Efficiency of solar wind energy coupling to the ionosphere

We present a statistical investigation into the variations of the ionospheric energy coupling efficiencies with the solar wind energy input, the interplanetary magnetic field (IMF) clock angle and the solar wind dynamic pressure. The ionospheric energy coupling efficiencies are defined as the ratios...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Space Physics Vol. 117; no. A7; pp. np - n/a
Main Authors Guo, Jianpeng, Feng, Xueshang, Emery, Barbara A., Wang, Yi
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.07.2012
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a statistical investigation into the variations of the ionospheric energy coupling efficiencies with the solar wind energy input, the interplanetary magnetic field (IMF) clock angle and the solar wind dynamic pressure. The ionospheric energy coupling efficiencies are defined as the ratios of the ionospheric energy deposition (namely auroral precipitation, Joule heating, and their total) to the solar wind energy input. We find that the ionospheric energy coupling efficiencies decrease exponentially with the solar wind energy input. Moreover, it is the same case under geomagnetic storm conditions. Our results also show that the energy coupling efficiencies are dependent on the IMF clock angle and almost independent of the solar wind dynamic pressure. These results will help us estimate and predict energy transfer from the solar wind to the thermosphere‐ionosphere system under extreme space weather conditions, particularly severe geomagnetic storms. Key Points The efficiencies decrease exponentially with the solar wind energy input The efficiencies are dependent on the IMF clock angle The efficiencies are almost independent of the solar wind dynamic pressure
AbstractList We present a statistical investigation into the variations of the ionospheric energy coupling efficiencies with the solar wind energy input, the interplanetary magnetic field (IMF) clock angle and the solar wind dynamic pressure. The ionospheric energy coupling efficiencies are defined as the ratios of the ionospheric energy deposition (namely auroral precipitation, Joule heating, and their total) to the solar wind energy input. We find that the ionospheric energy coupling efficiencies decrease exponentially with the solar wind energy input. Moreover, it is the same case under geomagnetic storm conditions. Our results also show that the energy coupling efficiencies are dependent on the IMF clock angle and almost independent of the solar wind dynamic pressure. These results will help us estimate and predict energy transfer from the solar wind to the thermosphere‐ionosphere system under extreme space weather conditions, particularly severe geomagnetic storms. The efficiencies decrease exponentially with the solar wind energy input The efficiencies are dependent on the IMF clock angle The efficiencies are almost independent of the solar wind dynamic pressure
We present a statistical investigation into the variations of the ionospheric energy coupling efficiencies with the solar wind energy input, the interplanetary magnetic field (IMF) clock angle and the solar wind dynamic pressure. The ionospheric energy coupling efficiencies are defined as the ratios of the ionospheric energy deposition (namely auroral precipitation, Joule heating, and their total) to the solar wind energy input. We find that the ionospheric energy coupling efficiencies decrease exponentially with the solar wind energy input. Moreover, it is the same case under geomagnetic storm conditions. Our results also show that the energy coupling efficiencies are dependent on the IMF clock angle and almost independent of the solar wind dynamic pressure. These results will help us estimate and predict energy transfer from the solar wind to the thermosphere‐ionosphere system under extreme space weather conditions, particularly severe geomagnetic storms. Key Points The efficiencies decrease exponentially with the solar wind energy input The efficiencies are dependent on the IMF clock angle The efficiencies are almost independent of the solar wind dynamic pressure
We present a statistical investigation into the variations of the ionospheric energy coupling efficiencies with the solar wind energy input, the interplanetary magnetic field (IMF) clock angle and the solar wind dynamic pressure. The ionospheric energy coupling efficiencies are defined as the ratios of the ionospheric energy deposition (namely auroral precipitation, Joule heating, and their total) to the solar wind energy input. We find that the ionospheric energy coupling efficiencies decrease exponentially with the solar wind energy input. Moreover, it is the same case under geomagnetic storm conditions. Our results also show that the energy coupling efficiencies are dependent on the IMF clock angle and almost independent of the solar wind dynamic pressure. These results will help us estimate and predict energy transfer from the solar wind to the thermosphere-ionosphere system under extreme space weather conditions, particularly severe geomagnetic storms. Key Points * The efficiencies decrease exponentially with the solar wind energy input * The efficiencies are dependent on the IMF clock angle * The efficiencies are almost independent of the solar wind dynamic pressure
Author Emery, Barbara A.
Wang, Yi
Guo, Jianpeng
Feng, Xueshang
Author_xml – sequence: 1
  givenname: Jianpeng
  surname: Guo
  fullname: Guo, Jianpeng
  email: jpguo@spaceweather.ac.cn, jpguo@spaceweather.ac.cn
  organization: SIGMA Weather Group, State Key Laboratory of Space Weather, CSSAR, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Xueshang
  surname: Feng
  fullname: Feng, Xueshang
  organization: SIGMA Weather Group, State Key Laboratory of Space Weather, CSSAR, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Barbara A.
  surname: Emery
  fullname: Emery, Barbara A.
  organization: High Altitude Observatory, NCAR, Boulder, Colorado, USA
– sequence: 4
  givenname: Yi
  surname: Wang
  fullname: Wang, Yi
  organization: SIGMA Weather Group, State Key Laboratory of Space Weather, CSSAR, Chinese Academy of Sciences, Beijing, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26363550$$DView record in Pascal Francis
BookMark eNp9kE1LxDAQhoOs4LruzR_Qi-DBar6att6WZV2_UBTFY0jTiUa7SU266P57Kysigs7lncPzzMC7jQbOO0Bol-BDgml5RDGh5xNMckHzDTSkJBMppZgO0BATXqSY0nwLjWN8xv3wTHBMhuh4ZozVFpxeJd4k0TcqJG_W1Qk4CI-rRPtl21j3mHQ-6Z4gsd752D5BgB20aVQTYfyVI3R_MrubnqaX1_Oz6eQy1azAJC0rxTgHohUwXWWmLmsjmFBGaEOgqomC0qgqE3lVkIwxjfsV1zWnzAhVl2yE9td32-BflxA7ubBRQ9MoB34ZJRGcCkYpxz2694WqqFVjgnLaRtkGu1BhJXtMsCz75A7WnA4-xgDmGyFYfrYpf7bZ4_QXrm2nur6KLijb_CWxtfRmG1j9-0Cez28nlJSc9Fa6tmzs4P3bUuFFipzlmXy4msuL6U0hrhiXnH0AODiVlw
CitedBy_id crossref_primary_10_1002_jgra_50557
crossref_primary_10_3847_1538_4357_acb143
crossref_primary_10_1002_2013JA019646
crossref_primary_10_1002_2013SW000990
crossref_primary_10_1029_2024JA032986
crossref_primary_10_1029_2012JA017995
crossref_primary_10_1186_s40623_015_0280_5
crossref_primary_10_1029_2022JA030604
crossref_primary_10_1002_2017JA024642
crossref_primary_10_1029_2022JA030899
crossref_primary_10_1029_2018JA025819
Cites_doi 10.1029/2007JA012866
10.1029/1999JA900278
10.1029/2000JA003025
10.1029/2007GL029423
10.1029/2011JA016490
10.1016/j.jastp.2008.08.005
10.1029/2001JA900153
10.1029/GL006i007p00577
10.1007/s11207‐005‐6393‐4
10.1016/j.jastp.2009.02.005
10.1029/97JA01151
10.1029/JA088iA07p05727
10.1029/2005JA011122
10.1029/2006JA011867
10.1029/98JA00762
10.1029/98JA00897
10.1029/2000GL012858
10.1007/BF00218810
10.1029/2006JA012015
10.1029/2002JA009283
10.1111/j.1365‐246X.1978.tb05494.x
10.1029/2010JA015971
10.1029/GM118p0217
10.1029/2004JA010704
10.1029/97JA01728
10.1029/2006GL029059
10.1029/2006JA012024
10.5194/angeo‐22‐549‐2004
10.1029/2007JA012321
10.1029/2007JA012302
ContentType Journal Article
Copyright 2012. American Geophysical Union. All Rights Reserved.
2015 INIST-CNRS
Copyright_xml – notice: 2012. American Geophysical Union. All Rights Reserved.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7ST
7U6
C1K
DOI 10.1029/2012JA017627
DatabaseName Istex
CrossRef
Pascal-Francis
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
EndPage n/a
ExternalDocumentID 26363550
10_1029_2012JA017627
JGRA21941
ark_67375_WNG_KCQ86N34_4
Genre shortCommunication
GeographicLocations United States
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
7ST
7U6
C1K
ID FETCH-LOGICAL-c3801-9ba344e1cae3cb5fd9df636af6cf1ebd1ae9fab567b81533c05670dd423f6ad93
ISSN 0148-0227
IngestDate Thu Jul 10 18:57:05 EDT 2025
Mon Jul 21 09:14:16 EDT 2025
Tue Jul 01 01:55:53 EDT 2025
Thu Apr 24 22:59:29 EDT 2025
Wed Jan 22 16:55:16 EST 2025
Wed Oct 30 09:55:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue A7
Keywords Interplanetary magnetic field
efficiency
atmospheric precipitation
energy transfer
wind energy
ionosphere
North America
solar wind
Energy deposition
coupling
extreme value
warming
storms
Dynamic pressure
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3801-9ba344e1cae3cb5fd9df636af6cf1ebd1ae9fab567b81533c05670dd423f6ad93
Notes ArticleID:2012JA017627
istex:F680E65BA8346D4923B3BA57F28AF38C8E00791A
ark:/67375/WNG-KCQ86N34-4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1642632240
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_1642632240
pascalfrancis_primary_26363550
crossref_primary_10_1029_2012JA017627
crossref_citationtrail_10_1029_2012JA017627
wiley_primary_10_1029_2012JA017627_JGRA21941
istex_primary_ark_67375_WNG_KCQ86N34_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2012
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: July 2012
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Journal of Geophysical Research: Space Physics
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Akasofu, S.-I. (1981), Energy coupling between the solar wind and the magnetosphere, Space Sci. Rev., 28, 121-190, doi:10.1007/BF00218810.
Tanskanen, E., T. I. Pulkkinen, H. E. J. Koskinen, and J. A. Slavin (2002), Substorm energy budget during low and high solar activity: 1997 and 1999 compared, J. Geophys. Res., 107(A6), 1086, doi:10.1029/2001JA900153.
Turner, N. E., W. D. Cramer, S. K. Earles, and B. A. Emery (2009), Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmos. Sol. Terr. Phys., 71, 1023-1031, doi:10.1016/j.jastp.2009.02.005.
Guo, J., X. Feng, J. M. Forbes, J. Lei, J. Zhang, and C. Tan (2010), On the relationship between thermosphere density and solar wind parameters during intense geomagnetic storms, J. Geophys. Res., 115, A12335, doi:10.1029/2010JA015971.
Kan, J. R., and L. C. Lee (1979), Energy coupling and the solar wind dynamo, Geophys. Res. Lett., 6, 577-580, doi:10.1029/GL006i007p00577.
Nakai, H., and Y. Kamide (1999), Solar cycle variations in the storm-substorm relationship, J. Geophys. Res., 104, 22,695-22,700, doi:10.1029/1999JA900278.
Koskinen, H. E. J., and E. Tanskanen (2002), Magnetospheric energy budget and the epsilon parameter, J. Geophys. Res., 107(A11), 1415, doi:10.1029/2002JA009283.
Emery, B. A., I. G. Richardson, D. S. Evans, R. J. Rich, and W. Xu (2009), Solar wind structure sources and periodicities of global electron hemispheric power over three solar cycles, J. Atmos. Sol. Terr. Phys., 71, 1157-1175, doi:10.1016/j.jastp.2008.08.005.
Lu, G., et al. (1998), Global energy deposition during the January 1997 magnetic cloud event, J. Geophys. Res., 103, 11,685-11,694, doi:10.1029/98JA00897.
Wang, H., and H. Lühr (2007), Seasonal-longitudinal variation of substorm occurrence frequency: Evidence for ionospheric control, Geophys. Res. Lett., 34, L07104, doi:10.1029/2007GL029423.
Zhang, J., et al. (2007), Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996-2005, J. Geophys. Res., 112, A10102, doi:10.1029/2007JA012321.
Knipp, D. J., et al. (1998), An overview of the early November 1993 geomagnetic storm, J. Geophys. Res., 103, 26,197-26,220, doi:10.1029/98JA00762.
Wygant, J. R., R. B. Torbert, and F. S. Mozer (1983), Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection, J. Geophys. Res., 88, 5727-5735, doi:10.1029/JA088iA07p05727.
Palmroth, M., N. Partamies, J. Polvi, T. I. Pulkkinen, D. J. McComas, R. J. Barnes, P. Stauning, C. W. Smith, H. J. Singer, and R. Vainio (2007), Solar wind-magnetosphere coupling efficiency for solar wind pressure impulses, Geophys. Res. Lett., 34, L11101, doi:10.1029/2006GL029059.
Shue, J.-H., and Y. Kamide (2001), Effects of solar wind density on auroral electrojets, Geophys. Res. Lett., 28, 2181-2184, doi:10.1029/2000GL012858.
Palmroth, M., P. Janhunen, T. I. Pulkkinen, and H. E. J. Koskinen (2004), Ionospheric energy input as a function of solar wind parameters: Global MHD simulation results, Ann. Geophys., 22, 549-566, doi:10.5194/angeo-22-549-2004.
Newell, P. T., T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich (2007), A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi:10.1029/2006JA012015.
Pulkkinen, T. I., N. Partamies, R. L. McPherron, M. Henderson, G. D. Reeves, M. F. Thomsen, and H. J. Singer (2007), Comparative statistical analysis of storm time activations and sawtooth events, J. Geophys. Res., 112, A01205, doi:10.1029/2006JA012024.
Knipp, D. J., W. K. Tobiska, and B. A. Emery (2004), Direct and indirect thermospheric heating sources for solar cycles 21-23, Sol. Phys., 224, 495-505, doi:10.1007/s11207-005-6393-4.
Boudouridis, A., E. Zesta, L. R. Lyons, P. C. Anderson, and D. Lummerzheim (2005), Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation, J. Geophys. Res., 110, A05214, doi:10.1029/2004JA010704.
Nagatsuma, T. (2006), Diurnal, semiannual, and solar cycle variations of solar wind-magnetosphere-ionosphere coupling, J. Geophys. Res., 111, A09202, doi:10.1029/2005JA011122.
Codrescu, M. V., T. J. Fuller-Rowell, R. G. Roble, and D. S. Evans (1997), Medium energy particle precipitation influences on the mesosphere and lower thermosphere, J. Geophys. Res., 102(A9), 19,977-19,987, doi:10.1029/97JA01728.
Emery, B. A., V. Coumans, D. S. Evans, G. A. Germany, M. S. Greer, E. Holeman, K. Kadinsky-Cade, R. J. Rich, and W. Xu (2008), Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power, J. Geophys. Res., 113, A06311, doi:10.1029/2007JA012866.
Fang, X., M. W. Liemohn, J. U. Kozyra, D. S. Evans, A. D. DeJong, and B. A. Emery (2007), Global 30-240 keV proton precipitation in the 17-18 April 2002 geomagnetic storms: 1. Patterns, J. Geophys. Res., 112, A05301, doi:10.1029/2006JA011867.
Kivelson, M. G., and A. J. Ridley (2008), Saturation of the polar cap potential: Inference from Alfvén wing arguments, J. Geophys. Res., 113, A05214, doi:10.1029/2007JA012302.
Perreault, P., and S.-I. Akasofu (1978), A study of geomagnetic storms, Geophys. J. R. Astron. Soc., 54, 547-573, doi:10.1111/j.1365-246X.1978.tb05494.x.
Guo, J., X. Feng, B. A. Emery, J. Zhang, C. Xiang, F. Shen, and W. Song (2011), Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions, J. Geophys. Res., 116, A05106, doi:10.1029/2011JA016490.
Turner, N. E., D. N. Baker, T. I. Pulkkinen, J. L. Roeder, J. F. Fennell, and V. K. Jordanova (2001), Energy content in the storm time ring current, J. Geophys. Res., 106, 19,149-19,156, doi:10.1029/2000JA003025.
Mac-Mahon, R. M., and W. D. Gonzalez (1997), Energetics during the main phase of geomagnetic superstorms, J. Geophys. Res., 102(A7), 14,199-14,207, doi:10.1029/97JA01151.
1997; 102
2011; 116
2004; 22
2007; 112
2004; 224
2005; 110
1978; 54
2009; 71
2010; 115
2000; 118
1979; 6
2002; 107
2006
1981; 28
1998; 103
2001; 28
2008; 113
1999; 104
2007; 34
2006; 111
2001; 106
1983; 88
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Tanskanen, E., T. I. Pulkkinen, H. E. J. Koskinen, and J. A. Slavin (2002), Substorm energy budget during low and high solar activity: 1997 and 1999 compared, J. Geophys. Res., 107(A6), 1086, doi:10.1029/2001JA900153.
– reference: Turner, N. E., W. D. Cramer, S. K. Earles, and B. A. Emery (2009), Geoefficiency and energy partitioning in CIR-driven and CME-driven storms, J. Atmos. Sol. Terr. Phys., 71, 1023-1031, doi:10.1016/j.jastp.2009.02.005.
– reference: Emery, B. A., I. G. Richardson, D. S. Evans, R. J. Rich, and W. Xu (2009), Solar wind structure sources and periodicities of global electron hemispheric power over three solar cycles, J. Atmos. Sol. Terr. Phys., 71, 1157-1175, doi:10.1016/j.jastp.2008.08.005.
– reference: Knipp, D. J., W. K. Tobiska, and B. A. Emery (2004), Direct and indirect thermospheric heating sources for solar cycles 21-23, Sol. Phys., 224, 495-505, doi:10.1007/s11207-005-6393-4.
– reference: Zhang, J., et al. (2007), Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996-2005, J. Geophys. Res., 112, A10102, doi:10.1029/2007JA012321.
– reference: Kivelson, M. G., and A. J. Ridley (2008), Saturation of the polar cap potential: Inference from Alfvén wing arguments, J. Geophys. Res., 113, A05214, doi:10.1029/2007JA012302.
– reference: Perreault, P., and S.-I. Akasofu (1978), A study of geomagnetic storms, Geophys. J. R. Astron. Soc., 54, 547-573, doi:10.1111/j.1365-246X.1978.tb05494.x.
– reference: Fang, X., M. W. Liemohn, J. U. Kozyra, D. S. Evans, A. D. DeJong, and B. A. Emery (2007), Global 30-240 keV proton precipitation in the 17-18 April 2002 geomagnetic storms: 1. Patterns, J. Geophys. Res., 112, A05301, doi:10.1029/2006JA011867.
– reference: Lu, G., et al. (1998), Global energy deposition during the January 1997 magnetic cloud event, J. Geophys. Res., 103, 11,685-11,694, doi:10.1029/98JA00897.
– reference: Nakai, H., and Y. Kamide (1999), Solar cycle variations in the storm-substorm relationship, J. Geophys. Res., 104, 22,695-22,700, doi:10.1029/1999JA900278.
– reference: Akasofu, S.-I. (1981), Energy coupling between the solar wind and the magnetosphere, Space Sci. Rev., 28, 121-190, doi:10.1007/BF00218810.
– reference: Guo, J., X. Feng, J. M. Forbes, J. Lei, J. Zhang, and C. Tan (2010), On the relationship between thermosphere density and solar wind parameters during intense geomagnetic storms, J. Geophys. Res., 115, A12335, doi:10.1029/2010JA015971.
– reference: Knipp, D. J., et al. (1998), An overview of the early November 1993 geomagnetic storm, J. Geophys. Res., 103, 26,197-26,220, doi:10.1029/98JA00762.
– reference: Emery, B. A., V. Coumans, D. S. Evans, G. A. Germany, M. S. Greer, E. Holeman, K. Kadinsky-Cade, R. J. Rich, and W. Xu (2008), Seasonal, Kp, solar wind, and solar flux variations in long-term single-pass satellite estimates of electron and ion auroral hemispheric power, J. Geophys. Res., 113, A06311, doi:10.1029/2007JA012866.
– reference: Palmroth, M., P. Janhunen, T. I. Pulkkinen, and H. E. J. Koskinen (2004), Ionospheric energy input as a function of solar wind parameters: Global MHD simulation results, Ann. Geophys., 22, 549-566, doi:10.5194/angeo-22-549-2004.
– reference: Turner, N. E., D. N. Baker, T. I. Pulkkinen, J. L. Roeder, J. F. Fennell, and V. K. Jordanova (2001), Energy content in the storm time ring current, J. Geophys. Res., 106, 19,149-19,156, doi:10.1029/2000JA003025.
– reference: Mac-Mahon, R. M., and W. D. Gonzalez (1997), Energetics during the main phase of geomagnetic superstorms, J. Geophys. Res., 102(A7), 14,199-14,207, doi:10.1029/97JA01151.
– reference: Guo, J., X. Feng, B. A. Emery, J. Zhang, C. Xiang, F. Shen, and W. Song (2011), Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions, J. Geophys. Res., 116, A05106, doi:10.1029/2011JA016490.
– reference: Wang, H., and H. Lühr (2007), Seasonal-longitudinal variation of substorm occurrence frequency: Evidence for ionospheric control, Geophys. Res. Lett., 34, L07104, doi:10.1029/2007GL029423.
– reference: Nagatsuma, T. (2006), Diurnal, semiannual, and solar cycle variations of solar wind-magnetosphere-ionosphere coupling, J. Geophys. Res., 111, A09202, doi:10.1029/2005JA011122.
– reference: Newell, P. T., T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich (2007), A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi:10.1029/2006JA012015.
– reference: Boudouridis, A., E. Zesta, L. R. Lyons, P. C. Anderson, and D. Lummerzheim (2005), Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation, J. Geophys. Res., 110, A05214, doi:10.1029/2004JA010704.
– reference: Shue, J.-H., and Y. Kamide (2001), Effects of solar wind density on auroral electrojets, Geophys. Res. Lett., 28, 2181-2184, doi:10.1029/2000GL012858.
– reference: Wygant, J. R., R. B. Torbert, and F. S. Mozer (1983), Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection, J. Geophys. Res., 88, 5727-5735, doi:10.1029/JA088iA07p05727.
– reference: Koskinen, H. E. J., and E. Tanskanen (2002), Magnetospheric energy budget and the epsilon parameter, J. Geophys. Res., 107(A11), 1415, doi:10.1029/2002JA009283.
– reference: Kan, J. R., and L. C. Lee (1979), Energy coupling and the solar wind dynamo, Geophys. Res. Lett., 6, 577-580, doi:10.1029/GL006i007p00577.
– reference: Codrescu, M. V., T. J. Fuller-Rowell, R. G. Roble, and D. S. Evans (1997), Medium energy particle precipitation influences on the mesosphere and lower thermosphere, J. Geophys. Res., 102(A9), 19,977-19,987, doi:10.1029/97JA01728.
– reference: Palmroth, M., N. Partamies, J. Polvi, T. I. Pulkkinen, D. J. McComas, R. J. Barnes, P. Stauning, C. W. Smith, H. J. Singer, and R. Vainio (2007), Solar wind-magnetosphere coupling efficiency for solar wind pressure impulses, Geophys. Res. Lett., 34, L11101, doi:10.1029/2006GL029059.
– reference: Pulkkinen, T. I., N. Partamies, R. L. McPherron, M. Henderson, G. D. Reeves, M. F. Thomsen, and H. J. Singer (2007), Comparative statistical analysis of storm time activations and sawtooth events, J. Geophys. Res., 112, A01205, doi:10.1029/2006JA012024.
– volume: 22
  start-page: 549
  year: 2004
  end-page: 566
  article-title: Ionospheric energy input as a function of solar wind parameters: Global MHD simulation results
  publication-title: Ann. Geophys.
– volume: 106
  start-page: 19,149
  year: 2001
  end-page: 19,156
  article-title: Energy content in the storm time ring current
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 14,199
  issue: A7
  year: 1997
  end-page: 14,207
  article-title: Energetics during the main phase of geomagnetic superstorms
  publication-title: J. Geophys. Res.
– volume: 71
  start-page: 1023
  year: 2009
  end-page: 1031
  article-title: Geoefficiency and energy partitioning in CIR‐driven and CME‐driven storms
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 107
  issue: A11
  year: 2002
  article-title: Magnetospheric energy budget and the epsilon parameter
  publication-title: J. Geophys. Res.
– volume: 34
  year: 2007
  article-title: Seasonal‐longitudinal variation of substorm occurrence frequency: Evidence for ionospheric control
  publication-title: Geophys. Res. Lett.
– volume: 110
  year: 2005
  article-title: Enhanced solar wind geoeffectiveness after a sudden increase in dynamic pressure during southward IMF orientation
  publication-title: J. Geophys. Res.
– volume: 116
  year: 2011
  article-title: Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions
  publication-title: J. Geophys. Res.
– volume: 115
  year: 2010
  article-title: On the relationship between thermosphere density and solar wind parameters during intense geomagnetic storms
  publication-title: J. Geophys. Res.
– volume: 54
  start-page: 547
  year: 1978
  end-page: 573
  article-title: A study of geomagnetic storms
  publication-title: Geophys. J. R. Astron. Soc.
– volume: 88
  start-page: 5727
  year: 1983
  end-page: 5735
  article-title: Comparison of S3–3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection
  publication-title: J. Geophys. Res.
– volume: 224
  start-page: 495
  year: 2004
  end-page: 505
  article-title: Direct and indirect thermospheric heating sources for solar cycles 21–23
  publication-title: Sol. Phys.
– volume: 111
  year: 2006
  article-title: Diurnal, semiannual, and solar cycle variations of solar wind–magnetosphere–ionosphere coupling
  publication-title: J. Geophys. Res.
– volume: 102
  start-page: 19,977
  issue: A9
  year: 1997
  end-page: 19,987
  article-title: Medium energy particle precipitation influences on the mesosphere and lower thermosphere
  publication-title: J. Geophys. Res.
– volume: 103
  start-page: 26,197
  year: 1998
  end-page: 26,220
  article-title: An overview of the early November 1993 geomagnetic storm
  publication-title: J. Geophys. Res.
– volume: 34
  year: 2007
  article-title: Solar wind‐magnetosphere coupling efficiency for solar wind pressure impulses
  publication-title: Geophys. Res. Lett.
– volume: 28
  start-page: 2181
  year: 2001
  end-page: 2184
  article-title: Effects of solar wind density on auroral electrojets
  publication-title: Geophys. Res. Lett.
– volume: 112
  year: 2007
  article-title: Solar and interplanetary sources of major geomagnetic storms ( ≤ −100 nT) during 1996–2005
  publication-title: J. Geophys. Res.
– volume: 113
  year: 2008
  article-title: Seasonal, Kp, solar wind, and solar flux variations in long‐term single‐pass satellite estimates of electron and ion auroral hemispheric power
  publication-title: J. Geophys. Res.
– volume: 118
  start-page: 217
  year: 2000
  end-page: 226
– volume: 113
  year: 2008
  article-title: Saturation of the polar cap potential: Inference from Alfvén wing arguments
  publication-title: J. Geophys. Res.
– volume: 107
  issue: A6
  year: 2002
  article-title: Substorm energy budget during low and high solar activity: 1997 and 1999 compared
  publication-title: J. Geophys. Res.
– volume: 28
  start-page: 121
  year: 1981
  end-page: 190
  article-title: Energy coupling between the solar wind and the magnetosphere
  publication-title: Space Sci. Rev.
– volume: 6
  start-page: 577
  year: 1979
  end-page: 580
  article-title: Energy coupling and the solar wind dynamo
  publication-title: Geophys. Res. Lett.
– volume: 112
  year: 2007
  article-title: A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables
  publication-title: J. Geophys. Res.
– year: 2006
– volume: 71
  start-page: 1157
  year: 2009
  end-page: 1175
  article-title: Solar wind structure sources and periodicities of global electron hemispheric power over three solar cycles
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 104
  start-page: 22,695
  year: 1999
  end-page: 22,700
  article-title: Solar cycle variations in the storm‐substorm relationship
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Global 30–240 keV proton precipitation in the 17–18 April 2002 geomagnetic storms: 1. Patterns
  publication-title: J. Geophys. Res.
– volume: 103
  start-page: 11,685
  year: 1998
  end-page: 11,694
  article-title: Global energy deposition during the January 1997 magnetic cloud event
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Comparative statistical analysis of storm time activations and sawtooth events
  publication-title: J. Geophys. Res.
– ident: e_1_2_6_6_1
  doi: 10.1029/2007JA012866
– ident: e_1_2_6_19_1
  doi: 10.1029/1999JA900278
– ident: e_1_2_6_27_1
  doi: 10.1029/2000JA003025
– ident: e_1_2_6_29_1
  doi: 10.1029/2007GL029423
– ident: e_1_2_6_10_1
  doi: 10.1029/2011JA016490
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jastp.2008.08.005
– ident: e_1_2_6_26_1
  doi: 10.1029/2001JA900153
– ident: e_1_2_6_11_1
  doi: 10.1029/GL006i007p00577
– ident: e_1_2_6_14_1
  doi: 10.1007/s11207‐005‐6393‐4
– ident: e_1_2_6_28_1
  doi: 10.1016/j.jastp.2009.02.005
– ident: e_1_2_6_17_1
  doi: 10.1029/97JA01151
– ident: e_1_2_6_30_1
  doi: 10.1029/JA088iA07p05727
– ident: e_1_2_6_18_1
  doi: 10.1029/2005JA011122
– ident: e_1_2_6_5_1
– ident: e_1_2_6_8_1
  doi: 10.1029/2006JA011867
– ident: e_1_2_6_13_1
  doi: 10.1029/98JA00762
– ident: e_1_2_6_16_1
  doi: 10.1029/98JA00897
– ident: e_1_2_6_25_1
  doi: 10.1029/2000GL012858
– ident: e_1_2_6_2_1
  doi: 10.1007/BF00218810
– ident: e_1_2_6_20_1
  doi: 10.1029/2006JA012015
– ident: e_1_2_6_15_1
  doi: 10.1029/2002JA009283
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1365‐246X.1978.tb05494.x
– ident: e_1_2_6_9_1
  doi: 10.1029/2010JA015971
– ident: e_1_2_6_31_1
  doi: 10.1029/GM118p0217
– ident: e_1_2_6_3_1
  doi: 10.1029/2004JA010704
– ident: e_1_2_6_4_1
  doi: 10.1029/97JA01728
– ident: e_1_2_6_22_1
  doi: 10.1029/2006GL029059
– ident: e_1_2_6_24_1
  doi: 10.1029/2006JA012024
– ident: e_1_2_6_21_1
  doi: 10.5194/angeo‐22‐549‐2004
– ident: e_1_2_6_32_1
  doi: 10.1029/2007JA012321
– ident: e_1_2_6_12_1
  doi: 10.1029/2007JA012302
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
Score 2.1367068
Snippet We present a statistical investigation into the variations of the ionospheric energy coupling efficiencies with the solar wind energy input, the interplanetary...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage np
SubjectTerms coupling efficiency
Earth sciences
Earth, ocean, space
Exact sciences and technology
extreme space weather
ionospheric dissipation
solar wind energy input
Title Efficiency of solar wind energy coupling to the ionosphere
URI https://api.istex.fr/ark:/67375/WNG-KCQ86N34-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2012JA017627
https://www.proquest.com/docview/1642632240
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1rb9Mw0CqtkBASggFaeExGgn0pGXnVafgWqtKpaAXGJrpPkeM40sRoqqYVlJ_BL-b8SOLAhgYfGuXcuE1yD9-d74HQc8oJdXKS2iD3IhukH7FTHoY2fALGmEsd2Q7oaEYOT4PpfDDvdH4aUUubdXrAflyaV_I_WIUxwKvIkv0HzNY_CgNwDviFI2AYjtfC8VjWf5DJk6DzlcJK7X8DI7vPVUYfKzZLmW6uFUyRwVCKOgLt-J9GJ53wYlkhrorJEz6DT2BZc9knxwiOn2zUrg0Q2JLrBVAqlUp8zDdiN6kZF-6vrbHF0Y8PGm--mnJ2bjoh3CZg9VJno3KeNWFJleNSlCtU644cA22D2J7ntKWxSuXUZBeHxspcr1t_iH3HE1VTxY1NYxAxpPobs7r2b6teHYtIV19EcFs4SD7PJsm70cchmflBEtxAPQ9MD6-Lem_Gsw_HtedOVuBpAoncQKYGKwCk57AFeCbgm0BgAgMTIBUQgPRXDTX1y9OZG_C4r8yHbelUPSEevosYX1oCteSqP0vLgDLNMKlHndxFdzSx4VhR8z3U4YsdtBuXYkum-LrF-1ieKzIsd9BN1S11C2cTrs-sIzD1ipWEYMLo4hzsLv3d7feM04UuxA6TNNHeR68bbsFFjiW3YMEtWHELrrgFrwsM3IIbbnmATt-OT0aHtu4cYjMfVC47SqkfBNxllPssHeRZlOXEJzQnLHd5mrmURzlNByRMh8LgYWAGhE6WgW2RE5pF_kPUXRQLvoswcbNhSGEKLO0BiQgFlT7jXkq4sE6cyEL96t0nTJfVF91dLhIZ3uFFiYkpC72or16qcjJXXLcv0VhfdBWVWmivhed6ggfPC7aEY6FnFeITWDnEdiBd8GJTJi6RzRpApbfQS0kRf72lZDo5jsVLcB9d9-Yeo1uNsHiCuuvVhj8FHX6d7mmm-gW-AuAR
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+of+solar+wind+energy+coupling+to+the+ionosphere&rft.jtitle=Journal+of+Geophysical+Research%3A+Space+Physics&rft.au=Guo%2C+Jianpeng&rft.au=Feng%2C+Xueshang&rft.au=Emery%2C+Barbara+A.&rft.au=Wang%2C+Yi&rft.date=2012-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0148-0227&rft.eissn=2156-2202&rft.volume=117&rft.issue=A7&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2012JA017627&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_KCQ86N34_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon