Analysis of EEG Spectrum Bands Using Power Spectral Density for Pleasure and Displeasure State

The technology of reading human mental states is a leading innovation in the biomedical engineering field. EEG signal processing is going to help us to explore the uniqueness of brain signal that carries thousands of information in human being. The aim of this study is to analyze brain signal featur...

Full description

Saved in:
Bibliographic Details
Published inIOP conference series. Materials Science and Engineering Vol. 557; no. 1; pp. 12030 - 12034
Main Authors Ameera, Anis, Saidatul, A., Ibrahim, Z
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.06.2019
Subjects
Online AccessGet full text
ISSN1757-8981
1757-899X
DOI10.1088/1757-899X/557/1/012030

Cover

Abstract The technology of reading human mental states is a leading innovation in the biomedical engineering field. EEG signal processing is going to help us to explore the uniqueness of brain signal that carries thousands of information in human being. The aim of this study is to analyze brain signal features between pleasure and displeasure mental state. Brainwaves is divided into 5 sub frequency bands namely alpha (8 - 13 Hz), beta (13 - 30 Hz), gamma (30 - 100 Hz), theta (4 - 8 Hz) and delta (1 - 4 Hz). However, in this study, alpha and beta waves were analyzed to investigate the mental states. Twenty subjects were recruited from undergraduate engineering student's education background in UniMAP with age ranging between 19 to 23 years old. The subject must be healthy and right-handed. The subject was required to view a series of pleasure and displeasure images for 10 minutes and take rest for 30 seconds between pleasure and displeasure view. Truscan EEG device (Deymed Diagnostic, Alien Technic, Czech Republic) with 19 channels were used to acquire EEG data with frequency sampling of 1024 Hz and impedance is kept below 5 kΩ. A bandpass filter was used to extract alpha and beta waves. The signal was segmented and PSD value using Welch and Burg method was calculated for both mental states. 7 statistical features (mean, mode, median, variance, standard deviation, minimum and maximum) were obtained from PSD value and used as an input for the classifier. K-Nearest Neighbour (KNN) and Linear Discriminant Analysis (LDA) were used to classify into two mental states. As a result, Welch method gives the highest classification accuracy which is 99.3 % for alpha waves followed by 97.5 % for beta waves from channel F4. It can be concluded that alpha waves are the most potential waves to be used in order to differentiate pleasure and displeasure features.
AbstractList The technology of reading human mental states is a leading innovation in the biomedical engineering field. EEG signal processing is going to help us to explore the uniqueness of brain signal that carries thousands of information in human being. The aim of this study is to analyze brain signal features between pleasure and displeasure mental state. Brainwaves is divided into 5 sub frequency bands namely alpha (8 – 13 Hz), beta (13 – 30 Hz), gamma (30 – 100 Hz), theta (4 – 8 Hz) and delta (1 – 4 Hz). However, in this study, alpha and beta waves were analyzed to investigate the mental states. Twenty subjects were recruited from undergraduate engineering student’s education background in UniMAP with age ranging between 19 to 23 years old. The subject must be healthy and right-handed. The subject was required to view a series of pleasure and displeasure images for 10 minutes and take rest for 30 seconds between pleasure and displeasure view. Truscan EEG device (Deymed Diagnostic, Alien Technic, Czech Republic) with 19 channels were used to acquire EEG data with frequency sampling of 1024 Hz and impedance is kept below 5 kΩ. A bandpass filter was used to extract alpha and beta waves. The signal was segmented and PSD value using Welch and Burg method was calculated for both mental states. 7 statistical features (mean, mode, median, variance, standard deviation, minimum and maximum) were obtained from PSD value and used as an input for the classifier. K-Nearest Neighbour (KNN) and Linear Discriminant Analysis (LDA) were used to classify into two mental states. As a result, Welch method gives the highest classification accuracy which is 99.3 % for alpha waves followed by 97.5 % for beta waves from channel F4. It can be concluded that alpha waves are the most potential waves to be used in order to differentiate pleasure and displeasure features.
Author Ameera, Anis
Saidatul, A.
Ibrahim, Z
Author_xml – sequence: 1
  givenname: Anis
  surname: Ameera
  fullname: Ameera, Anis
  organization: Biosignal Processing Research Group (BioSIM), School of Mechatronic Engineering, Universiti Malaysia Perlis , Malaysia
– sequence: 2
  givenname: A.
  surname: Saidatul
  fullname: Saidatul, A.
  organization: Biosignal Processing Research Group (BioSIM), School of Mechatronic Engineering, Universiti Malaysia Perlis , Malaysia
– sequence: 3
  givenname: Z
  surname: Ibrahim
  fullname: Ibrahim, Z
  organization: Faculty of Technology, University of Sunderland, St Peter's Campus , United Kingdom
BookMark eNqFkF1LwzAUhoNMcJv-BQl4481sTtOPFLyZ25zCxMEmeGVI21QyuqYmLbJ_b8bmRBF2dU447xPOeXqoU-lKInQJ5AYIYx7EYTxgSfLqhWHsgUfAJ5ScoO5h0Dn0DM5Qz9oVIVEcBKSL3oaVKDdWWawLPJlM8aKWWWPaNb4TVW7xi1XVO57rT2n2I1Hisaysaja40AbPSylsayR2cTxWtv5-LxrRyHN0WojSyot97aPl_WQ5ehjMnqePo-FskFFGyIAWaZ7mIqGUuJbGIoiyHFyVEEchgSzI0iKUgaBFJBmLMwKpBJaKXOYMfNpHV7tva6M_WmkbvtKtcZdZ7ocRAPhJTFzqdpfKjLbWyIJnyi2pdOWuUiUHwrdC-dYV33rjTigHvhPq8OgPXhu1FmZzHPR3oNL1z2JHoet_oKfF5FeM13lBvwAz0JgT
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e40212
crossref_primary_10_1109_ACCESS_2020_3037995
crossref_primary_10_1002_eng2_12827
crossref_primary_10_1038_s41598_025_93047_9
crossref_primary_10_1109_JBHI_2024_3509438
crossref_primary_10_3390_biomedinformatics3010014
crossref_primary_10_3390_brainsci14040344
crossref_primary_10_1016_j_neulet_2021_136250
crossref_primary_10_1016_j_bspc_2020_102102
crossref_primary_10_1088_2057_1976_acf137
crossref_primary_10_1080_03772063_2021_1913074
crossref_primary_10_11648_j_ajtas_20251401_13
crossref_primary_10_3390_biology11111546
crossref_primary_10_1016_j_eswa_2022_118511
crossref_primary_10_1111_jcal_12882
crossref_primary_10_3390_s22186834
crossref_primary_10_3390_s21155043
Cites_doi 10.1109/TBME.2012.2217495
10.1016/S0301-0511(00)00085-5
10.1016/j.eswa.2018.06.027
10.1037/a0014576
10.1016/j.bbe.2014.03.004
10.1016/j.proeng.2012.06.298
10.1016/j.procs.2018.05.116
10.1002/047134608X.W8278
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1088/1757-899X/557/1/012030
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Collection (ProQuest)
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Analysis of EEG Spectrum Bands Using Power Spectral Density for Pleasure and Displeasure State
EISSN 1757-899X
ExternalDocumentID 10_1088_1757_899X_557_1_012030
MSE_557_1_012030
GroupedDBID 1JI
5B3
5PX
5VS
AAJIO
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ACIPV
AEFHF
AEJGL
AFKRA
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
EBS
EDWGO
EJD
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KB.
KNG
KQ8
M7S
N5L
O3W
OK1
P2P
PDBOC
PIMPY
PJBAE
PTHSS
RIN
RNS
SY9
T37
TR2
TSCCA
W28
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
ABUWG
AEINN
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3800-3fbdbda93303fb37a46cd137ae176501c4cbf5e4a3f6e887c01be18baded8123
IEDL.DBID 8FG
ISSN 1757-8981
IngestDate Wed Aug 13 09:37:54 EDT 2025
Tue Jul 01 04:23:24 EDT 2025
Thu Apr 24 23:08:59 EDT 2025
Wed Aug 21 03:40:53 EDT 2024
Thu Jan 07 13:48:05 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3800-3fbdbda93303fb37a46cd137ae176501c4cbf5e4a3f6e887c01be18baded8123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2561112970?pq-origsite=%requestingapplication%
PQID 2561112970
PQPubID 4998670
PageCount 5
ParticipantIDs proquest_journals_2561112970
iop_journals_10_1088_1757_899X_557_1_012030
crossref_citationtrail_10_1088_1757_899X_557_1_012030
crossref_primary_10_1088_1757_899X_557_1_012030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 20190601
  day: 01
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle IOP conference series. Materials Science and Engineering
PublicationTitleAlternate IOP Conf. Ser.: Mater. Sci. Eng
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Lotte (MSE_557_1_012030bib3) 2015
Zammouri (MSE_557_1_012030bib9) 2018; 112
Light (MSE_557_1_012030bib5) 2009; 45
Kumar (MSE_557_1_012030bib7) 2012; 38
Hadjidimitriou (MSE_557_1_012030bib6) 2012; 59
Noshadi (MSE_557_1_012030bib8) 2014; 34
Edla (MSE_557_1_012030bib2) 2018; 132
Ahmad (MSE_557_1_012030bib1) 2016
Islam (MSE_557_1_012030bib4) 2014
Lal (MSE_557_1_012030bib10) 2001; 55
References_xml – volume: 59
  start-page: 3498
  year: 2012
  ident: MSE_557_1_012030bib6
  article-title: Toward an EEG-based recognition of music liking using time-frequency analysis
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2012.2217495
– start-page: 1
  year: 2016
  ident: MSE_557_1_012030bib1
  article-title: Classification of cognitive and resting states of the brain using EEG features
– volume: 55
  start-page: 173
  year: 2001
  ident: MSE_557_1_012030bib10
  article-title: A critical review of the psychophysiology of driver fatigue
  publication-title: Biological psychology
  doi: 10.1016/S0301-0511(00)00085-5
– volume: 112
  start-page: 138
  year: 2018
  ident: MSE_557_1_012030bib9
  article-title: Brain-computer interface for workload estimation: Assessment of mental efforts in learning processes
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.06.027
– start-page: 1
  year: 2014
  ident: MSE_557_1_012030bib4
  article-title: Channel selection and feature extraction for cognitive state estimation with the variation of brain signal
– volume: 45
  start-page: 525
  year: 2009
  ident: MSE_557_1_012030bib5
  article-title: Dynamic variation in pleasure in children predicts nonlinear change in lateral frontal brain electrical activity
  publication-title: Dev. Psychol.
  doi: 10.1037/a0014576
– volume: 34
  start-page: 159
  year: 2014
  ident: MSE_557_1_012030bib8
  article-title: Selection of an efficient feature space for EEG-based mental task discrimination
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2014.03.004
– volume: 38
  start-page: 2525
  year: 2012
  ident: MSE_557_1_012030bib7
  article-title: Analysis of electroencephalography (EEG) signals and its categorization - A study
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2012.06.298
– volume: 132
  start-page: 1523
  year: 2018
  ident: MSE_557_1_012030bib2
  article-title: Classification of EEG data for human mental state analysis using Random Forest Classifier
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.05.116
– year: 2015
  ident: MSE_557_1_012030bib3
  article-title: Electroencephalography (EEG)-based Brain-Computer Interfaces
  doi: 10.1002/047134608X.W8278
SSID ssj0067440
Score 2.165362
Snippet The technology of reading human mental states is a leading innovation in the biomedical engineering field. EEG signal processing is going to help us to explore...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12030
SubjectTerms Bandpass filters
Biomedical engineering
Brain
Discriminant analysis
Electroencephalography
Engineering education
Frequencies
Power spectral density
Signal processing
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3oQP3E6JYI3qW2WfqRHdZ1DmA6cuJMhSRMQ5lbcPPjf-5K26hAZnpqSlw9emvd-Sd8HQmdtQduJirTHNJx0wpQoTyQ69ExgKKjfNIpc4Pn-Xdx7DG9HUW1N6HxhpkUl-i-gWAYKLllYGcQxHxQeCNY0HfkRnOaJb90_KZza1yiLmd2b9_SpFsaxjX_nfCJdG0ZqJ-E_-1nQT6swh19C2mme7hbarCAjviwnuI1W9GQHbfwIJLiLnuvYInhqcJbdYJtWfv72_oqvrCsvdoYBeGAzolVV0GHH2q7PPzDAVjwYl3eFGMhx52VW1O8OjO6hYTcbXve8KnOCpyggQI8amctc2MsKKNJEhLHKCTw1SQCSERUqaSIdCmpiDWJGBURqwqTIdQ4an-6jxmQ60QcIqyTQgCCNEsSEbdmG3oVUqYlVEhGTkyaKanZxVUUVt8ktxtz93WaMWzZzy2YObOaEl2xuIv-rXVHG1Vja4hxWg1dbbLaU-nSBuv-QLdTzIjdN1KpX9psQICCxGDQJDv814BFaByyVllZkLdSANdbHgFfm8sR9kZ_TptuZ
  priority: 102
  providerName: IOP Publishing
Title Analysis of EEG Spectrum Bands Using Power Spectral Density for Pleasure and Displeasure State
URI https://iopscience.iop.org/article/10.1088/1757-899X/557/1/012030
https://www.proquest.com/docview/2561112970
Volume 557
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8JAEN4IXPRgfEYUyZp4M01Z2u3jZEQKaAI0ipGTm3a7m5AgVMGD_97ZdisQE7n0tY_DzHbm29l5IHTdjKymy6kwPAE7Hdsn3IhcYRuyIS1Qvz6lWeL5_sDpvdiPYzrWBreFdqssZGImqJM5VzZyE1QzUdjAbdymH4aqGqVOV3UJjRKqENA0ap17nW4hiR2V_C4LiKQgiX2PFBHCsOnT3_yxSalrElPFkCpP6DXlVJrM0z8SOlM7nQO0r_EivssZfIh2xOwI7a1lETxGb0ViETyXOAi6WNWUX35-veOWiuPFmVcADlU5NN0EE7aV4_ryGwNmxeE0NxRi6I7bk0VavGdI9ASNOsHovmfosgkGtwD-GZaMkziJlKUCHi03sh2eELgL4gIeI9zmsaTCjizpCJAxvEFiQbw4SkQC6t46ReXZfCbOEOZuQwB8lDwi0m7GTZg9irkvHe5SIhNSRbQgF-M6pbiqbDFl2dG25zFFZqbIzIDMjLCczFVk_o5L86QaW0fcADeY_r8WW3tfbfTuPwcb7SxNZBXVCs6uOq4W2fn_zRdoF5CTn_uM1VAZmCouAZ0s43q2BOuo0goG4RO8PQxDuA6t1x97x97z
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BOLQ9IAqtGqDtIsGpspy1vX4cKlSIITwSRW2QcmJlr3clJEgMCUL8qP5HZmxvAVWCEyc_9nGYmd35ZnceANte5nuREtqJNVo6QcKVk0U6cEzH-Kh-EyGqxPP9Qdg7C47HYrwAf20sDLlV2j2x2qiLqaIzchdVMydsEHV2y2uHqkbR7aotoVGLxYm-v0OTbfbzqIv83fG8g3S033OaqgKO8hEdOb7Ji7zIyJDHVz_KglAVHJ-aRwhXuApUboQOMt-EGpeg6vBc8zjPCl2gNvRx2kVYCiigtQVLe-lg-Ntu_SFl26siMAVu_UnMbUgyWpnNv2TsChG53KWgVXK9fqINFy-m5X8qodJzByuw3ABU9quWqI-woCer8OFJ2sI1OLeZTNjUsDQ9ZFTEfn5ze8X2KHCYVW4IbEj115omnLBLnvLze4YgmQ0v65NJht1Z92JW2u8K-n6C0VtQ9DO0JtOJ_gJMRR2NeNWojJvAyz2cPctVYkIVCW4K3gZhySVVk8OcSmlcyuouPY4lkVkSmSWSWXJZk7kN7r9xZZ3F49URP5AbslnQs1d7bz3r3f-TPmuXZWHasGk5-9jxUarXX27-Du96o_6pPD0anGzAe4RtSe2wtgktZLD-itBonn9rBJKBfOMl8ADf2hpA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90guiD-InTqRF8k9pmafrxqK5zfg9U3JOhSRMQ5jbcfPC_99IPdYiIT03JJQ2X9u6X9O4XgINmypqh4tqJNK50_JgqJw217xjPMHS_Mec58fz1TdB58C96vDcDyWcuzHBUmv4jLBZEwYUKy4C4yEWHh4Y1jnsux9U8dW36J_PcUWZmYY6zgFsK_Vv2WBnkwHLg5XmRebuIVonCv_Y15aNmcRw_DHXufdrLsFTCRnJcDHIFZvRgFRa_kQmuwVPFL0KGhiTJGbFHy09e317IiU3nJXlwAOnaU9HKKuywZePXJ-8EoSvp9ov9QoLipPU8HlX3OSBdh_t2cn_accrTExzFEAU6zMhMZqndsMAiC1M_UBnFq6YhwjKqfCUN137KTKDR1CiPSk0jmWY6Q6_PNqA2GA70JhAVehpRpFEpNX5TNrH3VKrYBCrk1GS0DrxSl1Als7g94KIv8j_cUSSsmoVVs0A1CyoKNdfB_Ww3Krg1_mxxiLMhys9s_Kf0_pT09V0yVS_wlalDo5rZL0GEgdTi0NDb-tcD92C-22qLq_Oby21YQGgVF0FlDajhdOsdhC8TuZu_nB-kJ9-R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+EEG+Spectrum+Bands+Using+Power+Spectral+Density+for+Pleasure+and+Displeasure+State&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Anis+Ameera&rft.au=Saidatul%2C+A&rft.au=Ibrahim%2C+Z&rft.date=2019-06-01&rft.pub=IOP+Publishing&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=557&rft.issue=1&rft_id=info:doi/10.1088%2F1757-899X%2F557%2F1%2F012030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon