34 start-page: 4925 issue: 17 year: 2006 end-page: 4936 article-title: Computational analysis of tissue‐specific combinatorial gene regulation: Predicting interaction between transcription factors in human tissues publication-title: Nucleic Acids Research – start-page: 99 year: 2001 end-page: 136 – volume: 19 start-page: 27 issue: 1 year: 2019 end-page: 46 article-title: Unlocking biodiversity and conservation studies in high‐diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes publication-title: Molecular Ecology Resources – volume: 131 start-page: 565 issue: 3 year: 2011 end-page: 571 article-title: Zebrafish: A model system to study heritable skin diseases publication-title: Journal of Investigative Dermatology – volume: 11 start-page: 271 issue: 3 year: 2011 end-page: 276 article-title: Identification of housekeeping genes suitable for gene expression analysis in the zebrafish publication-title: Gene Expression Patterns – volume: 52 start-page: 358 issue: 2 year: 2015 end-page: 365 article-title: A basin‐scale application of environmental DNA assessment for rare endemic species and closely related exotic species in rivers: A case study of giant salamanders in Japan publication-title: Journal of Applied Ecology – volume: 9 issue: 11 year: 2014 article-title: Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data publication-title: PLoS One – ident: e_1_2_9_18_1 doi: 10.1163/157075407779766750 – ident: e_1_2_9_40_1 doi: 10.1371/journal.pone.0041732 – ident: e_1_2_9_34_1 doi: 10.1021/acs.est.6b03114 – ident: e_1_2_9_46_1 doi: 10.1007/s12686-015-0465-z – ident: e_1_2_9_5_1 doi: 10.1111/2041-210X.12709 – ident: e_1_2_9_20_1 doi: 10.1007/s10750-018-3750-5 – ident: e_1_2_9_45_1 doi: 10.1016/j.biocon.2014.11.017 – ident: e_1_2_9_32_1 doi: 10.1111/1365-2664.12306 – ident: e_1_2_9_47_1 doi: 10.1371/journal.pone.0149786 – ident: e_1_2_9_13_1 doi: 10.1371/journal.pone.0023398 – ident: e_1_2_9_41_1 doi: 10.1111/j.1365-294X.2011.05418.x – ident: e_1_2_9_49_1 doi: 10.1093/nar/gkl595 – ident: e_1_2_9_27_1 doi: 10.1007/BF00216384 – start-page: 001941 year: 2014 ident: e_1_2_9_44_1 article-title: Particle size distribution and optimal capture of aqueous macrobial eDNA publication-title: BioRxiv contributor: fullname: Turner C. R. – ident: e_1_2_9_37_1 doi: 10.1016/j.cbpc.2004.05.009 – ident: e_1_2_9_11_1 doi: 10.1371/journal.pone.0088786 – ident: e_1_2_9_31_1 doi: 10.1242/jeb.203.12.1817 – start-page: 311563 year: 2018 ident: e_1_2_9_48_1 article-title: A systematic survey of human tissue‐specific gene expression and splicing reveals new opportunities for therapeutic target identification and evaluation publication-title: BioRxiv contributor: fullname: Yang R. Y. – ident: e_1_2_9_12_1 doi: 10.1111/mec.14350 – ident: e_1_2_9_9_1 doi: 10.1111/1755-0998.12900 – ident: e_1_2_9_28_1 doi: 10.1007/s00424-014-1614-z – ident: e_1_2_9_39_1 doi: 10.1016/j.biocon.2014.11.023 – ident: e_1_2_9_21_1 doi: 10.1017/CBO9780511542084 – ident: e_1_2_9_30_1 doi: 10.1111/1755-0998.12159 – ident: e_1_2_9_24_1 doi: 10.1038/jid.2010.388 – ident: e_1_2_9_6_1 doi: 10.1016/j.gep.2011.01.003 – ident: e_1_2_9_33_1 doi: 10.1016/j.gene.2014.03.007 – ident: e_1_2_9_3_1 doi: 10.1007/s10592-015-0775-4 – ident: e_1_2_9_7_1 – ident: e_1_2_9_17_1 doi: 10.1111/2041-210X.12595 – ident: e_1_2_9_50_1 doi: 10.1210/me.2014-1256 – ident: e_1_2_9_23_1 doi: 10.1038/srep06653 – ident: e_1_2_9_16_1 doi: 10.1899/13-046.1 – ident: e_1_2_9_2_1 doi: 10.1074/jbc.271.18.10892 – ident: e_1_2_9_10_1 doi: 10.1016/j.envres.2011.02.001 – ident: e_1_2_9_35_1 doi: 10.1038/s42003-019-0330-9 – ident: e_1_2_9_4_1 doi: 10.1021/es404734p – ident: e_1_2_9_36_1 doi: 10.1016/j.ygcen.2010.07.008 – ident: e_1_2_9_51_1 doi: 10.1016/B978-0-444-50913-0.50009-6 – ident: e_1_2_9_8_1 doi: 10.1095/biolreprod.111.094730 – volume-title: A review of options for monitoring freshwater fish biodiversity in the Darwin Harbour catchment year: 2004 ident: e_1_2_9_29_1 contributor: fullname: Pidgeon R. – ident: e_1_2_9_42_1 doi: 10.1016/j.biocon.2014.11.019 – ident: e_1_2_9_19_1 doi: 10.1111/bij.12516 – ident: e_1_2_9_15_1 doi: 10.1111/1365-2664.12392 – ident: e_1_2_9_22_1 doi: 10.1111/1755-0998.12285 – ident: e_1_2_9_26_1 doi: 10.1371/journal.pone.0113346 – ident: e_1_2_9_25_1 doi: 10.1186/1471-2199-9-102 – ident: e_1_2_9_38_1 doi: 10.1016/j.biocon.2016.03.010 – ident: e_1_2_9_14_1 doi: 10.1080/03632415.2017.1276329 – ident: e_1_2_9_43_1 doi: 10.1002/edn3.21 |
SSID | ssj0002171031 |
Score | 2.2364633 |
Snippet | As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and... Abstract As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past... Abstract As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 14 |
SubjectTerms | Biodiversity biological monitoring Biomonitoring Breeding conservation of natural resources Danio rerio Deoxyribonucleic acid DNA Gene expression Genes Gills Intestine Keratin Methods Nonnative species Physiology Polymerase chain reaction Proteins Reverse transcription Ribonucleic acid RNA Skin Taxonomy Temporal resolution Tissues Typing Vertebrates Water analysis Water sampling Wildlife Zebrafish |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhEMil5NHSTZMwgVDSg5u15Iec2-ZFCGQPoYHchKWRaCl4t9kNIflL-ZOZkb2Jeyi95GKDjS3hb6z5JM18I8S-VxJ9sFlig8uTjEhpYp0tkzotMISSGHnM8L4aFxc32eVtftsr9cUxYa08cPvhDgtbkQuSNOvwaZbXRAh1bR0qDKUKNLTG0XdY9SZTPAYT0eb6BQu12aE89Nio7ynHNff8T5Tp_4tb9hlqdDHna-JDxw1h1PZpXSz5ZkOstNUiHzfF8xXrfPMqHFyPRzB_5FQnmAToJavR43zvwNPx2xGMwJGXgqghC5MGnnibOPya_QTihL_hgYjmHfBSLEzfki5nQEQWiBhCKzgC-BZYFJvjFupOzITfWv9hvXAHXNqZGyD2-lHcnJ_9OLlIuloLiVOaC81his5Zcmilyr3MMejaKyyVQnJgwXmXO5XmqHVelOgq3ghOZSFjAUrCVH0Sy82k8Z8FYFlhRbxKD0OZaV9UdarJVKwjDBGlH4i9BQJm2kpqmFY8WRpGyRBKA3HM0LzeZxHseIFMw3SmYf5nGgOxvQDWdH_mzEhWI9IyLeRAfI1g_7MT5ux0rOi89R6d-SJWJYfDxNWbbbE8v7v3O8Rn5nY3mu4Ldtrzxw priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA66h-CL-BNXTxlBRB_qbZP-SH2RPd3jEG6Rw4N7C00mOUVo93ZX5PyX_CedSbO364O-tNDQpPAlnS-TmW-EeOmVRB9skdngyqwgUppZZ-uszSsMoSZGHjO8T-bV8Vnx6bw8Tw63VQqr3PwT448ae8c-8gPJKjJa5pV8v7jMuGoUn66mEho3xZ6kncJkJPYOZ_PPp9deFiLcXMdgozo7kQceO_U25_jmHTsU5fr_4pi7TDWamqO74k7iiDAdQL0nbvjuvrg1VI28eiB-n7DeN3vj4HQ-hfUVpzxBH2AnaY1e57bXnq5v3sEUHFkriFqy0Hfwi4-Lw7fVVyBu-B1-EuFcArtkYbFNvlwBEVogggiD8AjgNsAoDscjtEnUhHttL1k33AGXeOYBiMU-FGdHsy8fjrNUcyFzSnPBOczROUuGrVallyUG3XqFtVJIhiw470qn8hK1LqsaXcMHwrmsZCxESdiqR2LU9Z1_LADrBhviV3oS6kL7qmlzTVPGOtpBIko_Fi82CJjFIK1hBhFlaRglQyiNxSFDc93OYtjxQb-8MGltmco2xFIkdevzomxpz6Bb61BhqFUg6zsW-xtgTVqhK7OdT2PxKoL9z48ws49zRfcn_-_nqbgtOeAl-mf2xWi9_OGfEWNZ2-dpWv4B_cHtOw priority: 102 providerName: ProQuest |
Title | Messenger RNA typing of environmental RNA (eRNA): A case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fedn3.169 https://www.proquest.com/docview/2478782162 https://doaj.org/article/6b91242717e145a8828abcd3df73f847 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PSxwxFA5WKfRSrG3ptrq8Qin2MNVJZpKMt7VdkcIuIgrewuSXSmHW7m4p9uA_5D_pe5nZXT0UesnAZDIZ-JJ5X17yvsfYpyC4D9EWmY2uzAokpZl1VmV1Ln2MChl5ivAejeXxefHjorzoTlVSLEyrD7F0uNHMSP9rmuC1ne2tREODb8TXXFbP2AYJxpBuPi9Olv4VpNqUwYByy0mhsqIqxEJ7dp_vLRo_sUZJtP8J03zMV5PBOdpkLzumCIMW2ldsLTRb7HmbO_L2Nbsfkeo3-eTgdDyA-S0FPsEkwqPQNWxOdbsByy8HMACHNguSoixMGvhLm8bxenYFyBB_wh-knVMgxyzcrEIwZ4C0FpAmQis_An51zCh1Rz3UnbQJvbX-RerhDijRM3WAXPYNOz8ann07zrrMC5kTmtLO-dw7Z9G8KVEGXvqo6yC8EsKjOYsuuNKJvPRal1J5V9G2cM4lT-koEWHxlq03kya8Y-BV5StkWXo_qkIHWdW5xoFjHa4jveehxz4uEDA3rcCGaaWUuSGUDKLUY4cEzbKeJLHTjcn00nQzzEhbIVfh-NqQF2WNKwddW-eFj0pEtME9tr0A1nTzdGY4aRNpnkveY58T2P_8CDP8PhZ4ff-_D35gLzgdgEn-mm22Pp_-DjvIYOa2n4Zqn20cDscnp_3kB8BydDd8AOAq8N8 |
link.rule.ids | 315,783,787,867,2109,11574,21400,27936,27937,33756,43817,46064,46488,50826,50935,74630 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFaKXiqdYKDBICMEhtLHzcLigLWy1QDdCVSv1ZsUvWlVKtrtbofKX-JPMON7ucoBLIsWKHemzM5_HM98w9toJbp3XWaK9yZMMSWmijS6TJi2s9yUy8pDhPamL8Un29TQ_jQ63eQyrXP4Tw4_adoZ85LucVGQkTwv-cXqZUNUoOl2NJTRus02SqsLN1-b-qP5-dONlQcJNdQyWqrN7fNfZVrxPKb55zQ4Fuf6_OOY6Uw2m5uAe244cEYY9qPfZLdc-YHf6qpHXD9nvCel9kzcOjuohLK4p5Qk6D2tJa_g6tb11eH33AYZg0FpB0JKFroVfdFzsz-dngNzwAn4i4ZwBuWRhukq-nAMSWkCCCL3wCNhVgFEYjkZooqgJ9dpckm64ASrxTAMgi33ETg5Gx5_GSay5kBghqeCcTa0xGg1bKXLHc-tl44QthbBoyLxxJjciza2UeVFaU9GBcMoLHgpRIrbiMdtou9Y9YWDLylbIr-SeLzPpiqpJJU4ZbXAHaS13A_ZqiYCa9tIaqhdR5opQUojSgO0TNDftJIYdHnSzHyquLVXoClkKx25dmuUN7hlko40V1pfCo_UdsJ0lsCqu0LlazacBexPA_udHqNHnWuD96f_7ecnujo8nh-rwS_3tGdviFPwSfDU7bGMxu3LPkb0s9Is4Rf8AZ8bwNQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKxAXxFMsFBgkhOAQdmMnccIFbemuyqNRVVGpNyt-QVUp2e4uQuUv8SeZcbzd5QCXRIoVO9Jne76MZ75h7KUT3Dqvs0R7kycZktJEGy2TJi2s9xIZecjwPqyLg5Ps02l-GuOfljGscr0nho3adoZ85CNOKjIlTws-8jEs4mh_9n5-kVAFKTppjeU0rrMdmRViPGA7e9P66PjK44Lkm2oarBVox3zkbCvephTrvGWTgnT_X3xzm7UGszO7w25HvgiTHuC77Jpr77EbfQXJy_vs9yFpf5NnDo7rCawuKf0JOg9bCWz4OrW9dnh98w4mYNByQdCVha6FX3R07M-W3wF54jn8RPK5AHLPwnyTiLkEJLeAZBF6ERKwm2CjMByN0ESBE-q1uSANcQNU7pkGQEb7gJ3Mpl8_HCSx_kJiREnF52xqjdFo5KTIHc-tLxsnrBTColHzxpnciDS3ZZkX0pqKDodTXvBQlBJxFg_ZoO1a94iBlZWtkGuVYy-z0hVVk5Y4fbTBv0lruRuyF2sE1LyX2VC9oDJXhJJClIZsj6C5aidh7PCgW3xTcZ2pQlfIWDh269Isb_D_oWy0scJ6KTxa4iHbXQOr4mpdqs3cGrJXAex_foSa7tcC74__389zdhNnp_rysf78hN3iFAcT3Da7bLBa_HBPkcis9LM4Q_8AdUb0Yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Messenger+RNA+typing+of+environmental+RNA+%28eRNA%29%3A+A+case+study+on+zebrafish+tank+water+with+perspectives+for+the+future+development+of+eRNA+analysis+on+aquatic+vertebrates&rft.jtitle=Environmental+DNA+%28Hoboken%2C+N.J.%29&rft.au=Tsuri%2C+Kenji&rft.au=Ikeda%2C+Shizuya&rft.au=Hirohara%2C+Takaya&rft.au=Shimada%2C+Yasuhito&rft.date=2021-01-01&rft.issn=2637-4943&rft.eissn=2637-4943&rft.volume=3&rft.issue=1&rft.spage=14&rft.epage=21&rft_id=info:doi/10.1002%2Fedn3.169&rft.externalDBID=10.1002%252Fedn3.169&rft.externalDocID=EDN3169 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-4943&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-4943&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-4943&client=summon |