Efficiency of solar wind energy coupling to the ionosphere
We present a statistical investigation into the variations of the ionospheric energy coupling efficiencies with the solar wind energy input, the interplanetary magnetic field (IMF) clock angle and the solar wind dynamic pressure. The ionospheric energy coupling efficiencies are defined as the ratios...
Saved in:
Published in | Journal of Geophysical Research: Space Physics Vol. 117; no. A7; pp. np - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.07.2012
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a statistical investigation into the variations of the ionospheric energy coupling efficiencies with the solar wind energy input, the interplanetary magnetic field (IMF) clock angle and the solar wind dynamic pressure. The ionospheric energy coupling efficiencies are defined as the ratios of the ionospheric energy deposition (namely auroral precipitation, Joule heating, and their total) to the solar wind energy input. We find that the ionospheric energy coupling efficiencies decrease exponentially with the solar wind energy input. Moreover, it is the same case under geomagnetic storm conditions. Our results also show that the energy coupling efficiencies are dependent on the IMF clock angle and almost independent of the solar wind dynamic pressure. These results will help us estimate and predict energy transfer from the solar wind to the thermosphere‐ionosphere system under extreme space weather conditions, particularly severe geomagnetic storms.
Key Points
The efficiencies decrease exponentially with the solar wind energy input
The efficiencies are dependent on the IMF clock angle
The efficiencies are almost independent of the solar wind dynamic pressure |
---|---|
AbstractList | We present a statistical investigation into the variations of the ionospheric energy coupling efficiencies with the solar wind energy input, the interplanetary magnetic field (IMF) clock angle and the solar wind dynamic pressure. The ionospheric energy coupling efficiencies are defined as the ratios of the ionospheric energy deposition (namely auroral precipitation, Joule heating, and their total) to the solar wind energy input. We find that the ionospheric energy coupling efficiencies decrease exponentially with the solar wind energy input. Moreover, it is the same case under geomagnetic storm conditions. Our results also show that the energy coupling efficiencies are dependent on the IMF clock angle and almost independent of the solar wind dynamic pressure. These results will help us estimate and predict energy transfer from the solar wind to the thermosphere‐ionosphere system under extreme space weather conditions, particularly severe geomagnetic storms.
The efficiencies decrease exponentially with the solar wind energy input
The efficiencies are dependent on the IMF clock angle
The efficiencies are almost independent of the solar wind dynamic pressure We present a statistical investigation into the variations of the ionospheric energy coupling efficiencies with the solar wind energy input, the interplanetary magnetic field (IMF) clock angle and the solar wind dynamic pressure. The ionospheric energy coupling efficiencies are defined as the ratios of the ionospheric energy deposition (namely auroral precipitation, Joule heating, and their total) to the solar wind energy input. We find that the ionospheric energy coupling efficiencies decrease exponentially with the solar wind energy input. Moreover, it is the same case under geomagnetic storm conditions. Our results also show that the energy coupling efficiencies are dependent on the IMF clock angle and almost independent of the solar wind dynamic pressure. These results will help us estimate and predict energy transfer from the solar wind to the thermosphere‐ionosphere system under extreme space weather conditions, particularly severe geomagnetic storms. Key Points The efficiencies decrease exponentially with the solar wind energy input The efficiencies are dependent on the IMF clock angle The efficiencies are almost independent of the solar wind dynamic pressure We present a statistical investigation into the variations of the ionospheric energy coupling efficiencies with the solar wind energy input, the interplanetary magnetic field (IMF) clock angle and the solar wind dynamic pressure. The ionospheric energy coupling efficiencies are defined as the ratios of the ionospheric energy deposition (namely auroral precipitation, Joule heating, and their total) to the solar wind energy input. We find that the ionospheric energy coupling efficiencies decrease exponentially with the solar wind energy input. Moreover, it is the same case under geomagnetic storm conditions. Our results also show that the energy coupling efficiencies are dependent on the IMF clock angle and almost independent of the solar wind dynamic pressure. These results will help us estimate and predict energy transfer from the solar wind to the thermosphere-ionosphere system under extreme space weather conditions, particularly severe geomagnetic storms. Key Points * The efficiencies decrease exponentially with the solar wind energy input * The efficiencies are dependent on the IMF clock angle * The efficiencies are almost independent of the solar wind dynamic pressure |
Author | Emery, Barbara A. Wang, Yi Guo, Jianpeng Feng, Xueshang |
Author_xml | – sequence: 1 givenname: Jianpeng surname: Guo fullname: Guo, Jianpeng email: jpguo@spaceweather.ac.cn, jpguo@spaceweather.ac.cn organization: SIGMA Weather Group, State Key Laboratory of Space Weather, CSSAR, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Xueshang surname: Feng fullname: Feng, Xueshang organization: SIGMA Weather Group, State Key Laboratory of Space Weather, CSSAR, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Barbara A. surname: Emery fullname: Emery, Barbara A. organization: High Altitude Observatory, NCAR, Boulder, Colorado, USA – sequence: 4 givenname: Yi surname: Wang fullname: Wang, Yi organization: SIGMA Weather Group, State Key Laboratory of Space Weather, CSSAR, Chinese Academy of Sciences, Beijing, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26363550$$DView record in Pascal Francis |
BookMark | eNp9kE1LxDAQhoOs4LruzR_Qi-DBar6att6WZV2_UBTFY0jTiUa7SU266P57Kysigs7lncPzzMC7jQbOO0Bol-BDgml5RDGh5xNMckHzDTSkJBMppZgO0BATXqSY0nwLjWN8xv3wTHBMhuh4ZozVFpxeJd4k0TcqJG_W1Qk4CI-rRPtl21j3mHQ-6Z4gsd752D5BgB20aVQTYfyVI3R_MrubnqaX1_Oz6eQy1azAJC0rxTgHohUwXWWmLmsjmFBGaEOgqomC0qgqE3lVkIwxjfsV1zWnzAhVl2yE9td32-BflxA7ubBRQ9MoB34ZJRGcCkYpxz2694WqqFVjgnLaRtkGu1BhJXtMsCz75A7WnA4-xgDmGyFYfrYpf7bZ4_QXrm2nur6KLijb_CWxtfRmG1j9-0Cez28nlJSc9Fa6tmzs4P3bUuFFipzlmXy4msuL6U0hrhiXnH0AODiVlw |
CitedBy_id | crossref_primary_10_1002_jgra_50557 crossref_primary_10_3847_1538_4357_acb143 crossref_primary_10_1002_2013JA019646 crossref_primary_10_1002_2013SW000990 crossref_primary_10_1029_2024JA032986 crossref_primary_10_1029_2012JA017995 crossref_primary_10_1186_s40623_015_0280_5 crossref_primary_10_1029_2022JA030604 crossref_primary_10_1002_2017JA024642 crossref_primary_10_1029_2022JA030899 crossref_primary_10_1029_2018JA025819 |
Cites_doi | 10.1029/2007JA012866 10.1029/1999JA900278 10.1029/2000JA003025 10.1029/2007GL029423 10.1029/2011JA016490 10.1016/j.jastp.2008.08.005 10.1029/2001JA900153 10.1029/GL006i007p00577 10.1007/s11207‐005‐6393‐4 10.1016/j.jastp.2009.02.005 10.1029/97JA01151 10.1029/JA088iA07p05727 10.1029/2005JA011122 10.1029/2006JA011867 10.1029/98JA00762 10.1029/98JA00897 10.1029/2000GL012858 10.1007/BF00218810 10.1029/2006JA012015 10.1029/2002JA009283 10.1111/j.1365‐246X.1978.tb05494.x 10.1029/2010JA015971 10.1029/GM118p0217 10.1029/2004JA010704 10.1029/97JA01728 10.1029/2006GL029059 10.1029/2006JA012024 10.5194/angeo‐22‐549‐2004 10.1029/2007JA012321 10.1029/2007JA012302 |
ContentType | Journal Article |
Copyright | 2012. American Geophysical Union. All Rights Reserved. 2015 INIST-CNRS |
Copyright_xml | – notice: 2012. American Geophysical Union. All Rights Reserved. – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7ST 7U6 C1K |
DOI | 10.1029/2012JA017627 |
DatabaseName | Istex CrossRef Pascal-Francis Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 |
EndPage | n/a |
ExternalDocumentID | 26363550 10_1029_2012JA017627 JGRA21941 ark_67375_WNG_KCQ86N34_4 |
Genre | shortCommunication |
GeographicLocations | United States |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW 7ST 7U6 C1K |
ID | FETCH-LOGICAL-c3801-9ba344e1cae3cb5fd9df636af6cf1ebd1ae9fab567b81533c05670dd423f6ad93 |
ISSN | 0148-0227 |
IngestDate | Thu Jul 10 18:57:05 EDT 2025 Mon Jul 21 09:14:16 EDT 2025 Tue Jul 01 01:55:53 EDT 2025 Thu Apr 24 22:59:29 EDT 2025 Wed Jan 22 16:55:16 EST 2025 Wed Oct 30 09:55:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | A7 |
Keywords | Interplanetary magnetic field efficiency atmospheric precipitation energy transfer wind energy ionosphere North America solar wind Energy deposition coupling extreme value warming storms Dynamic pressure |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3801-9ba344e1cae3cb5fd9df636af6cf1ebd1ae9fab567b81533c05670dd423f6ad93 |
Notes | ArticleID:2012JA017627 istex:F680E65BA8346D4923B3BA57F28AF38C8E00791A ark:/67375/WNG-KCQ86N34-4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1642632240 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1642632240 pascalfrancis_primary_26363550 crossref_primary_10_1029_2012JA017627 crossref_citationtrail_10_1029_2012JA017627 wiley_primary_10_1029_2012JA017627_JGRA21941 istex_primary_ark_67375_WNG_KCQ86N34_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2012 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: July 2012 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC |
PublicationTitle | Journal of Geophysical Research: Space Physics |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Akasofu, S.-I. (1981), Energy coupling between the solar wind and the magnetosphere, Space Sci. Rev., 28, 121-190, doi:10.1007/BF00218810. Tanskanen, E., T. I. Pulkkinen, H. E. J. Koskinen, and J. A. Slavin (2002), Substorm energy budget during low and high solar activity: 1997 and 1999 compared, J. Geophys. Res., 107(A6), 1086, doi:10.1029/2001JA900153. Turner, N. E., W. D. Cramer, S. K. Earles, and B. A. Emery (2009), Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmos. Sol. Terr. Phys., 71, 1023-1031, doi:10.1016/j.jastp.2009.02.005. Guo, J., X. Feng, J. M. Forbes, J. Lei, J. Zhang, and C. Tan (2010), On the relationship between thermosphere density and solar wind parameters during intense geomagnetic storms, J. Geophys. Res., 115, A12335, doi:10.1029/2010JA015971. Kan, J. R., and L. C. Lee (1979), Energy coupling and the solar wind dynamo, Geophys. Res. Lett., 6, 577-580, doi:10.1029/GL006i007p00577. Nakai, H., and Y. Kamide (1999), Solar cycle variations in the storm-substorm relationship, J. Geophys. Res., 104, 22,695-22,700, doi:10.1029/1999JA900278. Koskinen, H. E. J., and E. Tanskanen (2002), Magnetospheric energy budget and the epsilon parameter, J. Geophys. Res., 107(A11), 1415, doi:10.1029/2002JA009283. Emery, B. A., I. G. Richardson, D. S. Evans, R. J. Rich, and W. Xu (2009), Solar wind structure sources and periodicities of global electron hemispheric power over three solar cycles, J. Atmos. Sol. Terr. Phys., 71, 1157-1175, doi:10.1016/j.jastp.2008.08.005. Lu, G., et al. (1998), Global energy deposition during the January 1997 magnetic cloud event, J. Geophys. Res., 103, 11,685-11,694, doi:10.1029/98JA00897. Wang, H., and H. Lühr (2007), Seasonal-longitudinal variation of substorm occurrence frequency: Evidence for ionospheric control, Geophys. Res. Lett., 34, L07104, doi:10.1029/2007GL029423. Zhang, J., et al. (2007), Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996-2005, J. Geophys. Res., 112, A10102, doi:10.1029/2007JA012321. Knipp, D. J., et al. (1998), An overview of the early November 1993 geomagnetic storm, J. Geophys. Res., 103, 26,197-26,220, doi:10.1029/98JA00762. Wygant, J. R., R. B. Torbert, and F. S. Mozer (1983), Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection, J. Geophys. Res., 88, 5727-5735, doi:10.1029/JA088iA07p05727. Palmroth, M., N. Partamies, J. Polvi, T. I. Pulkkinen, D. J. McComas, R. J. Barnes, P. Stauning, C. W. Smith, H. J. Singer, and R. Vainio (2007), Solar wind-magnetosphere coupling efficiency for solar wind pressure impulses, Geophys. Res. Lett., 34, L11101, doi:10.1029/2006GL029059. Shue, J.-H., and Y. Kamide (2001), Effects of solar wind density on auroral electrojets, Geophys. Res. Lett., 28, 2181-2184, doi:10.1029/2000GL012858. Palmroth, M., P. Janhunen, T. I. Pulkkinen, and H. E. J. Koskinen (2004), Ionospheric energy input as a function of solar wind parameters: Global MHD simulation results, Ann. Geophys., 22, 549-566, doi:10.5194/angeo-22-549-2004. Newell, P. T., T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich (2007), A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi:10.1029/2006JA012015. Pulkkinen, T. I., N. Partamies, R. L. McPherron, M. Henderson, G. D. Reeves, M. F. Thomsen, and H. J. Singer (2007), Comparative statistical analysis of storm time activations and sawtooth events, J. Geophys. Res., 112, A01205, doi:10.1029/2006JA012024. Knipp, D. J., W. K. Tobiska, and B. A. Emery (2004), Direct and indirect thermospheric heating sources for solar cycles 21-23, Sol. Phys., 224, 495-505, doi:10.1007/s11207-005-6393-4. Boudouridis, A., E. Zesta, L. R. Lyons, P. C. Anderson, and D. Lummerzheim (2005), Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation, J. Geophys. Res., 110, A05214, doi:10.1029/2004JA010704. Nagatsuma, T. (2006), Diurnal, semiannual, and solar cycle variations of solar wind-magnetosphere-ionosphere coupling, J. Geophys. Res., 111, A09202, doi:10.1029/2005JA011122. Codrescu, M. V., T. J. Fuller-Rowell, R. G. Roble, and D. S. Evans (1997), Medium energy particle precipitation influences on the mesosphere and lower thermosphere, J. Geophys. Res., 102(A9), 19,977-19,987, doi:10.1029/97JA01728. Emery, B. A., V. Coumans, D. S. Evans, G. A. Germany, M. S. Greer, E. Holeman, K. Kadinsky-Cade, R. J. Rich, and W. Xu (2008), Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power, J. Geophys. Res., 113, A06311, doi:10.1029/2007JA012866. Fang, X., M. W. Liemohn, J. U. Kozyra, D. S. Evans, A. D. DeJong, and B. A. Emery (2007), Global 30-240 keV proton precipitation in the 17-18 April 2002 geomagnetic storms: 1. Patterns, J. Geophys. Res., 112, A05301, doi:10.1029/2006JA011867. Kivelson, M. G., and A. J. Ridley (2008), Saturation of the polar cap potential: Inference from Alfvén wing arguments, J. Geophys. Res., 113, A05214, doi:10.1029/2007JA012302. Perreault, P., and S.-I. Akasofu (1978), A study of geomagnetic storms, Geophys. J. R. Astron. Soc., 54, 547-573, doi:10.1111/j.1365-246X.1978.tb05494.x. Guo, J., X. Feng, B. A. Emery, J. Zhang, C. Xiang, F. Shen, and W. Song (2011), Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions, J. Geophys. Res., 116, A05106, doi:10.1029/2011JA016490. Turner, N. E., D. N. Baker, T. I. Pulkkinen, J. L. Roeder, J. F. Fennell, and V. K. Jordanova (2001), Energy content in the storm time ring current, J. Geophys. Res., 106, 19,149-19,156, doi:10.1029/2000JA003025. Mac-Mahon, R. M., and W. D. Gonzalez (1997), Energetics during the main phase of geomagnetic superstorms, J. Geophys. Res., 102(A7), 14,199-14,207, doi:10.1029/97JA01151. 1997; 102 2011; 116 2004; 22 2007; 112 2004; 224 2005; 110 1978; 54 2009; 71 2010; 115 2000; 118 1979; 6 2002; 107 2006 1981; 28 1998; 103 2001; 28 2008; 113 1999; 104 2007; 34 2006; 111 2001; 106 1983; 88 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Tanskanen, E., T. I. Pulkkinen, H. E. J. Koskinen, and J. A. Slavin (2002), Substorm energy budget during low and high solar activity: 1997 and 1999 compared, J. Geophys. Res., 107(A6), 1086, doi:10.1029/2001JA900153. – reference: Turner, N. E., W. D. Cramer, S. K. Earles, and B. A. Emery (2009), Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmos. Sol. Terr. Phys., 71, 1023-1031, doi:10.1016/j.jastp.2009.02.005. – reference: Emery, B. A., I. G. Richardson, D. S. Evans, R. J. Rich, and W. Xu (2009), Solar wind structure sources and periodicities of global electron hemispheric power over three solar cycles, J. Atmos. Sol. Terr. Phys., 71, 1157-1175, doi:10.1016/j.jastp.2008.08.005. – reference: Knipp, D. J., W. K. Tobiska, and B. A. Emery (2004), Direct and indirect thermospheric heating sources for solar cycles 21-23, Sol. Phys., 224, 495-505, doi:10.1007/s11207-005-6393-4. – reference: Zhang, J., et al. (2007), Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996-2005, J. Geophys. Res., 112, A10102, doi:10.1029/2007JA012321. – reference: Kivelson, M. G., and A. J. Ridley (2008), Saturation of the polar cap potential: Inference from Alfvén wing arguments, J. Geophys. Res., 113, A05214, doi:10.1029/2007JA012302. – reference: Perreault, P., and S.-I. Akasofu (1978), A study of geomagnetic storms, Geophys. J. R. Astron. Soc., 54, 547-573, doi:10.1111/j.1365-246X.1978.tb05494.x. – reference: Fang, X., M. W. Liemohn, J. U. Kozyra, D. S. Evans, A. D. DeJong, and B. A. Emery (2007), Global 30-240 keV proton precipitation in the 17-18 April 2002 geomagnetic storms: 1. Patterns, J. Geophys. Res., 112, A05301, doi:10.1029/2006JA011867. – reference: Lu, G., et al. (1998), Global energy deposition during the January 1997 magnetic cloud event, J. Geophys. Res., 103, 11,685-11,694, doi:10.1029/98JA00897. – reference: Nakai, H., and Y. Kamide (1999), Solar cycle variations in the storm-substorm relationship, J. Geophys. Res., 104, 22,695-22,700, doi:10.1029/1999JA900278. – reference: Akasofu, S.-I. (1981), Energy coupling between the solar wind and the magnetosphere, Space Sci. Rev., 28, 121-190, doi:10.1007/BF00218810. – reference: Guo, J., X. Feng, J. M. Forbes, J. Lei, J. Zhang, and C. Tan (2010), On the relationship between thermosphere density and solar wind parameters during intense geomagnetic storms, J. Geophys. Res., 115, A12335, doi:10.1029/2010JA015971. – reference: Knipp, D. J., et al. (1998), An overview of the early November 1993 geomagnetic storm, J. Geophys. Res., 103, 26,197-26,220, doi:10.1029/98JA00762. – reference: Emery, B. A., V. Coumans, D. S. Evans, G. A. Germany, M. S. Greer, E. Holeman, K. Kadinsky-Cade, R. J. Rich, and W. Xu (2008), Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power, J. Geophys. Res., 113, A06311, doi:10.1029/2007JA012866. – reference: Palmroth, M., P. Janhunen, T. I. Pulkkinen, and H. E. J. Koskinen (2004), Ionospheric energy input as a function of solar wind parameters: Global MHD simulation results, Ann. Geophys., 22, 549-566, doi:10.5194/angeo-22-549-2004. – reference: Turner, N. E., D. N. Baker, T. I. Pulkkinen, J. L. Roeder, J. F. Fennell, and V. K. Jordanova (2001), Energy content in the storm time ring current, J. Geophys. Res., 106, 19,149-19,156, doi:10.1029/2000JA003025. – reference: Mac-Mahon, R. M., and W. D. Gonzalez (1997), Energetics during the main phase of geomagnetic superstorms, J. Geophys. Res., 102(A7), 14,199-14,207, doi:10.1029/97JA01151. – reference: Guo, J., X. Feng, B. A. Emery, J. Zhang, C. Xiang, F. Shen, and W. Song (2011), Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions, J. Geophys. Res., 116, A05106, doi:10.1029/2011JA016490. – reference: Wang, H., and H. Lühr (2007), Seasonal-longitudinal variation of substorm occurrence frequency: Evidence for ionospheric control, Geophys. Res. Lett., 34, L07104, doi:10.1029/2007GL029423. – reference: Nagatsuma, T. (2006), Diurnal, semiannual, and solar cycle variations of solar wind-magnetosphere-ionosphere coupling, J. Geophys. Res., 111, A09202, doi:10.1029/2005JA011122. – reference: Newell, P. T., T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich (2007), A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi:10.1029/2006JA012015. – reference: Boudouridis, A., E. Zesta, L. R. Lyons, P. C. Anderson, and D. Lummerzheim (2005), Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation, J. Geophys. Res., 110, A05214, doi:10.1029/2004JA010704. – reference: Shue, J.-H., and Y. Kamide (2001), Effects of solar wind density on auroral electrojets, Geophys. Res. Lett., 28, 2181-2184, doi:10.1029/2000GL012858. – reference: Wygant, J. R., R. B. Torbert, and F. S. Mozer (1983), Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection, J. Geophys. Res., 88, 5727-5735, doi:10.1029/JA088iA07p05727. – reference: Koskinen, H. E. J., and E. Tanskanen (2002), Magnetospheric energy budget and the epsilon parameter, J. Geophys. Res., 107(A11), 1415, doi:10.1029/2002JA009283. – reference: Kan, J. R., and L. C. Lee (1979), Energy coupling and the solar wind dynamo, Geophys. Res. Lett., 6, 577-580, doi:10.1029/GL006i007p00577. – reference: Codrescu, M. V., T. J. Fuller-Rowell, R. G. Roble, and D. S. Evans (1997), Medium energy particle precipitation influences on the mesosphere and lower thermosphere, J. Geophys. Res., 102(A9), 19,977-19,987, doi:10.1029/97JA01728. – reference: Palmroth, M., N. Partamies, J. Polvi, T. I. Pulkkinen, D. J. McComas, R. J. Barnes, P. Stauning, C. W. Smith, H. J. Singer, and R. Vainio (2007), Solar wind-magnetosphere coupling efficiency for solar wind pressure impulses, Geophys. Res. Lett., 34, L11101, doi:10.1029/2006GL029059. – reference: Pulkkinen, T. I., N. Partamies, R. L. McPherron, M. Henderson, G. D. Reeves, M. F. Thomsen, and H. J. Singer (2007), Comparative statistical analysis of storm time activations and sawtooth events, J. Geophys. Res., 112, A01205, doi:10.1029/2006JA012024. – volume: 22 start-page: 549 year: 2004 end-page: 566 article-title: Ionospheric energy input as a function of solar wind parameters: Global MHD simulation results publication-title: Ann. Geophys. – volume: 106 start-page: 19,149 year: 2001 end-page: 19,156 article-title: Energy content in the storm time ring current publication-title: J. Geophys. Res. – volume: 102 start-page: 14,199 issue: A7 year: 1997 end-page: 14,207 article-title: Energetics during the main phase of geomagnetic superstorms publication-title: J. Geophys. Res. – volume: 71 start-page: 1023 year: 2009 end-page: 1031 article-title: Geoefficiency and energy partitioning in CIR‐driven and CME‐driven storms publication-title: J. Atmos. Sol. Terr. Phys. – volume: 107 issue: A11 year: 2002 article-title: Magnetospheric energy budget and the epsilon parameter publication-title: J. Geophys. Res. – volume: 34 year: 2007 article-title: Seasonal‐longitudinal variation of substorm occurrence frequency: Evidence for ionospheric control publication-title: Geophys. Res. Lett. – volume: 110 year: 2005 article-title: Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation publication-title: J. Geophys. Res. – volume: 116 year: 2011 article-title: Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions publication-title: J. Geophys. Res. – volume: 115 year: 2010 article-title: On the relationship between thermosphere density and solar wind parameters during intense geomagnetic storms publication-title: J. Geophys. Res. – volume: 54 start-page: 547 year: 1978 end-page: 573 article-title: A study of geomagnetic storms publication-title: Geophys. J. R. Astron. Soc. – volume: 88 start-page: 5727 year: 1983 end-page: 5735 article-title: Comparison of S3–3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection publication-title: J. Geophys. Res. – volume: 224 start-page: 495 year: 2004 end-page: 505 article-title: Direct and indirect thermospheric heating sources for solar cycles 21–23 publication-title: Sol. Phys. – volume: 111 year: 2006 article-title: Diurnal, semiannual, and solar cycle variations of solar wind–magnetosphere–ionosphere coupling publication-title: J. Geophys. Res. – volume: 102 start-page: 19,977 issue: A9 year: 1997 end-page: 19,987 article-title: Medium energy particle precipitation influences on the mesosphere and lower thermosphere publication-title: J. Geophys. Res. – volume: 103 start-page: 26,197 year: 1998 end-page: 26,220 article-title: An overview of the early November 1993 geomagnetic storm publication-title: J. Geophys. Res. – volume: 34 year: 2007 article-title: Solar wind‐magnetosphere coupling efficiency for solar wind pressure impulses publication-title: Geophys. Res. Lett. – volume: 28 start-page: 2181 year: 2001 end-page: 2184 article-title: Effects of solar wind density on auroral electrojets publication-title: Geophys. Res. Lett. – volume: 112 year: 2007 article-title: Solar and interplanetary sources of major geomagnetic storms ( ≤ −100 nT) during 1996–2005 publication-title: J. Geophys. Res. – volume: 113 year: 2008 article-title: Seasonal, Kp, solar wind, and solar flux variations in long‐term single‐pass satellite estimates of electron and ion auroral hemispheric power publication-title: J. Geophys. Res. – volume: 118 start-page: 217 year: 2000 end-page: 226 – volume: 113 year: 2008 article-title: Saturation of the polar cap potential: Inference from Alfvén wing arguments publication-title: J. Geophys. Res. – volume: 107 issue: A6 year: 2002 article-title: Substorm energy budget during low and high solar activity: 1997 and 1999 compared publication-title: J. Geophys. Res. – volume: 28 start-page: 121 year: 1981 end-page: 190 article-title: Energy coupling between the solar wind and the magnetosphere publication-title: Space Sci. Rev. – volume: 6 start-page: 577 year: 1979 end-page: 580 article-title: Energy coupling and the solar wind dynamo publication-title: Geophys. Res. Lett. – volume: 112 year: 2007 article-title: A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables publication-title: J. Geophys. Res. – year: 2006 – volume: 71 start-page: 1157 year: 2009 end-page: 1175 article-title: Solar wind structure sources and periodicities of global electron hemispheric power over three solar cycles publication-title: J. Atmos. Sol. Terr. Phys. – volume: 104 start-page: 22,695 year: 1999 end-page: 22,700 article-title: Solar cycle variations in the storm‐substorm relationship publication-title: J. Geophys. Res. – volume: 112 year: 2007 article-title: Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms: 1. Patterns publication-title: J. Geophys. Res. – volume: 103 start-page: 11,685 year: 1998 end-page: 11,694 article-title: Global energy deposition during the January 1997 magnetic cloud event publication-title: J. Geophys. Res. – volume: 112 year: 2007 article-title: Comparative statistical analysis of storm time activations and sawtooth events publication-title: J. Geophys. Res. – ident: e_1_2_6_6_1 doi: 10.1029/2007JA012866 – ident: e_1_2_6_19_1 doi: 10.1029/1999JA900278 – ident: e_1_2_6_27_1 doi: 10.1029/2000JA003025 – ident: e_1_2_6_29_1 doi: 10.1029/2007GL029423 – ident: e_1_2_6_10_1 doi: 10.1029/2011JA016490 – ident: e_1_2_6_7_1 doi: 10.1016/j.jastp.2008.08.005 – ident: e_1_2_6_26_1 doi: 10.1029/2001JA900153 – ident: e_1_2_6_11_1 doi: 10.1029/GL006i007p00577 – ident: e_1_2_6_14_1 doi: 10.1007/s11207‐005‐6393‐4 – ident: e_1_2_6_28_1 doi: 10.1016/j.jastp.2009.02.005 – ident: e_1_2_6_17_1 doi: 10.1029/97JA01151 – ident: e_1_2_6_30_1 doi: 10.1029/JA088iA07p05727 – ident: e_1_2_6_18_1 doi: 10.1029/2005JA011122 – ident: e_1_2_6_5_1 – ident: e_1_2_6_8_1 doi: 10.1029/2006JA011867 – ident: e_1_2_6_13_1 doi: 10.1029/98JA00762 – ident: e_1_2_6_16_1 doi: 10.1029/98JA00897 – ident: e_1_2_6_25_1 doi: 10.1029/2000GL012858 – ident: e_1_2_6_2_1 doi: 10.1007/BF00218810 – ident: e_1_2_6_20_1 doi: 10.1029/2006JA012015 – ident: e_1_2_6_15_1 doi: 10.1029/2002JA009283 – ident: e_1_2_6_23_1 doi: 10.1111/j.1365‐246X.1978.tb05494.x – ident: e_1_2_6_9_1 doi: 10.1029/2010JA015971 – ident: e_1_2_6_31_1 doi: 10.1029/GM118p0217 – ident: e_1_2_6_3_1 doi: 10.1029/2004JA010704 – ident: e_1_2_6_4_1 doi: 10.1029/97JA01728 – ident: e_1_2_6_22_1 doi: 10.1029/2006GL029059 – ident: e_1_2_6_24_1 doi: 10.1029/2006JA012024 – ident: e_1_2_6_21_1 doi: 10.5194/angeo‐22‐549‐2004 – ident: e_1_2_6_32_1 doi: 10.1029/2007JA012321 – ident: e_1_2_6_12_1 doi: 10.1029/2007JA012302 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 |
Score | 2.1367068 |
Snippet | We present a statistical investigation into the variations of the ionospheric energy coupling efficiencies with the solar wind energy input, the interplanetary... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | np |
SubjectTerms | coupling efficiency Earth sciences Earth, ocean, space Exact sciences and technology extreme space weather ionospheric dissipation solar wind energy input |
Title | Efficiency of solar wind energy coupling to the ionosphere |
URI | https://api.istex.fr/ark:/67375/WNG-KCQ86N34-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JA017627 https://www.proquest.com/docview/1642632240 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1rb9Mw0CqtkBASggFaeExGgn0pGXnVafgWqtKpaAXGJrpPkeM40sRoqqYVlJ_BL-b8SOLAhgYfGuXcuE1yD9-d74HQc8oJdXKS2iD3IhukH7FTHoY2fALGmEsd2Q7oaEYOT4PpfDDvdH4aUUubdXrAflyaV_I_WIUxwKvIkv0HzNY_CgNwDviFI2AYjtfC8VjWf5DJk6DzlcJK7X8DI7vPVUYfKzZLmW6uFUyRwVCKOgLt-J9GJ53wYlkhrorJEz6DT2BZc9knxwiOn2zUrg0Q2JLrBVAqlUp8zDdiN6kZF-6vrbHF0Y8PGm--mnJ2bjoh3CZg9VJno3KeNWFJleNSlCtU644cA22D2J7ntKWxSuXUZBeHxspcr1t_iH3HE1VTxY1NYxAxpPobs7r2b6teHYtIV19EcFs4SD7PJsm70cchmflBEtxAPQ9MD6-Lem_Gsw_HtedOVuBpAoncQKYGKwCk57AFeCbgm0BgAgMTIBUQgPRXDTX1y9OZG_C4r8yHbelUPSEevosYX1oCteSqP0vLgDLNMKlHndxFdzSx4VhR8z3U4YsdtBuXYkum-LrF-1ieKzIsd9BN1S11C2cTrs-sIzD1ipWEYMLo4hzsLv3d7feM04UuxA6TNNHeR68bbsFFjiW3YMEtWHELrrgFrwsM3IIbbnmATt-OT0aHtu4cYjMfVC47SqkfBNxllPssHeRZlOXEJzQnLHd5mrmURzlNByRMh8LgYWAGhE6WgW2RE5pF_kPUXRQLvoswcbNhSGEKLO0BiQgFlT7jXkq4sE6cyEL96t0nTJfVF91dLhIZ3uFFiYkpC72or16qcjJXXLcv0VhfdBWVWmivhed6ggfPC7aEY6FnFeITWDnEdiBd8GJTJi6RzRpApbfQS0kRf72lZDo5jsVLcB9d9-Yeo1uNsHiCuuvVhj8FHX6d7mmm-gW-AuAR |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+of+solar+wind+energy+coupling+to+the+ionosphere&rft.jtitle=Journal+of+Geophysical+Research%3A+Space+Physics&rft.au=Guo%2C+Jianpeng&rft.au=Feng%2C+Xueshang&rft.au=Emery%2C+Barbara+A.&rft.au=Wang%2C+Yi&rft.date=2012-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=A7&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2012JA017627&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_KCQ86N34_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |