Analysis of EEG Spectrum Bands Using Power Spectral Density for Pleasure and Displeasure State
The technology of reading human mental states is a leading innovation in the biomedical engineering field. EEG signal processing is going to help us to explore the uniqueness of brain signal that carries thousands of information in human being. The aim of this study is to analyze brain signal featur...
Saved in:
Published in | IOP conference series. Materials Science and Engineering Vol. 557; no. 1; pp. 12030 - 12034 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.06.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1757-8981 1757-899X |
DOI | 10.1088/1757-899X/557/1/012030 |
Cover
Abstract | The technology of reading human mental states is a leading innovation in the biomedical engineering field. EEG signal processing is going to help us to explore the uniqueness of brain signal that carries thousands of information in human being. The aim of this study is to analyze brain signal features between pleasure and displeasure mental state. Brainwaves is divided into 5 sub frequency bands namely alpha (8 - 13 Hz), beta (13 - 30 Hz), gamma (30 - 100 Hz), theta (4 - 8 Hz) and delta (1 - 4 Hz). However, in this study, alpha and beta waves were analyzed to investigate the mental states. Twenty subjects were recruited from undergraduate engineering student's education background in UniMAP with age ranging between 19 to 23 years old. The subject must be healthy and right-handed. The subject was required to view a series of pleasure and displeasure images for 10 minutes and take rest for 30 seconds between pleasure and displeasure view. Truscan EEG device (Deymed Diagnostic, Alien Technic, Czech Republic) with 19 channels were used to acquire EEG data with frequency sampling of 1024 Hz and impedance is kept below 5 kΩ. A bandpass filter was used to extract alpha and beta waves. The signal was segmented and PSD value using Welch and Burg method was calculated for both mental states. 7 statistical features (mean, mode, median, variance, standard deviation, minimum and maximum) were obtained from PSD value and used as an input for the classifier. K-Nearest Neighbour (KNN) and Linear Discriminant Analysis (LDA) were used to classify into two mental states. As a result, Welch method gives the highest classification accuracy which is 99.3 % for alpha waves followed by 97.5 % for beta waves from channel F4. It can be concluded that alpha waves are the most potential waves to be used in order to differentiate pleasure and displeasure features. |
---|---|
AbstractList | The technology of reading human mental states is a leading innovation in the biomedical engineering field. EEG signal processing is going to help us to explore the uniqueness of brain signal that carries thousands of information in human being. The aim of this study is to analyze brain signal features between pleasure and displeasure mental state. Brainwaves is divided into 5 sub frequency bands namely alpha (8 – 13 Hz), beta (13 – 30 Hz), gamma (30 – 100 Hz), theta (4 – 8 Hz) and delta (1 – 4 Hz). However, in this study, alpha and beta waves were analyzed to investigate the mental states. Twenty subjects were recruited from undergraduate engineering student’s education background in UniMAP with age ranging between 19 to 23 years old. The subject must be healthy and right-handed. The subject was required to view a series of pleasure and displeasure images for 10 minutes and take rest for 30 seconds between pleasure and displeasure view. Truscan EEG device (Deymed Diagnostic, Alien Technic, Czech Republic) with 19 channels were used to acquire EEG data with frequency sampling of 1024 Hz and impedance is kept below 5 kΩ. A bandpass filter was used to extract alpha and beta waves. The signal was segmented and PSD value using Welch and Burg method was calculated for both mental states. 7 statistical features (mean, mode, median, variance, standard deviation, minimum and maximum) were obtained from PSD value and used as an input for the classifier. K-Nearest Neighbour (KNN) and Linear Discriminant Analysis (LDA) were used to classify into two mental states. As a result, Welch method gives the highest classification accuracy which is 99.3 % for alpha waves followed by 97.5 % for beta waves from channel F4. It can be concluded that alpha waves are the most potential waves to be used in order to differentiate pleasure and displeasure features. |
Author | Ameera, Anis Saidatul, A. Ibrahim, Z |
Author_xml | – sequence: 1 givenname: Anis surname: Ameera fullname: Ameera, Anis organization: Biosignal Processing Research Group (BioSIM), School of Mechatronic Engineering, Universiti Malaysia Perlis , Malaysia – sequence: 2 givenname: A. surname: Saidatul fullname: Saidatul, A. organization: Biosignal Processing Research Group (BioSIM), School of Mechatronic Engineering, Universiti Malaysia Perlis , Malaysia – sequence: 3 givenname: Z surname: Ibrahim fullname: Ibrahim, Z organization: Faculty of Technology, University of Sunderland, St Peter's Campus , United Kingdom |
BookMark | eNqFkF1LwzAUhoNMcJv-BQl4481sTtOPFLyZ25zCxMEmeGVI21QyuqYmLbJ_b8bmRBF2dU447xPOeXqoU-lKInQJ5AYIYx7EYTxgSfLqhWHsgUfAJ5ScoO5h0Dn0DM5Qz9oVIVEcBKSL3oaVKDdWWawLPJlM8aKWWWPaNb4TVW7xi1XVO57rT2n2I1Hisaysaja40AbPSylsayR2cTxWtv5-LxrRyHN0WojSyot97aPl_WQ5ehjMnqePo-FskFFGyIAWaZ7mIqGUuJbGIoiyHFyVEEchgSzI0iKUgaBFJBmLMwKpBJaKXOYMfNpHV7tva6M_WmkbvtKtcZdZ7ocRAPhJTFzqdpfKjLbWyIJnyi2pdOWuUiUHwrdC-dYV33rjTigHvhPq8OgPXhu1FmZzHPR3oNL1z2JHoet_oKfF5FeM13lBvwAz0JgT |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e40212 crossref_primary_10_1109_ACCESS_2020_3037995 crossref_primary_10_1002_eng2_12827 crossref_primary_10_1038_s41598_025_93047_9 crossref_primary_10_1109_JBHI_2024_3509438 crossref_primary_10_3390_biomedinformatics3010014 crossref_primary_10_3390_brainsci14040344 crossref_primary_10_1016_j_neulet_2021_136250 crossref_primary_10_1016_j_bspc_2020_102102 crossref_primary_10_1088_2057_1976_acf137 crossref_primary_10_1080_03772063_2021_1913074 crossref_primary_10_11648_j_ajtas_20251401_13 crossref_primary_10_3390_biology11111546 crossref_primary_10_1016_j_eswa_2022_118511 crossref_primary_10_1111_jcal_12882 crossref_primary_10_3390_s22186834 crossref_primary_10_3390_s21155043 |
Cites_doi | 10.1109/TBME.2012.2217495 10.1016/S0301-0511(00)00085-5 10.1016/j.eswa.2018.06.027 10.1037/a0014576 10.1016/j.bbe.2014.03.004 10.1016/j.proeng.2012.06.298 10.1016/j.procs.2018.05.116 10.1002/047134608X.W8278 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1088/1757-899X/557/1/012030 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Collection (ProQuest) Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Analysis of EEG Spectrum Bands Using Power Spectral Density for Pleasure and Displeasure State |
EISSN | 1757-899X |
ExternalDocumentID | 10_1088_1757_899X_557_1_012030 MSE_557_1_012030 |
GroupedDBID | 1JI 5B3 5PX 5VS AAJIO AAJKP ABHWH ABJCF ACAFW ACGFO ACHIP ACIPV AEFHF AEJGL AFKRA AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU EBS EDWGO EJD EQZZN GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO KB. KNG KQ8 M7S N5L O3W OK1 P2P PDBOC PIMPY PJBAE PTHSS RIN RNS SY9 T37 TR2 TSCCA W28 AAYXX CITATION PHGZM PHGZT 8FE 8FG ABUWG AEINN AZQEC D1I DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c3800-3fbdbda93303fb37a46cd137ae176501c4cbf5e4a3f6e887c01be18baded8123 |
IEDL.DBID | 8FG |
ISSN | 1757-8981 |
IngestDate | Wed Aug 13 09:37:54 EDT 2025 Tue Jul 01 04:23:24 EDT 2025 Thu Apr 24 23:08:59 EDT 2025 Wed Aug 21 03:40:53 EDT 2024 Thu Jan 07 13:48:05 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3800-3fbdbda93303fb37a46cd137ae176501c4cbf5e4a3f6e887c01be18baded8123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2561112970?pq-origsite=%requestingapplication% |
PQID | 2561112970 |
PQPubID | 4998670 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2561112970 iop_journals_10_1088_1757_899X_557_1_012030 crossref_citationtrail_10_1088_1757_899X_557_1_012030 crossref_primary_10_1088_1757_899X_557_1_012030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 20190601 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | IOP conference series. Materials Science and Engineering |
PublicationTitleAlternate | IOP Conf. Ser.: Mater. Sci. Eng |
PublicationYear | 2019 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Lotte (MSE_557_1_012030bib3) 2015 Zammouri (MSE_557_1_012030bib9) 2018; 112 Light (MSE_557_1_012030bib5) 2009; 45 Kumar (MSE_557_1_012030bib7) 2012; 38 Hadjidimitriou (MSE_557_1_012030bib6) 2012; 59 Noshadi (MSE_557_1_012030bib8) 2014; 34 Edla (MSE_557_1_012030bib2) 2018; 132 Ahmad (MSE_557_1_012030bib1) 2016 Islam (MSE_557_1_012030bib4) 2014 Lal (MSE_557_1_012030bib10) 2001; 55 |
References_xml | – volume: 59 start-page: 3498 year: 2012 ident: MSE_557_1_012030bib6 article-title: Toward an EEG-based recognition of music liking using time-frequency analysis publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2012.2217495 – start-page: 1 year: 2016 ident: MSE_557_1_012030bib1 article-title: Classification of cognitive and resting states of the brain using EEG features – volume: 55 start-page: 173 year: 2001 ident: MSE_557_1_012030bib10 article-title: A critical review of the psychophysiology of driver fatigue publication-title: Biological psychology doi: 10.1016/S0301-0511(00)00085-5 – volume: 112 start-page: 138 year: 2018 ident: MSE_557_1_012030bib9 article-title: Brain-computer interface for workload estimation: Assessment of mental efforts in learning processes publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.06.027 – start-page: 1 year: 2014 ident: MSE_557_1_012030bib4 article-title: Channel selection and feature extraction for cognitive state estimation with the variation of brain signal – volume: 45 start-page: 525 year: 2009 ident: MSE_557_1_012030bib5 article-title: Dynamic variation in pleasure in children predicts nonlinear change in lateral frontal brain electrical activity publication-title: Dev. Psychol. doi: 10.1037/a0014576 – volume: 34 start-page: 159 year: 2014 ident: MSE_557_1_012030bib8 article-title: Selection of an efficient feature space for EEG-based mental task discrimination publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2014.03.004 – volume: 38 start-page: 2525 year: 2012 ident: MSE_557_1_012030bib7 article-title: Analysis of electroencephalography (EEG) signals and its categorization - A study publication-title: Procedia Engineering doi: 10.1016/j.proeng.2012.06.298 – volume: 132 start-page: 1523 year: 2018 ident: MSE_557_1_012030bib2 article-title: Classification of EEG data for human mental state analysis using Random Forest Classifier publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.05.116 – year: 2015 ident: MSE_557_1_012030bib3 article-title: Electroencephalography (EEG)-based Brain-Computer Interfaces doi: 10.1002/047134608X.W8278 |
SSID | ssj0067440 |
Score | 2.165362 |
Snippet | The technology of reading human mental states is a leading innovation in the biomedical engineering field. EEG signal processing is going to help us to explore... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12030 |
SubjectTerms | Bandpass filters Biomedical engineering Brain Discriminant analysis Electroencephalography Engineering education Frequencies Power spectral density Signal processing |
SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP3E6JYI3qW2WfqRHdZ1DmA6cuJMhSRMQ5lbcPPjf-5K26hAZnpqSlw9emvd-Sd8HQmdtQduJirTHNJx0wpQoTyQ69ExgKKjfNIpc4Pn-Xdx7DG9HUW1N6HxhpkUl-i-gWAYKLllYGcQxHxQeCNY0HfkRnOaJb90_KZza1yiLmd2b9_SpFsaxjX_nfCJdG0ZqJ-E_-1nQT6swh19C2mme7hbarCAjviwnuI1W9GQHbfwIJLiLnuvYInhqcJbdYJtWfv72_oqvrCsvdoYBeGAzolVV0GHH2q7PPzDAVjwYl3eFGMhx52VW1O8OjO6hYTcbXve8KnOCpyggQI8amctc2MsKKNJEhLHKCTw1SQCSERUqaSIdCmpiDWJGBURqwqTIdQ4an-6jxmQ60QcIqyTQgCCNEsSEbdmG3oVUqYlVEhGTkyaKanZxVUUVt8ktxtz93WaMWzZzy2YObOaEl2xuIv-rXVHG1Vja4hxWg1dbbLaU-nSBuv-QLdTzIjdN1KpX9psQICCxGDQJDv814BFaByyVllZkLdSANdbHgFfm8sR9kZ_TptuZ priority: 102 providerName: IOP Publishing |
Title | Analysis of EEG Spectrum Bands Using Power Spectral Density for Pleasure and Displeasure State |
URI | https://iopscience.iop.org/article/10.1088/1757-899X/557/1/012030 https://www.proquest.com/docview/2561112970 |
Volume | 557 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8JAEN4IXPRgfEYUyZp4M01Z2u3jZEQKaAI0ipGTm3a7m5AgVMGD_97ZdisQE7n0tY_DzHbm29l5IHTdjKymy6kwPAE7Hdsn3IhcYRuyIS1Qvz6lWeL5_sDpvdiPYzrWBreFdqssZGImqJM5VzZyE1QzUdjAbdymH4aqGqVOV3UJjRKqENA0ap17nW4hiR2V_C4LiKQgiX2PFBHCsOnT3_yxSalrElPFkCpP6DXlVJrM0z8SOlM7nQO0r_EivssZfIh2xOwI7a1lETxGb0ViETyXOAi6WNWUX35-veOWiuPFmVcADlU5NN0EE7aV4_ryGwNmxeE0NxRi6I7bk0VavGdI9ASNOsHovmfosgkGtwD-GZaMkziJlKUCHi03sh2eELgL4gIeI9zmsaTCjizpCJAxvEFiQbw4SkQC6t46ReXZfCbOEOZuQwB8lDwi0m7GTZg9irkvHe5SIhNSRbQgF-M6pbiqbDFl2dG25zFFZqbIzIDMjLCczFVk_o5L86QaW0fcADeY_r8WW3tfbfTuPwcb7SxNZBXVCs6uOq4W2fn_zRdoF5CTn_uM1VAZmCouAZ0s43q2BOuo0goG4RO8PQxDuA6t1x97x97z |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BOLQ9IAqtGqDtIsGpspy1vX4cKlSIITwSRW2QcmJlr3clJEgMCUL8qP5HZmxvAVWCEyc_9nGYmd35ZnceANte5nuREtqJNVo6QcKVk0U6cEzH-Kh-EyGqxPP9Qdg7C47HYrwAf20sDLlV2j2x2qiLqaIzchdVMydsEHV2y2uHqkbR7aotoVGLxYm-v0OTbfbzqIv83fG8g3S033OaqgKO8hEdOb7Ji7zIyJDHVz_KglAVHJ-aRwhXuApUboQOMt-EGpeg6vBc8zjPCl2gNvRx2kVYCiigtQVLe-lg-Ntu_SFl26siMAVu_UnMbUgyWpnNv2TsChG53KWgVXK9fqINFy-m5X8qodJzByuw3ABU9quWqI-woCer8OFJ2sI1OLeZTNjUsDQ9ZFTEfn5ze8X2KHCYVW4IbEj115omnLBLnvLze4YgmQ0v65NJht1Z92JW2u8K-n6C0VtQ9DO0JtOJ_gJMRR2NeNWojJvAyz2cPctVYkIVCW4K3gZhySVVk8OcSmlcyuouPY4lkVkSmSWSWXJZk7kN7r9xZZ3F49URP5AbslnQs1d7bz3r3f-TPmuXZWHasGk5-9jxUarXX27-Du96o_6pPD0anGzAe4RtSe2wtgktZLD-itBonn9rBJKBfOMl8ADf2hpA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90guiD-InTqRF8k9pmafrxqK5zfg9U3JOhSRMQ5jbcfPC_99IPdYiIT03JJQ2X9u6X9O4XgINmypqh4tqJNK50_JgqJw217xjPMHS_Mec58fz1TdB58C96vDcDyWcuzHBUmv4jLBZEwYUKy4C4yEWHh4Y1jnsux9U8dW36J_PcUWZmYY6zgFsK_Vv2WBnkwHLg5XmRebuIVonCv_Y15aNmcRw_DHXufdrLsFTCRnJcDHIFZvRgFRa_kQmuwVPFL0KGhiTJGbFHy09e317IiU3nJXlwAOnaU9HKKuywZePXJ-8EoSvp9ov9QoLipPU8HlX3OSBdh_t2cn_accrTExzFEAU6zMhMZqndsMAiC1M_UBnFq6YhwjKqfCUN137KTKDR1CiPSk0jmWY6Q6_PNqA2GA70JhAVehpRpFEpNX5TNrH3VKrYBCrk1GS0DrxSl1Als7g94KIv8j_cUSSsmoVVs0A1CyoKNdfB_Ww3Krg1_mxxiLMhys9s_Kf0_pT09V0yVS_wlalDo5rZL0GEgdTi0NDb-tcD92C-22qLq_Oby21YQGgVF0FlDajhdOsdhC8TuZu_nB-kJ9-R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+EEG+Spectrum+Bands+Using+Power+Spectral+Density+for+Pleasure+and+Displeasure+State&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Anis+Ameera&rft.au=Saidatul%2C+A&rft.au=Ibrahim%2C+Z&rft.date=2019-06-01&rft.pub=IOP+Publishing&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=557&rft.issue=1&rft_id=info:doi/10.1088%2F1757-899X%2F557%2F1%2F012030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon |