Smart materials for drug delivery and cancer therapy

Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and enzyme, or exogenous stimulators such as temperature, light, ultrasound, radiation, and magnetic field in drug delivery. As footstone of stimuli‐responsi...

Full description

Saved in:
Bibliographic Details
Published inView (Beijing, China) Vol. 2; no. 2
Main Authors Yang, Yao, Zeng, Weiwei, Huang, Ping, Zeng, Xiaowei, Mei, Lin
Format Journal Article
LanguageEnglish
Published Wiley 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and enzyme, or exogenous stimulators such as temperature, light, ultrasound, radiation, and magnetic field in drug delivery. As footstone of stimuli‐responsive nanocarriers, endogenous/exogenous responsive smart materials possess many properties, such as responding ability to specific triggers, controlled drug release, long blood circulation, increased tumor accumulation, “ON‐OFF” switch activities, enhanced diagnostic accuracy, and therapeutic efficacy. Smart materials have attracted considerable attention because they provide likelihood strategy for individualized and comprehensive therapy. In this review, significant research achievements of smart materials responsive to different triggers including their synthesis and formulation mechanism, responsive mechanism, applications, multiple functions are summarized and discussed separately. We primarily focus on the studies in the past few years (2017‐2020). The current situation and remaining challenges of stimuli‐sensitive materials‐based nanocarriers for clinical translation are discussed rationally at the end. It is hope that this timely and overall review would provide some helpful information for researchers in this field. Smart Materials in Drug Delivery have attracted considerable attention for precision cancer chemotherapy as the footstone of stimuli‐responsive nanocarriers. Numerous smart materials are delicately designed with time‐/space‐controlled drug release while responsive to either endogenous or exogenous signals. Their advanced achievements range from preclinical studies to commercialized products. All the latest information has been comprehensively summarized herein.
AbstractList Abstract Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and enzyme, or exogenous stimulators such as temperature, light, ultrasound, radiation, and magnetic field in drug delivery. As footstone of stimuli‐responsive nanocarriers, endogenous/exogenous responsive smart materials possess many properties, such as responding ability to specific triggers, controlled drug release, long blood circulation, increased tumor accumulation, “ON‐OFF” switch activities, enhanced diagnostic accuracy, and therapeutic efficacy. Smart materials have attracted considerable attention because they provide likelihood strategy for individualized and comprehensive therapy. In this review, significant research achievements of smart materials responsive to different triggers including their synthesis and formulation mechanism, responsive mechanism, applications, multiple functions are summarized and discussed separately. We primarily focus on the studies in the past few years (2017‐2020). The current situation and remaining challenges of stimuli‐sensitive materials‐based nanocarriers for clinical translation are discussed rationally at the end. It is hope that this timely and overall review would provide some helpful information for researchers in this field.
Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and enzyme, or exogenous stimulators such as temperature, light, ultrasound, radiation, and magnetic field in drug delivery. As footstone of stimuli‐responsive nanocarriers, endogenous/exogenous responsive smart materials possess many properties, such as responding ability to specific triggers, controlled drug release, long blood circulation, increased tumor accumulation, “ON‐OFF” switch activities, enhanced diagnostic accuracy, and therapeutic efficacy. Smart materials have attracted considerable attention because they provide likelihood strategy for individualized and comprehensive therapy. In this review, significant research achievements of smart materials responsive to different triggers including their synthesis and formulation mechanism, responsive mechanism, applications, multiple functions are summarized and discussed separately. We primarily focus on the studies in the past few years (2017‐2020). The current situation and remaining challenges of stimuli‐sensitive materials‐based nanocarriers for clinical translation are discussed rationally at the end. It is hope that this timely and overall review would provide some helpful information for researchers in this field. Smart Materials in Drug Delivery have attracted considerable attention for precision cancer chemotherapy as the footstone of stimuli‐responsive nanocarriers. Numerous smart materials are delicately designed with time‐/space‐controlled drug release while responsive to either endogenous or exogenous signals. Their advanced achievements range from preclinical studies to commercialized products. All the latest information has been comprehensively summarized herein.
Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and enzyme, or exogenous stimulators such as temperature, light, ultrasound, radiation, and magnetic field in drug delivery. As footstone of stimuli‐responsive nanocarriers, endogenous/exogenous responsive smart materials possess many properties, such as responding ability to specific triggers, controlled drug release, long blood circulation, increased tumor accumulation, “ON‐OFF” switch activities, enhanced diagnostic accuracy, and therapeutic efficacy. Smart materials have attracted considerable attention because they provide likelihood strategy for individualized and comprehensive therapy. In this review, significant research achievements of smart materials responsive to different triggers including their synthesis and formulation mechanism, responsive mechanism, applications, multiple functions are summarized and discussed separately. We primarily focus on the studies in the past few years (2017‐2020). The current situation and remaining challenges of stimuli‐sensitive materials‐based nanocarriers for clinical translation are discussed rationally at the end. It is hope that this timely and overall review would provide some helpful information for researchers in this field.
Author Zeng, Xiaowei
Huang, Ping
Yang, Yao
Mei, Lin
Zeng, Weiwei
Author_xml – sequence: 1
  givenname: Yao
  surname: Yang
  fullname: Yang, Yao
  organization: Sun Yat‐sen University
– sequence: 2
  givenname: Weiwei
  surname: Zeng
  fullname: Zeng, Weiwei
  organization: Sun Yat‐sen University
– sequence: 3
  givenname: Ping
  surname: Huang
  fullname: Huang, Ping
  organization: Sun Yat‐sen University
– sequence: 4
  givenname: Xiaowei
  surname: Zeng
  fullname: Zeng, Xiaowei
  email: zengxw23@mail.sysu.edu.cn
  organization: Sun Yat‐sen University
– sequence: 5
  givenname: Lin
  orcidid: 0000-0001-6503-5149
  surname: Mei
  fullname: Mei, Lin
  email: meilin7@mail.sysu.edu.cn
  organization: Chinese Academy of Medical Sciences & Peking Union Medical College
BookMark eNp9UMlOwzAUtFCRKKU3PiAfQMB7nCOqWCpV4sB6sxz7ubhKk8oJoPw9Li0ckODyNs3MG80xGjVtAwidEnxOMKYXT_Pnc4opxpjTAzSmUqk8lZfRfmalUkdo2nWrBKGCkKIUY8Tv1yb22dr0EIOpu8y3MXPxbZk5qMM7xCEzjcusaSzErH-FaDbDCTr0CQvTfZ-gx-urh9ltvri7mc8uF7llChe5dI4XjPsSJHaKe1Nx4gSYShBfEMuZLxWF0kBliSCldAYTKoQkgDEDKtkEzXe6rjUrvYkheR10a4L-OrRxqZP5YGvQhQPnHXgsreVKCsOlVVRQJ4mtmIekdbbTsrHtugj-R49gvQ1QpwD1d4AJTn_BbehNH9qmjybUf5HwjvQRahj-fbBdqCzYJ0JEgx8
CitedBy_id crossref_primary_10_1016_j_matpr_2022_09_012
crossref_primary_10_1016_j_actbio_2023_06_002
crossref_primary_10_1002_adfm_202312380
crossref_primary_10_1002_VIW_20230056
crossref_primary_10_1039_D3BM01352A
crossref_primary_10_1039_D1TB02717D
crossref_primary_10_1021_acsbiomaterials_3c00507
crossref_primary_10_1016_j_eurpolymj_2022_111258
crossref_primary_10_1002_smll_202406206
crossref_primary_10_1002_bio_4658
crossref_primary_10_1080_10837450_2021_1985519
crossref_primary_10_1097_HEP_0000000000001063
crossref_primary_10_1016_j_jconrel_2024_08_052
crossref_primary_10_1016_j_smaim_2022_05_003
crossref_primary_10_1016_j_jconrel_2021_09_005
crossref_primary_10_1208_s12249_024_03011_5
crossref_primary_10_1016_j_cej_2023_144563
crossref_primary_10_1016_j_ijbiomac_2024_129901
crossref_primary_10_1002_adhm_202202391
crossref_primary_10_1002_mba2_103
crossref_primary_10_1002_smll_202311228
crossref_primary_10_1021_acsapm_3c02323
crossref_primary_10_1002_smtd_202301112
crossref_primary_10_1002_mba2_70009
crossref_primary_10_1016_j_ymeth_2022_07_006
crossref_primary_10_1007_s11051_024_06074_4
crossref_primary_10_1002_VIW_20230110
crossref_primary_10_1021_acsami_4c15172
crossref_primary_10_7717_peerj_16426
crossref_primary_10_1016_j_procbio_2022_08_018
crossref_primary_10_2174_0113816128246888230920060802
crossref_primary_10_1016_j_lfs_2022_120525
crossref_primary_10_3390_pharmaceutics15071977
crossref_primary_10_1016_j_cej_2022_135240
crossref_primary_10_1080_00914037_2025_2475896
crossref_primary_10_1002_smtd_202301173
crossref_primary_10_1016_j_porgcoat_2023_107928
crossref_primary_10_26599_NBE_2024_9290078
crossref_primary_10_1016_j_smaim_2022_01_008
crossref_primary_10_1002_smtd_202301165
crossref_primary_10_1103_PhysRevE_108_064211
crossref_primary_10_1016_j_ijpharm_2023_123397
crossref_primary_10_3390_ijms26062633
crossref_primary_10_3390_pharmaceutics14071321
crossref_primary_10_1016_j_addr_2022_114241
crossref_primary_10_1002_smtd_202301726
crossref_primary_10_1002_adfm_202310450
crossref_primary_10_1021_acscentsci_4c01004
crossref_primary_10_1002_adfm_202314492
crossref_primary_10_1002_anbr_202300125
crossref_primary_10_1002_smll_202408481
crossref_primary_10_1039_D3NR04808J
crossref_primary_10_1021_acsabm_3c00458
crossref_primary_10_1016_j_carbpol_2022_120510
crossref_primary_10_1080_09205063_2023_2279792
crossref_primary_10_1002_smtd_202301178
crossref_primary_10_1016_j_mtcomm_2022_104644
crossref_primary_10_1002_SMMD_20220041
crossref_primary_10_1002_smtd_202301455
crossref_primary_10_1039_D4BM01377H
crossref_primary_10_1016_j_fmre_2024_06_006
crossref_primary_10_1016_j_slast_2023_02_002
crossref_primary_10_1002_advs_202305662
crossref_primary_10_1002_smll_202307299
crossref_primary_10_1021_acsbiomaterials_4c00115
crossref_primary_10_1002_smtd_202301271
crossref_primary_10_1016_j_jcis_2021_10_147
crossref_primary_10_1016_j_jddst_2022_103426
crossref_primary_10_1002_smtd_202301143
crossref_primary_10_1016_j_colsurfb_2024_114411
crossref_primary_10_1021_acsami_2c15015
crossref_primary_10_1021_acsabm_1c01284
crossref_primary_10_1002_cptc_202100282
crossref_primary_10_1016_j_cej_2023_146792
crossref_primary_10_1021_acsami_3c10572
crossref_primary_10_1016_j_snb_2025_137559
crossref_primary_10_1039_D3BM01741A
crossref_primary_10_1166_jbt_2024_3365
crossref_primary_10_1021_acs_nanolett_4c00300
crossref_primary_10_1016_j_biomaterials_2022_121791
crossref_primary_10_1021_acs_bioconjchem_1c00437
crossref_primary_10_1080_10837450_2022_2037140
crossref_primary_10_1002_advs_202201703
crossref_primary_10_1186_s12951_022_01286_z
crossref_primary_10_1039_D3RA08263F
crossref_primary_10_1021_acsabm_2c00973
crossref_primary_10_3389_fbioe_2022_836468
crossref_primary_10_1039_D3NA01106B
crossref_primary_10_1016_j_eurpolymj_2023_112365
crossref_primary_10_3390_bioengineering11060573
crossref_primary_10_1016_j_jcis_2022_06_069
crossref_primary_10_1016_j_jcis_2025_01_006
crossref_primary_10_1002_adfm_202307013
crossref_primary_10_1016_j_ccr_2023_215564
crossref_primary_10_1016_j_procbio_2022_04_003
crossref_primary_10_3390_jfb15080226
crossref_primary_10_3390_pharmaceutics15071928
crossref_primary_10_1002_smtd_202301005
crossref_primary_10_1016_j_ijpharm_2022_122342
crossref_primary_10_1039_D2MA00094F
crossref_primary_10_1016_j_jddst_2021_102879
crossref_primary_10_1016_j_jddst_2022_103323
crossref_primary_10_1039_D3MA00341H
crossref_primary_10_3390_polym15081963
crossref_primary_10_1021_acs_chemrev_3c00778
crossref_primary_10_1002_adma_202109254
crossref_primary_10_1002_adfm_202307241
crossref_primary_10_1002_smtd_202100536
crossref_primary_10_3390_gels9050363
crossref_primary_10_3390_polym16223163
crossref_primary_10_1002_pat_6160
crossref_primary_10_1002_smtd_202301134
crossref_primary_10_1016_j_jcis_2022_05_015
crossref_primary_10_1016_j_jddst_2022_104144
crossref_primary_10_1039_D2RA05863D
crossref_primary_10_1016_j_jconrel_2021_09_017
crossref_primary_10_1021_acs_bioconjchem_3c00476
crossref_primary_10_1002_smll_202309206
crossref_primary_10_1016_j_ijbiomac_2025_140451
Cites_doi 10.1016/j.jconrel.2018.04.032
10.1016/j.jconrel.2020.03.013
10.1016/j.biomaterials.2020.120054
10.1002/adhm.201900174
10.1002/adma.201800662
10.1016/j.matt.2019.03.007
10.1016/j.actbio.2018.01.014
10.1016/j.biomaterials.2018.04.020
10.1002/adma.201704490
10.7150/thno.27581
10.1016/j.biomaterials.2019.119327
10.1002/adfm.201903791
10.1002/advs.201901211
10.1002/advs.201900586
10.7150/thno.24015
10.1021/acsami.6b14078
10.2147/IJN.S179226
10.1080/10717544.2017.1362677
10.1002/adhm.201901316
10.1016/j.biomaterials.2019.119498
10.1021/acsnano.8b06399
10.1002/smll.201703968
10.1016/j.biomaterials.2018.08.014
10.1016/j.biomaterials.2019.04.004
10.1039/C8NR09990A
10.1016/j.cej.2019.121917
10.7150/thno.29820
10.1002/marc.201800917
10.1002/advs.201801526
10.1039/C9CC06727B
10.1002/anie.202004575
10.1002/adma.201802061
10.3390/pharmaceutics11100507
10.1039/C7CS00594F
10.1517/17425247.2015.1071352
10.1016/j.biomaterials.2019.01.029
10.1039/C9CC02353D
10.1021/acsami.9b15460
10.1021/jacs.7b07818
10.1038/ncomms12967
10.1093/jn/134.3.489
10.1021/acs.nanolett.9b03331
10.1016/j.carbpol.2019.115498
10.1016/j.drup.2004.01.004
10.1016/j.actbio.2019.02.043
10.1002/adfm.201805341
10.1002/adfm.201802500
10.1016/j.biomaterials.2020.119761
10.7150/thno.8698
10.1016/j.biomaterials.2017.04.032
10.1021/acsnano.8b06400
10.1021/ja510147n
10.1039/C7PY01485F
10.1021/acsnano.6b00870
10.1021/acsabm.8b00623
10.3390/pharmaceutics11070342
10.1021/ar2001777
10.1002/adma.201901513
10.1021/acsami.9b12620
10.7150/thno.38069
10.1021/acsabm.9b00450
10.1021/acsnano.7b02533
10.1016/j.jconrel.2014.05.002
10.1021/acsami.9b08115
10.1016/j.jcis.2019.07.061
10.1021/acsnano.8b01893
10.1016/j.ijbiomac.2019.03.030
10.1002/adfm.201908598
10.1016/j.biomaterials.2019.04.029
10.1016/j.jconrel.2020.01.021
10.1038/s41551-018-0203-4
10.1016/j.jconrel.2019.10.016
10.1039/C8BM00899J
10.1039/C9NR03052B
10.1021/acsnano.8b06483
10.1080/1061186X.2018.1464012
10.1039/C9BM00634F
10.1002/adma.202000376
10.1016/j.ajps.2016.06.001
10.1016/j.jconrel.2019.10.031
10.1002/adfm.201700220
10.1002/adma.201808278
10.1021/acsami.9b13214
10.1016/j.cclet.2017.09.048
10.3390/nano9020191
10.1021/acsami.9b17587
10.1016/S0891-5849(01)00480-4
10.1021/acsami.9b12879
10.1021/acsami.9b22654
10.1016/j.cclet.2019.08.017
10.1007/s12274-019-2330-y
10.1038/s41467-019-11193-x
10.1016/j.biomaterials.2018.10.036
10.1016/j.actbio.2019.12.016
10.1038/nbt.3330
10.1016/j.biomaterials.2018.12.004
10.1021/acsnano.8b07045
10.1038/s41586-020-2168-1
10.1002/anie.201912768
10.1016/j.cej.2020.124494
10.1021/acs.biomac.9b00583
10.7150/thno.27351
10.1021/acsabm.9b01172
10.1016/j.jconrel.2019.12.041
10.1002/adma.201602111
10.1016/j.jconrel.2019.12.011
10.1016/j.ijbiomac.2017.11.048
10.1016/j.jconrel.2019.10.017
10.1016/j.jconrel.2020.02.021
10.1002/adma.201808200
10.1016/j.colsurfb.2019.03.070
10.1002/adhm.201901105
10.1016/j.ccr.2019.02.025
10.1002/anie.201900886
10.1021/acsnano.9b05749
10.1021/acs.nanolett.9b00083
10.1016/j.cej.2019.123043
10.1002/adfm.201606826
10.1021/acsnano.7b08219
10.7150/thno.26225
10.1021/acsami.6b15505
10.1021/acs.chemrev.5b00112
10.1021/acsabm.9b00769
10.1038/natrevmats.2017.14
10.1002/anie.201908712
10.1016/j.mattod.2015.11.025
10.1002/adma.201700996
10.1111/cas.12153
10.1021/acsbiomaterials.9b00237
10.1021/acsnano.6b08731
10.7150/thno.14184
10.1039/C9BM00884E
10.1021/acs.biomac.9b01202
10.1002/anie.201705578
10.1021/acsami.8b03506
10.1002/adtp.201800090
10.1016/j.ajps.2017.11.002
10.1016/j.biomaterials.2016.08.015
10.1246/cl.151176
10.1038/nm0297-177
10.1002/adma.201904278
10.1021/acsnano.9b07984
10.1002/adma.201900730
10.1126/sciadv.aba5996
10.1039/C9BM01692A
10.1021/acsami.9b03056
10.1021/acsnano.7b03507
10.1002/adma.201805919
10.1002/anie.201813702
10.1021/acsnano.8b02813
10.1002/anie.201902470
10.1038/nmat4474
10.1016/j.cclet.2019.05.017
10.1016/j.jconrel.2019.01.016
10.1021/acs.biomac.9b01578
10.1039/C5NR04436G
10.1016/j.jconrel.2019.05.016
10.1002/path.1277
10.1038/natrevmats.2016.75
10.1038/s41572-019-0064-5
10.1039/C9NR07725A
10.2174/157340711795163866
10.1021/acsami.7b02457
10.1016/j.biomaterials.2018.10.010
10.1021/acsnano.9b06689
10.1016/j.addr.2012.11.004
10.1016/j.jconrel.2017.07.031
10.1016/j.msec.2016.11.030
10.1002/adma.201803031
10.1021/acs.chemrev.8b00294
10.1016/j.jconrel.2019.06.010
10.1016/j.biomaterials.2017.11.019
10.1039/C9NR07254C
10.1021/jacs.9b12232
10.1016/0360-3016(91)90057-B
10.1039/C8CC09047E
10.1002/adfm.201808306
10.1016/j.smaim.2020.05.002
10.1021/acs.nanolett.8b01924
10.1083/jcb.201102095
10.1039/C5NR04045K
10.1002/adfm.201704135
10.1021/bc0340924
10.1016/j.colsurfb.2019.05.064
10.1002/anie.201710800
10.1016/j.biomaterials.2019.119422
10.1002/anie.201907388
10.1021/acs.nanolett.9b01660
10.1016/j.biomaterials.2018.02.023
10.1016/j.ijbiomac.2020.03.138
10.1002/adma.201808024
10.1039/C9BM00992B
10.1021/acsami.6b16815
10.1016/j.addr.2017.03.004
10.1039/C8BM00243F
10.1016/j.jconrel.2019.10.052
10.1021/jacs.7b12025
10.1021/acsami.8b12232
10.1021/acsabm.9b00584
10.1016/j.carbpol.2020.115930
10.1016/j.biomaterials.2019.119702
10.1002/adma.201606134
10.1021/acsnano.9b02096
10.1093/jnci/55.1.115
10.1002/adhm.201900406
10.1016/j.jconrel.2020.02.038
10.1021/acsnano.5b05825
10.1016/j.ejca.2010.07.015
10.1016/j.actbio.2018.05.031
10.7150/thno.14858
10.1039/C8NR10528F
10.1016/j.biomaterials.2017.11.015
10.1016/j.biomaterials.2019.119460
10.1016/j.actbio.2018.10.029
10.1021/acsami.9b07957
10.1021/acs.biomac.9b01472
10.7150/thno.33888
10.1002/adhm.201700646
10.1517/13543780802567250
10.1016/j.biomaterials.2019.01.048
10.1039/C7NR07677K
10.1039/C9NR01691K
10.1021/cr5004198
10.7150/thno.17881
10.1002/smll.201602660
10.1021/acsami.7b18245
10.1021/acsami.8b17750
10.1016/j.biomaterials.2013.04.052
10.1016/j.biomaterials.2018.05.025
10.7150/thno.42008
10.1039/C9BM01640F
10.1016/j.jmmm.2019.166012
10.1016/j.ijpharm.2019.118841
10.1016/j.biomaterials.2019.119501
10.1016/j.biomaterials.2020.119760
10.1002/adma.201603276
10.1021/acsami.7b11614
10.1021/acsnano.9b04436
10.1021/acs.biomac.9b01123
10.1021/acsami.8b09342
10.1002/adma.201900927
10.1021/acs.nanolett.9b05210
10.1021/acsami.9b10444
10.1007/s10555-007-9055-1
10.1021/acsnano.6b05541
10.1039/C5CS00798D
10.1021/acsabm.9b00036
10.7150/thno.30259
10.1021/bc0499174
10.3389/fphar.2019.00270
10.1039/C7BM01182B
10.1039/C9NR01194C
10.1038/s41598-018-36340-0
10.1039/C9BM00461K
10.1073/pnas.1906929116
10.1016/j.ccell.2018.02.008
10.1021/acsami.7b04351
10.1038/s41467-019-09389-2
10.1021/acs.nanolett.9b03214
10.1002/smll.201700623
10.1002/advs.201800510
10.1021/acsami.9b21296
10.1016/j.smaim.2020.04.001
10.1021/acsami.8b06491
10.1016/j.biomaterials.2020.119770
10.1016/j.biomaterials.2020.119982
10.1016/j.apsb.2018.08.008
10.1016/j.actbio.2018.11.026
10.1016/j.biomaterials.2019.119636
10.1002/smll.201901813
10.1016/j.matt.2019.05.019
10.1039/C8TB02882F
10.7150/thno.36163
10.1073/pnas.1714421115
10.1016/j.jcis.2018.04.058
10.1039/C9BM01927H
10.1021/acsanm.8b02023
10.1016/j.jconrel.2017.03.036
10.1021/acsabm.9b01022
10.1016/j.cclet.2017.09.042
10.1021/jacs.7b12368
10.1016/0360-3016(90)90018-F
10.1002/adma.201802244
10.1039/C7NR05450E
10.1021/acsami.7b17506
10.1021/acs.chemmater.6b01587
10.1016/j.apmt.2018.02.003
ContentType Journal Article
Copyright 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
Copyright_xml – notice: 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/VIW.20200042
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2688-268X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_7dedfdef06cc4865a46c8252d61cb3fe
10_1002_VIW_20200042
VIW267
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31922042; 81771966; 32071342
– fundername: Guangdong Special Support Program
  funderid: 2019TQ05Y209
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 19ykzd31
GroupedDBID 0R~
1OC
24P
7X7
8FI
8FJ
AAHHS
ABUWG
ACCFJ
ACCMX
ACXQS
ADKYN
ADPDF
ADZMN
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BENPR
CCPQU
EBS
FYUFA
GROUPED_DOAJ
HMCUK
IAO
IHR
INH
ITC
M~E
OVD
PIMPY
TEORI
UKHRP
WIN
AAYXX
CITATION
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
PUEGO
ID FETCH-LOGICAL-c3807-6dd4734f9e60d84fab41d5eab51f71c43f982e9aebc15196da0125561e003e263
IEDL.DBID DOA
ISSN 2688-3988
2688-268X
IngestDate Wed Aug 27 01:22:19 EDT 2025
Tue Jul 01 02:42:39 EDT 2025
Thu Apr 24 22:56:53 EDT 2025
Wed Jan 22 16:29:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3807-6dd4734f9e60d84fab41d5eab51f71c43f982e9aebc15196da0125561e003e263
ORCID 0000-0001-6503-5149
OpenAccessLink https://doaj.org/article/7dedfdef06cc4865a46c8252d61cb3fe
PageCount 38
ParticipantIDs doaj_primary_oai_doaj_org_article_7dedfdef06cc4865a46c8252d61cb3fe
crossref_primary_10_1002_VIW_20200042
crossref_citationtrail_10_1002_VIW_20200042
wiley_primary_10_1002_VIW_20200042_VIW267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle View (Beijing, China)
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2018; 163
2018; 282
2020; 20
2013; 65
2019; 11
2019; 209
2019; 10
2019; 13
2004; 7
2019; 12
2019; 15
2019; 19
2020; 14
2020; 321
2020; 320
2020; 12
2020; 10
2020; 322
2011; 194
1997; 3
2019; 200
2018; 47
2018; 175
2018; 6
2018; 8
2018; 171
2018; 2
2018; 5
2017; 71
2019; 20
2015; 137
2019; 22
2019; 555
2019; 314
2019; 27
2019; 29
2018; 30
2020; 575
2019; 316
2018; 33
2016; 45
2009; 18
2019; 8
2019; 7
2018; 29
2019; 9
2018; 28
2018; 181
2019; 192
2019; 6
2016; 19
2019; 5
2019; 31
2020; 382
2019; 30
2020; 142
2019; 2
2019; 1
2013; 104
2016; 10
2019; 225
2019; 223
2019; 224
2020; 389
2020; 32
2017; 133
2017; 254
2019; 188
2019; 221
2011; 7
2017; 139
2016; 11
2018; 18
2016; 6
2018; 110
2016; 7
2019; 181
2019; 40
2016; 2
2010; 46
2015; 115
2020; 30
2002; 62
2020; 154
2018; 115
2017; 56
2019; 179
2017; 262
2019; 217
2020; 21
2018; 12
2016; 28
2018; 11
2018; 10
2020; 318
2019; 211
2001; 30
2018; 14
2019; 296
2018; 13
2020; 319
2017; 6
2017; 7
2017; 8
2017; 2
2019; 55
2018; 525
1990; 19
2015; 33
2019; 58
2003; 14
2020; 59
2020; 249
2016; 106
1975; 55
2020; 245
2017; 115
2017; 9
2003; 199
2020; 8
2004; 134
2020; 6
2014; 4
2020; 3
2020; 1
2020; 9
2019; 116
2020; 497
2019; 119
2018; 76
2019; 194
2007; 26
2019; 197
2015; 12
2015; 15
2018; 140
2020; 580
2017; 27
2017; 24
2014; 190
2017; 29
2019; 307
2020; 103
2019; 305
2015; 9
2015; 7
2020; 229
2019; 387
2018; 69
2018; 155
2019; 83
2013; 34
2020; 230
2017; 11
1991; 20
2019; 89
2004; 15
2017; 13
2020; 236
2011; 44
2020; 232
2020; 234
2019; 130
2019; 375
2018; 57
e_1_2_8_241_1
e_1_2_8_287_1
e_1_2_8_264_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_249_1
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_301_1
e_1_2_8_41_1
e_1_2_8_230_1
e_1_2_8_276_1
e_1_2_8_253_1
e_1_2_8_38_1
e_1_2_8_291_1
e_1_2_8_215_1
e_1_2_8_299_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_242_1
e_1_2_8_265_1
e_1_2_8_25_1
e_1_2_8_280_1
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_288_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
Li X. (e_1_2_8_193_1) 2017; 29
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_254_1
e_1_2_8_14_1
e_1_2_8_292_1
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_216_1
e_1_2_8_277_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_243_1
Peters K. B. (e_1_2_8_149_1) 2002; 62
e_1_2_8_220_1
e_1_2_8_281_1
e_1_2_8_228_1
e_1_2_8_266_1
e_1_2_8_205_1
e_1_2_8_289_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_293_1
Shanei A. (e_1_2_8_246_1) 2019; 22
e_1_2_8_270_1
e_1_2_8_217_1
e_1_2_8_255_1
e_1_2_8_278_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_282_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_267_1
e_1_2_8_206_1
Kuppusamy P. (e_1_2_8_88_1) 2002; 62
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_271_1
e_1_2_8_294_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_256_1
e_1_2_8_279_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_283_1
e_1_2_8_68_1
e_1_2_8_260_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_245_1
e_1_2_8_268_1
e_1_2_8_5_1
Thang Do C. (e_1_2_8_208_1) 2019; 9
e_1_2_8_151_1
Zheng J. (e_1_2_8_202_1) 2020; 497
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_295_1
e_1_2_8_109_1
e_1_2_8_272_1
Wang Y. (e_1_2_8_15_1) 2017; 29
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_257_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_284_1
e_1_2_8_261_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_269_1
e_1_2_8_152_1
e_1_2_8_6_1
Cheng Y. (e_1_2_8_57_1) 2017; 13
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
Zheng D. (e_1_2_8_24_1) 2020; 389
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
Wang Y. (e_1_2_8_76_1) 2019; 7
e_1_2_8_273_1
e_1_2_8_296_1
e_1_2_8_250_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_258_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
Thai Minh Duy L. (e_1_2_8_199_1) 2019; 7
e_1_2_8_10_1
e_1_2_8_56_1
Luo M. (e_1_2_8_238_1) 2019; 11
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_262_1
e_1_2_8_285_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_251_1
e_1_2_8_297_1
e_1_2_8_274_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_259_1
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
Zhang P. (e_1_2_8_290_1) 2017; 29
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_263_1
e_1_2_8_286_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
Li R. (e_1_2_8_204_1) 2020; 12
e_1_2_8_225_1
e_1_2_8_248_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_300_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_275_1
e_1_2_8_298_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 8
  start-page: 4884
  year: 2018
  publication-title: Theranostics
– volume: 11
  start-page: 207
  year: 2018
  publication-title: Appl. Mater. Today
– volume: 316
  start-page: 208
  year: 2019
  publication-title: J. Controlled Release
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 8109
  year: 2019
  publication-title: Nano Lett.
– volume: 321
  start-page: 363
  year: 2020
  publication-title: J. Controlled Release
– volume: 10
  start-page: 3211
  year: 2019
  publication-title: Nat Commun.
– volume: 2
  start-page: 5245
  year: 2019
  publication-title: ACS Appl. Bio Mater.
– volume: 58
  start-page: 7641
  year: 2019
  publication-title: Angew Chem ‐ Int Ed.
– volume: 375
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 65
  start-page: 10
  year: 2013
  publication-title: Adv Drug Del Rev.
– volume: 59
  year: 2020
  publication-title: Angew. Chem.
– volume: 116
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 236
  year: 2020
  publication-title: Biomaterials
– volume: 171
  start-page: 72
  year: 2018
  publication-title: Biomaterials
– volume: 142
  start-page: 2490
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 181
  start-page: 360
  year: 2018
  publication-title: Biomaterials
– volume: 580
  start-page: 329
  year: 2020
  publication-title: Nature.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 1124
  year: 2017
  publication-title: Drug Deliv
– volume: 389
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 155
  start-page: 54
  year: 2018
  publication-title: Biomaterials
– volume: 318
  start-page: 38
  year: 2020
  publication-title: J. Controlled Release
– volume: 8
  year: 2019
  publication-title: Adv. Healthcare Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2687
  year: 2019
  publication-title: Nanoscale
– volume: 56
  year: 2017
  publication-title: Angew Chem ‐ Int Ed
– volume: 6
  year: 2017
  publication-title: Adv Healthc Mater
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 163
  start-page: 14
  year: 2018
  publication-title: Biomaterials
– volume: 29
  start-page: 24
  year: 2017
  publication-title: Adv. Mater.
– volume: 194
  start-page: 7
  year: 2011
  publication-title: J. Cell Biol.
– volume: 11
  start-page: 5030
  year: 2019
  publication-title: Nanoscale
– volume: 55
  year: 2019
  publication-title: Chem. Commun.
– volume: 179
  start-page: 250
  year: 2019
  publication-title: Colloids Surfaces B‐Biointerfaces
– volume: 321
  start-page: 529
  year: 2020
  publication-title: J. Controlled Release
– volume: 9
  year: 2017
  publication-title: ACS Appl Mater Interf
– volume: 181
  start-page: 252
  year: 2019
  publication-title: Colloids Surf B Biointerfaces
– volume: 18
  start-page: 4618
  year: 2018
  publication-title: Nano Lett.
– volume: 21
  start-page: 921
  year: 2020
  publication-title: Biomacromolecules
– volume: 19
  start-page: 5967
  year: 2019
  publication-title: Nano Lett.
– volume: 45
  start-page: 242
  year: 2016
  publication-title: Chem. Lett.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 197
  start-page: 317
  year: 2019
  publication-title: Biomaterials
– volume: 44
  start-page: 1061
  year: 2011
  publication-title: Acc Chem Res.
– volume: 11
  start-page: 1281
  year: 2017
  publication-title: ACS Nano
– volume: 10
  start-page: 3722
  year: 2020
  publication-title: Theranostics
– volume: 13
  start-page: 357
  year: 2019
  publication-title: ACS Nano
– volume: 254
  start-page: 1
  year: 2017
  publication-title: J. Controlled Release
– volume: 2
  year: 2019
  publication-title: Adv. Ther.
– volume: 2
  start-page: 4077
  year: 2019
  publication-title: ACS Appl Bio Mater.
– volume: 137
  start-page: 2140
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 301
  year: 2018
  publication-title: Chin. Chem. Lett.
– volume: 11
  start-page: 255
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 6938
  year: 2017
  publication-title: Polym. Chem.
– volume: 11
  start-page: 9457
  year: 2019
  publication-title: Nanoscale
– volume: 11
  start-page: 2227
  year: 2017
  publication-title: ACS Nano
– volume: 19
  start-page: 2968
  year: 2019
  publication-title: Nano Lett.
– volume: 9
  start-page: 3388
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  year: 2017
  publication-title: Small
– volume: 104
  start-page: 920
  year: 2013
  publication-title: Cancer Sci.
– volume: 71
  start-page: 1267
  year: 2017
  publication-title: Mater Sci Eng C‐Mater Biol Appl.
– volume: 12
  start-page: 7995
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  year: 2016
  publication-title: Nature Rev Mater
– volume: 115
  start-page: 98
  year: 2017
  publication-title: Adv. Drug Del. Rev.
– volume: 14
  start-page: 1007
  year: 2003
  publication-title: Bioconj Chem
– volume: 2
  start-page: 479
  year: 2019
  publication-title: ACS Appl. Nano Mater.
– volume: 1
  start-page: 32
  year: 2020
  publication-title: Smart Mater Med
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 115
  start-page: 501
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 470
  year: 2016
  publication-title: Theranostics
– volume: 200
  start-page: 1
  year: 2019
  publication-title: Biomaterials
– volume: 5
  start-page: 13
  year: 2019
  publication-title: Nat. Rev. Dis. Primers
– volume: 20
  start-page: 2809
  year: 2019
  publication-title: Biomacromolecules
– volume: 119
  start-page: 902
  year: 2019
  publication-title: Chem. Rev.
– volume: 12
  start-page: 9894
  year: 2018
  publication-title: ACS Nano
– volume: 155
  start-page: 145
  year: 2018
  publication-title: Biomaterials
– volume: 57
  start-page: 4891
  year: 2018
  publication-title: Angew Chem ‐ Int Ed
– volume: 318
  start-page: 197
  year: 2020
  publication-title: J. Controlled Release
– volume: 62
  start-page: 307
  year: 2002
  publication-title: Cancer Res.
– volume: 234
  year: 2020
  publication-title: Biomaterials
– volume: 9
  start-page: 6865
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 296
  start-page: 93
  year: 2019
  publication-title: J. Controlled Release
– volume: 14
  start-page: 1586
  year: 2020
  publication-title: ACS Nano
– volume: 9
  start-page: 5755
  year: 2019
  publication-title: Theranostics
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 134
  start-page: 489
  year: 2004
  publication-title: J. Nutr.
– volume: 83
  start-page: 334
  year: 2019
  publication-title: Acta Biomater.
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 9
  start-page: 191
  year: 2019
  publication-title: Nanomaterials
– volume: 6
  start-page: 604
  year: 2018
  publication-title: Biomater. Sci.
– volume: 13
  start-page: 101
  year: 2018
  publication-title: Asian J Pharm. Sci.
– volume: 33
  start-page: 337
  year: 2018
  publication-title: Cancer Cell.
– volume: 20
  start-page: 457
  year: 1991
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 115
  start-page: 1990
  year: 2015
  publication-title: Chem. Rev.
– volume: 217
  year: 2019
  publication-title: Biomaterials
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1306
  year: 2016
  publication-title: Theranostics
– volume: 21
  start-page: 444
  year: 2020
  publication-title: Biomacromolecules
– volume: 58
  start-page: 2407
  year: 2019
  publication-title: Angew Chem ‐ Int Ed
– volume: 76
  start-page: 239
  year: 2018
  publication-title: Acta Biomater.
– volume: 8
  start-page: 1885
  year: 2020
  publication-title: Biomater. Sci.
– volume: 83
  start-page: 400
  year: 2019
  publication-title: Acta Biomater.
– volume: 10
  start-page: 2856
  year: 2018
  publication-title: Nanoscale
– volume: 9
  start-page: 3308
  year: 2019
  publication-title: Theranostics
– volume: 30
  start-page: 2039
  year: 2019
  publication-title: Chin. Chem. Lett.
– volume: 13
  start-page: 8537
  year: 2019
  publication-title: ACS Nano
– volume: 2
  year: 2017
  publication-title: Nat Rev Mater.
– volume: 7
  start-page: 3706
  year: 2019
  publication-title: Biomater. Sci.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 15
  year: 2019
  publication-title: Small
– volume: 8
  start-page: 2939
  year: 2018
  publication-title: Theranostics
– volume: 12
  start-page: 1943
  year: 2015
  publication-title: Expert Opinion on Drug Delivery
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 90
  year: 2019
  publication-title: Theranostics
– volume: 11
  year: 2019
  publication-title: ACS Appl Mater Interf.
– volume: 234
  year: 2020
  publication-title: Carbohydr. Polym.
– volume: 31
  year: 2019
  publication-title: Adv Mater.
– volume: 5
  year: 2018
  publication-title: Adv Sci.
– volume: 387
  start-page: 299
  year: 2019
  publication-title: Coordination Chem Rev
– volume: 10
  start-page: 5318
  year: 2018
  publication-title: ACS Applied Materials and Interfaces
– volume: 26
  start-page: 225
  year: 2007
  publication-title: Cancer Metastasis Rev.
– volume: 2
  start-page: 370
  year: 2019
  publication-title: ACS Appl. Bio Mater.
– volume: 6
  start-page: 2965
  year: 2018
  publication-title: Biomater. Sci.
– volume: 4
  start-page: 660
  year: 2014
  publication-title: Theranostics
– volume: 34
  start-page: 6058
  year: 2013
  publication-title: Biomaterials
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 848
  year: 2019
  publication-title: Iranian J Basic Med Sci
– volume: 19
  start-page: 953
  year: 1990
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 12
  start-page: 4886
  year: 2018
  publication-title: ACS Nano
– volume: 10
  start-page: 2991
  year: 2016
  publication-title: ACS Nano
– volume: 8
  year: 2019
  publication-title: Adv Healthcare Mater.
– volume: 29
  year: 2017
  publication-title: Nat Rev Mater.
– volume: 9
  year: 2020
  publication-title: Adv. Healthcare Mater.
– volume: 230
  year: 2020
  publication-title: Biomaterials
– volume: 28
  start-page: 4697
  year: 2016
  publication-title: Chem. Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 59
  start-page: 9914
  year: 2020
  publication-title: Angew Chem ‐ Int Ed
– volume: 19
  start-page: 8021
  year: 2019
  publication-title: Nano Lett.
– volume: 11
  start-page: 507
  year: 2019
  publication-title: Pharmaceutics
– volume: 12
  start-page: 4323
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 342
  year: 2019
  publication-title: Pharmaceutics
– volume: 382
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 224
  year: 2019
  publication-title: Biomaterials
– volume: 28
  start-page: 7143
  year: 2016
  publication-title: Adv. Mater.
– volume: 62
  start-page: 5248
  year: 2002
  publication-title: Cancer Res.
– volume: 3
  start-page: 177
  year: 1997
  publication-title: Nat. Med.
– volume: 1
  start-page: 345
  year: 2019
  publication-title: Matter
– volume: 209
  start-page: 138
  year: 2019
  publication-title: Biomaterials
– volume: 305
  start-page: 120
  year: 2019
  publication-title: J. Controlled Release
– volume: 69
  start-page: 277
  year: 2018
  publication-title: Acta Biomater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 600
  year: 2018
  publication-title: Nat. Biomed. Eng.
– volume: 115
  year: 2015
  publication-title: Chem. Rev.
– volume: 15
  start-page: 931
  year: 2004
  publication-title: Bioconj Chem
– volume: 262
  start-page: 212
  year: 2017
  publication-title: J. Controlled Release
– volume: 225
  year: 2019
  publication-title: Biomaterials
– volume: 20
  start-page: 1928
  year: 2020
  publication-title: Nano Lett.
– volume: 46
  start-page: 3016
  year: 2010
  publication-title: Eur J Cancer
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 7
  start-page: 4195
  year: 2019
  publication-title: Biomater. Sci.
– volume: 110
  start-page: 399
  year: 2018
  publication-title: Int. J. Biol. Macromol.
– volume: 1
  start-page: 10
  year: 2020
  publication-title: Smart Mater Med.
– volume: 190
  start-page: 352
  year: 2014
  publication-title: J. Controlled Release
– volume: 389
  year: 2020
  publication-title: Chem Eng J
– volume: 130
  start-page: 845
  year: 2019
  publication-title: Int. J. Biol. Macromol.
– volume: 20
  start-page: 4602
  year: 2019
  publication-title: Biomacromolecules
– volume: 7
  start-page: 8
  year: 2011
  publication-title: Curr. Bioact. Compd.
– volume: 59
  start-page: 1682
  year: 2020
  publication-title: Angew Chem ‐ Int Ed
– volume: 133
  start-page: 208
  year: 2017
  publication-title: Biomaterials
– volume: 322
  start-page: 81
  year: 2020
  publication-title: J. Controlled Release
– volume: 555
  start-page: 82
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 3
  start-page: 1018
  year: 2020
  publication-title: ACS Appl. Bio Mater.
– volume: 320
  start-page: 83
  year: 2020
  publication-title: J. Controlled Release
– volume: 525
  start-page: 1
  year: 2018
  publication-title: J. Colloid Interface Sci.
– volume: 8
  start-page: 694
  year: 2020
  publication-title: Biomaterials Science
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 13
  start-page: 7010
  year: 2019
  publication-title: ACS Nano
– volume: 19
  start-page: 274
  year: 2016
  publication-title: Mater. Today
– volume: 12
  start-page: 1630
  year: 2018
  publication-title: ACS Nano
– volume: 3
  start-page: 1283
  year: 2020
  publication-title: ACS Appl. Bio Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  start-page: 473
  year: 2020
  publication-title: Biomater Sci.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 223
  year: 2019
  publication-title: Biomaterials
– volume: 10
  start-page: 4557
  year: 2020
  publication-title: Theranostics
– volume: 5
  start-page: 4405
  year: 2019
  publication-title: ACS Biomater. Sci. Eng.
– volume: 40
  year: 2019
  publication-title: Macromol. Rapid Commun.
– volume: 12
  start-page: 999
  year: 2019
  publication-title: Nano Res.
– volume: 575
  year: 2020
  publication-title: Int. J. Pharm.
– volume: 249
  year: 2020
  publication-title: Biomaterials
– volume: 282
  start-page: 62
  year: 2018
  publication-title: J. Controlled Release
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 9
  start-page: 321
  year: 2019
  publication-title: Sci. Rep.
– volume: 13
  start-page: 476
  year: 2019
  publication-title: ACS Nano
– volume: 9
  start-page: 1047
  year: 2019
  publication-title: Theranostics
– volume: 316
  start-page: 196
  year: 2019
  publication-title: J. Controlled Release
– volume: 232
  year: 2020
  publication-title: Biomaterials
– volume: 11
  year: 2019
  publication-title: ACS Applied Materials and Interfaces
– volume: 8
  start-page: 5088
  year: 2018
  publication-title: Theranostics
– volume: 229
  year: 2020
  publication-title: Carbohydr. Polym.
– volume: 10
  start-page: 270
  year: 2019
  publication-title: Frontiers Pharmacol
– volume: 11
  year: 2019
  publication-title: ACS Appl Mater Interf
– volume: 103
  start-page: 259
  year: 2020
  publication-title: Acta Biomater.
– volume: 211
  start-page: 68
  year: 2019
  publication-title: Biomaterials
– volume: 194
  start-page: 151
  year: 2019
  publication-title: Biomaterials
– volume: 55
  start-page: 953
  year: 2019
  publication-title: Chem. Commun.
– volume: 245
  year: 2020
  publication-title: Biomaterials
– volume: 106
  start-page: 13
  year: 2016
  publication-title: Biomaterials
– volume: 7
  start-page: 651
  year: 2019
  publication-title: J. Mater. Chem. B
– volume: 221
  year: 2019
  publication-title: Biomaterials
– volume: 11
  start-page: 585
  year: 2016
  publication-title: Asian J Pharm. Sci.
– volume: 27
  start-page: 33
  year: 2019
  publication-title: J. Drug Targeting
– volume: 8
  start-page: 5870
  year: 2018
  publication-title: Theranostics
– volume: 319
  start-page: 135
  year: 2020
  publication-title: J. Controlled Release
– volume: 175
  start-page: 82
  year: 2018
  publication-title: Biomaterials
– volume: 140
  start-page: 7373
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1526
  year: 2018
  publication-title: Biomater. Sci.
– volume: 314
  start-page: 72
  year: 2019
  publication-title: J. Controlled Release
– volume: 154
  start-page: 446
  year: 2020
  publication-title: Int. J. Biol. Macromol.
– volume: 497
  year: 2020
  publication-title: J. Magn. Magn. Mater.
– volume: 30
  start-page: 1191
  year: 2001
  publication-title: Free Radical Biol Med.
– volume: 140
  start-page: 2301
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 4218
  year: 2019
  publication-title: Biomacromolecules
– volume: 55
  start-page: 115
  year: 1975
  publication-title: J. Natl. Cancer Inst.
– volume: 33
  start-page: 941
  year: 2015
  publication-title: Nat. Biotechnol.
– volume: 7
  start-page: 97
  year: 2004
  publication-title: Drug Res Updates
– volume: 13
  start-page: 7623
  year: 2018
  publication-title: Int. J. Nanomed.
– volume: 30
  start-page: 2291
  year: 2019
  publication-title: Chin. Chem. Lett.
– volume: 11
  start-page: 7006
  year: 2017
  publication-title: ACS Nano
– volume: 10
  start-page: 1580
  year: 2019
  publication-title: Nat. Commun.
– volume: 10
  start-page: 4271
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 13
  year: 2015
  publication-title: Nat Mater.
– volume: 307
  start-page: 90
  year: 2019
  publication-title: J. Controlled Release
– volume: 199
  start-page: 176
  year: 2003
  publication-title: J. Pathol.
– volume: 47
  start-page: 1174
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 2986
  year: 2019
  publication-title: Biomater. Sci.
– volume: 2
  start-page: 1623
  year: 2019
  publication-title: ACS Appl. Bio Mater.
– volume: 29
  start-page: 927
  year: 2018
  publication-title: Chin. Chem. Lett.
– volume: 192
  start-page: 95
  year: 2019
  publication-title: Biomaterials
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 18
  start-page: 77
  year: 2009
  publication-title: Expert Opinion on Investigational Drugs
– volume: 1
  start-page: 496
  year: 2019
  publication-title: Matter
– volume: 45
  start-page: 1457
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 1192
  year: 2017
  publication-title: Theranostics
– volume: 11
  start-page: 8998
  year: 2017
  publication-title: ACS Nano
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 188
  start-page: 74
  year: 2019
  publication-title: Biomaterials
– volume: 58
  year: 2019
  publication-title: Angew Chem ‐ Int Ed
– volume: 2
  start-page: 5099
  year: 2019
  publication-title: ACS Appl. Bio Mater.
– volume: 9
  start-page: 421
  year: 2019
  publication-title: Acta Pharmaceutica Sin B
– volume: 7
  start-page: 3898
  year: 2019
  publication-title: Biomater. Sci.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 3991
  year: 2020
  publication-title: ACS Nano
– volume: 89
  start-page: 265
  year: 2019
  publication-title: Acta Biomater.
– ident: e_1_2_8_111_1
  doi: 10.1016/j.jconrel.2018.04.032
– ident: e_1_2_8_289_1
  doi: 10.1016/j.jconrel.2020.03.013
– ident: e_1_2_8_182_1
  doi: 10.1016/j.biomaterials.2020.120054
– ident: e_1_2_8_183_1
  doi: 10.1002/adhm.201900174
– volume: 62
  start-page: 5248
  year: 2002
  ident: e_1_2_8_149_1
  publication-title: Cancer Res.
– ident: e_1_2_8_189_1
  doi: 10.1002/adma.201800662
– ident: e_1_2_8_217_1
  doi: 10.1016/j.matt.2019.03.007
– ident: e_1_2_8_105_1
  doi: 10.1016/j.actbio.2018.01.014
– ident: e_1_2_8_65_1
  doi: 10.1016/j.biomaterials.2018.04.020
– ident: e_1_2_8_184_1
  doi: 10.1002/adma.201704490
– ident: e_1_2_8_114_1
  doi: 10.7150/thno.27581
– ident: e_1_2_8_34_1
  doi: 10.1016/j.biomaterials.2019.119327
– ident: e_1_2_8_242_1
  doi: 10.1002/adfm.201903791
– ident: e_1_2_8_230_1
  doi: 10.1002/advs.201901211
– volume: 29
  year: 2017
  ident: e_1_2_8_290_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_200_1
  doi: 10.1002/advs.201900586
– ident: e_1_2_8_66_1
  doi: 10.7150/thno.24015
– ident: e_1_2_8_181_1
  doi: 10.1021/acsami.6b14078
– ident: e_1_2_8_205_1
  doi: 10.2147/IJN.S179226
– ident: e_1_2_8_46_1
  doi: 10.1080/10717544.2017.1362677
– ident: e_1_2_8_271_1
  doi: 10.1002/adhm.201901316
– ident: e_1_2_8_120_1
  doi: 10.1016/j.biomaterials.2019.119498
– ident: e_1_2_8_121_1
  doi: 10.1021/acsnano.8b06399
– ident: e_1_2_8_244_1
  doi: 10.1002/smll.201703968
– ident: e_1_2_8_138_1
  doi: 10.1016/j.biomaterials.2018.08.014
– ident: e_1_2_8_147_1
  doi: 10.1016/j.biomaterials.2019.04.004
– ident: e_1_2_8_201_1
  doi: 10.1039/C8NR09990A
– ident: e_1_2_8_239_1
  doi: 10.1016/j.cej.2019.121917
– ident: e_1_2_8_118_1
  doi: 10.7150/thno.29820
– ident: e_1_2_8_40_1
  doi: 10.1002/marc.201800917
– ident: e_1_2_8_192_1
  doi: 10.1002/advs.201801526
– ident: e_1_2_8_137_1
  doi: 10.1039/C9CC06727B
– ident: e_1_2_8_284_1
  doi: 10.1002/anie.202004575
– volume: 389
  year: 2020
  ident: e_1_2_8_24_1
  publication-title: Chem. Eng. J.
– ident: e_1_2_8_232_1
  doi: 10.1002/adma.201802061
– ident: e_1_2_8_50_1
  doi: 10.3390/pharmaceutics11100507
– ident: e_1_2_8_214_1
  doi: 10.1039/C7CS00594F
– ident: e_1_2_8_14_1
  doi: 10.1517/17425247.2015.1071352
– ident: e_1_2_8_155_1
  doi: 10.1016/j.biomaterials.2019.01.029
– ident: e_1_2_8_166_1
  doi: 10.1039/C9CC02353D
– ident: e_1_2_8_80_1
  doi: 10.1021/acsami.9b15460
– ident: e_1_2_8_228_1
  doi: 10.1021/jacs.7b07818
– ident: e_1_2_8_233_1
  doi: 10.1038/ncomms12967
– ident: e_1_2_8_87_1
  doi: 10.1093/jn/134.3.489
– ident: e_1_2_8_257_1
  doi: 10.1021/acs.nanolett.9b03331
– ident: e_1_2_8_33_1
  doi: 10.1016/j.carbpol.2019.115498
– ident: e_1_2_8_54_1
  doi: 10.1016/j.drup.2004.01.004
– ident: e_1_2_8_156_1
  doi: 10.1016/j.actbio.2019.02.043
– ident: e_1_2_8_180_1
  doi: 10.1002/adfm.201805341
– ident: e_1_2_8_225_1
  doi: 10.1002/adfm.201802500
– ident: e_1_2_8_51_1
  doi: 10.1016/j.biomaterials.2020.119761
– ident: e_1_2_8_6_1
  doi: 10.7150/thno.8698
– ident: e_1_2_8_64_1
  doi: 10.1016/j.biomaterials.2017.04.032
– ident: e_1_2_8_119_1
  doi: 10.1021/acsnano.8b06400
– ident: e_1_2_8_190_1
  doi: 10.1021/ja510147n
– ident: e_1_2_8_104_1
  doi: 10.1039/C7PY01485F
– ident: e_1_2_8_9_1
  doi: 10.1021/acsnano.6b00870
– ident: e_1_2_8_98_1
  doi: 10.1021/acsabm.8b00623
– volume: 11
  start-page: 342
  year: 2019
  ident: e_1_2_8_238_1
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11070342
– ident: e_1_2_8_4_1
  doi: 10.1021/ar2001777
– ident: e_1_2_8_281_1
  doi: 10.1002/adma.201901513
– ident: e_1_2_8_26_1
  doi: 10.1021/acsami.9b12620
– ident: e_1_2_8_18_1
  doi: 10.7150/thno.38069
– ident: e_1_2_8_171_1
  doi: 10.1021/acsabm.9b00450
– ident: e_1_2_8_215_1
  doi: 10.1021/acsnano.7b02533
– volume: 29
  start-page: 24
  year: 2017
  ident: e_1_2_8_193_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_207_1
  doi: 10.1016/j.jconrel.2014.05.002
– ident: e_1_2_8_129_1
  doi: 10.1021/acsami.9b08115
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jcis.2019.07.061
– ident: e_1_2_8_95_1
  doi: 10.1021/acsnano.8b01893
– ident: e_1_2_8_174_1
  doi: 10.1016/j.ijbiomac.2019.03.030
– ident: e_1_2_8_254_1
  doi: 10.1002/adfm.201908598
– ident: e_1_2_8_70_1
  doi: 10.1016/j.biomaterials.2019.04.029
– ident: e_1_2_8_133_1
  doi: 10.1016/j.jconrel.2020.01.021
– ident: e_1_2_8_262_1
  doi: 10.1038/s41551-018-0203-4
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jconrel.2019.10.016
– ident: e_1_2_8_58_1
  doi: 10.1039/C8BM00899J
– ident: e_1_2_8_301_1
  doi: 10.1039/C9NR03052B
– ident: e_1_2_8_293_1
  doi: 10.1021/acsnano.8b06483
– ident: e_1_2_8_249_1
  doi: 10.1080/1061186X.2018.1464012
– volume: 7
  start-page: 3706
  year: 2019
  ident: e_1_2_8_76_1
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM00634F
– ident: e_1_2_8_273_1
  doi: 10.1002/adma.202000376
– ident: e_1_2_8_191_1
  doi: 10.1016/j.ajps.2016.06.001
– ident: e_1_2_8_283_1
  doi: 10.1016/j.jconrel.2019.10.031
– ident: e_1_2_8_39_1
  doi: 10.1002/adfm.201700220
– ident: e_1_2_8_270_1
  doi: 10.1002/adma.201808278
– ident: e_1_2_8_280_1
  doi: 10.1021/acsami.9b13214
– ident: e_1_2_8_93_1
  doi: 10.1016/j.cclet.2017.09.048
– ident: e_1_2_8_295_1
  doi: 10.3390/nano9020191
– ident: e_1_2_8_28_1
  doi: 10.1021/acsami.9b17587
– ident: e_1_2_8_86_1
  doi: 10.1016/S0891-5849(01)00480-4
– ident: e_1_2_8_145_1
  doi: 10.1021/acsami.9b12879
– ident: e_1_2_8_198_1
  doi: 10.1021/acsami.9b22654
– ident: e_1_2_8_203_1
  doi: 10.1016/j.cclet.2019.08.017
– ident: e_1_2_8_67_1
  doi: 10.1007/s12274-019-2330-y
– ident: e_1_2_8_115_1
  doi: 10.1038/s41467-019-11193-x
– ident: e_1_2_8_277_1
  doi: 10.1016/j.biomaterials.2018.10.036
– ident: e_1_2_8_55_1
  doi: 10.1016/j.actbio.2019.12.016
– ident: e_1_2_8_8_1
  doi: 10.1038/nbt.3330
– ident: e_1_2_8_122_1
  doi: 10.1016/j.biomaterials.2018.12.004
– ident: e_1_2_8_136_1
  doi: 10.1021/acsnano.8b07045
– ident: e_1_2_8_2_1
  doi: 10.1038/s41586-020-2168-1
– ident: e_1_2_8_256_1
  doi: 10.1002/anie.201912768
– ident: e_1_2_8_48_1
  doi: 10.1016/j.cej.2020.124494
– ident: e_1_2_8_63_1
  doi: 10.1021/acs.biomac.9b00583
– ident: e_1_2_8_216_1
  doi: 10.7150/thno.27351
– ident: e_1_2_8_79_1
  doi: 10.1021/acsabm.9b01172
– ident: e_1_2_8_126_1
  doi: 10.1016/j.jconrel.2019.12.041
– ident: e_1_2_8_267_1
  doi: 10.1002/adma.201602111
– ident: e_1_2_8_107_1
  doi: 10.1016/j.jconrel.2019.12.011
– ident: e_1_2_8_130_1
  doi: 10.1016/j.ijbiomac.2017.11.048
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jconrel.2019.10.017
– ident: e_1_2_8_102_1
  doi: 10.1016/j.jconrel.2020.02.021
– ident: e_1_2_8_219_1
  doi: 10.1002/adma.201808200
– ident: e_1_2_8_223_1
  doi: 10.1016/j.colsurfb.2019.03.070
– ident: e_1_2_8_158_1
  doi: 10.1002/adhm.201901105
– ident: e_1_2_8_259_1
  doi: 10.1016/j.ccr.2019.02.025
– ident: e_1_2_8_82_1
  doi: 10.1002/anie.201900886
– ident: e_1_2_8_41_1
  doi: 10.1021/acsnano.9b05749
– ident: e_1_2_8_116_1
  doi: 10.1021/acs.nanolett.9b00083
– ident: e_1_2_8_36_1
  doi: 10.1016/j.cej.2019.123043
– ident: e_1_2_8_78_1
  doi: 10.1002/adfm.201606826
– ident: e_1_2_8_73_1
  doi: 10.1021/acsnano.7b08219
– ident: e_1_2_8_139_1
  doi: 10.7150/thno.26225
– ident: e_1_2_8_161_1
  doi: 10.1021/acsami.6b15505
– ident: e_1_2_8_268_1
  doi: 10.1021/acs.chemrev.5b00112
– ident: e_1_2_8_276_1
  doi: 10.1021/acsabm.9b00769
– ident: e_1_2_8_5_1
  doi: 10.1038/natrevmats.2017.14
– ident: e_1_2_8_265_1
  doi: 10.1002/anie.201908712
– ident: e_1_2_8_13_1
  doi: 10.1016/j.mattod.2015.11.025
– ident: e_1_2_8_258_1
  doi: 10.1002/adma.201700996
– ident: e_1_2_8_298_1
  doi: 10.1111/cas.12153
– ident: e_1_2_8_255_1
  doi: 10.1021/acsbiomaterials.9b00237
– ident: e_1_2_8_127_1
  doi: 10.1021/acsnano.6b08731
– ident: e_1_2_8_236_1
  doi: 10.7150/thno.14184
– ident: e_1_2_8_75_1
  doi: 10.1039/C9BM00884E
– ident: e_1_2_8_99_1
  doi: 10.1021/acs.biomac.9b01202
– ident: e_1_2_8_128_1
  doi: 10.1002/anie.201705578
– ident: e_1_2_8_134_1
  doi: 10.1021/acsami.8b03506
– ident: e_1_2_8_229_1
  doi: 10.1002/adtp.201800090
– ident: e_1_2_8_53_1
  doi: 10.1016/j.ajps.2017.11.002
– ident: e_1_2_8_269_1
  doi: 10.1016/j.biomaterials.2016.08.015
– ident: e_1_2_8_12_1
  doi: 10.1246/cl.151176
– ident: e_1_2_8_123_1
  doi: 10.1038/nm0297-177
– ident: e_1_2_8_159_1
  doi: 10.1002/adma.201904278
– ident: e_1_2_8_291_1
  doi: 10.1021/acsnano.9b07984
– ident: e_1_2_8_248_1
  doi: 10.1002/adma.201900730
– ident: e_1_2_8_285_1
  doi: 10.1126/sciadv.aba5996
– ident: e_1_2_8_25_1
  doi: 10.1039/C9BM01692A
– ident: e_1_2_8_60_1
  doi: 10.1021/acsami.9b03056
– ident: e_1_2_8_83_1
  doi: 10.1021/acsnano.7b03507
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201805919
– ident: e_1_2_8_251_1
  doi: 10.1002/anie.201813702
– ident: e_1_2_8_142_1
  doi: 10.1021/acsnano.8b02813
– ident: e_1_2_8_187_1
  doi: 10.1002/anie.201902470
– ident: e_1_2_8_17_1
  doi: 10.1038/nmat4474
– ident: e_1_2_8_274_1
  doi: 10.1016/j.cclet.2019.05.017
– ident: e_1_2_8_278_1
  doi: 10.1016/j.jconrel.2019.01.016
– ident: e_1_2_8_61_1
  doi: 10.1021/acs.biomac.9b01578
– volume: 13
  year: 2017
  ident: e_1_2_8_57_1
  publication-title: Small
– ident: e_1_2_8_221_1
  doi: 10.1039/C5NR04436G
– ident: e_1_2_8_85_1
  doi: 10.1016/j.jconrel.2019.05.016
– ident: e_1_2_8_167_1
  doi: 10.1002/path.1277
– ident: e_1_2_8_294_1
  doi: 10.1038/natrevmats.2016.75
– ident: e_1_2_8_260_1
  doi: 10.1038/s41572-019-0064-5
– ident: e_1_2_8_96_1
  doi: 10.1039/C9NR07725A
– ident: e_1_2_8_297_1
  doi: 10.2174/157340711795163866
– ident: e_1_2_8_49_1
  doi: 10.1021/acsami.7b02457
– ident: e_1_2_8_72_1
  doi: 10.1016/j.biomaterials.2018.10.010
– ident: e_1_2_8_253_1
  doi: 10.1021/acsnano.9b06689
– ident: e_1_2_8_3_1
  doi: 10.1016/j.addr.2012.11.004
– ident: e_1_2_8_173_1
  doi: 10.1016/j.jconrel.2017.07.031
– ident: e_1_2_8_196_1
  doi: 10.1016/j.msec.2016.11.030
– ident: e_1_2_8_241_1
  doi: 10.1002/adma.201803031
– ident: e_1_2_8_261_1
  doi: 10.1021/acs.chemrev.8b00294
– ident: e_1_2_8_108_1
  doi: 10.1016/j.jconrel.2019.06.010
– ident: e_1_2_8_179_1
  doi: 10.1016/j.biomaterials.2017.11.019
– ident: e_1_2_8_90_1
  doi: 10.1039/C9NR07254C
– ident: e_1_2_8_224_1
  doi: 10.1016/j.cej.2020.124494
– ident: e_1_2_8_35_1
  doi: 10.1021/jacs.9b12232
– ident: e_1_2_8_150_1
  doi: 10.1016/0360-3016(91)90057-B
– ident: e_1_2_8_170_1
  doi: 10.1039/C8CC09047E
– volume: 12
  start-page: 17948
  year: 2020
  ident: e_1_2_8_204_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_206_1
  doi: 10.1002/adfm.201808306
– ident: e_1_2_8_252_1
  doi: 10.1016/j.smaim.2020.05.002
– ident: e_1_2_8_97_1
  doi: 10.1021/acs.nanolett.8b01924
– ident: e_1_2_8_52_1
  doi: 10.1083/jcb.201102095
– ident: e_1_2_8_220_1
  doi: 10.1039/C5NR04045K
– ident: e_1_2_8_44_1
  doi: 10.1002/adfm.201704135
– ident: e_1_2_8_296_1
  doi: 10.1021/bc0340924
– ident: e_1_2_8_74_1
  doi: 10.1016/j.colsurfb.2019.05.064
– ident: e_1_2_8_218_1
  doi: 10.1002/anie.201710800
– ident: e_1_2_8_151_1
  doi: 10.1016/j.biomaterials.2019.119422
– ident: e_1_2_8_222_1
  doi: 10.1002/anie.201907388
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.nanolett.9b01660
– ident: e_1_2_8_194_1
  doi: 10.1016/j.biomaterials.2018.02.023
– volume: 22
  start-page: 848
  year: 2019
  ident: e_1_2_8_246_1
  publication-title: Iranian J Basic Med Sci
– ident: e_1_2_8_168_1
  doi: 10.1016/j.ijbiomac.2020.03.138
– ident: e_1_2_8_266_1
  doi: 10.1002/adma.201808024
– volume: 7
  start-page: 4195
  year: 2019
  ident: e_1_2_8_199_1
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM00992B
– ident: e_1_2_8_71_1
  doi: 10.1021/acsami.6b16815
– ident: e_1_2_8_10_1
  doi: 10.1016/j.addr.2017.03.004
– ident: e_1_2_8_165_1
  doi: 10.1039/C8BM00243F
– ident: e_1_2_8_178_1
  doi: 10.1016/j.jconrel.2019.10.052
– ident: e_1_2_8_279_1
  doi: 10.1021/jacs.7b12025
– volume: 29
  start-page: 1606596
  year: 2017
  ident: e_1_2_8_15_1
  publication-title: Nat Rev Mater.
– ident: e_1_2_8_162_1
  doi: 10.1021/acsami.8b12232
– ident: e_1_2_8_146_1
  doi: 10.1021/acsabm.9b00584
– ident: e_1_2_8_243_1
  doi: 10.1021/acsami.7b02457
– ident: e_1_2_8_30_1
  doi: 10.1016/j.carbpol.2020.115930
– ident: e_1_2_8_84_1
  doi: 10.1016/j.biomaterials.2019.119702
– ident: e_1_2_8_195_1
  doi: 10.1002/adma.201606134
– ident: e_1_2_8_68_1
  doi: 10.1021/acsnano.9b02096
– ident: e_1_2_8_212_1
  doi: 10.1093/jnci/55.1.115
– ident: e_1_2_8_62_1
  doi: 10.1002/adhm.201900406
– ident: e_1_2_8_77_1
  doi: 10.1016/j.jconrel.2020.02.038
– ident: e_1_2_8_263_1
  doi: 10.1021/acsnano.5b05825
– ident: e_1_2_8_299_1
  doi: 10.1016/j.ejca.2010.07.015
– ident: e_1_2_8_94_1
  doi: 10.1016/j.actbio.2018.05.031
– ident: e_1_2_8_197_1
  doi: 10.7150/thno.14858
– ident: e_1_2_8_172_1
  doi: 10.1039/C8NR10528F
– ident: e_1_2_8_231_1
  doi: 10.1016/j.biomaterials.2017.11.015
– ident: e_1_2_8_157_1
  doi: 10.1016/j.biomaterials.2019.119460
– ident: e_1_2_8_141_1
  doi: 10.1016/j.actbio.2018.10.029
– ident: e_1_2_8_32_1
  doi: 10.1021/acsami.9b07957
– ident: e_1_2_8_106_1
  doi: 10.1021/acs.biomac.9b01472
– volume: 9
  start-page: 3308
  year: 2019
  ident: e_1_2_8_208_1
  publication-title: Theranostics
  doi: 10.7150/thno.33888
– ident: e_1_2_8_245_1
  doi: 10.3390/pharmaceutics11100507
– ident: e_1_2_8_247_1
  doi: 10.1002/adhm.201700646
– ident: e_1_2_8_148_1
  doi: 10.1517/13543780802567250
– ident: e_1_2_8_131_1
  doi: 10.1016/j.biomaterials.2019.01.048
– ident: e_1_2_8_140_1
  doi: 10.1039/C7NR07677K
– ident: e_1_2_8_177_1
  doi: 10.1039/C9NR01691K
– ident: e_1_2_8_213_1
  doi: 10.1021/cr5004198
– ident: e_1_2_8_23_1
  doi: 10.7150/thno.17881
– ident: e_1_2_8_226_1
  doi: 10.1002/smll.201602660
– ident: e_1_2_8_91_1
  doi: 10.1021/acsami.7b18245
– ident: e_1_2_8_176_1
  doi: 10.1021/acsami.8b17750
– ident: e_1_2_8_237_1
  doi: 10.1016/j.biomaterials.2013.04.052
– ident: e_1_2_8_287_1
  doi: 10.1016/j.cclet.2019.08.017
– ident: e_1_2_8_110_1
  doi: 10.1016/j.biomaterials.2018.05.025
– ident: e_1_2_8_27_1
  doi: 10.7150/thno.42008
– ident: e_1_2_8_282_1
  doi: 10.1039/C9BM01640F
– volume: 497
  start-page: 166012
  year: 2020
  ident: e_1_2_8_202_1
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.166012
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ijpharm.2019.118841
– ident: e_1_2_8_81_1
  doi: 10.1016/j.biomaterials.2019.119501
– ident: e_1_2_8_103_1
  doi: 10.1016/j.biomaterials.2020.119760
– ident: e_1_2_8_235_1
  doi: 10.1002/adma.201603276
– ident: e_1_2_8_153_1
  doi: 10.1021/acsami.7b11614
– ident: e_1_2_8_42_1
  doi: 10.1021/acsnano.9b04436
– ident: e_1_2_8_69_1
  doi: 10.1021/acs.biomac.9b01123
– ident: e_1_2_8_100_1
  doi: 10.1021/acsami.8b09342
– ident: e_1_2_8_210_1
  doi: 10.1002/adma.201900927
– ident: e_1_2_8_101_1
  doi: 10.1021/acs.nanolett.9b05210
– ident: e_1_2_8_272_1
  doi: 10.1021/acsami.9b10444
– ident: e_1_2_8_124_1
  doi: 10.1007/s10555-007-9055-1
– volume: 62
  start-page: 307
  year: 2002
  ident: e_1_2_8_88_1
  publication-title: Cancer Res.
– ident: e_1_2_8_164_1
  doi: 10.1021/acsnano.6b05541
– ident: e_1_2_8_209_1
  doi: 10.1039/C5CS00798D
– ident: e_1_2_8_113_1
  doi: 10.1021/acsabm.9b00036
– ident: e_1_2_8_300_1
  doi: 10.7150/thno.30259
– ident: e_1_2_8_160_1
  doi: 10.1021/bc0499174
– ident: e_1_2_8_240_1
  doi: 10.3389/fphar.2019.00270
– ident: e_1_2_8_154_1
  doi: 10.1039/C7BM01182B
– ident: e_1_2_8_275_1
  doi: 10.1039/C9NR01194C
– ident: e_1_2_8_250_1
  doi: 10.1038/s41598-018-36340-0
– ident: e_1_2_8_143_1
  doi: 10.1039/C9BM00461K
– ident: e_1_2_8_227_1
  doi: 10.1073/pnas.1906929116
– ident: e_1_2_8_19_1
  doi: 10.1016/j.ccell.2018.02.008
– ident: e_1_2_8_109_1
  doi: 10.1021/acsami.7b04351
– ident: e_1_2_8_152_1
  doi: 10.1038/s41467-019-09389-2
– ident: e_1_2_8_144_1
  doi: 10.1021/acs.nanolett.9b03214
– ident: e_1_2_8_45_1
  doi: 10.1002/smll.201700623
– ident: e_1_2_8_47_1
  doi: 10.1002/advs.201800510
– ident: e_1_2_8_188_1
  doi: 10.1021/acsami.9b21296
– ident: e_1_2_8_11_1
  doi: 10.1016/j.smaim.2020.04.001
– ident: e_1_2_8_135_1
  doi: 10.1021/acsami.8b06491
– ident: e_1_2_8_234_1
  doi: 10.1016/j.biomaterials.2020.119770
– ident: e_1_2_8_132_1
  doi: 10.1016/j.biomaterials.2020.119982
– ident: e_1_2_8_59_1
  doi: 10.1016/j.apsb.2018.08.008
– ident: e_1_2_8_286_1
  doi: 10.1016/j.actbio.2018.11.026
– ident: e_1_2_8_292_1
  doi: 10.1016/j.biomaterials.2019.119636
– ident: e_1_2_8_185_1
  doi: 10.1002/smll.201901813
– ident: e_1_2_8_7_1
  doi: 10.1016/j.matt.2019.05.019
– ident: e_1_2_8_56_1
  doi: 10.1039/C8TB02882F
– ident: e_1_2_8_92_1
  doi: 10.7150/thno.36163
– ident: e_1_2_8_211_1
  doi: 10.1073/pnas.1714421115
– ident: e_1_2_8_117_1
  doi: 10.1016/j.jcis.2018.04.058
– ident: e_1_2_8_22_1
  doi: 10.1039/C9BM01927H
– ident: e_1_2_8_112_1
  doi: 10.1021/acsanm.8b02023
– ident: e_1_2_8_89_1
  doi: 10.1016/j.jconrel.2017.03.036
– ident: e_1_2_8_169_1
  doi: 10.1021/acsabm.9b01022
– ident: e_1_2_8_288_1
  doi: 10.1016/j.cclet.2017.09.042
– ident: e_1_2_8_186_1
  doi: 10.1021/jacs.7b12368
– ident: e_1_2_8_125_1
  doi: 10.1016/0360-3016(90)90018-F
– ident: e_1_2_8_264_1
  doi: 10.1002/adma.201802244
– ident: e_1_2_8_29_1
  doi: 10.1039/C7NR05450E
– ident: e_1_2_8_175_1
  doi: 10.1021/acsami.7b17506
– ident: e_1_2_8_43_1
  doi: 10.1021/acs.chemmater.6b01587
– ident: e_1_2_8_163_1
  doi: 10.1016/j.apmt.2018.02.003
SSID ssj0002511795
Score 2.5139284
SecondaryResourceType review_article
Snippet Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and enzyme, or...
Abstract Until now, enormous smart materials have been engineered with endogenous stimulators such as pH, reactive oxygen species, glutathione, hypoxia and...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms cancer therapy
drug delivery
exogenous triggered
smart materials
tumor microenvironment responsive
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQWVgQCBDlJQ8wIBQ1cWwnGQFRAQNCgkK3yPbZXSBFoR367_E5aaADSIxJTol8D9_5cvcdIaeJ5SCgSCImtI04gs9qwL_wGXda2cI7lVDl-yBvR_x-LMZtwg17YRp8iC7hhpYR9ms0cKU_B9-goS93r_54h50m3G_B69hdiyV9jD92ORYMn7MweIVJrxBpkedt7bt_Nvj5ghWvFMD7V4PV4G2GW2SzDRPpZSPXbbJmqx3Cn969oKmPMRu1oT7gpFDPJxT8WrxOLqiqgBoUZE2bzqrFLhkNb56vb6N26kFkEPw9kgA8S7krrIwh505pnoCwSovEZYnhqStyZgtltfHeupCgvI_BIZfWG6hlMt0jvWpa2X1CndUiSxWoLAWuY6dwvnQBIna5S3PB-uRiuerStJDgOJnirWzAjFnpeVQuedQnZx31RwOF8QvdFTKwo0EA63BjWk_K1h7KDCw4sC6WxvBcCsWl8YdVBjIxOnW2T84D-__8El4wmR38g_aQbDCsSgm1N0ekN6vn9tiHFTN9EnTnC5Elwyo
  priority: 102
  providerName: Wiley-Blackwell
Title Smart materials for drug delivery and cancer therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20200042
https://doaj.org/article/7dedfdef06cc4865a46c8252d61cb3fe
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwsCAaJ8VB5gQChq49hOMgJqVZBASFDoFtm-M0spqGqHLvx2fElatQOwsERKcpKdu4vfnXx-x9hZjBIU5HEklMVIEvmsBdqFT6W3BvMAKmWV74PuD-TdUA1XWn1RTVhFD1wprp0Cggf0He2czLQyUruQ1QjQsbOJR1p9A-atJFO0BlPgnJYtV4QOrpDkWVZXvYd37Zfb15AZ0iEVKdbwqKTtXw9TS5zp7bDtOkDkV9XEdtkGjveYfHoPM-UhuqwchodQk8Nk9sYBR1RZMedmDNyRCSe8OlM132eDXvf5ph_V_Q4iR7TvkQaQaSJ9jroDmfTGyhgUGqtin8ZOJj7PBOYGrQs4nWswAV2ovSWGXxOFTg5YY_wxxkPGPVqVJgZMmoC0HW-os3QOquMzn2RKNNnl4qsLV5OBU0-KUVHRGIsi6KhY6KjJzpfSnxUJxg9y16TApQxRV5cPgkGL2qDFXwZtsotS_b-ORDdCp0f_MeAx2xJUqFKW45ywxnQyw9MQaUxti20K-dgqXStc77-634HFzxc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUQHWBBIECUTw8wIBTROLaTjAVRtVBYaAGxRLbP7gItqmDov-cuSQsMIDEmOSXy-c73fDm_Y-w49hIU5HEklPWRJPJZC_QXPpXBGp9jUCmrfO90dyivn9RT3eeUzsJU_BCLhBt5Rrlek4NTQvr8izX0ofeI-zs6aiJxDW4QsEGzbrQfhs_DRZqFEHRa9l4RGm0iybOsLn_HZ-ffX_EjMJX8_T_xahlwOutsrUaKvF1N7QZb8uNNJu9fca45wszKcjhiTg7TjxEHHA6a5YybMXBHcznl1eGq2RYbdq4Gl92obnwQOeJ_jzSATBMZcq9bkMlgrIxBeWNVHNLYySTkmfC58dZhwM41GAwz1OfSo496oZNttjyejP0O48FblSYGTJqAtK1gqMV0DqoVspBkSjTZ2XzUhatZwak5xUtR8RmLAnVUzHXUZCcL6beKDeMXuQtS4EKGOKzLG5PpqKhdokjBQwAfWto5mWllpHa4XxWgY2eT4JvstFT_n1-iC6HT3X_IHrGV7uC2X_R7dzd7bFVQkUpZirPPlt-nH_4AUca7Pawt6RMbUshl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6ygngRRcX1mYMeRIptmqTtcX0svlgErYqXkmSSvWh3KbsH_72Ttq7uQcFj26El88hMpjPfEHIYWQ4CsihgQtuAe_BZDf4vfMKdVjZDp1JX-Q7kVc5vXsRLm3DzvTANPsQs4eYto96vvYGPwZ1-g4Y-XT_j8c53mnDcghcFOqawQxZ7T_lrPsuy-AA6qUevMIkqEWdp2la_47PTn6-Y80s1fP98uFr7m_4qWWkDRdprJLtGFmy5TvjDO4qaYpTZKA7FkJNCNR1SwNWgVn5QVQI1XpQVbXqrPjZI3r98PL8K2rkHgfHw74EE4EnMXWZlCCl3SvMIhFVaRC6JDI9dljKbKasN-utMgkIv48dcWjRRy2S8STrlqLRbhDqrRRIrUEkMXIdO-QnTGYjQpS5OBeuSk69VF6YFBfezKd6KBs6YFcij4otHXXI0ox43YBi_0J15Bs5oPIR1fWNUDYvWIooELDiwLpTG8FQKxaXB4yoDGRkdO9slxzX7__ySv2Ay2f4H7QFZur_oF3fXg9sdssx8iUpdiLNLOpNqavcwxpjo_VaRPgHwkceF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+materials+for+drug+delivery+and+cancer+therapy&rft.jtitle=View+%28Beijing%2C+China%29&rft.au=Yao+Yang&rft.au=Weiwei+Zeng&rft.au=Ping+Huang&rft.au=Xiaowei+Zeng&rft.date=2021-04-01&rft.pub=Wiley&rft.issn=2688-3988&rft.eissn=2688-268X&rft.volume=2&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2FVIW.20200042&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7dedfdef06cc4865a46c8252d61cb3fe
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-3988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-3988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-3988&client=summon