Influence of mutations associated with Gilbert and Crigler-Najjar type II syndromes on the glucuronidation kinetics of bilirubin and other UDP-glucuronosyltransferase 1A substrates
UGT1A1 coding region mutations, including UGT1A1*6 (G71R), UGT1A1*7 (Y486D), UGT1A1*27 (P229Q) and UGT1A1*62 (F83L), have been linked to Gilbert syndrome in Asian populations, whereas homozygosity for UGT1A1*7 is associated with the Crigler-Najjar syndrome type II. This work compared the effects of...
Saved in:
Published in | Pharmacogenetics and genomics Vol. 17; no. 12; p. 1017 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.12.2007
|
Subjects | |
Online Access | Get more information |
ISSN | 1744-6872 |
DOI | 10.1097/FPC.0b013e328256b1b6 |
Cover
Abstract | UGT1A1 coding region mutations, including UGT1A1*6 (G71R), UGT1A1*7 (Y486D), UGT1A1*27 (P229Q) and UGT1A1*62 (F83L), have been linked to Gilbert syndrome in Asian populations, whereas homozygosity for UGT1A1*7 is associated with the Crigler-Najjar syndrome type II. This work compared the effects of (a) the individual UGT1A1 mutations on the glucuronidation kinetics bilirubin, beta-estradiol, 4-methylumbelliferone (4MU) and 1-naphthol (1NP), and (b) the Y486 mutation, which occurs in the conserved carboxyl terminal domain of UGT1A enzymes, on 4MU, 1NP and naproxen glucuronidation by UGT1A3, UGT1A6 and UGT1A10.
Mutant UGT1A cDNAs were generated by site-directed mutagenesis and the encoded proteins were expressed in HEK293 cells. The glucuronidation kinetics of each substrate with each enzyme were characterized using specific high-performance liquid chromatography (HPLC) methods.
Compared with wild-type UGT1A1, in-vitro clearances for bilirubin, beta-estradiol, 4MU and 1NP glucuronidation by UGT1A1*6 and UGT1A1*27 were reduced by 34-74%, most commonly as a result of a reduction in Vmax. However, the magnitude of the decrease in the in-vitro clearances varied from substrate to substrate with each mutant. The glucuronidation activities of UGT1A1*7 and UGT1A1*62 were reduced by >95%. Introduction of the Y486D mutation essentially abolished UGT1A6 and UGT1A10 activities, and resulted in 60-90% reductions in UGT1A3 in-vitro clearances.
The glucuronidation of all UGT1A1 substrates is likely to be impaired in subjects carrying the UGT1A1*6 and UGT1A1*62 alleles, although the reduction in metabolic clearance might vary with the substrate. The Y486D mutation appears to greatly reduce most, but not all, UGT1A activities. |
---|---|
AbstractList | UGT1A1 coding region mutations, including UGT1A1*6 (G71R), UGT1A1*7 (Y486D), UGT1A1*27 (P229Q) and UGT1A1*62 (F83L), have been linked to Gilbert syndrome in Asian populations, whereas homozygosity for UGT1A1*7 is associated with the Crigler-Najjar syndrome type II. This work compared the effects of (a) the individual UGT1A1 mutations on the glucuronidation kinetics bilirubin, beta-estradiol, 4-methylumbelliferone (4MU) and 1-naphthol (1NP), and (b) the Y486 mutation, which occurs in the conserved carboxyl terminal domain of UGT1A enzymes, on 4MU, 1NP and naproxen glucuronidation by UGT1A3, UGT1A6 and UGT1A10.
Mutant UGT1A cDNAs were generated by site-directed mutagenesis and the encoded proteins were expressed in HEK293 cells. The glucuronidation kinetics of each substrate with each enzyme were characterized using specific high-performance liquid chromatography (HPLC) methods.
Compared with wild-type UGT1A1, in-vitro clearances for bilirubin, beta-estradiol, 4MU and 1NP glucuronidation by UGT1A1*6 and UGT1A1*27 were reduced by 34-74%, most commonly as a result of a reduction in Vmax. However, the magnitude of the decrease in the in-vitro clearances varied from substrate to substrate with each mutant. The glucuronidation activities of UGT1A1*7 and UGT1A1*62 were reduced by >95%. Introduction of the Y486D mutation essentially abolished UGT1A6 and UGT1A10 activities, and resulted in 60-90% reductions in UGT1A3 in-vitro clearances.
The glucuronidation of all UGT1A1 substrates is likely to be impaired in subjects carrying the UGT1A1*6 and UGT1A1*62 alleles, although the reduction in metabolic clearance might vary with the substrate. The Y486D mutation appears to greatly reduce most, but not all, UGT1A activities. |
Author | Mackenzie, Peter I Lewis, Benjamin C Miners, John O Yoovathaworn, Krongtong Udomuksorn, Wandee Elliot, David J |
Author_xml | – sequence: 1 givenname: Wandee surname: Udomuksorn fullname: Udomuksorn, Wandee organization: Department of Clinical Pharmacology, Flinders University and Flinders Medical Centre, Adelaide, South Australia, Australia – sequence: 2 givenname: David J surname: Elliot fullname: Elliot, David J – sequence: 3 givenname: Benjamin C surname: Lewis fullname: Lewis, Benjamin C – sequence: 4 givenname: Peter I surname: Mackenzie fullname: Mackenzie, Peter I – sequence: 5 givenname: Krongtong surname: Yoovathaworn fullname: Yoovathaworn, Krongtong – sequence: 6 givenname: John O surname: Miners fullname: Miners, John O |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18004206$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kMFOAjEYhHvACKhvYMz_Aottt-yWo0FREqMc5Eza7V8oLi1puzG8lw8oopwmmcx8k8yQ9HzwSMgtoyNGJ_X9bDEdUU1ZiSWXfFxppqseGbBaiKKSNe-TYUpbSstqIvgl6TNJqeC0GpDvubdth75BCBZ2XVbZBZ9ApRQapzIa-HJ5A8-u1RgzKG9gGt26xVi8qe1WRciHPcJ8DungTQw7TBA85A3Cuu2aLgbvzAkKn85jdk36XdKudbHTzp-I4RiPsHxcFOdOSIc2R-WTxagSAnuA1Ol0tDKma3JhVZvw5l-vyHL29DF9KV7fn-fTh9eiKSXlRa2t5ijHWJZUMMMnE1FhQymXFVopjZTCCMaMpfUYJTbNWAttbVlxxhU1hl-Ruz_uvtM7NKt9dDsVD6vzffwHN9R4hg |
CitedBy_id | crossref_primary_10_1016_j_bcp_2008_04_014 crossref_primary_10_1186_s40001_014_0051_y crossref_primary_10_1002_humu_21133 crossref_primary_10_1080_00498254_2018_1451668 crossref_primary_10_1016_j_fsi_2021_07_004 crossref_primary_10_1007_s00204_008_0314_x crossref_primary_10_1124_dmd_109_030130 crossref_primary_10_1124_mol_108_048645 crossref_primary_10_7759_cureus_45521 crossref_primary_10_1016_j_pharmthera_2020_107689 crossref_primary_10_1016_j_phrs_2016_12_008 crossref_primary_10_1007_s00228_010_0899_x crossref_primary_10_1016_j_bcp_2019_08_018 crossref_primary_10_1038_srep17778 crossref_primary_10_1016_j_pharmthera_2023_108459 crossref_primary_10_1074_jbc_M807961200 crossref_primary_10_1124_dmd_109_029660 crossref_primary_10_1371_journal_pone_0134548 crossref_primary_10_1074_jbc_M112_343608 crossref_primary_10_1124_dmd_108_021105 crossref_primary_10_31146_1682_8658_ecg_204_8_56_62 crossref_primary_10_1124_dmd_110_037036 crossref_primary_10_1016_j_mgene_2020_100788 crossref_primary_10_1007_s11095_013_1207_0 crossref_primary_10_1021_acs_molpharmaceut_7b00365 crossref_primary_10_3390_ph16111596 crossref_primary_10_1093_jb_mvq048 crossref_primary_10_3390_ani13091503 crossref_primary_10_1016_S0973_6883_11_60239_9 crossref_primary_10_1016_j_aca_2021_338305 crossref_primary_10_1124_mol_107_037952 crossref_primary_10_1371_journal_pone_0225244 crossref_primary_10_3892_mmr_2017_7867 crossref_primary_10_1161_JAHA_117_005520 crossref_primary_10_2217_14622416_9_6_703 crossref_primary_10_1124_dmd_110_033829 crossref_primary_10_1016_j_jpba_2014_01_025 crossref_primary_10_1016_j_toxlet_2021_05_004 crossref_primary_10_1016_j_bcp_2017_01_002 crossref_primary_10_3350_kjhep_2010_16_3_321 crossref_primary_10_1016_j_bcp_2012_08_026 crossref_primary_10_1002_psp4_12301 crossref_primary_10_1007_s00228_014_1709_7 crossref_primary_10_1002_mnfr_201500790 crossref_primary_10_1186_s12967_018_1579_3 crossref_primary_10_3389_fsurg_2022_889753 crossref_primary_10_3109_03602530903209429 crossref_primary_10_1016_j_clinbiochem_2019_06_013 crossref_primary_10_1208_s12248_009_9126_z crossref_primary_10_1016_j_bcp_2008_12_004 crossref_primary_10_1093_glycob_cwaa041 crossref_primary_10_1016_j_biocel_2013_02_019 crossref_primary_10_1016_j_drup_2018_07_001 crossref_primary_10_1124_dmd_110_035030 crossref_primary_10_1158_1078_0432_CCR_11_2484 crossref_primary_10_1124_mol_110_069336 crossref_primary_10_1016_j_dmpk_2016_08_003 crossref_primary_10_1515_med_2022_0549 crossref_primary_10_1111_bcp_12889 crossref_primary_10_3109_10408441003742895 crossref_primary_10_20538_1682_0363_2023_2_39_45 crossref_primary_10_1080_10408360802374624 crossref_primary_10_1371_journal_pone_0057045 crossref_primary_10_3109_03602530903210716 crossref_primary_10_1124_mol_114_093823 crossref_primary_10_1016_j_fct_2017_07_057 crossref_primary_10_1371_journal_pone_0126263 crossref_primary_10_3945_jn_114_202622 crossref_primary_10_1124_mol_117_110668 crossref_primary_10_1124_dmd_115_065870 crossref_primary_10_1016_j_aquaculture_2025_742186 crossref_primary_10_1080_03602530802341133 crossref_primary_10_1124_dmd_109_028225 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1097/FPC.0b013e328256b1b6 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
ExternalDocumentID | 18004206 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .Z2 0R~ 123 4Q1 4Q2 4Q3 53G 5VS 8L- AAAAV AAHPQ AAIQE AAMTA AARTV AASCR AAYOK ABASU ABBUW ABDIG ABJNI ABVCZ ABXVJ ABZAD ACDDN ACEWG ACGFO ACGFS ACILI ACWDW ACWRI ACXJB ACXNZ ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFDTB AFUWQ AHQNM AHRYX AHVBC AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM BQLVK C45 CGR CS3 CUY CVF DIWNM DU5 DUNZO E.X EBS ECM EEVPB EIF EJD EX3 F2K F2L F5P FCALG FL- GNXGY GQDEL HLJTE HZ~ IKREB IN~ IPNFZ JF9 JG8 KD2 KMI L-C NPM O9- OAG OAH OCUKA OJAPA OL1 OLV OLW OLZ OPC OPUJH ORVUJ OUVQU OVD OVDNE OWU OWV OXXIT P2P RIG RLZ S4S T8P TEORI TSPGW V2I VVN W3M WOQ WOW X3V X3W ZFV ZZMQN |
ID | FETCH-LOGICAL-c3802-7bfb2e85e33041d29946ec00286ef88d884d411df075e8ecc5b4bff36212a0dd2 |
ISSN | 1744-6872 |
IngestDate | Wed Feb 19 01:47:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3802-7bfb2e85e33041d29946ec00286ef88d884d411df075e8ecc5b4bff36212a0dd2 |
PMID | 18004206 |
ParticipantIDs | pubmed_primary_18004206 |
PublicationCentury | 2000 |
PublicationDate | 2007-December |
PublicationDateYYYYMMDD | 2007-12-01 |
PublicationDate_xml | – month: 12 year: 2007 text: 2007-December |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Pharmacogenetics and genomics |
PublicationTitleAlternate | Pharmacogenet Genomics |
PublicationYear | 2007 |
SSID | ssj0036942 |
Score | 2.1997604 |
Snippet | UGT1A1 coding region mutations, including UGT1A1*6 (G71R), UGT1A1*7 (Y486D), UGT1A1*27 (P229Q) and UGT1A1*62 (F83L), have been linked to Gilbert syndrome in... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1017 |
SubjectTerms | Amino Acid Substitution Bilirubin - metabolism Cell Line Crigler-Najjar Syndrome - enzymology Crigler-Najjar Syndrome - genetics Estradiol - metabolism Gilbert Disease - enzymology Gilbert Disease - genetics Glucuronides - metabolism Glucuronosyltransferase - genetics Glucuronosyltransferase - metabolism Humans Hymecromone - analogs & derivatives Hymecromone - metabolism Kinetics Mutagenesis, Site-Directed Naphthols - metabolism Pharmacogenetics Point Mutation Recombinant Proteins - genetics Recombinant Proteins - metabolism Substrate Specificity |
Title | Influence of mutations associated with Gilbert and Crigler-Najjar type II syndromes on the glucuronidation kinetics of bilirubin and other UDP-glucuronosyltransferase 1A substrates |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18004206 |
Volume | 17 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6cOGCeL_RHNBesoHN086xFJYNgqqHVuxtFTeORLtNVk0j1P1d_C_-AjN2XlsVtHCJojhxms6n8Xj8zWfG3qQ8jTzfS2yXdjXBiFjaMuOePRcEoEyGvk64fR2HpzP_81lwNhj86rGWqo18O7_aW1fyP1bFa2hXqpL9B8u2neIFPEf74hEtjMcb2ThudhjRq-TVpqa1JfVf3jDLP30nIStDJR_hbPxCre1xslgka5OBjeNWuKBZPLCIyl6Rbq7Zc8laYjSqFZ3xTcSnXVc4pdY96hIua_ZhYjfPFOX2YqMDYrXGQdJyhlaJ_knr4Jb9aHhS62bjB6pWLppUY1c9Dv4sLVbVsiwM6_gbJb1bMBrGScvN79a4vqgfRjzhvcoXyYpKG3u596XKr8y6jKYn15njJvfBezwS466579uh4Nf9Oe_j1u15Z3I_e4cNI0d8Mhk1eWGq6A2lI8P-7Wj8y5WGkiPI2R3foHVHzLtpOmAHnNM4MqbkkgkcvDDSez21H9VUekb83b6fRnq3dXc7cyIdG03vsbv1pAaGBqH32UDlD9hhbd3tEUy7Ir_yCA5h0umlbx-yny2MocighTF0MAaCMdQwBkQAXIcxEIwhjqGFMRQ5IC5hB8bQwJje1MJY96hhDH-BMThD6GD8iM1OPk5Hp3a9mYg99wSO-lxm0lUiUJTAc1KMwvxQzSnlEKpMiFQIP_UdJ80whlYCHVsgfZllGN85bnKcpu5jdisvcvWUgUq9JHQVjxQ-IqQvIkfIwE0CLwmkCL1n7ImxxvmlUYw5b-z0_I8tL9idDuAv2e0MXZR6hfHuRr7WKPkNKKOzLA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+mutations+associated+with+Gilbert+and+Crigler-Najjar+type+II+syndromes+on+the+glucuronidation+kinetics+of+bilirubin+and+other+UDP-glucuronosyltransferase+1A+substrates&rft.jtitle=Pharmacogenetics+and+genomics&rft.au=Udomuksorn%2C+Wandee&rft.au=Elliot%2C+David+J&rft.au=Lewis%2C+Benjamin+C&rft.au=Mackenzie%2C+Peter+I&rft.date=2007-12-01&rft.issn=1744-6872&rft.volume=17&rft.issue=12&rft.spage=1017&rft_id=info:doi/10.1097%2FFPC.0b013e328256b1b6&rft_id=info%3Apmid%2F18004206&rft_id=info%3Apmid%2F18004206&rft.externalDocID=18004206 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-6872&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-6872&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-6872&client=summon |