Messenger RNA typing of environmental RNA (eRNA): A case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates

As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and is widely used for the biomonitoring of wildlife. However, the interpretation of eDNA results has been limited to the presence/absence or biom...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental DNA (Hoboken, N.J.) Vol. 3; no. 1; pp. 14 - 21
Main Authors Tsuri, Kenji, Ikeda, Shizuya, Hirohara, Takaya, Shimada, Yasuhito, Minamoto, Toshifumi, Yamanaka, Hiroki
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.01.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and is widely used for the biomonitoring of wildlife. However, the interpretation of eDNA results has been limited to the presence/absence or biomass/abundance of the target species because of uncertainty regarding the dynamics of eDNA in natural environments. This limitation may be ameliorated by targeting environmental RNA (eRNA). RNA is more prone to degrade than DNA and the pattern of messenger RNA (mRNA) expression changes depending on physiological conditions, meaning that the presence or concentration of mRNA could reflect the organism's presence with higher temporal resolution and provide information beyond simple presence/absence. Technical developments in the detection of eRNA focusing on mRNA with these distinct features could permit the advanced usage of genetic materials in water. In advancing this technique, we initiated this study asking that if we can detect elevated levels of eRNA whose genes are specific to a tissue source (e.g., gills or skin), then could not we infer the tissue origin of the genetic material detected. To this end, we developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription–polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. The result of our experiment confirmed that the specific target tissues can be the source of genetic materials detected in water and with that we offer a proof of concept for eRNA analysis targeting specific mRNAs of aquatic vertebrates. In this commentary, we provide information on the experimental steps used for mRNA typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA typing of eRNA in the future. We developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription‐polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. This commentary provides information on the experimental steps used for mRNA‐typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA‐typing of eRNA in the future.
AbstractList Abstract As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and is widely used for the biomonitoring of wildlife. However, the interpretation of eDNA results has been limited to the presence/absence or biomass/abundance of the target species because of uncertainty regarding the dynamics of eDNA in natural environments. This limitation may be ameliorated by targeting environmental RNA (eRNA). RNA is more prone to degrade than DNA and the pattern of messenger RNA (mRNA) expression changes depending on physiological conditions, meaning that the presence or concentration of mRNA could reflect the organism's presence with higher temporal resolution and provide information beyond simple presence/absence. Technical developments in the detection of eRNA focusing on mRNA with these distinct features could permit the advanced usage of genetic materials in water. In advancing this technique, we initiated this study asking that if we can detect elevated levels of eRNA whose genes are specific to a tissue source (e.g., gills or skin), then could not we infer the tissue origin of the genetic material detected. To this end, we developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription–polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. The result of our experiment confirmed that the specific target tissues can be the source of genetic materials detected in water and with that we offer a proof of concept for eRNA analysis targeting specific mRNAs of aquatic vertebrates. In this commentary, we provide information on the experimental steps used for mRNA typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA typing of eRNA in the future.
As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and is widely used for the biomonitoring of wildlife. However, the interpretation of eDNA results has been limited to the presence/absence or biomass/abundance of the target species because of uncertainty regarding the dynamics of eDNA in natural environments. This limitation may be ameliorated by targeting environmental RNA (eRNA). RNA is more prone to degrade than DNA and the pattern of messenger RNA (mRNA) expression changes depending on physiological conditions, meaning that the presence or concentration of mRNA could reflect the organism's presence with higher temporal resolution and provide information beyond simple presence/absence. Technical developments in the detection of eRNA focusing on mRNA with these distinct features could permit the advanced usage of genetic materials in water. In advancing this technique, we initiated this study asking that if we can detect elevated levels of eRNA whose genes are specific to a tissue source (e.g., gills or skin), then could not we infer the tissue origin of the genetic material detected. To this end, we developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription–polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. The result of our experiment confirmed that the specific target tissues can be the source of genetic materials detected in water and with that we offer a proof of concept for eRNA analysis targeting specific mRNAs of aquatic vertebrates. In this commentary, we provide information on the experimental steps used for mRNA typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA typing of eRNA in the future.
As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and is widely used for the biomonitoring of wildlife. However, the interpretation of eDNA results has been limited to the presence/absence or biomass/abundance of the target species because of uncertainty regarding the dynamics of eDNA in natural environments. This limitation may be ameliorated by targeting environmental RNA (eRNA). RNA is more prone to degrade than DNA and the pattern of messenger RNA (mRNA) expression changes depending on physiological conditions, meaning that the presence or concentration of mRNA could reflect the organism's presence with higher temporal resolution and provide information beyond simple presence/absence. Technical developments in the detection of eRNA focusing on mRNA with these distinct features could permit the advanced usage of genetic materials in water. In advancing this technique, we initiated this study asking that if we can detect elevated levels of eRNA whose genes are specific to a tissue source (e.g., gills or skin), then could not we infer the tissue origin of the genetic material detected. To this end, we developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription–polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. The result of our experiment confirmed that the specific target tissues can be the source of genetic materials detected in water and with that we offer a proof of concept for eRNA analysis targeting specific mRNAs of aquatic vertebrates. In this commentary, we provide information on the experimental steps used for mRNA typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA typing of eRNA in the future. We developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription‐polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. This commentary provides information on the experimental steps used for mRNA‐typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA‐typing of eRNA in the future.
Abstract As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and is widely used for the biomonitoring of wildlife. However, the interpretation of eDNA results has been limited to the presence/absence or biomass/abundance of the target species because of uncertainty regarding the dynamics of eDNA in natural environments. This limitation may be ameliorated by targeting environmental RNA (eRNA). RNA is more prone to degrade than DNA and the pattern of messenger RNA (mRNA) expression changes depending on physiological conditions, meaning that the presence or concentration of mRNA could reflect the organism's presence with higher temporal resolution and provide information beyond simple presence/absence. Technical developments in the detection of eRNA focusing on mRNA with these distinct features could permit the advanced usage of genetic materials in water. In advancing this technique, we initiated this study asking that if we can detect elevated levels of eRNA whose genes are specific to a tissue source (e.g., gills or skin), then could not we infer the tissue origin of the genetic material detected. To this end, we developed gene‐specific primer sets for the target genes with biased expression in the gills, skin, and intestine, and conducted reverse transcription–polymerase chain reaction on zebrafish breeding tank water samples, obtaining positive results for all assays. The result of our experiment confirmed that the specific target tissues can be the source of genetic materials detected in water and with that we offer a proof of concept for eRNA analysis targeting specific mRNAs of aquatic vertebrates. In this commentary, we provide information on the experimental steps used for mRNA typing of eRNA from zebrafish as well as the limitations and challenges of this technique and the prospect of mRNA typing of eRNA in the future.
Author Minamoto, Toshifumi
Shimada, Yasuhito
Tsuri, Kenji
Ikeda, Shizuya
Hirohara, Takaya
Yamanaka, Hiroki
Author_xml – sequence: 1
  givenname: Kenji
  surname: Tsuri
  fullname: Tsuri, Kenji
  organization: Ryukoku University
– sequence: 2
  givenname: Shizuya
  surname: Ikeda
  fullname: Ikeda, Shizuya
  organization: Ryukoku University
– sequence: 3
  givenname: Takaya
  surname: Hirohara
  fullname: Hirohara, Takaya
  organization: Ryukoku University
– sequence: 4
  givenname: Yasuhito
  orcidid: 0000-0002-4111-8262
  surname: Shimada
  fullname: Shimada, Yasuhito
  organization: Mie University Zebrafish Drug Screening Center
– sequence: 5
  givenname: Toshifumi
  orcidid: 0000-0002-5379-1622
  surname: Minamoto
  fullname: Minamoto, Toshifumi
  organization: Kobe University
– sequence: 6
  givenname: Hiroki
  orcidid: 0000-0002-6193-1656
  surname: Yamanaka
  fullname: Yamanaka, Hiroki
  email: yamanaka@rins.ryukoku.ac.jp
  organization: Ryukoku University
BookMark eNp1kd1qFDEYhgepYK0FLyHgST2YNn8zyXi2tFULtYLoccgmX3azTpNpktllvSVv0pndIp54koTk4Xm_8L6uTkIMUFVvCb4kGNMrsIFdkrZ7UZ3Slomad5yd_HN-VZ3nvMETSgTBjJxWv79AzhBWkNC3hwUq-8GHFYoOQdj6FMMjhKL7w9sFTOv7D2iBjM6AchntHsWAfsEyaefzGhUdfqKdLpNs58saDZDyAKb4LWTkYkJlDciNZUyALGyhj8PsP8TNCTrofp99nq36adTFG7SFVOaAAvlN9dLpPsP5835W_fh4-_36c33_9dPd9eK-NkziruaWWGOWDDPBGqCNdVIDs4IxSyV3BkxjGGmslE0rrOkw5pzQlvK2k50THTur7o5eG_VGDck_6rRXUXt1uIhppXSaZutBtcuOUE4FEUB4o6WkUi-NZdYJ5iQXk-vd0TWk-DRCLmoTxzT9MyvKhRSSkpZO1MWRMinmnMD9TSVYzc2quVk1NTuh9RHd-R72_-XU7c0Dm_k__RSmcw
CitedBy_id crossref_primary_10_1016_j_cbpb_2021_110629
crossref_primary_10_1002_edn3_405
crossref_primary_10_3390_w13081113
crossref_primary_10_1002_edn3_308
crossref_primary_10_1093_dnares_dsac018
crossref_primary_10_1007_s44211_023_00382_w
crossref_primary_10_1021_acs_est_3c03737
crossref_primary_10_1111_1755_0998_13667
crossref_primary_10_1007_s00114_024_01904_w
crossref_primary_10_1007_s10142_023_01269_9
crossref_primary_10_1111_mec_17152
crossref_primary_10_1002_ajb2_16120
crossref_primary_10_1111_jfb_15687
crossref_primary_10_1007_s11356_023_31776_y
crossref_primary_10_1002_edn3_253
crossref_primary_10_1111_2041_210X_14369
crossref_primary_10_1002_edn3_178
crossref_primary_10_1002_edn3_476
crossref_primary_10_1002_edn3_531
crossref_primary_10_1007_s10661_024_12535_z
crossref_primary_10_1186_s12859_021_04180_x
crossref_primary_10_1016_j_pt_2022_12_010
crossref_primary_10_3389_fmars_2023_1121088
crossref_primary_10_1021_acs_est_1c07638
crossref_primary_10_1002_edn3_316
crossref_primary_10_1016_j_fawpar_2022_e00183
crossref_primary_10_1111_mec_16659
crossref_primary_10_1002_edn3_459
crossref_primary_10_1002_ece3_9234
crossref_primary_10_1002_edn3_334
crossref_primary_10_1016_j_scitotenv_2021_146891
crossref_primary_10_2331_suisan_WA3082_9
crossref_primary_10_1002_edn3_532
crossref_primary_10_1038_s41598_021_03899_0
crossref_primary_10_1016_j_scitotenv_2021_148810
crossref_primary_10_1111_1755_0998_13857
crossref_primary_10_1007_s12237_022_01080_y
crossref_primary_10_1111_raq_12870
crossref_primary_10_1016_j_envadv_2023_100457
crossref_primary_10_1016_j_scitotenv_2023_162322
crossref_primary_10_1111_brv_12859
crossref_primary_10_1002_edn3_386
crossref_primary_10_3389_fmars_2023_1193083
crossref_primary_10_1007_s10750_022_05036_y
crossref_primary_10_1016_j_gecco_2024_e02888
crossref_primary_10_1007_s00425_023_04267_0
crossref_primary_10_1016_j_ese_2024_100441
Cites_doi 10.1163/157075407779766750
10.1371/journal.pone.0041732
10.1021/acs.est.6b03114
10.1007/s12686-015-0465-z
10.1111/2041-210X.12709
10.1007/s10750-018-3750-5
10.1016/j.biocon.2014.11.017
10.1111/1365-2664.12306
10.1371/journal.pone.0149786
10.1371/journal.pone.0023398
10.1111/j.1365-294X.2011.05418.x
10.1093/nar/gkl595
10.1007/BF00216384
10.1016/j.cbpc.2004.05.009
10.1371/journal.pone.0088786
10.1242/jeb.203.12.1817
10.1111/mec.14350
10.1111/1755-0998.12900
10.1007/s00424-014-1614-z
10.1016/j.biocon.2014.11.023
10.1017/CBO9780511542084
10.1111/1755-0998.12159
10.1038/jid.2010.388
10.1016/j.gep.2011.01.003
10.1016/j.gene.2014.03.007
10.1007/s10592-015-0775-4
10.1111/2041-210X.12595
10.1210/me.2014-1256
10.1038/srep06653
10.1899/13-046.1
10.1074/jbc.271.18.10892
10.1016/j.envres.2011.02.001
10.1038/s42003-019-0330-9
10.1021/es404734p
10.1016/j.ygcen.2010.07.008
10.1016/B978-0-444-50913-0.50009-6
10.1095/biolreprod.111.094730
10.1016/j.biocon.2014.11.019
10.1111/bij.12516
10.1111/1365-2664.12392
10.1111/1755-0998.12285
10.1371/journal.pone.0113346
10.1186/1471-2199-9-102
10.1016/j.biocon.2016.03.010
10.1080/03632415.2017.1276329
10.1002/edn3.21
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd
2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd
– notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
DOA
DOI 10.1002/edn3.169
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Free Archive
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Agriculture & Environmental Science Database
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Science Journals
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Environmental Science Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2637-4943
EndPage 21
ExternalDocumentID oai_doaj_org_article_6b91242717e145a8828abcd3df73f847
10_1002_edn3_169
EDN3169
Genre commentary
Commentary
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GrantInformation_xml – fundername: Joint Research Center for Science and Technology Fund of Ryukoku University
– fundername: Japan Society for the Promotion of Science
  funderid: 17H03735; 20H03326; 26840152
GroupedDBID 0R~
1OC
24P
88I
AAHHS
ABUWG
ACCFJ
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AVUZU
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
EBS
EDH
EJD
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
IEP
M2P
M~E
OK1
PATMY
PIMPY
PQQKQ
PYCSY
WIN
AAYXX
CITATION
ITC
3V.
7XB
8FK
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c3809-4d1dccb303735e25df8ae3d733d284fcec5c315d88567dc90044126246989f793
IEDL.DBID 24P
ISSN 2637-4943
IngestDate Tue Oct 22 15:13:29 EDT 2024
Thu Oct 10 18:59:29 EDT 2024
Thu Sep 26 15:45:02 EDT 2024
Sat Aug 24 01:04:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3809-4d1dccb303735e25df8ae3d733d284fcec5c315d88567dc90044126246989f793
ORCID 0000-0002-5379-1622
0000-0002-6193-1656
0000-0002-4111-8262
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fedn3.169
PQID 2478782162
PQPubID 4570191
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_6b91242717e145a8828abcd3df73f847
proquest_journals_2478782162
crossref_primary_10_1002_edn3_169
wiley_primary_10_1002_edn3_169_EDN3169
PublicationCentury 2000
PublicationDate January 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Environmental DNA (Hoboken, N.J.)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 42
2015; 15
2017; 8
2015; 183
2017; 26
2006; 34
2015; 467
2019; 2
2019; 826
2019; 1
2010; 169
2015; 52
2008; 9
2014; 48
2011; 11
2019; 19
2005
2016; 50
2004
2002
2016; 17
2011; 6
2015; 7
2011; 111
2011; 131
2016; 11
2016; 7
2004; 138
2014; 4
1993; 38
2015; 29
2015; 115
2001
2013; 32
2000; 203
1996; 271
2014; 14
2018
2007; 4
2014
2014; 9
2014; 51
2012; 7
2016; 197
2012; 21
2012; 86
2014; 541
Yang R. Y. (e_1_2_9_48_1) 2018
e_1_2_9_31_1
Pidgeon R. (e_1_2_9_29_1) 2004
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Turner C. R. (e_1_2_9_44_1) 2014
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
References_xml – volume: 111
  start-page: 978
  issue: 7
  year: 2011
  end-page: 988
  article-title: From molecules to management: Adopting DNA‐based methods for monitoring biological invasions in aquatic environments
  publication-title: Environmental Research
– volume: 183
  start-page: 93
  year: 2015
  end-page: 102
  article-title: Fish environmental DNA is more concentrated in aquatic sediments than surface water
  publication-title: Biological Conservation
– volume: 197
  start-page: 131
  year: 2016
  end-page: 138
  article-title: Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system
  publication-title: Biological Conservation
– volume: 6
  issue: 8
  year: 2011
  article-title: Persistence of environmental DNA in freshwater ecosystems
  publication-title: PLoS One
– year: 2005
– volume: 7
  start-page: 1299
  issue: 11
  year: 2016
  end-page: 1307
  article-title: Critical considerations for the application of environmental DNA methods to detect aquatic species
  publication-title: Methods in Ecology and Evolution
– volume: 138
  start-page: 391
  issue: 4
  year: 2004
  end-page: 398
  article-title: Sequence, linkage mapping and early developmental expression of the intestinal‐type fatty acid‐binding protein gene ( ) from zebrafish (Danio rerio)
  publication-title: Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology
– volume: 541
  start-page: 60
  issue: 1
  year: 2014
  end-page: 66
  article-title: Transcriptional divergence of the duplicated hypoxia‐inducible factor alpha genes in zebrafish
  publication-title: Gene
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  end-page: 3
  article-title: Rapid progression and future of environmental DNA research
  publication-title: Communications Biology
– volume: 9
  start-page: 102
  issue: 1
  year: 2008
  article-title: Characterization of housekeeping genes in zebrafish: Male‐female differences and effects of tissue type, developmental stage and chemical treatment
  publication-title: BMC Molecular Biology
– volume: 14
  start-page: 109
  issue: 1
  year: 2014
  end-page: 116
  article-title: Factors influencing detection of eDNA from a stream‐dwelling amphibian
  publication-title: Molecular Ecology Resources
– volume: 4
  start-page: 47
  issue: 1
  year: 2007
  end-page: 63
  article-title: Evaluation of seven aquatic sampling methods for amphibians and other aquatic fauna
  publication-title: Applied Herpetology
– volume: 271
  start-page: 10892
  issue: 18
  year: 1996
  end-page: 10896
  article-title: A polymorphism in the human intestinal fatty acid binding protein alters fatty acid transport across Caco‐2 cells
  publication-title: Journal of Biological Chemistry
– volume: 42
  start-page: 90
  issue: 2
  year: 2017
  end-page: 99
  article-title: Comparative Cost and Effort of Fish Distribution Detection via Environmental DNA Analysis and Electrofishing
  publication-title: Fisheries
– year: 2014
  article-title: Particle size distribution and optimal capture of aqueous macrobial eDNA
  publication-title: BioRxiv
– year: 2004
– volume: 183
  start-page: 46
  year: 2015
  end-page: 52
  article-title: Monitoring the near‐extinct European weather loach in Denmark based on environmental DNA from water samples
  publication-title: Biological Conservation
– volume: 32
  start-page: 792
  issue: 3
  year: 2013
  end-page: 800
  article-title: Environmental DNA as a new method for early detection of New Zealand mudsnails ( )
  publication-title: Freshwater Science
– year: 2018
  article-title: A systematic survey of human tissue‐specific gene expression and splicing reveals new opportunities for therapeutic target identification and evaluation
  publication-title: BioRxiv
– volume: 86
  start-page: 73
  issue: 3
  year: 2012
  article-title: Ontogenic expression profiles of gonadotropins (FSHB and LHB) and growth hormone (GH) during sexual differentiation and puberty onset in female Zebrafish
  publication-title: Biology of Reproduction
– volume: 11
  issue: 3
  year: 2016
  article-title: Environmental DNA as a ‘Snapshot’ of fish distribution: A case study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan
  publication-title: PLoS One
– volume: 51
  start-page: 1450
  issue: 5
  year: 2014
  end-page: 1459
  article-title: REVIEW: The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology
  publication-title: Journal of Applied Ecology
– volume: 50
  start-page: 10456
  issue: 19
  year: 2016
  end-page: 10464
  article-title: Quantification of Environmental DNA (eDNA) shedding and decay rates for three marine fish
  publication-title: Environmental Science & Technology
– volume: 21
  start-page: 2565
  issue: 11
  year: 2012
  end-page: 2573
  article-title: Monitoring endangered freshwater biodiversity using environmental DNA
  publication-title: Molecular Ecology
– volume: 7
  start-page: 639
  issue: 3
  year: 2015
  end-page: 641
  article-title: Environmental DNA particle size distribution from Brook Trout ( )
  publication-title: Conservation Genetics Resources
– volume: 8
  start-page: 646
  issue: 5
  year: 2017
  end-page: 655
  article-title: An environmental DNA‐based method for monitoring spawning activity: A case study, using the endangered Macquarie perch ( )
  publication-title: Methods in Ecology and Evolution
– volume: 169
  start-page: 48
  issue: 1
  year: 2010
  end-page: 57
  article-title: Elevation of Kiss2 and its receptor gene expression in the brain and pituitary of grass puffer during the spawning season
  publication-title: General and Comparative Endocrinology
– volume: 7
  issue: 8
  year: 2012
  article-title: Detection of a diverse marine fish fauna using environmental DNA from seawater samples
  publication-title: PLoS One
– volume: 1
  start-page: 99
  issue: 2
  year: 2019
  end-page: 108
  article-title: The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection
  publication-title: Environmental DNA
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  end-page: 17
  article-title: The ecology of environmental DNA and implications for conservation genetics
  publication-title: Conservation Genetics
– volume: 203
  start-page: 1817
  issue: 12
  year: 2000
  article-title: Tissue‐specific expression of zebrafish (Danio rerio) heat shock factor 1 mRNAs in response to heat stress
  publication-title: Journal of Experimental Biology
– volume: 9
  issue: 2
  year: 2014
  article-title: Transport distance of invertebrate environmental DNA in a natural river
  publication-title: PLoS One
– volume: 29
  start-page: 76
  issue: 1
  year: 2015
  end-page: 98
  article-title: Genetic analysis of Zebrafish gonadotropin (FSH and LH) functions by TALEN‐mediated gene disruption
  publication-title: Molecular Endocrinology
– volume: 467
  start-page: 1769
  issue: 8
  year: 2015
  end-page: 1781
  article-title: Identification and characterization of the zebrafish ClC‐2 chloride channel orthologs
  publication-title: Pflugers Archiv: European Journal of Physiology
– volume: 26
  start-page: 5872
  issue: 21
  year: 2017
  end-page: 5895
  article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities
  publication-title: Molecular Ecology
– volume: 15
  start-page: 216
  issue: 1
  year: 2015
  end-page: 227
  article-title: Distance, flow and PCR inhibition: EDNA dynamics in two headwater streams
  publication-title: Molecular Ecology Resources
– volume: 38
  start-page: 1
  issue: 1
  year: 1993
  end-page: 10
  article-title: Cloning of the beta 2‐microglobulin gene in the zebrafish
  publication-title: Immunogenetics
– volume: 183
  start-page: 4
  year: 2015
  end-page: 18
  article-title: Environmental DNA – An emerging tool in conservation for monitoring past and present biodiversity
  publication-title: Biological Conservation
– volume: 48
  start-page: 1819
  issue: 3
  year: 2014
  end-page: 1827
  article-title: Environmental conditions influence eDNA persistence in aquatic systems
  publication-title: Environmental Science & Technology
– year: 2002
– volume: 115
  start-page: 750
  issue: 3
  year: 2015
  end-page: 766
  article-title: How will the ‘molecular revolution’ contribute to biological recording?
  publication-title: Biological Journal of the Linnean Society
– volume: 826
  start-page: 25
  issue: 1
  year: 2019
  end-page: 41
  article-title: Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds
  publication-title: Hydrobiologia
– volume: 4
  year: 2014
  article-title: Zebrafish as a model to study live mucus physiology
  publication-title: Scientific Reports
– volume: 34
  start-page: 4925
  issue: 17
  year: 2006
  end-page: 4936
  article-title: Computational analysis of tissue‐specific combinatorial gene regulation: Predicting interaction between transcription factors in human tissues
  publication-title: Nucleic Acids Research
– start-page: 99
  year: 2001
  end-page: 136
– volume: 19
  start-page: 27
  issue: 1
  year: 2019
  end-page: 46
  article-title: Unlocking biodiversity and conservation studies in high‐diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes
  publication-title: Molecular Ecology Resources
– volume: 131
  start-page: 565
  issue: 3
  year: 2011
  end-page: 571
  article-title: Zebrafish: A model system to study heritable skin diseases
  publication-title: Journal of Investigative Dermatology
– volume: 11
  start-page: 271
  issue: 3
  year: 2011
  end-page: 276
  article-title: Identification of housekeeping genes suitable for gene expression analysis in the zebrafish
  publication-title: Gene Expression Patterns
– volume: 52
  start-page: 358
  issue: 2
  year: 2015
  end-page: 365
  article-title: A basin‐scale application of environmental DNA assessment for rare endemic species and closely related exotic species in rivers: A case study of giant salamanders in Japan
  publication-title: Journal of Applied Ecology
– volume: 9
  issue: 11
  year: 2014
  article-title: Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data
  publication-title: PLoS One
– ident: e_1_2_9_18_1
  doi: 10.1163/157075407779766750
– ident: e_1_2_9_40_1
  doi: 10.1371/journal.pone.0041732
– ident: e_1_2_9_34_1
  doi: 10.1021/acs.est.6b03114
– ident: e_1_2_9_46_1
  doi: 10.1007/s12686-015-0465-z
– ident: e_1_2_9_5_1
  doi: 10.1111/2041-210X.12709
– ident: e_1_2_9_20_1
  doi: 10.1007/s10750-018-3750-5
– ident: e_1_2_9_45_1
  doi: 10.1016/j.biocon.2014.11.017
– ident: e_1_2_9_32_1
  doi: 10.1111/1365-2664.12306
– ident: e_1_2_9_47_1
  doi: 10.1371/journal.pone.0149786
– ident: e_1_2_9_13_1
  doi: 10.1371/journal.pone.0023398
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1365-294X.2011.05418.x
– ident: e_1_2_9_49_1
  doi: 10.1093/nar/gkl595
– ident: e_1_2_9_27_1
  doi: 10.1007/BF00216384
– start-page: 001941
  year: 2014
  ident: e_1_2_9_44_1
  article-title: Particle size distribution and optimal capture of aqueous macrobial eDNA
  publication-title: BioRxiv
  contributor:
    fullname: Turner C. R.
– ident: e_1_2_9_37_1
  doi: 10.1016/j.cbpc.2004.05.009
– ident: e_1_2_9_11_1
  doi: 10.1371/journal.pone.0088786
– ident: e_1_2_9_31_1
  doi: 10.1242/jeb.203.12.1817
– start-page: 311563
  year: 2018
  ident: e_1_2_9_48_1
  article-title: A systematic survey of human tissue‐specific gene expression and splicing reveals new opportunities for therapeutic target identification and evaluation
  publication-title: BioRxiv
  contributor:
    fullname: Yang R. Y.
– ident: e_1_2_9_12_1
  doi: 10.1111/mec.14350
– ident: e_1_2_9_9_1
  doi: 10.1111/1755-0998.12900
– ident: e_1_2_9_28_1
  doi: 10.1007/s00424-014-1614-z
– ident: e_1_2_9_39_1
  doi: 10.1016/j.biocon.2014.11.023
– ident: e_1_2_9_21_1
  doi: 10.1017/CBO9780511542084
– ident: e_1_2_9_30_1
  doi: 10.1111/1755-0998.12159
– ident: e_1_2_9_24_1
  doi: 10.1038/jid.2010.388
– ident: e_1_2_9_6_1
  doi: 10.1016/j.gep.2011.01.003
– ident: e_1_2_9_33_1
  doi: 10.1016/j.gene.2014.03.007
– ident: e_1_2_9_3_1
  doi: 10.1007/s10592-015-0775-4
– ident: e_1_2_9_7_1
– ident: e_1_2_9_17_1
  doi: 10.1111/2041-210X.12595
– ident: e_1_2_9_50_1
  doi: 10.1210/me.2014-1256
– ident: e_1_2_9_23_1
  doi: 10.1038/srep06653
– ident: e_1_2_9_16_1
  doi: 10.1899/13-046.1
– ident: e_1_2_9_2_1
  doi: 10.1074/jbc.271.18.10892
– ident: e_1_2_9_10_1
  doi: 10.1016/j.envres.2011.02.001
– ident: e_1_2_9_35_1
  doi: 10.1038/s42003-019-0330-9
– ident: e_1_2_9_4_1
  doi: 10.1021/es404734p
– ident: e_1_2_9_36_1
  doi: 10.1016/j.ygcen.2010.07.008
– ident: e_1_2_9_51_1
  doi: 10.1016/B978-0-444-50913-0.50009-6
– ident: e_1_2_9_8_1
  doi: 10.1095/biolreprod.111.094730
– volume-title: A review of options for monitoring freshwater fish biodiversity in the Darwin Harbour catchment
  year: 2004
  ident: e_1_2_9_29_1
  contributor:
    fullname: Pidgeon R.
– ident: e_1_2_9_42_1
  doi: 10.1016/j.biocon.2014.11.019
– ident: e_1_2_9_19_1
  doi: 10.1111/bij.12516
– ident: e_1_2_9_15_1
  doi: 10.1111/1365-2664.12392
– ident: e_1_2_9_22_1
  doi: 10.1111/1755-0998.12285
– ident: e_1_2_9_26_1
  doi: 10.1371/journal.pone.0113346
– ident: e_1_2_9_25_1
  doi: 10.1186/1471-2199-9-102
– ident: e_1_2_9_38_1
  doi: 10.1016/j.biocon.2016.03.010
– ident: e_1_2_9_14_1
  doi: 10.1080/03632415.2017.1276329
– ident: e_1_2_9_43_1
  doi: 10.1002/edn3.21
SSID ssj0002171031
Score 2.2364633
Snippet As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past decade, and...
Abstract As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past...
Abstract As an alternative/supplement to conventional biodiversity survey methods, environmental DNA (eDNA) analysis has developed rapidly during the past...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 14
SubjectTerms Biodiversity
biological monitoring
Biomonitoring
Breeding
conservation of natural resources
Danio rerio
Deoxyribonucleic acid
DNA
Gene expression
Genes
Gills
Intestine
Keratin
Methods
Nonnative species
Physiology
Polymerase chain reaction
Proteins
Reverse transcription
Ribonucleic acid
RNA
Skin
Taxonomy
Temporal resolution
Tissues
Typing
Vertebrates
Water analysis
Water sampling
Wildlife
Zebrafish
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhEMil5NHSTZMwgVDSg5u15Iec2-ZFCGQPoYHchKWRaCl4t9kNIflL-ZOZkb2Jeyi95GKDjS3hb6z5JM18I8S-VxJ9sFlig8uTjEhpYp0tkzotMISSGHnM8L4aFxc32eVtftsr9cUxYa08cPvhDgtbkQuSNOvwaZbXRAh1bR0qDKUKNLTG0XdY9SZTPAYT0eb6BQu12aE89Nio7ynHNff8T5Tp_4tb9hlqdDHna-JDxw1h1PZpXSz5ZkOstNUiHzfF8xXrfPMqHFyPRzB_5FQnmAToJavR43zvwNPx2xGMwJGXgqghC5MGnnibOPya_QTihL_hgYjmHfBSLEzfki5nQEQWiBhCKzgC-BZYFJvjFupOzITfWv9hvXAHXNqZGyD2-lHcnJ_9OLlIuloLiVOaC81his5Zcmilyr3MMejaKyyVQnJgwXmXO5XmqHVelOgq3ghOZSFjAUrCVH0Sy82k8Z8FYFlhRbxKD0OZaV9UdarJVKwjDBGlH4i9BQJm2kpqmFY8WRpGyRBKA3HM0LzeZxHseIFMw3SmYf5nGgOxvQDWdH_mzEhWI9IyLeRAfI1g_7MT5ux0rOi89R6d-SJWJYfDxNWbbbE8v7v3O8Rn5nY3mu4Ldtrzxw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEA66h-CL-BNXTxlBRB_qbZP-SH2RPd3jEG6Rw4N7C00mOUVo93ZX5PyX_CedSbO364O-tNDQpPAlnS-TmW-EeOmVRB9skdngyqwgUppZZ-uszSsMoSZGHjO8T-bV8Vnx6bw8Tw63VQqr3PwT448ae8c-8gPJKjJa5pV8v7jMuGoUn66mEho3xZ6kncJkJPYOZ_PPp9deFiLcXMdgozo7kQceO_U25_jmHTsU5fr_4pi7TDWamqO74k7iiDAdQL0nbvjuvrg1VI28eiB-n7DeN3vj4HQ-hfUVpzxBH2AnaY1e57bXnq5v3sEUHFkriFqy0Hfwi4-Lw7fVVyBu-B1-EuFcArtkYbFNvlwBEVogggiD8AjgNsAoDscjtEnUhHttL1k33AGXeOYBiMU-FGdHsy8fjrNUcyFzSnPBOczROUuGrVallyUG3XqFtVJIhiw470qn8hK1LqsaXcMHwrmsZCxESdiqR2LU9Z1_LADrBhviV3oS6kL7qmlzTVPGOtpBIko_Fi82CJjFIK1hBhFlaRglQyiNxSFDc93OYtjxQb-8MGltmco2xFIkdevzomxpz6Bb61BhqFUg6zsW-xtgTVqhK7OdT2PxKoL9z48ws49zRfcn_-_nqbgtOeAl-mf2xWi9_OGfEWNZ2-dpWv4B_cHtOw
  priority: 102
  providerName: ProQuest
Title Messenger RNA typing of environmental RNA (eRNA): A case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fedn3.169
https://www.proquest.com/docview/2478782162
https://doaj.org/article/6b91242717e145a8828abcd3df73f847
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PSxwxFA5WKfRSrG3ptrq8Qin2MNVJZpKMt7VdkcIuIgrewuSXSmHW7m4p9uA_5D_pe5nZXT0UesnAZDIZ-JJ5X17yvsfYpyC4D9EWmY2uzAokpZl1VmV1Ln2MChl5ivAejeXxefHjorzoTlVSLEyrD7F0uNHMSP9rmuC1ne2tREODb8TXXFbP2AYJxpBuPi9Olv4VpNqUwYByy0mhsqIqxEJ7dp_vLRo_sUZJtP8J03zMV5PBOdpkLzumCIMW2ldsLTRb7HmbO_L2Nbsfkeo3-eTgdDyA-S0FPsEkwqPQNWxOdbsByy8HMACHNguSoixMGvhLm8bxenYFyBB_wh-knVMgxyzcrEIwZ4C0FpAmQis_An51zCh1Rz3UnbQJvbX-RerhDijRM3WAXPYNOz8ann07zrrMC5kTmtLO-dw7Z9G8KVEGXvqo6yC8EsKjOYsuuNKJvPRal1J5V9G2cM4lT-koEWHxlq03kya8Y-BV5StkWXo_qkIHWdW5xoFjHa4jveehxz4uEDA3rcCGaaWUuSGUDKLUY4cEzbKeJLHTjcn00nQzzEhbIVfh-NqQF2WNKwddW-eFj0pEtME9tr0A1nTzdGY4aRNpnkveY58T2P_8CDP8PhZ4ff-_D35gLzgdgEn-mm22Pp_-DjvIYOa2n4Zqn20cDscnp_3kB8BydDd8AOAq8N8
link.rule.ids 315,783,787,867,2109,11574,21400,27936,27937,33756,43817,46064,46488,50826,50935,74630
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFaKXiqdYKDBICMEhtLHzcLigLWy1QDdCVSv1ZsUvWlVKtrtbofKX-JPMON7ucoBLIsWKHemzM5_HM98w9toJbp3XWaK9yZMMSWmijS6TJi2s9yUy8pDhPamL8Un29TQ_jQ63eQyrXP4Tw4_adoZ85LucVGQkTwv-cXqZUNUoOl2NJTRus02SqsLN1-b-qP5-dONlQcJNdQyWqrN7fNfZVrxPKb55zQ4Fuf6_OOY6Uw2m5uAe244cEYY9qPfZLdc-YHf6qpHXD9nvCel9kzcOjuohLK4p5Qk6D2tJa_g6tb11eH33AYZg0FpB0JKFroVfdFzsz-dngNzwAn4i4ZwBuWRhukq-nAMSWkCCCL3wCNhVgFEYjkZooqgJ9dpckm64ASrxTAMgi33ETg5Gx5_GSay5kBghqeCcTa0xGg1bKXLHc-tl44QthbBoyLxxJjciza2UeVFaU9GBcMoLHgpRIrbiMdtou9Y9YWDLylbIr-SeLzPpiqpJJU4ZbXAHaS13A_ZqiYCa9tIaqhdR5opQUojSgO0TNDftJIYdHnSzHyquLVXoClkKx25dmuUN7hlko40V1pfCo_UdsJ0lsCqu0LlazacBexPA_udHqNHnWuD96f_7ecnujo8nh-rwS_3tGdviFPwSfDU7bGMxu3LPkb0s9Is4Rf8AZ8bwNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKxAXxFMsFBgkhOAQdmMnccIFbemuyqNRVVGpNyt-QVUp2e4uQuUv8SeZcbzd5QCXRIoVO9Jne76MZ75h7KUT3Dqvs0R7kycZktJEGy2TJi2s9xIZecjwPqyLg5Ps02l-GuOfljGscr0nho3adoZ85CNOKjIlTws-8jEs4mh_9n5-kVAFKTppjeU0rrMdmRViPGA7e9P66PjK44Lkm2oarBVox3zkbCvephTrvGWTgnT_X3xzm7UGszO7w25HvgiTHuC77Jpr77EbfQXJy_vs9yFpf5NnDo7rCawuKf0JOg9bCWz4OrW9dnh98w4mYNByQdCVha6FX3R07M-W3wF54jn8RPK5AHLPwnyTiLkEJLeAZBF6ERKwm2CjMByN0ESBE-q1uSANcQNU7pkGQEb7gJ3Mpl8_HCSx_kJiREnF52xqjdFo5KTIHc-tLxsnrBTColHzxpnciDS3ZZkX0pqKDodTXvBQlBJxFg_ZoO1a94iBlZWtkGuVYy-z0hVVk5Y4fbTBv0lruRuyF2sE1LyX2VC9oDJXhJJClIZsj6C5aidh7PCgW3xTcZ2pQlfIWDh269Isb_D_oWy0scJ6KTxa4iHbXQOr4mpdqs3cGrJXAex_foSa7tcC74__389zdhNnp_rysf78hN3iFAcT3Da7bLBa_HBPkcis9LM4Q_8AdUb0Yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Messenger+RNA+typing+of+environmental+RNA+%28eRNA%29%3A+A+case+study+on+zebrafish+tank+water+with+perspectives+for+the+future+development+of+eRNA+analysis+on+aquatic+vertebrates&rft.jtitle=Environmental+DNA+%28Hoboken%2C+N.J.%29&rft.au=Tsuri%2C+Kenji&rft.au=Ikeda%2C+Shizuya&rft.au=Hirohara%2C+Takaya&rft.au=Shimada%2C+Yasuhito&rft.date=2021-01-01&rft.issn=2637-4943&rft.eissn=2637-4943&rft.volume=3&rft.issue=1&rft.spage=14&rft.epage=21&rft_id=info:doi/10.1002%2Fedn3.169&rft.externalDBID=10.1002%252Fedn3.169&rft.externalDocID=EDN3169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-4943&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-4943&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-4943&client=summon