Smart materials for drug delivery and cancer therapy
Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and enzyme, or exogenous stimulators such as temperature, light, ultrasound, radiation, and magnetic field in drug delivery. As footstone of stimuli‐responsi...
Saved in:
Published in | View (Beijing, China) Vol. 2; no. 2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and enzyme, or exogenous stimulators such as temperature, light, ultrasound, radiation, and magnetic field in drug delivery. As footstone of stimuli‐responsive nanocarriers, endogenous/exogenous responsive smart materials possess many properties, such as responding ability to specific triggers, controlled drug release, long blood circulation, increased tumor accumulation, “ON‐OFF” switch activities, enhanced diagnostic accuracy, and therapeutic efficacy. Smart materials have attracted considerable attention because they provide likelihood strategy for individualized and comprehensive therapy. In this review, significant research achievements of smart materials responsive to different triggers including their synthesis and formulation mechanism, responsive mechanism, applications, multiple functions are summarized and discussed separately. We primarily focus on the studies in the past few years (2017‐2020). The current situation and remaining challenges of stimuli‐sensitive materials‐based nanocarriers for clinical translation are discussed rationally at the end. It is hope that this timely and overall review would provide some helpful information for researchers in this field.
Smart Materials in Drug Delivery have attracted considerable attention for precision cancer chemotherapy as the footstone of stimuli‐responsive nanocarriers. Numerous smart materials are delicately designed with time‐/space‐controlled drug release while responsive to either endogenous or exogenous signals. Their advanced achievements range from preclinical studies to commercialized products. All the latest information has been comprehensively summarized herein. |
---|---|
AbstractList | Abstract Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and enzyme, or exogenous stimulators such as temperature, light, ultrasound, radiation, and magnetic field in drug delivery. As footstone of stimuli‐responsive nanocarriers, endogenous/exogenous responsive smart materials possess many properties, such as responding ability to specific triggers, controlled drug release, long blood circulation, increased tumor accumulation, “ON‐OFF” switch activities, enhanced diagnostic accuracy, and therapeutic efficacy. Smart materials have attracted considerable attention because they provide likelihood strategy for individualized and comprehensive therapy. In this review, significant research achievements of smart materials responsive to different triggers including their synthesis and formulation mechanism, responsive mechanism, applications, multiple functions are summarized and discussed separately. We primarily focus on the studies in the past few years (2017‐2020). The current situation and remaining challenges of stimuli‐sensitive materials‐based nanocarriers for clinical translation are discussed rationally at the end. It is hope that this timely and overall review would provide some helpful information for researchers in this field. Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and enzyme, or exogenous stimulators such as temperature, light, ultrasound, radiation, and magnetic field in drug delivery. As footstone of stimuli‐responsive nanocarriers, endogenous/exogenous responsive smart materials possess many properties, such as responding ability to specific triggers, controlled drug release, long blood circulation, increased tumor accumulation, “ON‐OFF” switch activities, enhanced diagnostic accuracy, and therapeutic efficacy. Smart materials have attracted considerable attention because they provide likelihood strategy for individualized and comprehensive therapy. In this review, significant research achievements of smart materials responsive to different triggers including their synthesis and formulation mechanism, responsive mechanism, applications, multiple functions are summarized and discussed separately. We primarily focus on the studies in the past few years (2017‐2020). The current situation and remaining challenges of stimuli‐sensitive materials‐based nanocarriers for clinical translation are discussed rationally at the end. It is hope that this timely and overall review would provide some helpful information for researchers in this field. Smart Materials in Drug Delivery have attracted considerable attention for precision cancer chemotherapy as the footstone of stimuli‐responsive nanocarriers. Numerous smart materials are delicately designed with time‐/space‐controlled drug release while responsive to either endogenous or exogenous signals. Their advanced achievements range from preclinical studies to commercialized products. All the latest information has been comprehensively summarized herein. Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and enzyme, or exogenous stimulators such as temperature, light, ultrasound, radiation, and magnetic field in drug delivery. As footstone of stimuli‐responsive nanocarriers, endogenous/exogenous responsive smart materials possess many properties, such as responding ability to specific triggers, controlled drug release, long blood circulation, increased tumor accumulation, “ON‐OFF” switch activities, enhanced diagnostic accuracy, and therapeutic efficacy. Smart materials have attracted considerable attention because they provide likelihood strategy for individualized and comprehensive therapy. In this review, significant research achievements of smart materials responsive to different triggers including their synthesis and formulation mechanism, responsive mechanism, applications, multiple functions are summarized and discussed separately. We primarily focus on the studies in the past few years (2017‐2020). The current situation and remaining challenges of stimuli‐sensitive materials‐based nanocarriers for clinical translation are discussed rationally at the end. It is hope that this timely and overall review would provide some helpful information for researchers in this field. |
Author | Zeng, Xiaowei Huang, Ping Yang, Yao Mei, Lin Zeng, Weiwei |
Author_xml | – sequence: 1 givenname: Yao surname: Yang fullname: Yang, Yao organization: Sun Yat‐sen University – sequence: 2 givenname: Weiwei surname: Zeng fullname: Zeng, Weiwei organization: Sun Yat‐sen University – sequence: 3 givenname: Ping surname: Huang fullname: Huang, Ping organization: Sun Yat‐sen University – sequence: 4 givenname: Xiaowei surname: Zeng fullname: Zeng, Xiaowei email: zengxw23@mail.sysu.edu.cn organization: Sun Yat‐sen University – sequence: 5 givenname: Lin orcidid: 0000-0001-6503-5149 surname: Mei fullname: Mei, Lin email: meilin7@mail.sysu.edu.cn organization: Chinese Academy of Medical Sciences & Peking Union Medical College |
BookMark | eNp9UMlOwzAUtFCRKKU3PiAfQMB7nCOqWCpV4sB6sxz7ubhKk8oJoPw9Li0ckODyNs3MG80xGjVtAwidEnxOMKYXT_Pnc4opxpjTAzSmUqk8lZfRfmalUkdo2nWrBKGCkKIUY8Tv1yb22dr0EIOpu8y3MXPxbZk5qMM7xCEzjcusaSzErH-FaDbDCTr0CQvTfZ-gx-urh9ltvri7mc8uF7llChe5dI4XjPsSJHaKe1Nx4gSYShBfEMuZLxWF0kBliSCldAYTKoQkgDEDKtkEzXe6rjUrvYkheR10a4L-OrRxqZP5YGvQhQPnHXgsreVKCsOlVVRQJ4mtmIekdbbTsrHtugj-R49gvQ1QpwD1d4AJTn_BbehNH9qmjybUf5HwjvQRahj-fbBdqCzYJ0JEgx8 |
CitedBy_id | crossref_primary_10_1016_j_matpr_2022_09_012 crossref_primary_10_1016_j_actbio_2023_06_002 crossref_primary_10_1002_adfm_202312380 crossref_primary_10_1002_VIW_20230056 crossref_primary_10_1039_D3BM01352A crossref_primary_10_1039_D1TB02717D crossref_primary_10_1021_acsbiomaterials_3c00507 crossref_primary_10_1016_j_eurpolymj_2022_111258 crossref_primary_10_1002_smll_202406206 crossref_primary_10_1002_bio_4658 crossref_primary_10_1080_10837450_2021_1985519 crossref_primary_10_1097_HEP_0000000000001063 crossref_primary_10_1016_j_jconrel_2024_08_052 crossref_primary_10_1016_j_smaim_2022_05_003 crossref_primary_10_1016_j_jconrel_2021_09_005 crossref_primary_10_1208_s12249_024_03011_5 crossref_primary_10_1016_j_cej_2023_144563 crossref_primary_10_1016_j_ijbiomac_2024_129901 crossref_primary_10_1002_adhm_202202391 crossref_primary_10_1002_mba2_103 crossref_primary_10_1002_smll_202311228 crossref_primary_10_1021_acsapm_3c02323 crossref_primary_10_1002_smtd_202301112 crossref_primary_10_1002_mba2_70009 crossref_primary_10_1016_j_ymeth_2022_07_006 crossref_primary_10_1007_s11051_024_06074_4 crossref_primary_10_1002_VIW_20230110 crossref_primary_10_1021_acsami_4c15172 crossref_primary_10_7717_peerj_16426 crossref_primary_10_1016_j_procbio_2022_08_018 crossref_primary_10_2174_0113816128246888230920060802 crossref_primary_10_1016_j_lfs_2022_120525 crossref_primary_10_3390_pharmaceutics15071977 crossref_primary_10_1016_j_cej_2022_135240 crossref_primary_10_1080_00914037_2025_2475896 crossref_primary_10_1002_smtd_202301173 crossref_primary_10_1016_j_porgcoat_2023_107928 crossref_primary_10_26599_NBE_2024_9290078 crossref_primary_10_1016_j_smaim_2022_01_008 crossref_primary_10_1002_smtd_202301165 crossref_primary_10_1103_PhysRevE_108_064211 crossref_primary_10_1016_j_ijpharm_2023_123397 crossref_primary_10_3390_ijms26062633 crossref_primary_10_3390_pharmaceutics14071321 crossref_primary_10_1016_j_addr_2022_114241 crossref_primary_10_1002_smtd_202301726 crossref_primary_10_1002_adfm_202310450 crossref_primary_10_1021_acscentsci_4c01004 crossref_primary_10_1002_adfm_202314492 crossref_primary_10_1002_anbr_202300125 crossref_primary_10_1002_smll_202408481 crossref_primary_10_1039_D3NR04808J crossref_primary_10_1021_acsabm_3c00458 crossref_primary_10_1016_j_carbpol_2022_120510 crossref_primary_10_1080_09205063_2023_2279792 crossref_primary_10_1002_smtd_202301178 crossref_primary_10_1016_j_mtcomm_2022_104644 crossref_primary_10_1002_SMMD_20220041 crossref_primary_10_1002_smtd_202301455 crossref_primary_10_1039_D4BM01377H crossref_primary_10_1016_j_fmre_2024_06_006 crossref_primary_10_1016_j_slast_2023_02_002 crossref_primary_10_1002_advs_202305662 crossref_primary_10_1002_smll_202307299 crossref_primary_10_1021_acsbiomaterials_4c00115 crossref_primary_10_1002_smtd_202301271 crossref_primary_10_1016_j_jcis_2021_10_147 crossref_primary_10_1016_j_jddst_2022_103426 crossref_primary_10_1002_smtd_202301143 crossref_primary_10_1016_j_colsurfb_2024_114411 crossref_primary_10_1021_acsami_2c15015 crossref_primary_10_1021_acsabm_1c01284 crossref_primary_10_1002_cptc_202100282 crossref_primary_10_1016_j_cej_2023_146792 crossref_primary_10_1021_acsami_3c10572 crossref_primary_10_1016_j_snb_2025_137559 crossref_primary_10_1039_D3BM01741A crossref_primary_10_1166_jbt_2024_3365 crossref_primary_10_1021_acs_nanolett_4c00300 crossref_primary_10_1016_j_biomaterials_2022_121791 crossref_primary_10_1021_acs_bioconjchem_1c00437 crossref_primary_10_1080_10837450_2022_2037140 crossref_primary_10_1002_advs_202201703 crossref_primary_10_1186_s12951_022_01286_z crossref_primary_10_1039_D3RA08263F crossref_primary_10_1021_acsabm_2c00973 crossref_primary_10_3389_fbioe_2022_836468 crossref_primary_10_1039_D3NA01106B crossref_primary_10_1016_j_eurpolymj_2023_112365 crossref_primary_10_3390_bioengineering11060573 crossref_primary_10_1016_j_jcis_2022_06_069 crossref_primary_10_1016_j_jcis_2025_01_006 crossref_primary_10_1002_adfm_202307013 crossref_primary_10_1016_j_ccr_2023_215564 crossref_primary_10_1016_j_procbio_2022_04_003 crossref_primary_10_3390_jfb15080226 crossref_primary_10_3390_pharmaceutics15071928 crossref_primary_10_1002_smtd_202301005 crossref_primary_10_1016_j_ijpharm_2022_122342 crossref_primary_10_1039_D2MA00094F crossref_primary_10_1016_j_jddst_2021_102879 crossref_primary_10_1016_j_jddst_2022_103323 crossref_primary_10_1039_D3MA00341H crossref_primary_10_3390_polym15081963 crossref_primary_10_1021_acs_chemrev_3c00778 crossref_primary_10_1002_adma_202109254 crossref_primary_10_1002_adfm_202307241 crossref_primary_10_1002_smtd_202100536 crossref_primary_10_3390_gels9050363 crossref_primary_10_3390_polym16223163 crossref_primary_10_1002_pat_6160 crossref_primary_10_1002_smtd_202301134 crossref_primary_10_1016_j_jcis_2022_05_015 crossref_primary_10_1016_j_jddst_2022_104144 crossref_primary_10_1039_D2RA05863D crossref_primary_10_1016_j_jconrel_2021_09_017 crossref_primary_10_1021_acs_bioconjchem_3c00476 crossref_primary_10_1002_smll_202309206 crossref_primary_10_1016_j_ijbiomac_2025_140451 |
Cites_doi | 10.1016/j.jconrel.2018.04.032 10.1016/j.jconrel.2020.03.013 10.1016/j.biomaterials.2020.120054 10.1002/adhm.201900174 10.1002/adma.201800662 10.1016/j.matt.2019.03.007 10.1016/j.actbio.2018.01.014 10.1016/j.biomaterials.2018.04.020 10.1002/adma.201704490 10.7150/thno.27581 10.1016/j.biomaterials.2019.119327 10.1002/adfm.201903791 10.1002/advs.201901211 10.1002/advs.201900586 10.7150/thno.24015 10.1021/acsami.6b14078 10.2147/IJN.S179226 10.1080/10717544.2017.1362677 10.1002/adhm.201901316 10.1016/j.biomaterials.2019.119498 10.1021/acsnano.8b06399 10.1002/smll.201703968 10.1016/j.biomaterials.2018.08.014 10.1016/j.biomaterials.2019.04.004 10.1039/C8NR09990A 10.1016/j.cej.2019.121917 10.7150/thno.29820 10.1002/marc.201800917 10.1002/advs.201801526 10.1039/C9CC06727B 10.1002/anie.202004575 10.1002/adma.201802061 10.3390/pharmaceutics11100507 10.1039/C7CS00594F 10.1517/17425247.2015.1071352 10.1016/j.biomaterials.2019.01.029 10.1039/C9CC02353D 10.1021/acsami.9b15460 10.1021/jacs.7b07818 10.1038/ncomms12967 10.1093/jn/134.3.489 10.1021/acs.nanolett.9b03331 10.1016/j.carbpol.2019.115498 10.1016/j.drup.2004.01.004 10.1016/j.actbio.2019.02.043 10.1002/adfm.201805341 10.1002/adfm.201802500 10.1016/j.biomaterials.2020.119761 10.7150/thno.8698 10.1016/j.biomaterials.2017.04.032 10.1021/acsnano.8b06400 10.1021/ja510147n 10.1039/C7PY01485F 10.1021/acsnano.6b00870 10.1021/acsabm.8b00623 10.3390/pharmaceutics11070342 10.1021/ar2001777 10.1002/adma.201901513 10.1021/acsami.9b12620 10.7150/thno.38069 10.1021/acsabm.9b00450 10.1021/acsnano.7b02533 10.1016/j.jconrel.2014.05.002 10.1021/acsami.9b08115 10.1016/j.jcis.2019.07.061 10.1021/acsnano.8b01893 10.1016/j.ijbiomac.2019.03.030 10.1002/adfm.201908598 10.1016/j.biomaterials.2019.04.029 10.1016/j.jconrel.2020.01.021 10.1038/s41551-018-0203-4 10.1016/j.jconrel.2019.10.016 10.1039/C8BM00899J 10.1039/C9NR03052B 10.1021/acsnano.8b06483 10.1080/1061186X.2018.1464012 10.1039/C9BM00634F 10.1002/adma.202000376 10.1016/j.ajps.2016.06.001 10.1016/j.jconrel.2019.10.031 10.1002/adfm.201700220 10.1002/adma.201808278 10.1021/acsami.9b13214 10.1016/j.cclet.2017.09.048 10.3390/nano9020191 10.1021/acsami.9b17587 10.1016/S0891-5849(01)00480-4 10.1021/acsami.9b12879 10.1021/acsami.9b22654 10.1016/j.cclet.2019.08.017 10.1007/s12274-019-2330-y 10.1038/s41467-019-11193-x 10.1016/j.biomaterials.2018.10.036 10.1016/j.actbio.2019.12.016 10.1038/nbt.3330 10.1016/j.biomaterials.2018.12.004 10.1021/acsnano.8b07045 10.1038/s41586-020-2168-1 10.1002/anie.201912768 10.1016/j.cej.2020.124494 10.1021/acs.biomac.9b00583 10.7150/thno.27351 10.1021/acsabm.9b01172 10.1016/j.jconrel.2019.12.041 10.1002/adma.201602111 10.1016/j.jconrel.2019.12.011 10.1016/j.ijbiomac.2017.11.048 10.1016/j.jconrel.2019.10.017 10.1016/j.jconrel.2020.02.021 10.1002/adma.201808200 10.1016/j.colsurfb.2019.03.070 10.1002/adhm.201901105 10.1016/j.ccr.2019.02.025 10.1002/anie.201900886 10.1021/acsnano.9b05749 10.1021/acs.nanolett.9b00083 10.1016/j.cej.2019.123043 10.1002/adfm.201606826 10.1021/acsnano.7b08219 10.7150/thno.26225 10.1021/acsami.6b15505 10.1021/acs.chemrev.5b00112 10.1021/acsabm.9b00769 10.1038/natrevmats.2017.14 10.1002/anie.201908712 10.1016/j.mattod.2015.11.025 10.1002/adma.201700996 10.1111/cas.12153 10.1021/acsbiomaterials.9b00237 10.1021/acsnano.6b08731 10.7150/thno.14184 10.1039/C9BM00884E 10.1021/acs.biomac.9b01202 10.1002/anie.201705578 10.1021/acsami.8b03506 10.1002/adtp.201800090 10.1016/j.ajps.2017.11.002 10.1016/j.biomaterials.2016.08.015 10.1246/cl.151176 10.1038/nm0297-177 10.1002/adma.201904278 10.1021/acsnano.9b07984 10.1002/adma.201900730 10.1126/sciadv.aba5996 10.1039/C9BM01692A 10.1021/acsami.9b03056 10.1021/acsnano.7b03507 10.1002/adma.201805919 10.1002/anie.201813702 10.1021/acsnano.8b02813 10.1002/anie.201902470 10.1038/nmat4474 10.1016/j.cclet.2019.05.017 10.1016/j.jconrel.2019.01.016 10.1021/acs.biomac.9b01578 10.1039/C5NR04436G 10.1016/j.jconrel.2019.05.016 10.1002/path.1277 10.1038/natrevmats.2016.75 10.1038/s41572-019-0064-5 10.1039/C9NR07725A 10.2174/157340711795163866 10.1021/acsami.7b02457 10.1016/j.biomaterials.2018.10.010 10.1021/acsnano.9b06689 10.1016/j.addr.2012.11.004 10.1016/j.jconrel.2017.07.031 10.1016/j.msec.2016.11.030 10.1002/adma.201803031 10.1021/acs.chemrev.8b00294 10.1016/j.jconrel.2019.06.010 10.1016/j.biomaterials.2017.11.019 10.1039/C9NR07254C 10.1021/jacs.9b12232 10.1016/0360-3016(91)90057-B 10.1039/C8CC09047E 10.1002/adfm.201808306 10.1016/j.smaim.2020.05.002 10.1021/acs.nanolett.8b01924 10.1083/jcb.201102095 10.1039/C5NR04045K 10.1002/adfm.201704135 10.1021/bc0340924 10.1016/j.colsurfb.2019.05.064 10.1002/anie.201710800 10.1016/j.biomaterials.2019.119422 10.1002/anie.201907388 10.1021/acs.nanolett.9b01660 10.1016/j.biomaterials.2018.02.023 10.1016/j.ijbiomac.2020.03.138 10.1002/adma.201808024 10.1039/C9BM00992B 10.1021/acsami.6b16815 10.1016/j.addr.2017.03.004 10.1039/C8BM00243F 10.1016/j.jconrel.2019.10.052 10.1021/jacs.7b12025 10.1021/acsami.8b12232 10.1021/acsabm.9b00584 10.1016/j.carbpol.2020.115930 10.1016/j.biomaterials.2019.119702 10.1002/adma.201606134 10.1021/acsnano.9b02096 10.1093/jnci/55.1.115 10.1002/adhm.201900406 10.1016/j.jconrel.2020.02.038 10.1021/acsnano.5b05825 10.1016/j.ejca.2010.07.015 10.1016/j.actbio.2018.05.031 10.7150/thno.14858 10.1039/C8NR10528F 10.1016/j.biomaterials.2017.11.015 10.1016/j.biomaterials.2019.119460 10.1016/j.actbio.2018.10.029 10.1021/acsami.9b07957 10.1021/acs.biomac.9b01472 10.7150/thno.33888 10.1002/adhm.201700646 10.1517/13543780802567250 10.1016/j.biomaterials.2019.01.048 10.1039/C7NR07677K 10.1039/C9NR01691K 10.1021/cr5004198 10.7150/thno.17881 10.1002/smll.201602660 10.1021/acsami.7b18245 10.1021/acsami.8b17750 10.1016/j.biomaterials.2013.04.052 10.1016/j.biomaterials.2018.05.025 10.7150/thno.42008 10.1039/C9BM01640F 10.1016/j.jmmm.2019.166012 10.1016/j.ijpharm.2019.118841 10.1016/j.biomaterials.2019.119501 10.1016/j.biomaterials.2020.119760 10.1002/adma.201603276 10.1021/acsami.7b11614 10.1021/acsnano.9b04436 10.1021/acs.biomac.9b01123 10.1021/acsami.8b09342 10.1002/adma.201900927 10.1021/acs.nanolett.9b05210 10.1021/acsami.9b10444 10.1007/s10555-007-9055-1 10.1021/acsnano.6b05541 10.1039/C5CS00798D 10.1021/acsabm.9b00036 10.7150/thno.30259 10.1021/bc0499174 10.3389/fphar.2019.00270 10.1039/C7BM01182B 10.1039/C9NR01194C 10.1038/s41598-018-36340-0 10.1039/C9BM00461K 10.1073/pnas.1906929116 10.1016/j.ccell.2018.02.008 10.1021/acsami.7b04351 10.1038/s41467-019-09389-2 10.1021/acs.nanolett.9b03214 10.1002/smll.201700623 10.1002/advs.201800510 10.1021/acsami.9b21296 10.1016/j.smaim.2020.04.001 10.1021/acsami.8b06491 10.1016/j.biomaterials.2020.119770 10.1016/j.biomaterials.2020.119982 10.1016/j.apsb.2018.08.008 10.1016/j.actbio.2018.11.026 10.1016/j.biomaterials.2019.119636 10.1002/smll.201901813 10.1016/j.matt.2019.05.019 10.1039/C8TB02882F 10.7150/thno.36163 10.1073/pnas.1714421115 10.1016/j.jcis.2018.04.058 10.1039/C9BM01927H 10.1021/acsanm.8b02023 10.1016/j.jconrel.2017.03.036 10.1021/acsabm.9b01022 10.1016/j.cclet.2017.09.042 10.1021/jacs.7b12368 10.1016/0360-3016(90)90018-F 10.1002/adma.201802244 10.1039/C7NR05450E 10.1021/acsami.7b17506 10.1021/acs.chemmater.6b01587 10.1016/j.apmt.2018.02.003 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd. |
Copyright_xml | – notice: 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/VIW.20200042 |
DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2688-268X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_7dedfdef06cc4865a46c8252d61cb3fe 10_1002_VIW_20200042 VIW267 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31922042; 81771966; 32071342 – fundername: Guangdong Special Support Program funderid: 2019TQ05Y209 – fundername: Fundamental Research Funds for the Central Universities funderid: 19ykzd31 |
GroupedDBID | 0R~ 1OC 24P 7X7 8FI 8FJ AAHHS ABUWG ACCFJ ACCMX ACXQS ADKYN ADPDF ADZMN AEEZP AEQDE AFKRA AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BENPR CCPQU EBS FYUFA GROUPED_DOAJ HMCUK IAO IHR INH ITC M~E OVD PIMPY TEORI UKHRP WIN AAYXX CITATION IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY PUEGO |
ID | FETCH-LOGICAL-c3807-6dd4734f9e60d84fab41d5eab51f71c43f982e9aebc15196da0125561e003e263 |
IEDL.DBID | DOA |
ISSN | 2688-3988 2688-268X |
IngestDate | Wed Aug 27 01:22:19 EDT 2025 Tue Jul 01 02:42:39 EDT 2025 Thu Apr 24 22:56:53 EDT 2025 Wed Jan 22 16:29:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3807-6dd4734f9e60d84fab41d5eab51f71c43f982e9aebc15196da0125561e003e263 |
ORCID | 0000-0001-6503-5149 |
OpenAccessLink | https://doaj.org/article/7dedfdef06cc4865a46c8252d61cb3fe |
PageCount | 38 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7dedfdef06cc4865a46c8252d61cb3fe crossref_primary_10_1002_VIW_20200042 crossref_citationtrail_10_1002_VIW_20200042 wiley_primary_10_1002_VIW_20200042_VIW267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | View (Beijing, China) |
PublicationYear | 2021 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2018; 163 2018; 282 2020; 20 2013; 65 2019; 11 2019; 209 2019; 10 2019; 13 2004; 7 2019; 12 2019; 15 2019; 19 2020; 14 2020; 321 2020; 320 2020; 12 2020; 10 2020; 322 2011; 194 1997; 3 2019; 200 2018; 47 2018; 175 2018; 6 2018; 8 2018; 171 2018; 2 2018; 5 2017; 71 2019; 20 2015; 137 2019; 22 2019; 555 2019; 314 2019; 27 2019; 29 2018; 30 2020; 575 2019; 316 2018; 33 2016; 45 2009; 18 2019; 8 2019; 7 2018; 29 2019; 9 2018; 28 2018; 181 2019; 192 2019; 6 2016; 19 2019; 5 2019; 31 2020; 382 2019; 30 2020; 142 2019; 2 2019; 1 2013; 104 2016; 10 2019; 225 2019; 223 2019; 224 2020; 389 2020; 32 2017; 133 2017; 254 2019; 188 2019; 221 2011; 7 2017; 139 2016; 11 2018; 18 2016; 6 2018; 110 2016; 7 2019; 181 2019; 40 2016; 2 2010; 46 2015; 115 2020; 30 2002; 62 2020; 154 2018; 115 2017; 56 2019; 179 2017; 262 2019; 217 2020; 21 2018; 12 2016; 28 2018; 11 2018; 10 2020; 318 2019; 211 2001; 30 2018; 14 2019; 296 2018; 13 2020; 319 2017; 6 2017; 7 2017; 8 2017; 2 2019; 55 2018; 525 1990; 19 2015; 33 2019; 58 2003; 14 2020; 59 2020; 249 2016; 106 1975; 55 2020; 245 2017; 115 2017; 9 2003; 199 2020; 8 2004; 134 2020; 6 2014; 4 2020; 3 2020; 1 2020; 9 2019; 116 2020; 497 2019; 119 2018; 76 2019; 194 2007; 26 2019; 197 2015; 12 2015; 15 2018; 140 2020; 580 2017; 27 2017; 24 2014; 190 2017; 29 2019; 307 2020; 103 2019; 305 2015; 9 2015; 7 2020; 229 2019; 387 2018; 69 2018; 155 2019; 83 2013; 34 2020; 230 2017; 11 1991; 20 2019; 89 2004; 15 2017; 13 2020; 236 2011; 44 2020; 232 2020; 234 2019; 130 2019; 375 2018; 57 e_1_2_8_241_1 e_1_2_8_287_1 e_1_2_8_264_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_249_1 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_301_1 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_276_1 e_1_2_8_253_1 e_1_2_8_38_1 e_1_2_8_291_1 e_1_2_8_215_1 e_1_2_8_299_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_30_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_280_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_288_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 Li X. (e_1_2_8_193_1) 2017; 29 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_254_1 e_1_2_8_14_1 e_1_2_8_292_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_277_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_243_1 Peters K. B. (e_1_2_8_149_1) 2002; 62 e_1_2_8_220_1 e_1_2_8_281_1 e_1_2_8_228_1 e_1_2_8_266_1 e_1_2_8_205_1 e_1_2_8_289_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_293_1 Shanei A. (e_1_2_8_246_1) 2019; 22 e_1_2_8_270_1 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_282_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_267_1 e_1_2_8_206_1 Kuppusamy P. (e_1_2_8_88_1) 2002; 62 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_271_1 e_1_2_8_294_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_279_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_283_1 e_1_2_8_68_1 e_1_2_8_260_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_268_1 e_1_2_8_5_1 Thang Do C. (e_1_2_8_208_1) 2019; 9 e_1_2_8_151_1 Zheng J. (e_1_2_8_202_1) 2020; 497 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_295_1 e_1_2_8_109_1 e_1_2_8_272_1 Wang Y. (e_1_2_8_15_1) 2017; 29 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_257_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_284_1 e_1_2_8_261_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_269_1 e_1_2_8_152_1 e_1_2_8_6_1 Cheng Y. (e_1_2_8_57_1) 2017; 13 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 Zheng D. (e_1_2_8_24_1) 2020; 389 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 Wang Y. (e_1_2_8_76_1) 2019; 7 e_1_2_8_273_1 e_1_2_8_296_1 e_1_2_8_250_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 Thai Minh Duy L. (e_1_2_8_199_1) 2019; 7 e_1_2_8_10_1 e_1_2_8_56_1 Luo M. (e_1_2_8_238_1) 2019; 11 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_262_1 e_1_2_8_285_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_251_1 e_1_2_8_297_1 e_1_2_8_274_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 Zhang P. (e_1_2_8_290_1) 2017; 29 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_263_1 e_1_2_8_286_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 Li R. (e_1_2_8_204_1) 2020; 12 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_300_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_298_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 8 start-page: 4884 year: 2018 publication-title: Theranostics – volume: 11 start-page: 207 year: 2018 publication-title: Appl. Mater. Today – volume: 316 start-page: 208 year: 2019 publication-title: J. Controlled Release – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 8109 year: 2019 publication-title: Nano Lett. – volume: 321 start-page: 363 year: 2020 publication-title: J. Controlled Release – volume: 10 start-page: 3211 year: 2019 publication-title: Nat Commun. – volume: 2 start-page: 5245 year: 2019 publication-title: ACS Appl. Bio Mater. – volume: 58 start-page: 7641 year: 2019 publication-title: Angew Chem ‐ Int Ed. – volume: 375 year: 2019 publication-title: Chem. Eng. J. – volume: 65 start-page: 10 year: 2013 publication-title: Adv Drug Del Rev. – volume: 59 year: 2020 publication-title: Angew. Chem. – volume: 116 year: 2019 publication-title: Proc. Natl. Acad. Sci. USA – volume: 236 year: 2020 publication-title: Biomaterials – volume: 171 start-page: 72 year: 2018 publication-title: Biomaterials – volume: 142 start-page: 2490 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 181 start-page: 360 year: 2018 publication-title: Biomaterials – volume: 580 start-page: 329 year: 2020 publication-title: Nature. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 1124 year: 2017 publication-title: Drug Deliv – volume: 389 year: 2020 publication-title: Chem. Eng. J. – volume: 155 start-page: 54 year: 2018 publication-title: Biomaterials – volume: 318 start-page: 38 year: 2020 publication-title: J. Controlled Release – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2687 year: 2019 publication-title: Nanoscale – volume: 56 year: 2017 publication-title: Angew Chem ‐ Int Ed – volume: 6 year: 2017 publication-title: Adv Healthc Mater – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 163 start-page: 14 year: 2018 publication-title: Biomaterials – volume: 29 start-page: 24 year: 2017 publication-title: Adv. Mater. – volume: 194 start-page: 7 year: 2011 publication-title: J. Cell Biol. – volume: 11 start-page: 5030 year: 2019 publication-title: Nanoscale – volume: 55 year: 2019 publication-title: Chem. Commun. – volume: 179 start-page: 250 year: 2019 publication-title: Colloids Surfaces B‐Biointerfaces – volume: 321 start-page: 529 year: 2020 publication-title: J. Controlled Release – volume: 9 year: 2017 publication-title: ACS Appl Mater Interf – volume: 181 start-page: 252 year: 2019 publication-title: Colloids Surf B Biointerfaces – volume: 18 start-page: 4618 year: 2018 publication-title: Nano Lett. – volume: 21 start-page: 921 year: 2020 publication-title: Biomacromolecules – volume: 19 start-page: 5967 year: 2019 publication-title: Nano Lett. – volume: 45 start-page: 242 year: 2016 publication-title: Chem. Lett. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 197 start-page: 317 year: 2019 publication-title: Biomaterials – volume: 44 start-page: 1061 year: 2011 publication-title: Acc Chem Res. – volume: 11 start-page: 1281 year: 2017 publication-title: ACS Nano – volume: 10 start-page: 3722 year: 2020 publication-title: Theranostics – volume: 13 start-page: 357 year: 2019 publication-title: ACS Nano – volume: 254 start-page: 1 year: 2017 publication-title: J. Controlled Release – volume: 2 year: 2019 publication-title: Adv. Ther. – volume: 2 start-page: 4077 year: 2019 publication-title: ACS Appl Bio Mater. – volume: 137 start-page: 2140 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 301 year: 2018 publication-title: Chin. Chem. Lett. – volume: 11 start-page: 255 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 6938 year: 2017 publication-title: Polym. Chem. – volume: 11 start-page: 9457 year: 2019 publication-title: Nanoscale – volume: 11 start-page: 2227 year: 2017 publication-title: ACS Nano – volume: 19 start-page: 2968 year: 2019 publication-title: Nano Lett. – volume: 9 start-page: 3388 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 13 year: 2017 publication-title: Small – volume: 104 start-page: 920 year: 2013 publication-title: Cancer Sci. – volume: 71 start-page: 1267 year: 2017 publication-title: Mater Sci Eng C‐Mater Biol Appl. – volume: 12 start-page: 7995 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 2 year: 2016 publication-title: Nature Rev Mater – volume: 115 start-page: 98 year: 2017 publication-title: Adv. Drug Del. Rev. – volume: 14 start-page: 1007 year: 2003 publication-title: Bioconj Chem – volume: 2 start-page: 479 year: 2019 publication-title: ACS Appl. Nano Mater. – volume: 1 start-page: 32 year: 2020 publication-title: Smart Mater Med – volume: 9 year: 2015 publication-title: ACS Nano – volume: 115 start-page: 501 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 470 year: 2016 publication-title: Theranostics – volume: 200 start-page: 1 year: 2019 publication-title: Biomaterials – volume: 5 start-page: 13 year: 2019 publication-title: Nat. Rev. Dis. Primers – volume: 20 start-page: 2809 year: 2019 publication-title: Biomacromolecules – volume: 119 start-page: 902 year: 2019 publication-title: Chem. Rev. – volume: 12 start-page: 9894 year: 2018 publication-title: ACS Nano – volume: 155 start-page: 145 year: 2018 publication-title: Biomaterials – volume: 57 start-page: 4891 year: 2018 publication-title: Angew Chem ‐ Int Ed – volume: 318 start-page: 197 year: 2020 publication-title: J. Controlled Release – volume: 62 start-page: 307 year: 2002 publication-title: Cancer Res. – volume: 234 year: 2020 publication-title: Biomaterials – volume: 9 start-page: 6865 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 296 start-page: 93 year: 2019 publication-title: J. Controlled Release – volume: 14 start-page: 1586 year: 2020 publication-title: ACS Nano – volume: 9 start-page: 5755 year: 2019 publication-title: Theranostics – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 134 start-page: 489 year: 2004 publication-title: J. Nutr. – volume: 83 start-page: 334 year: 2019 publication-title: Acta Biomater. – volume: 9 year: 2017 publication-title: Nanoscale – volume: 9 start-page: 191 year: 2019 publication-title: Nanomaterials – volume: 6 start-page: 604 year: 2018 publication-title: Biomater. Sci. – volume: 13 start-page: 101 year: 2018 publication-title: Asian J Pharm. Sci. – volume: 33 start-page: 337 year: 2018 publication-title: Cancer Cell. – volume: 20 start-page: 457 year: 1991 publication-title: Int J Radiat Oncol Biol Phys – volume: 115 start-page: 1990 year: 2015 publication-title: Chem. Rev. – volume: 217 year: 2019 publication-title: Biomaterials – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 1306 year: 2016 publication-title: Theranostics – volume: 21 start-page: 444 year: 2020 publication-title: Biomacromolecules – volume: 58 start-page: 2407 year: 2019 publication-title: Angew Chem ‐ Int Ed – volume: 76 start-page: 239 year: 2018 publication-title: Acta Biomater. – volume: 8 start-page: 1885 year: 2020 publication-title: Biomater. Sci. – volume: 83 start-page: 400 year: 2019 publication-title: Acta Biomater. – volume: 10 start-page: 2856 year: 2018 publication-title: Nanoscale – volume: 9 start-page: 3308 year: 2019 publication-title: Theranostics – volume: 30 start-page: 2039 year: 2019 publication-title: Chin. Chem. Lett. – volume: 13 start-page: 8537 year: 2019 publication-title: ACS Nano – volume: 2 year: 2017 publication-title: Nat Rev Mater. – volume: 7 start-page: 3706 year: 2019 publication-title: Biomater. Sci. – volume: 12 year: 2018 publication-title: ACS Nano – volume: 15 year: 2019 publication-title: Small – volume: 8 start-page: 2939 year: 2018 publication-title: Theranostics – volume: 12 start-page: 1943 year: 2015 publication-title: Expert Opinion on Drug Delivery – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 90 year: 2019 publication-title: Theranostics – volume: 11 year: 2019 publication-title: ACS Appl Mater Interf. – volume: 234 year: 2020 publication-title: Carbohydr. Polym. – volume: 31 year: 2019 publication-title: Adv Mater. – volume: 5 year: 2018 publication-title: Adv Sci. – volume: 387 start-page: 299 year: 2019 publication-title: Coordination Chem Rev – volume: 10 start-page: 5318 year: 2018 publication-title: ACS Applied Materials and Interfaces – volume: 26 start-page: 225 year: 2007 publication-title: Cancer Metastasis Rev. – volume: 2 start-page: 370 year: 2019 publication-title: ACS Appl. Bio Mater. – volume: 6 start-page: 2965 year: 2018 publication-title: Biomater. Sci. – volume: 4 start-page: 660 year: 2014 publication-title: Theranostics – volume: 34 start-page: 6058 year: 2013 publication-title: Biomaterials – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 848 year: 2019 publication-title: Iranian J Basic Med Sci – volume: 19 start-page: 953 year: 1990 publication-title: Int J Radiat Oncol Biol Phys – volume: 12 start-page: 4886 year: 2018 publication-title: ACS Nano – volume: 10 start-page: 2991 year: 2016 publication-title: ACS Nano – volume: 8 year: 2019 publication-title: Adv Healthcare Mater. – volume: 29 year: 2017 publication-title: Nat Rev Mater. – volume: 9 year: 2020 publication-title: Adv. Healthcare Mater. – volume: 230 year: 2020 publication-title: Biomaterials – volume: 28 start-page: 4697 year: 2016 publication-title: Chem. Mater. – volume: 14 year: 2018 publication-title: Small – volume: 59 start-page: 9914 year: 2020 publication-title: Angew Chem ‐ Int Ed – volume: 19 start-page: 8021 year: 2019 publication-title: Nano Lett. – volume: 11 start-page: 507 year: 2019 publication-title: Pharmaceutics – volume: 12 start-page: 4323 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 342 year: 2019 publication-title: Pharmaceutics – volume: 382 year: 2020 publication-title: Chem. Eng. J. – volume: 224 year: 2019 publication-title: Biomaterials – volume: 28 start-page: 7143 year: 2016 publication-title: Adv. Mater. – volume: 62 start-page: 5248 year: 2002 publication-title: Cancer Res. – volume: 3 start-page: 177 year: 1997 publication-title: Nat. Med. – volume: 1 start-page: 345 year: 2019 publication-title: Matter – volume: 209 start-page: 138 year: 2019 publication-title: Biomaterials – volume: 305 start-page: 120 year: 2019 publication-title: J. Controlled Release – volume: 69 start-page: 277 year: 2018 publication-title: Acta Biomater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 600 year: 2018 publication-title: Nat. Biomed. Eng. – volume: 115 year: 2015 publication-title: Chem. Rev. – volume: 15 start-page: 931 year: 2004 publication-title: Bioconj Chem – volume: 262 start-page: 212 year: 2017 publication-title: J. Controlled Release – volume: 225 year: 2019 publication-title: Biomaterials – volume: 20 start-page: 1928 year: 2020 publication-title: Nano Lett. – volume: 46 start-page: 3016 year: 2010 publication-title: Eur J Cancer – volume: 11 year: 2019 publication-title: Nanoscale – volume: 7 start-page: 4195 year: 2019 publication-title: Biomater. Sci. – volume: 110 start-page: 399 year: 2018 publication-title: Int. J. Biol. Macromol. – volume: 1 start-page: 10 year: 2020 publication-title: Smart Mater Med. – volume: 190 start-page: 352 year: 2014 publication-title: J. Controlled Release – volume: 389 year: 2020 publication-title: Chem Eng J – volume: 130 start-page: 845 year: 2019 publication-title: Int. J. Biol. Macromol. – volume: 20 start-page: 4602 year: 2019 publication-title: Biomacromolecules – volume: 7 start-page: 8 year: 2011 publication-title: Curr. Bioact. Compd. – volume: 59 start-page: 1682 year: 2020 publication-title: Angew Chem ‐ Int Ed – volume: 133 start-page: 208 year: 2017 publication-title: Biomaterials – volume: 322 start-page: 81 year: 2020 publication-title: J. Controlled Release – volume: 555 start-page: 82 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 3 start-page: 1018 year: 2020 publication-title: ACS Appl. Bio Mater. – volume: 320 start-page: 83 year: 2020 publication-title: J. Controlled Release – volume: 525 start-page: 1 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 8 start-page: 694 year: 2020 publication-title: Biomaterials Science – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 13 start-page: 7010 year: 2019 publication-title: ACS Nano – volume: 19 start-page: 274 year: 2016 publication-title: Mater. Today – volume: 12 start-page: 1630 year: 2018 publication-title: ACS Nano – volume: 3 start-page: 1283 year: 2020 publication-title: ACS Appl. Bio Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 8 start-page: 473 year: 2020 publication-title: Biomater Sci. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 223 year: 2019 publication-title: Biomaterials – volume: 10 start-page: 4557 year: 2020 publication-title: Theranostics – volume: 5 start-page: 4405 year: 2019 publication-title: ACS Biomater. Sci. Eng. – volume: 40 year: 2019 publication-title: Macromol. Rapid Commun. – volume: 12 start-page: 999 year: 2019 publication-title: Nano Res. – volume: 575 year: 2020 publication-title: Int. J. Pharm. – volume: 249 year: 2020 publication-title: Biomaterials – volume: 282 start-page: 62 year: 2018 publication-title: J. Controlled Release – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 9 start-page: 321 year: 2019 publication-title: Sci. Rep. – volume: 13 start-page: 476 year: 2019 publication-title: ACS Nano – volume: 9 start-page: 1047 year: 2019 publication-title: Theranostics – volume: 316 start-page: 196 year: 2019 publication-title: J. Controlled Release – volume: 232 year: 2020 publication-title: Biomaterials – volume: 11 year: 2019 publication-title: ACS Applied Materials and Interfaces – volume: 8 start-page: 5088 year: 2018 publication-title: Theranostics – volume: 229 year: 2020 publication-title: Carbohydr. Polym. – volume: 10 start-page: 270 year: 2019 publication-title: Frontiers Pharmacol – volume: 11 year: 2019 publication-title: ACS Appl Mater Interf – volume: 103 start-page: 259 year: 2020 publication-title: Acta Biomater. – volume: 211 start-page: 68 year: 2019 publication-title: Biomaterials – volume: 194 start-page: 151 year: 2019 publication-title: Biomaterials – volume: 55 start-page: 953 year: 2019 publication-title: Chem. Commun. – volume: 245 year: 2020 publication-title: Biomaterials – volume: 106 start-page: 13 year: 2016 publication-title: Biomaterials – volume: 7 start-page: 651 year: 2019 publication-title: J. Mater. Chem. B – volume: 221 year: 2019 publication-title: Biomaterials – volume: 11 start-page: 585 year: 2016 publication-title: Asian J Pharm. Sci. – volume: 27 start-page: 33 year: 2019 publication-title: J. Drug Targeting – volume: 8 start-page: 5870 year: 2018 publication-title: Theranostics – volume: 319 start-page: 135 year: 2020 publication-title: J. Controlled Release – volume: 175 start-page: 82 year: 2018 publication-title: Biomaterials – volume: 140 start-page: 7373 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1526 year: 2018 publication-title: Biomater. Sci. – volume: 314 start-page: 72 year: 2019 publication-title: J. Controlled Release – volume: 154 start-page: 446 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 497 year: 2020 publication-title: J. Magn. Magn. Mater. – volume: 30 start-page: 1191 year: 2001 publication-title: Free Radical Biol Med. – volume: 140 start-page: 2301 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 4218 year: 2019 publication-title: Biomacromolecules – volume: 55 start-page: 115 year: 1975 publication-title: J. Natl. Cancer Inst. – volume: 33 start-page: 941 year: 2015 publication-title: Nat. Biotechnol. – volume: 7 start-page: 97 year: 2004 publication-title: Drug Res Updates – volume: 13 start-page: 7623 year: 2018 publication-title: Int. J. Nanomed. – volume: 30 start-page: 2291 year: 2019 publication-title: Chin. Chem. Lett. – volume: 11 start-page: 7006 year: 2017 publication-title: ACS Nano – volume: 10 start-page: 1580 year: 2019 publication-title: Nat. Commun. – volume: 10 start-page: 4271 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 13 year: 2015 publication-title: Nat Mater. – volume: 307 start-page: 90 year: 2019 publication-title: J. Controlled Release – volume: 199 start-page: 176 year: 2003 publication-title: J. Pathol. – volume: 47 start-page: 1174 year: 2018 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 2986 year: 2019 publication-title: Biomater. Sci. – volume: 2 start-page: 1623 year: 2019 publication-title: ACS Appl. Bio Mater. – volume: 29 start-page: 927 year: 2018 publication-title: Chin. Chem. Lett. – volume: 192 start-page: 95 year: 2019 publication-title: Biomaterials – volume: 13 year: 2019 publication-title: ACS Nano – volume: 18 start-page: 77 year: 2009 publication-title: Expert Opinion on Investigational Drugs – volume: 1 start-page: 496 year: 2019 publication-title: Matter – volume: 45 start-page: 1457 year: 2016 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 1192 year: 2017 publication-title: Theranostics – volume: 11 start-page: 8998 year: 2017 publication-title: ACS Nano – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 188 start-page: 74 year: 2019 publication-title: Biomaterials – volume: 58 year: 2019 publication-title: Angew Chem ‐ Int Ed – volume: 2 start-page: 5099 year: 2019 publication-title: ACS Appl. Bio Mater. – volume: 9 start-page: 421 year: 2019 publication-title: Acta Pharmaceutica Sin B – volume: 7 start-page: 3898 year: 2019 publication-title: Biomater. Sci. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 3991 year: 2020 publication-title: ACS Nano – volume: 89 start-page: 265 year: 2019 publication-title: Acta Biomater. – ident: e_1_2_8_111_1 doi: 10.1016/j.jconrel.2018.04.032 – ident: e_1_2_8_289_1 doi: 10.1016/j.jconrel.2020.03.013 – ident: e_1_2_8_182_1 doi: 10.1016/j.biomaterials.2020.120054 – ident: e_1_2_8_183_1 doi: 10.1002/adhm.201900174 – volume: 62 start-page: 5248 year: 2002 ident: e_1_2_8_149_1 publication-title: Cancer Res. – ident: e_1_2_8_189_1 doi: 10.1002/adma.201800662 – ident: e_1_2_8_217_1 doi: 10.1016/j.matt.2019.03.007 – ident: e_1_2_8_105_1 doi: 10.1016/j.actbio.2018.01.014 – ident: e_1_2_8_65_1 doi: 10.1016/j.biomaterials.2018.04.020 – ident: e_1_2_8_184_1 doi: 10.1002/adma.201704490 – ident: e_1_2_8_114_1 doi: 10.7150/thno.27581 – ident: e_1_2_8_34_1 doi: 10.1016/j.biomaterials.2019.119327 – ident: e_1_2_8_242_1 doi: 10.1002/adfm.201903791 – ident: e_1_2_8_230_1 doi: 10.1002/advs.201901211 – volume: 29 year: 2017 ident: e_1_2_8_290_1 publication-title: Adv. Mater. – ident: e_1_2_8_200_1 doi: 10.1002/advs.201900586 – ident: e_1_2_8_66_1 doi: 10.7150/thno.24015 – ident: e_1_2_8_181_1 doi: 10.1021/acsami.6b14078 – ident: e_1_2_8_205_1 doi: 10.2147/IJN.S179226 – ident: e_1_2_8_46_1 doi: 10.1080/10717544.2017.1362677 – ident: e_1_2_8_271_1 doi: 10.1002/adhm.201901316 – ident: e_1_2_8_120_1 doi: 10.1016/j.biomaterials.2019.119498 – ident: e_1_2_8_121_1 doi: 10.1021/acsnano.8b06399 – ident: e_1_2_8_244_1 doi: 10.1002/smll.201703968 – ident: e_1_2_8_138_1 doi: 10.1016/j.biomaterials.2018.08.014 – ident: e_1_2_8_147_1 doi: 10.1016/j.biomaterials.2019.04.004 – ident: e_1_2_8_201_1 doi: 10.1039/C8NR09990A – ident: e_1_2_8_239_1 doi: 10.1016/j.cej.2019.121917 – ident: e_1_2_8_118_1 doi: 10.7150/thno.29820 – ident: e_1_2_8_40_1 doi: 10.1002/marc.201800917 – ident: e_1_2_8_192_1 doi: 10.1002/advs.201801526 – ident: e_1_2_8_137_1 doi: 10.1039/C9CC06727B – ident: e_1_2_8_284_1 doi: 10.1002/anie.202004575 – volume: 389 year: 2020 ident: e_1_2_8_24_1 publication-title: Chem. Eng. J. – ident: e_1_2_8_232_1 doi: 10.1002/adma.201802061 – ident: e_1_2_8_50_1 doi: 10.3390/pharmaceutics11100507 – ident: e_1_2_8_214_1 doi: 10.1039/C7CS00594F – ident: e_1_2_8_14_1 doi: 10.1517/17425247.2015.1071352 – ident: e_1_2_8_155_1 doi: 10.1016/j.biomaterials.2019.01.029 – ident: e_1_2_8_166_1 doi: 10.1039/C9CC02353D – ident: e_1_2_8_80_1 doi: 10.1021/acsami.9b15460 – ident: e_1_2_8_228_1 doi: 10.1021/jacs.7b07818 – ident: e_1_2_8_233_1 doi: 10.1038/ncomms12967 – ident: e_1_2_8_87_1 doi: 10.1093/jn/134.3.489 – ident: e_1_2_8_257_1 doi: 10.1021/acs.nanolett.9b03331 – ident: e_1_2_8_33_1 doi: 10.1016/j.carbpol.2019.115498 – ident: e_1_2_8_54_1 doi: 10.1016/j.drup.2004.01.004 – ident: e_1_2_8_156_1 doi: 10.1016/j.actbio.2019.02.043 – ident: e_1_2_8_180_1 doi: 10.1002/adfm.201805341 – ident: e_1_2_8_225_1 doi: 10.1002/adfm.201802500 – ident: e_1_2_8_51_1 doi: 10.1016/j.biomaterials.2020.119761 – ident: e_1_2_8_6_1 doi: 10.7150/thno.8698 – ident: e_1_2_8_64_1 doi: 10.1016/j.biomaterials.2017.04.032 – ident: e_1_2_8_119_1 doi: 10.1021/acsnano.8b06400 – ident: e_1_2_8_190_1 doi: 10.1021/ja510147n – ident: e_1_2_8_104_1 doi: 10.1039/C7PY01485F – ident: e_1_2_8_9_1 doi: 10.1021/acsnano.6b00870 – ident: e_1_2_8_98_1 doi: 10.1021/acsabm.8b00623 – volume: 11 start-page: 342 year: 2019 ident: e_1_2_8_238_1 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11070342 – ident: e_1_2_8_4_1 doi: 10.1021/ar2001777 – ident: e_1_2_8_281_1 doi: 10.1002/adma.201901513 – ident: e_1_2_8_26_1 doi: 10.1021/acsami.9b12620 – ident: e_1_2_8_18_1 doi: 10.7150/thno.38069 – ident: e_1_2_8_171_1 doi: 10.1021/acsabm.9b00450 – ident: e_1_2_8_215_1 doi: 10.1021/acsnano.7b02533 – volume: 29 start-page: 24 year: 2017 ident: e_1_2_8_193_1 publication-title: Adv. Mater. – ident: e_1_2_8_207_1 doi: 10.1016/j.jconrel.2014.05.002 – ident: e_1_2_8_129_1 doi: 10.1021/acsami.9b08115 – ident: e_1_2_8_37_1 doi: 10.1016/j.jcis.2019.07.061 – ident: e_1_2_8_95_1 doi: 10.1021/acsnano.8b01893 – ident: e_1_2_8_174_1 doi: 10.1016/j.ijbiomac.2019.03.030 – ident: e_1_2_8_254_1 doi: 10.1002/adfm.201908598 – ident: e_1_2_8_70_1 doi: 10.1016/j.biomaterials.2019.04.029 – ident: e_1_2_8_133_1 doi: 10.1016/j.jconrel.2020.01.021 – ident: e_1_2_8_262_1 doi: 10.1038/s41551-018-0203-4 – ident: e_1_2_8_38_1 doi: 10.1016/j.jconrel.2019.10.016 – ident: e_1_2_8_58_1 doi: 10.1039/C8BM00899J – ident: e_1_2_8_301_1 doi: 10.1039/C9NR03052B – ident: e_1_2_8_293_1 doi: 10.1021/acsnano.8b06483 – ident: e_1_2_8_249_1 doi: 10.1080/1061186X.2018.1464012 – volume: 7 start-page: 3706 year: 2019 ident: e_1_2_8_76_1 publication-title: Biomater. Sci. doi: 10.1039/C9BM00634F – ident: e_1_2_8_273_1 doi: 10.1002/adma.202000376 – ident: e_1_2_8_191_1 doi: 10.1016/j.ajps.2016.06.001 – ident: e_1_2_8_283_1 doi: 10.1016/j.jconrel.2019.10.031 – ident: e_1_2_8_39_1 doi: 10.1002/adfm.201700220 – ident: e_1_2_8_270_1 doi: 10.1002/adma.201808278 – ident: e_1_2_8_280_1 doi: 10.1021/acsami.9b13214 – ident: e_1_2_8_93_1 doi: 10.1016/j.cclet.2017.09.048 – ident: e_1_2_8_295_1 doi: 10.3390/nano9020191 – ident: e_1_2_8_28_1 doi: 10.1021/acsami.9b17587 – ident: e_1_2_8_86_1 doi: 10.1016/S0891-5849(01)00480-4 – ident: e_1_2_8_145_1 doi: 10.1021/acsami.9b12879 – ident: e_1_2_8_198_1 doi: 10.1021/acsami.9b22654 – ident: e_1_2_8_203_1 doi: 10.1016/j.cclet.2019.08.017 – ident: e_1_2_8_67_1 doi: 10.1007/s12274-019-2330-y – ident: e_1_2_8_115_1 doi: 10.1038/s41467-019-11193-x – ident: e_1_2_8_277_1 doi: 10.1016/j.biomaterials.2018.10.036 – ident: e_1_2_8_55_1 doi: 10.1016/j.actbio.2019.12.016 – ident: e_1_2_8_8_1 doi: 10.1038/nbt.3330 – ident: e_1_2_8_122_1 doi: 10.1016/j.biomaterials.2018.12.004 – ident: e_1_2_8_136_1 doi: 10.1021/acsnano.8b07045 – ident: e_1_2_8_2_1 doi: 10.1038/s41586-020-2168-1 – ident: e_1_2_8_256_1 doi: 10.1002/anie.201912768 – ident: e_1_2_8_48_1 doi: 10.1016/j.cej.2020.124494 – ident: e_1_2_8_63_1 doi: 10.1021/acs.biomac.9b00583 – ident: e_1_2_8_216_1 doi: 10.7150/thno.27351 – ident: e_1_2_8_79_1 doi: 10.1021/acsabm.9b01172 – ident: e_1_2_8_126_1 doi: 10.1016/j.jconrel.2019.12.041 – ident: e_1_2_8_267_1 doi: 10.1002/adma.201602111 – ident: e_1_2_8_107_1 doi: 10.1016/j.jconrel.2019.12.011 – ident: e_1_2_8_130_1 doi: 10.1016/j.ijbiomac.2017.11.048 – ident: e_1_2_8_20_1 doi: 10.1016/j.jconrel.2019.10.017 – ident: e_1_2_8_102_1 doi: 10.1016/j.jconrel.2020.02.021 – ident: e_1_2_8_219_1 doi: 10.1002/adma.201808200 – ident: e_1_2_8_223_1 doi: 10.1016/j.colsurfb.2019.03.070 – ident: e_1_2_8_158_1 doi: 10.1002/adhm.201901105 – ident: e_1_2_8_259_1 doi: 10.1016/j.ccr.2019.02.025 – ident: e_1_2_8_82_1 doi: 10.1002/anie.201900886 – ident: e_1_2_8_41_1 doi: 10.1021/acsnano.9b05749 – ident: e_1_2_8_116_1 doi: 10.1021/acs.nanolett.9b00083 – ident: e_1_2_8_36_1 doi: 10.1016/j.cej.2019.123043 – ident: e_1_2_8_78_1 doi: 10.1002/adfm.201606826 – ident: e_1_2_8_73_1 doi: 10.1021/acsnano.7b08219 – ident: e_1_2_8_139_1 doi: 10.7150/thno.26225 – ident: e_1_2_8_161_1 doi: 10.1021/acsami.6b15505 – ident: e_1_2_8_268_1 doi: 10.1021/acs.chemrev.5b00112 – ident: e_1_2_8_276_1 doi: 10.1021/acsabm.9b00769 – ident: e_1_2_8_5_1 doi: 10.1038/natrevmats.2017.14 – ident: e_1_2_8_265_1 doi: 10.1002/anie.201908712 – ident: e_1_2_8_13_1 doi: 10.1016/j.mattod.2015.11.025 – ident: e_1_2_8_258_1 doi: 10.1002/adma.201700996 – ident: e_1_2_8_298_1 doi: 10.1111/cas.12153 – ident: e_1_2_8_255_1 doi: 10.1021/acsbiomaterials.9b00237 – ident: e_1_2_8_127_1 doi: 10.1021/acsnano.6b08731 – ident: e_1_2_8_236_1 doi: 10.7150/thno.14184 – ident: e_1_2_8_75_1 doi: 10.1039/C9BM00884E – ident: e_1_2_8_99_1 doi: 10.1021/acs.biomac.9b01202 – ident: e_1_2_8_128_1 doi: 10.1002/anie.201705578 – ident: e_1_2_8_134_1 doi: 10.1021/acsami.8b03506 – ident: e_1_2_8_229_1 doi: 10.1002/adtp.201800090 – ident: e_1_2_8_53_1 doi: 10.1016/j.ajps.2017.11.002 – ident: e_1_2_8_269_1 doi: 10.1016/j.biomaterials.2016.08.015 – ident: e_1_2_8_12_1 doi: 10.1246/cl.151176 – ident: e_1_2_8_123_1 doi: 10.1038/nm0297-177 – ident: e_1_2_8_159_1 doi: 10.1002/adma.201904278 – ident: e_1_2_8_291_1 doi: 10.1021/acsnano.9b07984 – ident: e_1_2_8_248_1 doi: 10.1002/adma.201900730 – ident: e_1_2_8_285_1 doi: 10.1126/sciadv.aba5996 – ident: e_1_2_8_25_1 doi: 10.1039/C9BM01692A – ident: e_1_2_8_60_1 doi: 10.1021/acsami.9b03056 – ident: e_1_2_8_83_1 doi: 10.1021/acsnano.7b03507 – ident: e_1_2_8_16_1 doi: 10.1002/adma.201805919 – ident: e_1_2_8_251_1 doi: 10.1002/anie.201813702 – ident: e_1_2_8_142_1 doi: 10.1021/acsnano.8b02813 – ident: e_1_2_8_187_1 doi: 10.1002/anie.201902470 – ident: e_1_2_8_17_1 doi: 10.1038/nmat4474 – ident: e_1_2_8_274_1 doi: 10.1016/j.cclet.2019.05.017 – ident: e_1_2_8_278_1 doi: 10.1016/j.jconrel.2019.01.016 – ident: e_1_2_8_61_1 doi: 10.1021/acs.biomac.9b01578 – volume: 13 year: 2017 ident: e_1_2_8_57_1 publication-title: Small – ident: e_1_2_8_221_1 doi: 10.1039/C5NR04436G – ident: e_1_2_8_85_1 doi: 10.1016/j.jconrel.2019.05.016 – ident: e_1_2_8_167_1 doi: 10.1002/path.1277 – ident: e_1_2_8_294_1 doi: 10.1038/natrevmats.2016.75 – ident: e_1_2_8_260_1 doi: 10.1038/s41572-019-0064-5 – ident: e_1_2_8_96_1 doi: 10.1039/C9NR07725A – ident: e_1_2_8_297_1 doi: 10.2174/157340711795163866 – ident: e_1_2_8_49_1 doi: 10.1021/acsami.7b02457 – ident: e_1_2_8_72_1 doi: 10.1016/j.biomaterials.2018.10.010 – ident: e_1_2_8_253_1 doi: 10.1021/acsnano.9b06689 – ident: e_1_2_8_3_1 doi: 10.1016/j.addr.2012.11.004 – ident: e_1_2_8_173_1 doi: 10.1016/j.jconrel.2017.07.031 – ident: e_1_2_8_196_1 doi: 10.1016/j.msec.2016.11.030 – ident: e_1_2_8_241_1 doi: 10.1002/adma.201803031 – ident: e_1_2_8_261_1 doi: 10.1021/acs.chemrev.8b00294 – ident: e_1_2_8_108_1 doi: 10.1016/j.jconrel.2019.06.010 – ident: e_1_2_8_179_1 doi: 10.1016/j.biomaterials.2017.11.019 – ident: e_1_2_8_90_1 doi: 10.1039/C9NR07254C – ident: e_1_2_8_224_1 doi: 10.1016/j.cej.2020.124494 – ident: e_1_2_8_35_1 doi: 10.1021/jacs.9b12232 – ident: e_1_2_8_150_1 doi: 10.1016/0360-3016(91)90057-B – ident: e_1_2_8_170_1 doi: 10.1039/C8CC09047E – volume: 12 start-page: 17948 year: 2020 ident: e_1_2_8_204_1 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_206_1 doi: 10.1002/adfm.201808306 – ident: e_1_2_8_252_1 doi: 10.1016/j.smaim.2020.05.002 – ident: e_1_2_8_97_1 doi: 10.1021/acs.nanolett.8b01924 – ident: e_1_2_8_52_1 doi: 10.1083/jcb.201102095 – ident: e_1_2_8_220_1 doi: 10.1039/C5NR04045K – ident: e_1_2_8_44_1 doi: 10.1002/adfm.201704135 – ident: e_1_2_8_296_1 doi: 10.1021/bc0340924 – ident: e_1_2_8_74_1 doi: 10.1016/j.colsurfb.2019.05.064 – ident: e_1_2_8_218_1 doi: 10.1002/anie.201710800 – ident: e_1_2_8_151_1 doi: 10.1016/j.biomaterials.2019.119422 – ident: e_1_2_8_222_1 doi: 10.1002/anie.201907388 – ident: e_1_2_8_21_1 doi: 10.1021/acs.nanolett.9b01660 – ident: e_1_2_8_194_1 doi: 10.1016/j.biomaterials.2018.02.023 – volume: 22 start-page: 848 year: 2019 ident: e_1_2_8_246_1 publication-title: Iranian J Basic Med Sci – ident: e_1_2_8_168_1 doi: 10.1016/j.ijbiomac.2020.03.138 – ident: e_1_2_8_266_1 doi: 10.1002/adma.201808024 – volume: 7 start-page: 4195 year: 2019 ident: e_1_2_8_199_1 publication-title: Biomater. Sci. doi: 10.1039/C9BM00992B – ident: e_1_2_8_71_1 doi: 10.1021/acsami.6b16815 – ident: e_1_2_8_10_1 doi: 10.1016/j.addr.2017.03.004 – ident: e_1_2_8_165_1 doi: 10.1039/C8BM00243F – ident: e_1_2_8_178_1 doi: 10.1016/j.jconrel.2019.10.052 – ident: e_1_2_8_279_1 doi: 10.1021/jacs.7b12025 – volume: 29 start-page: 1606596 year: 2017 ident: e_1_2_8_15_1 publication-title: Nat Rev Mater. – ident: e_1_2_8_162_1 doi: 10.1021/acsami.8b12232 – ident: e_1_2_8_146_1 doi: 10.1021/acsabm.9b00584 – ident: e_1_2_8_243_1 doi: 10.1021/acsami.7b02457 – ident: e_1_2_8_30_1 doi: 10.1016/j.carbpol.2020.115930 – ident: e_1_2_8_84_1 doi: 10.1016/j.biomaterials.2019.119702 – ident: e_1_2_8_195_1 doi: 10.1002/adma.201606134 – ident: e_1_2_8_68_1 doi: 10.1021/acsnano.9b02096 – ident: e_1_2_8_212_1 doi: 10.1093/jnci/55.1.115 – ident: e_1_2_8_62_1 doi: 10.1002/adhm.201900406 – ident: e_1_2_8_77_1 doi: 10.1016/j.jconrel.2020.02.038 – ident: e_1_2_8_263_1 doi: 10.1021/acsnano.5b05825 – ident: e_1_2_8_299_1 doi: 10.1016/j.ejca.2010.07.015 – ident: e_1_2_8_94_1 doi: 10.1016/j.actbio.2018.05.031 – ident: e_1_2_8_197_1 doi: 10.7150/thno.14858 – ident: e_1_2_8_172_1 doi: 10.1039/C8NR10528F – ident: e_1_2_8_231_1 doi: 10.1016/j.biomaterials.2017.11.015 – ident: e_1_2_8_157_1 doi: 10.1016/j.biomaterials.2019.119460 – ident: e_1_2_8_141_1 doi: 10.1016/j.actbio.2018.10.029 – ident: e_1_2_8_32_1 doi: 10.1021/acsami.9b07957 – ident: e_1_2_8_106_1 doi: 10.1021/acs.biomac.9b01472 – volume: 9 start-page: 3308 year: 2019 ident: e_1_2_8_208_1 publication-title: Theranostics doi: 10.7150/thno.33888 – ident: e_1_2_8_245_1 doi: 10.3390/pharmaceutics11100507 – ident: e_1_2_8_247_1 doi: 10.1002/adhm.201700646 – ident: e_1_2_8_148_1 doi: 10.1517/13543780802567250 – ident: e_1_2_8_131_1 doi: 10.1016/j.biomaterials.2019.01.048 – ident: e_1_2_8_140_1 doi: 10.1039/C7NR07677K – ident: e_1_2_8_177_1 doi: 10.1039/C9NR01691K – ident: e_1_2_8_213_1 doi: 10.1021/cr5004198 – ident: e_1_2_8_23_1 doi: 10.7150/thno.17881 – ident: e_1_2_8_226_1 doi: 10.1002/smll.201602660 – ident: e_1_2_8_91_1 doi: 10.1021/acsami.7b18245 – ident: e_1_2_8_176_1 doi: 10.1021/acsami.8b17750 – ident: e_1_2_8_237_1 doi: 10.1016/j.biomaterials.2013.04.052 – ident: e_1_2_8_287_1 doi: 10.1016/j.cclet.2019.08.017 – ident: e_1_2_8_110_1 doi: 10.1016/j.biomaterials.2018.05.025 – ident: e_1_2_8_27_1 doi: 10.7150/thno.42008 – ident: e_1_2_8_282_1 doi: 10.1039/C9BM01640F – volume: 497 start-page: 166012 year: 2020 ident: e_1_2_8_202_1 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.166012 – ident: e_1_2_8_31_1 doi: 10.1016/j.ijpharm.2019.118841 – ident: e_1_2_8_81_1 doi: 10.1016/j.biomaterials.2019.119501 – ident: e_1_2_8_103_1 doi: 10.1016/j.biomaterials.2020.119760 – ident: e_1_2_8_235_1 doi: 10.1002/adma.201603276 – ident: e_1_2_8_153_1 doi: 10.1021/acsami.7b11614 – ident: e_1_2_8_42_1 doi: 10.1021/acsnano.9b04436 – ident: e_1_2_8_69_1 doi: 10.1021/acs.biomac.9b01123 – ident: e_1_2_8_100_1 doi: 10.1021/acsami.8b09342 – ident: e_1_2_8_210_1 doi: 10.1002/adma.201900927 – ident: e_1_2_8_101_1 doi: 10.1021/acs.nanolett.9b05210 – ident: e_1_2_8_272_1 doi: 10.1021/acsami.9b10444 – ident: e_1_2_8_124_1 doi: 10.1007/s10555-007-9055-1 – volume: 62 start-page: 307 year: 2002 ident: e_1_2_8_88_1 publication-title: Cancer Res. – ident: e_1_2_8_164_1 doi: 10.1021/acsnano.6b05541 – ident: e_1_2_8_209_1 doi: 10.1039/C5CS00798D – ident: e_1_2_8_113_1 doi: 10.1021/acsabm.9b00036 – ident: e_1_2_8_300_1 doi: 10.7150/thno.30259 – ident: e_1_2_8_160_1 doi: 10.1021/bc0499174 – ident: e_1_2_8_240_1 doi: 10.3389/fphar.2019.00270 – ident: e_1_2_8_154_1 doi: 10.1039/C7BM01182B – ident: e_1_2_8_275_1 doi: 10.1039/C9NR01194C – ident: e_1_2_8_250_1 doi: 10.1038/s41598-018-36340-0 – ident: e_1_2_8_143_1 doi: 10.1039/C9BM00461K – ident: e_1_2_8_227_1 doi: 10.1073/pnas.1906929116 – ident: e_1_2_8_19_1 doi: 10.1016/j.ccell.2018.02.008 – ident: e_1_2_8_109_1 doi: 10.1021/acsami.7b04351 – ident: e_1_2_8_152_1 doi: 10.1038/s41467-019-09389-2 – ident: e_1_2_8_144_1 doi: 10.1021/acs.nanolett.9b03214 – ident: e_1_2_8_45_1 doi: 10.1002/smll.201700623 – ident: e_1_2_8_47_1 doi: 10.1002/advs.201800510 – ident: e_1_2_8_188_1 doi: 10.1021/acsami.9b21296 – ident: e_1_2_8_11_1 doi: 10.1016/j.smaim.2020.04.001 – ident: e_1_2_8_135_1 doi: 10.1021/acsami.8b06491 – ident: e_1_2_8_234_1 doi: 10.1016/j.biomaterials.2020.119770 – ident: e_1_2_8_132_1 doi: 10.1016/j.biomaterials.2020.119982 – ident: e_1_2_8_59_1 doi: 10.1016/j.apsb.2018.08.008 – ident: e_1_2_8_286_1 doi: 10.1016/j.actbio.2018.11.026 – ident: e_1_2_8_292_1 doi: 10.1016/j.biomaterials.2019.119636 – ident: e_1_2_8_185_1 doi: 10.1002/smll.201901813 – ident: e_1_2_8_7_1 doi: 10.1016/j.matt.2019.05.019 – ident: e_1_2_8_56_1 doi: 10.1039/C8TB02882F – ident: e_1_2_8_92_1 doi: 10.7150/thno.36163 – ident: e_1_2_8_211_1 doi: 10.1073/pnas.1714421115 – ident: e_1_2_8_117_1 doi: 10.1016/j.jcis.2018.04.058 – ident: e_1_2_8_22_1 doi: 10.1039/C9BM01927H – ident: e_1_2_8_112_1 doi: 10.1021/acsanm.8b02023 – ident: e_1_2_8_89_1 doi: 10.1016/j.jconrel.2017.03.036 – ident: e_1_2_8_169_1 doi: 10.1021/acsabm.9b01022 – ident: e_1_2_8_288_1 doi: 10.1016/j.cclet.2017.09.042 – ident: e_1_2_8_186_1 doi: 10.1021/jacs.7b12368 – ident: e_1_2_8_125_1 doi: 10.1016/0360-3016(90)90018-F – ident: e_1_2_8_264_1 doi: 10.1002/adma.201802244 – ident: e_1_2_8_29_1 doi: 10.1039/C7NR05450E – ident: e_1_2_8_175_1 doi: 10.1021/acsami.7b17506 – ident: e_1_2_8_43_1 doi: 10.1021/acs.chemmater.6b01587 – ident: e_1_2_8_163_1 doi: 10.1016/j.apmt.2018.02.003 |
SSID | ssj0002511795 |
Score | 2.5139284 |
SecondaryResourceType | review_article |
Snippet | Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and enzyme, or... Abstract Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | cancer therapy drug delivery exogenous triggered smart materials tumor microenvironment responsive |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWVgQCBDlJQ8wIBQ1cWwnGQFRAQNCgkK3yPbZXSBFoR367_E5aaADSIxJTol8D9_5cvcdIaeJ5SCgSCImtI04gs9qwL_wGXda2cI7lVDl-yBvR_x-LMZtwg17YRp8iC7hhpYR9ms0cKU_B9-goS93r_54h50m3G_B69hdiyV9jD92ORYMn7MweIVJrxBpkedt7bt_Nvj5ghWvFMD7V4PV4G2GW2SzDRPpZSPXbbJmqx3Cn969oKmPMRu1oT7gpFDPJxT8WrxOLqiqgBoUZE2bzqrFLhkNb56vb6N26kFkEPw9kgA8S7krrIwh505pnoCwSovEZYnhqStyZgtltfHeupCgvI_BIZfWG6hlMt0jvWpa2X1CndUiSxWoLAWuY6dwvnQBIna5S3PB-uRiuerStJDgOJnirWzAjFnpeVQuedQnZx31RwOF8QvdFTKwo0EA63BjWk_K1h7KDCw4sC6WxvBcCsWl8YdVBjIxOnW2T84D-__8El4wmR38g_aQbDCsSgm1N0ekN6vn9tiHFTN9EnTnC5Elwyo priority: 102 providerName: Wiley-Blackwell |
Title | Smart materials for drug delivery and cancer therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20200042 https://doaj.org/article/7dedfdef06cc4865a46c8252d61cb3fe |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwsCAaJ8VB5gQChq49hOMgJqVZBASFDoFtm-M0spqGqHLvx2fElatQOwsERKcpKdu4vfnXx-x9hZjBIU5HEklMVIEvmsBdqFT6W3BvMAKmWV74PuD-TdUA1XWn1RTVhFD1wprp0Cggf0He2czLQyUruQ1QjQsbOJR1p9A-atJFO0BlPgnJYtV4QOrpDkWVZXvYd37Zfb15AZ0iEVKdbwqKTtXw9TS5zp7bDtOkDkV9XEdtkGjveYfHoPM-UhuqwchodQk8Nk9sYBR1RZMedmDNyRCSe8OlM132eDXvf5ph_V_Q4iR7TvkQaQaSJ9jroDmfTGyhgUGqtin8ZOJj7PBOYGrQs4nWswAV2ovSWGXxOFTg5YY_wxxkPGPVqVJgZMmoC0HW-os3QOquMzn2RKNNnl4qsLV5OBU0-KUVHRGIsi6KhY6KjJzpfSnxUJxg9y16TApQxRV5cPgkGL2qDFXwZtsotS_b-ORDdCp0f_MeAx2xJUqFKW45ywxnQyw9MQaUxti20K-dgqXStc77-634HFzxc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQHWBBIECUTw8wIBTROLaTjAVRtVBYaAGxRLbP7gItqmDov-cuSQsMIDEmOSXy-c73fDm_Y-w49hIU5HEklPWRJPJZC_QXPpXBGp9jUCmrfO90dyivn9RT3eeUzsJU_BCLhBt5Rrlek4NTQvr8izX0ofeI-zs6aiJxDW4QsEGzbrQfhs_DRZqFEHRa9l4RGm0iybOsLn_HZ-ffX_EjMJX8_T_xahlwOutsrUaKvF1N7QZb8uNNJu9fca45wszKcjhiTg7TjxEHHA6a5YybMXBHcznl1eGq2RYbdq4Gl92obnwQOeJ_jzSATBMZcq9bkMlgrIxBeWNVHNLYySTkmfC58dZhwM41GAwz1OfSo496oZNttjyejP0O48FblSYGTJqAtK1gqMV0DqoVspBkSjTZ2XzUhatZwak5xUtR8RmLAnVUzHXUZCcL6beKDeMXuQtS4EKGOKzLG5PpqKhdokjBQwAfWto5mWllpHa4XxWgY2eT4JvstFT_n1-iC6HT3X_IHrGV7uC2X_R7dzd7bFVQkUpZirPPlt-nH_4AUca7Pawt6RMbUshl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ygngRRcX1mYMeRIptmqTtcX0svlgErYqXkmSSvWh3KbsH_72Ttq7uQcFj26El88hMpjPfEHIYWQ4CsihgQtuAe_BZDf4vfMKdVjZDp1JX-Q7kVc5vXsRLm3DzvTANPsQs4eYto96vvYGPwZ1-g4Y-XT_j8c53mnDcghcFOqawQxZ7T_lrPsuy-AA6qUevMIkqEWdp2la_47PTn6-Y80s1fP98uFr7m_4qWWkDRdprJLtGFmy5TvjDO4qaYpTZKA7FkJNCNR1SwNWgVn5QVQI1XpQVbXqrPjZI3r98PL8K2rkHgfHw74EE4EnMXWZlCCl3SvMIhFVaRC6JDI9dljKbKasN-utMgkIv48dcWjRRy2S8STrlqLRbhDqrRRIrUEkMXIdO-QnTGYjQpS5OBeuSk69VF6YFBfezKd6KBs6YFcij4otHXXI0ox43YBi_0J15Bs5oPIR1fWNUDYvWIooELDiwLpTG8FQKxaXB4yoDGRkdO9slxzX7__ySv2Ay2f4H7QFZur_oF3fXg9sdssx8iUpdiLNLOpNqavcwxpjo_VaRPgHwkceF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+materials+for+drug+delivery+and+cancer+therapy&rft.jtitle=View+%28Beijing%2C+China%29&rft.au=Yao+Yang&rft.au=Weiwei+Zeng&rft.au=Ping+Huang&rft.au=Xiaowei+Zeng&rft.date=2021-04-01&rft.pub=Wiley&rft.issn=2688-3988&rft.eissn=2688-268X&rft.volume=2&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2FVIW.20200042&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7dedfdef06cc4865a46c8252d61cb3fe |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-3988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-3988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-3988&client=summon |