Research on Short-Term Low-Voltage Distribution Network Line Loss Prediction Based on Kmeans-LightGBM
Due to the lack of data quality in real production environment, the traditional line loss calculation method cannot be applied, thus through the investigation of various information systems’ operation in power supply enterprises, a short-term low-voltage distribution network line loss prediction alg...
Saved in:
Published in | Journal of circuits, systems, and computers Vol. 31; no. 13 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
World Scientific Publishing Company
15.09.2022
World Scientific Publishing Co. Pte., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the lack of data quality in real production environment, the traditional line loss calculation method cannot be applied, thus through the investigation of various information systems’ operation in power supply enterprises, a short-term low-voltage distribution network line loss prediction algorithm based on Kmeans-LightGBM is proposed. Operating data quality evaluation system of low-voltage distribution network was set up based on Hadoop platform, the feature dimensions were expanded by feature engineering, then those with no multicollinearity and high correlation with the line loss were selected, data normalization was again performed, Kmeans clustering algorithm was used to cluster the area and then, LightGBM algorithm was used to predict the classes within the area of line loss. Finally, the line loss of the numerical inverse normalization was found and validated with Beijing Power Grid of a low-voltage distribution network. By comparison, the model’s prediction accuracy is found to be higher than BPNN, FOA-SVR and traditional LightGBM. |
---|---|
AbstractList | Due to the lack of data quality in real production environment, the traditional line loss calculation method cannot be applied, thus through the investigation of various information systems’ operation in power supply enterprises, a short-term low-voltage distribution network line loss prediction algorithm based on Kmeans-LightGBM is proposed. Operating data quality evaluation system of low-voltage distribution network was set up based on Hadoop platform, the feature dimensions were expanded by feature engineering, then those with no multicollinearity and high correlation with the line loss were selected, data normalization was again performed, Kmeans clustering algorithm was used to cluster the area and then, LightGBM algorithm was used to predict the classes within the area of line loss. Finally, the line loss of the numerical inverse normalization was found and validated with Beijing Power Grid of a low-voltage distribution network. By comparison, the model’s prediction accuracy is found to be higher than BPNN, FOA-SVR and traditional LightGBM. |
Author | Wang, Peng Jiao, Yang Zhang, Caixia Sun, Jun Xiao, Yuhang Li, Xinyu Tang, Zhu |
Author_xml | – sequence: 1 givenname: Zhu surname: Tang fullname: Tang, Zhu – sequence: 2 givenname: Yuhang surname: Xiao fullname: Xiao, Yuhang – sequence: 3 givenname: Yang surname: Jiao fullname: Jiao, Yang – sequence: 4 givenname: Xinyu surname: Li fullname: Li, Xinyu – sequence: 5 givenname: Caixia surname: Zhang fullname: Zhang, Caixia – sequence: 6 givenname: Jun surname: Sun fullname: Sun, Jun – sequence: 7 givenname: Peng surname: Wang fullname: Wang, Peng |
BookMark | eNp9kEtPwkAUhScGEwH9Ae6auK7Oq6-loKKxPiLotpnHLQyWFmeGEP-9rRgXkri6i3O-c-89A9SrmxoQOiX4nBBOL6aYkpTQOKY0wpSm-AD1SZKxMOYR76F-J4edfoQGzi0xxjxKcR_BCzgQVi2Cpg6mi8b6cAZ2FeTNNnxrKi_mEFwZ562RG29azyP4bWPfg9zU0LqcC54taKO-xZFwoLuk-xWI2oW5mS_8ZPRwjA5LUTk4-ZlD9HpzPRvfhvnT5G58mYeKpRiHOoqloKQkCWGgVUk1L-NEZzEwShMuM5mVMoZIUyaFYoKxVHIGimLGleaSDdHZLndtm48NOF8sm42t25UFTXBCKMNZ1LrIzqVse7-FslhbsxL2syC46Nos9tpsmeQPo4wX3dPeClP9S-Id2dZWaacM1N6URv0u3Ue-AEaWiXA |
CitedBy_id | crossref_primary_10_1186_s42162_024_00442_z crossref_primary_10_1038_s41598_024_68366_y crossref_primary_10_2355_isijinternational_ISIJINT_2023_099 |
Cites_doi | 10.1109/MCE.2020.3047606 10.1016/j.apenergy.2021.116818 10.1109/TIM.2015.2444238 10.1016/j.engappai.2014.11.003 10.1109/TII.2021.3116132 10.1109/JIOT.2021.3113321 10.1109/JIOT.2021.3079574 10.1109/ACCESS.2020.2999129 10.1109/TITS.2022.3149969 10.1109/MCE.2021.3081874 10.1016/j.apenergy.2022.118687 10.1109/MCOM.101.2001126 10.1016/j.apenergy.2020.116429 10.1109/MWC.001.2000374 10.1155/2020/6025821 10.1109/TITS.2021.3119921 |
ContentType | Journal Article |
Copyright | 2022, World Scientific Publishing Company 2022. World Scientific Publishing Company |
Copyright_xml | – notice: 2022, World Scientific Publishing Company – notice: 2022. World Scientific Publishing Company |
DBID | AAYXX CITATION |
DOI | 10.1142/S0218126622502280 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1793-6454 |
ExternalDocumentID | 10_1142_S0218126622502280 S0218126622502280 |
GroupedDBID | .DC 0R~ 4.4 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS HZ~ O9- P2P P71 RWJ WSC AAYXX ADMLS CITATION |
ID | FETCH-LOGICAL-c3800-d56ba21f1713edcf2d4f67d96e32274b9b9fb6e5d23bac3a338b43ec2034cd4b3 |
ISSN | 0218-1266 |
IngestDate | Mon Jun 30 13:00:14 EDT 2025 Tue Jul 01 03:09:45 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Fri Aug 23 08:20:03 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | line loss data quality evaluation system Kmeans-LightGBM big data platform low-voltage distribution network |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3800-d56ba21f1713edcf2d4f67d96e32274b9b9fb6e5d23bac3a338b43ec2034cd4b3 |
Notes | This paper was recommended by Regional Editor Takuro Sato. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8152-8717 |
PQID | 2707123095 |
PQPubID | 2049873 |
ParticipantIDs | crossref_primary_10_1142_S0218126622502280 proquest_journals_2707123095 worldscientific_primary_S0218126622502280 crossref_citationtrail_10_1142_S0218126622502280 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220915 |
PublicationDateYYYYMMDD | 2022-09-15 |
PublicationDate_xml | – month: 09 year: 2022 text: 20220915 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of circuits, systems, and computers |
PublicationYear | 2022 |
Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
References | S0218126622502280BIB022 S0218126622502280BIB021 S0218126622502280BIB024 S0218126622502280BIB023 S0218126622502280BIB020 Qiu C. (S0218126622502280BIB030) 2018; 2018 S0218126622502280BIB026 S0218126622502280BIB028 Zou Y. (S0218126622502280BIB006) 2015; 2015 Liu L. (S0218126622502280BIB025) 2018; 35 Hartigan J. A. (S0218126622502280BIB008) 1979; 28 S0218126622502280BIB010 S0218126622502280BIB013 S0218126622502280BIB012 S0218126622502280BIB019 S0218126622502280BIB018 Yan R. (S0218126622502280BIB001) 2018 S0218126622502280BIB015 Zhu Y. (S0218126622502280BIB002) 2017; 2017 S0218126622502280BIB014 S0218126622502280BIB017 S0218126622502280BIB016 Zhang K. (S0218126622502280BIB029) 2013; 2013 Ji Y. (S0218126622502280BIB005) 2017; 2017 Peng Y. (S0218126622502280BIB011) 2011; 2011 Zhang Q. (S0218126622502280BIB004) 2018 Pan X. (S0218126622502280BIB027) 2018 Yang L. (S0218126622502280BIB003) 2019; 231 |
References_xml | – volume: 2017 start-page: 56 year: 2017 ident: S0218126622502280BIB002 publication-title: Acta Electr. Tech. Sin. – volume: 2011 start-page: 120 year: 2011 ident: S0218126622502280BIB011 publication-title: Chin. J. Electr. Eng. – ident: S0218126622502280BIB023 doi: 10.1109/MCE.2020.3047606 – ident: S0218126622502280BIB014 doi: 10.1016/j.apenergy.2021.116818 – ident: S0218126622502280BIB028 doi: 10.1109/TIM.2015.2444238 – ident: S0218126622502280BIB010 doi: 10.1016/j.engappai.2014.11.003 – ident: S0218126622502280BIB024 doi: 10.1109/TII.2021.3116132 – volume: 231 start-page: 31 year: 2019 ident: S0218126622502280BIB003 publication-title: Autom. Instrum. – start-page: 13 year: 2018 ident: S0218126622502280BIB004 publication-title: Electr. Technol. – ident: S0218126622502280BIB022 doi: 10.1109/JIOT.2021.3113321 – volume: 28 start-page: 100 year: 1979 ident: S0218126622502280BIB008 publication-title: J. R. Stat. Soc. – ident: S0218126622502280BIB019 doi: 10.1109/JIOT.2021.3079574 – ident: S0218126622502280BIB016 doi: 10.1109/ACCESS.2020.2999129 – ident: S0218126622502280BIB012 doi: 10.1109/TITS.2022.3149969 – year: 2018 ident: S0218126622502280BIB027 publication-title: Chin. J. Electr. Eng. – ident: S0218126622502280BIB020 doi: 10.1109/MCE.2021.3081874 – start-page: 67 year: 2018 ident: S0218126622502280BIB001 publication-title: Power Inf. Commun. Technol. – volume: 2017 start-page: 38 year: 2017 ident: S0218126622502280BIB005 publication-title: Northeast Electr. Power Technol. – volume: 2015 start-page: 25 year: 2015 ident: S0218126622502280BIB006 publication-title: Power Demand Side Manag. – ident: S0218126622502280BIB026 doi: 10.1016/j.apenergy.2022.118687 – ident: S0218126622502280BIB018 doi: 10.1109/MCOM.101.2001126 – volume: 35 start-page: 41 year: 2018 ident: S0218126622502280BIB025 publication-title: Power Supply – ident: S0218126622502280BIB013 doi: 10.1016/j.apenergy.2020.116429 – ident: S0218126622502280BIB017 doi: 10.1109/MWC.001.2000374 – ident: S0218126622502280BIB015 doi: 10.1155/2020/6025821 – ident: S0218126622502280BIB021 doi: 10.1109/TITS.2021.3119921 – volume: 2013 start-page: 92 year: 2013 ident: S0218126622502280BIB029 publication-title: Chin. J. Electr. Eng. – volume: 2018 start-page: 1 year: 2018 ident: S0218126622502280BIB030 publication-title: Power Syst. Autom. |
SSID | ssj0004580 |
Score | 2.3660445 |
Snippet | Due to the lack of data quality in real production environment, the traditional line loss calculation method cannot be applied, thus through the investigation... |
SourceID | proquest crossref worldscientific |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Clustering Electric potential Electric power grids Information systems Quality assessment Voltage |
Title | Research on Short-Term Low-Voltage Distribution Network Line Loss Prediction Based on Kmeans-LightGBM |
URI | http://www.worldscientific.com/doi/abs/10.1142/S0218126622502280 https://www.proquest.com/docview/2707123095 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AKHqrxEaIv2wAXQgr3rR3zsA6ggRUhNUeBieddrNVJxqtRWBWd-ODPrtb0kLaJcrGjiTJTM53ntPAh5LhJZjOM4ZIp7AgIUiFkTIDEuMk-Fic-lMlW-n6Kj0-DDLJwNBr-cqqW6kq_Vz2v7Sv5HqkADuWKX7C0k2zEFArwG-cIVJAzXf5JxWzaHGf-TM3Ck2RQU7avJ4op9WZxXWI5ziINx7U4r7O7FOiwMxDXcBTru8xIPasyb-2DPcuT08bsG-8UmGLa_3z--wX1V86Wq55WBQTMO-rKtBFV2U0Tnrk9tUvrbWd2SZvPMJGm_1pix7up4WqpDm5h6g9m8_FG7KQqIbnHFQuhoMvAjmM8jO_O60bSgGBiOE3NVsTUIFnLiehUfcHPIbHyTKAJ9ZEb69PasPcNfMXNd8WHTis3TNRZ3yAaHYIMPycbe4fHkxJk6P25ydfZn2NNxYPJmjcmf_k0ftGyaCbhNlysWgTlezHSLbFr50b0GS_fJQJcPyD1nKOVDoltU0UVJe1RRB1XURRW1qKKIKoqooj2qqEEVclpB1SNy-u7t9OCI2WUcTAkIKlgeRjLjfuHHvtC5KngeFFGcJ5EGkxAHMpFJISMd5lzITIlMiLEMhEYVEKg8kOIxGZaLUj8hlMeScwVxN7ivgeJyHEgv0rpQXubHsadGxGv_wlTZSfW4MOU8vVF0I_Ky-8hFM6blbzfvtHJJ7dN8mfIYnG2Ix5NwRF6syKpjucbq6W2-d5vc7Z-OHTKslrXeBZe2ks8s4n4DeaGZBA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Short-Term+Low-Voltage+Distribution+Network+Line+Loss+Prediction+Based+on+Kmeans-LightGBM&rft.jtitle=Journal+of+circuits%2C+systems%2C+and+computers&rft.au=Tang%2C+Zhu&rft.au=Xiao%2C+Yuhang&rft.au=Jiao%2C+Yang&rft.au=Li%2C+Xinyu&rft.date=2022-09-15&rft.issn=0218-1266&rft.eissn=1793-6454&rft.volume=31&rft.issue=13&rft_id=info:doi/10.1142%2FS0218126622502280&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S0218126622502280 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-1266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-1266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-1266&client=summon |