Research on Short-Term Low-Voltage Distribution Network Line Loss Prediction Based on Kmeans-LightGBM

Due to the lack of data quality in real production environment, the traditional line loss calculation method cannot be applied, thus through the investigation of various information systems’ operation in power supply enterprises, a short-term low-voltage distribution network line loss prediction alg...

Full description

Saved in:
Bibliographic Details
Published inJournal of circuits, systems, and computers Vol. 31; no. 13
Main Authors Tang, Zhu, Xiao, Yuhang, Jiao, Yang, Li, Xinyu, Zhang, Caixia, Sun, Jun, Wang, Peng
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 15.09.2022
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the lack of data quality in real production environment, the traditional line loss calculation method cannot be applied, thus through the investigation of various information systems’ operation in power supply enterprises, a short-term low-voltage distribution network line loss prediction algorithm based on Kmeans-LightGBM is proposed. Operating data quality evaluation system of low-voltage distribution network was set up based on Hadoop platform, the feature dimensions were expanded by feature engineering, then those with no multicollinearity and high correlation with the line loss were selected, data normalization was again performed, Kmeans clustering algorithm was used to cluster the area and then, LightGBM algorithm was used to predict the classes within the area of line loss. Finally, the line loss of the numerical inverse normalization was found and validated with Beijing Power Grid of a low-voltage distribution network. By comparison, the model’s prediction accuracy is found to be higher than BPNN, FOA-SVR and traditional LightGBM.
AbstractList Due to the lack of data quality in real production environment, the traditional line loss calculation method cannot be applied, thus through the investigation of various information systems’ operation in power supply enterprises, a short-term low-voltage distribution network line loss prediction algorithm based on Kmeans-LightGBM is proposed. Operating data quality evaluation system of low-voltage distribution network was set up based on Hadoop platform, the feature dimensions were expanded by feature engineering, then those with no multicollinearity and high correlation with the line loss were selected, data normalization was again performed, Kmeans clustering algorithm was used to cluster the area and then, LightGBM algorithm was used to predict the classes within the area of line loss. Finally, the line loss of the numerical inverse normalization was found and validated with Beijing Power Grid of a low-voltage distribution network. By comparison, the model’s prediction accuracy is found to be higher than BPNN, FOA-SVR and traditional LightGBM.
Author Wang, Peng
Jiao, Yang
Zhang, Caixia
Sun, Jun
Xiao, Yuhang
Li, Xinyu
Tang, Zhu
Author_xml – sequence: 1
  givenname: Zhu
  surname: Tang
  fullname: Tang, Zhu
– sequence: 2
  givenname: Yuhang
  surname: Xiao
  fullname: Xiao, Yuhang
– sequence: 3
  givenname: Yang
  surname: Jiao
  fullname: Jiao, Yang
– sequence: 4
  givenname: Xinyu
  surname: Li
  fullname: Li, Xinyu
– sequence: 5
  givenname: Caixia
  surname: Zhang
  fullname: Zhang, Caixia
– sequence: 6
  givenname: Jun
  surname: Sun
  fullname: Sun, Jun
– sequence: 7
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
BookMark eNp9kEtPwkAUhScGEwH9Ae6auK7Oq6-loKKxPiLotpnHLQyWFmeGEP-9rRgXkri6i3O-c-89A9SrmxoQOiX4nBBOL6aYkpTQOKY0wpSm-AD1SZKxMOYR76F-J4edfoQGzi0xxjxKcR_BCzgQVi2Cpg6mi8b6cAZ2FeTNNnxrKi_mEFwZ562RG29azyP4bWPfg9zU0LqcC54taKO-xZFwoLuk-xWI2oW5mS_8ZPRwjA5LUTk4-ZlD9HpzPRvfhvnT5G58mYeKpRiHOoqloKQkCWGgVUk1L-NEZzEwShMuM5mVMoZIUyaFYoKxVHIGimLGleaSDdHZLndtm48NOF8sm42t25UFTXBCKMNZ1LrIzqVse7-FslhbsxL2syC46Nos9tpsmeQPo4wX3dPeClP9S-Id2dZWaacM1N6URv0u3Ue-AEaWiXA
CitedBy_id crossref_primary_10_1186_s42162_024_00442_z
crossref_primary_10_1038_s41598_024_68366_y
crossref_primary_10_2355_isijinternational_ISIJINT_2023_099
Cites_doi 10.1109/MCE.2020.3047606
10.1016/j.apenergy.2021.116818
10.1109/TIM.2015.2444238
10.1016/j.engappai.2014.11.003
10.1109/TII.2021.3116132
10.1109/JIOT.2021.3113321
10.1109/JIOT.2021.3079574
10.1109/ACCESS.2020.2999129
10.1109/TITS.2022.3149969
10.1109/MCE.2021.3081874
10.1016/j.apenergy.2022.118687
10.1109/MCOM.101.2001126
10.1016/j.apenergy.2020.116429
10.1109/MWC.001.2000374
10.1155/2020/6025821
10.1109/TITS.2021.3119921
ContentType Journal Article
Copyright 2022, World Scientific Publishing Company
2022. World Scientific Publishing Company
Copyright_xml – notice: 2022, World Scientific Publishing Company
– notice: 2022. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0218126622502280
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1793-6454
ExternalDocumentID 10_1142_S0218126622502280
S0218126622502280
GroupedDBID .DC
0R~
4.4
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
HZ~
O9-
P2P
P71
RWJ
WSC
AAYXX
ADMLS
CITATION
ID FETCH-LOGICAL-c3800-d56ba21f1713edcf2d4f67d96e32274b9b9fb6e5d23bac3a338b43ec2034cd4b3
ISSN 0218-1266
IngestDate Mon Jun 30 13:00:14 EDT 2025
Tue Jul 01 03:09:45 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Fri Aug 23 08:20:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords line loss
data quality evaluation system
Kmeans-LightGBM
big data platform
low-voltage distribution network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3800-d56ba21f1713edcf2d4f67d96e32274b9b9fb6e5d23bac3a338b43ec2034cd4b3
Notes This paper was recommended by Regional Editor Takuro Sato.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8152-8717
PQID 2707123095
PQPubID 2049873
ParticipantIDs crossref_primary_10_1142_S0218126622502280
proquest_journals_2707123095
worldscientific_primary_S0218126622502280
crossref_citationtrail_10_1142_S0218126622502280
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220915
PublicationDateYYYYMMDD 2022-09-15
PublicationDate_xml – month: 09
  year: 2022
  text: 20220915
  day: 15
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of circuits, systems, and computers
PublicationYear 2022
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S0218126622502280BIB022
S0218126622502280BIB021
S0218126622502280BIB024
S0218126622502280BIB023
S0218126622502280BIB020
Qiu C. (S0218126622502280BIB030) 2018; 2018
S0218126622502280BIB026
S0218126622502280BIB028
Zou Y. (S0218126622502280BIB006) 2015; 2015
Liu L. (S0218126622502280BIB025) 2018; 35
Hartigan J. A. (S0218126622502280BIB008) 1979; 28
S0218126622502280BIB010
S0218126622502280BIB013
S0218126622502280BIB012
S0218126622502280BIB019
S0218126622502280BIB018
Yan R. (S0218126622502280BIB001) 2018
S0218126622502280BIB015
Zhu Y. (S0218126622502280BIB002) 2017; 2017
S0218126622502280BIB014
S0218126622502280BIB017
S0218126622502280BIB016
Zhang K. (S0218126622502280BIB029) 2013; 2013
Ji Y. (S0218126622502280BIB005) 2017; 2017
Peng Y. (S0218126622502280BIB011) 2011; 2011
Zhang Q. (S0218126622502280BIB004) 2018
Pan X. (S0218126622502280BIB027) 2018
Yang L. (S0218126622502280BIB003) 2019; 231
References_xml – volume: 2017
  start-page: 56
  year: 2017
  ident: S0218126622502280BIB002
  publication-title: Acta Electr. Tech. Sin.
– volume: 2011
  start-page: 120
  year: 2011
  ident: S0218126622502280BIB011
  publication-title: Chin. J. Electr. Eng.
– ident: S0218126622502280BIB023
  doi: 10.1109/MCE.2020.3047606
– ident: S0218126622502280BIB014
  doi: 10.1016/j.apenergy.2021.116818
– ident: S0218126622502280BIB028
  doi: 10.1109/TIM.2015.2444238
– ident: S0218126622502280BIB010
  doi: 10.1016/j.engappai.2014.11.003
– ident: S0218126622502280BIB024
  doi: 10.1109/TII.2021.3116132
– volume: 231
  start-page: 31
  year: 2019
  ident: S0218126622502280BIB003
  publication-title: Autom. Instrum.
– start-page: 13
  year: 2018
  ident: S0218126622502280BIB004
  publication-title: Electr. Technol.
– ident: S0218126622502280BIB022
  doi: 10.1109/JIOT.2021.3113321
– volume: 28
  start-page: 100
  year: 1979
  ident: S0218126622502280BIB008
  publication-title: J. R. Stat. Soc.
– ident: S0218126622502280BIB019
  doi: 10.1109/JIOT.2021.3079574
– ident: S0218126622502280BIB016
  doi: 10.1109/ACCESS.2020.2999129
– ident: S0218126622502280BIB012
  doi: 10.1109/TITS.2022.3149969
– year: 2018
  ident: S0218126622502280BIB027
  publication-title: Chin. J. Electr. Eng.
– ident: S0218126622502280BIB020
  doi: 10.1109/MCE.2021.3081874
– start-page: 67
  year: 2018
  ident: S0218126622502280BIB001
  publication-title: Power Inf. Commun. Technol.
– volume: 2017
  start-page: 38
  year: 2017
  ident: S0218126622502280BIB005
  publication-title: Northeast Electr. Power Technol.
– volume: 2015
  start-page: 25
  year: 2015
  ident: S0218126622502280BIB006
  publication-title: Power Demand Side Manag.
– ident: S0218126622502280BIB026
  doi: 10.1016/j.apenergy.2022.118687
– ident: S0218126622502280BIB018
  doi: 10.1109/MCOM.101.2001126
– volume: 35
  start-page: 41
  year: 2018
  ident: S0218126622502280BIB025
  publication-title: Power Supply
– ident: S0218126622502280BIB013
  doi: 10.1016/j.apenergy.2020.116429
– ident: S0218126622502280BIB017
  doi: 10.1109/MWC.001.2000374
– ident: S0218126622502280BIB015
  doi: 10.1155/2020/6025821
– ident: S0218126622502280BIB021
  doi: 10.1109/TITS.2021.3119921
– volume: 2013
  start-page: 92
  year: 2013
  ident: S0218126622502280BIB029
  publication-title: Chin. J. Electr. Eng.
– volume: 2018
  start-page: 1
  year: 2018
  ident: S0218126622502280BIB030
  publication-title: Power Syst. Autom.
SSID ssj0004580
Score 2.3660445
Snippet Due to the lack of data quality in real production environment, the traditional line loss calculation method cannot be applied, thus through the investigation...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Clustering
Electric potential
Electric power grids
Information systems
Quality assessment
Voltage
Title Research on Short-Term Low-Voltage Distribution Network Line Loss Prediction Based on Kmeans-LightGBM
URI http://www.worldscientific.com/doi/abs/10.1142/S0218126622502280
https://www.proquest.com/docview/2707123095
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AKHqrxEaIv2wAXQgr3rR3zsA6ggRUhNUeBieddrNVJxqtRWBWd-ODPrtb0kLaJcrGjiTJTM53ntPAh5LhJZjOM4ZIp7AgIUiFkTIDEuMk-Fic-lMlW-n6Kj0-DDLJwNBr-cqqW6kq_Vz2v7Sv5HqkADuWKX7C0k2zEFArwG-cIVJAzXf5JxWzaHGf-TM3Ck2RQU7avJ4op9WZxXWI5ziINx7U4r7O7FOiwMxDXcBTru8xIPasyb-2DPcuT08bsG-8UmGLa_3z--wX1V86Wq55WBQTMO-rKtBFV2U0Tnrk9tUvrbWd2SZvPMJGm_1pix7up4WqpDm5h6g9m8_FG7KQqIbnHFQuhoMvAjmM8jO_O60bSgGBiOE3NVsTUIFnLiehUfcHPIbHyTKAJ9ZEb69PasPcNfMXNd8WHTis3TNRZ3yAaHYIMPycbe4fHkxJk6P25ydfZn2NNxYPJmjcmf_k0ftGyaCbhNlysWgTlezHSLbFr50b0GS_fJQJcPyD1nKOVDoltU0UVJe1RRB1XURRW1qKKIKoqooj2qqEEVclpB1SNy-u7t9OCI2WUcTAkIKlgeRjLjfuHHvtC5KngeFFGcJ5EGkxAHMpFJISMd5lzITIlMiLEMhEYVEKg8kOIxGZaLUj8hlMeScwVxN7ivgeJyHEgv0rpQXubHsadGxGv_wlTZSfW4MOU8vVF0I_Ky-8hFM6blbzfvtHJJ7dN8mfIYnG2Ix5NwRF6syKpjucbq6W2-d5vc7Z-OHTKslrXeBZe2ks8s4n4DeaGZBA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Short-Term+Low-Voltage+Distribution+Network+Line+Loss+Prediction+Based+on+Kmeans-LightGBM&rft.jtitle=Journal+of+circuits%2C+systems%2C+and+computers&rft.au=Tang%2C+Zhu&rft.au=Xiao%2C+Yuhang&rft.au=Jiao%2C+Yang&rft.au=Li%2C+Xinyu&rft.date=2022-09-15&rft.issn=0218-1266&rft.eissn=1793-6454&rft.volume=31&rft.issue=13&rft_id=info:doi/10.1142%2FS0218126622502280&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S0218126622502280
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-1266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-1266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-1266&client=summon