PPAR-Induced Fatty Acid Oxidation in T Cells Increases the Number of Tumor-Reactive CD8 + T Cells and Facilitates Anti-PD-1 Therapy
Although PD-1 blockade cancer immunotherapy has shown potential for a wide range of patients with cancer, its efficacy is limited, in part, due to the loss of effector cytotoxic T lymphocytes (CTLs) via terminal differentiation-induced apoptosis. We previously demonstrated that mitochondrial activat...
Saved in:
Published in | Cancer immunology research Vol. 6; no. 11; p. 1375 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2018
|
Online Access | Get more information |
Cover
Loading…
Abstract | Although PD-1 blockade cancer immunotherapy has shown potential for a wide range of patients with cancer, its efficacy is limited, in part, due to the loss of effector cytotoxic T lymphocytes (CTLs) via terminal differentiation-induced apoptosis. We previously demonstrated that mitochondrial activation, by the agonists of peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1-α (PGC-1α)/transcription factor complexes, had synergistic effects with a PD-1-blocking monoclonal antibody in a mouse tumor model. In the current study, we examined the molecular mechanism of the synergistic effects of bezafibrate, an agonist of PGC-1α/ PPAR complexes, which enhanced the tumoricidal effects of PD-1 blockade. Bezafibrate activated CTL mitochondria and upregulated oxidative phosphorylation as well as glycolysis, resulting in more proliferation of naïve T cells and improved effector function in CTLs. Bezafibrate also increased fatty acid oxidation (FAO) and mitochondrial respiratory capacity, which supports the extra energy demands of cells in emergencies, allowing cell survival. Carnitine palmitoyl transferase 1 (Cpt1), which is needed for FAO, and Bcl2 were both upregulated. Cpt1 and Bcl2 can form a complex to prevent apoptosis of CTLs. Together, these results indicate that bezafibrate increases or maintains the number of functional CTLs by activating mitochondrial and cellular metabolism, leading in turn to enhanced antitumor immunity during PD-1 blockade.
. |
---|---|
AbstractList | Although PD-1 blockade cancer immunotherapy has shown potential for a wide range of patients with cancer, its efficacy is limited, in part, due to the loss of effector cytotoxic T lymphocytes (CTLs) via terminal differentiation-induced apoptosis. We previously demonstrated that mitochondrial activation, by the agonists of peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1-α (PGC-1α)/transcription factor complexes, had synergistic effects with a PD-1-blocking monoclonal antibody in a mouse tumor model. In the current study, we examined the molecular mechanism of the synergistic effects of bezafibrate, an agonist of PGC-1α/ PPAR complexes, which enhanced the tumoricidal effects of PD-1 blockade. Bezafibrate activated CTL mitochondria and upregulated oxidative phosphorylation as well as glycolysis, resulting in more proliferation of naïve T cells and improved effector function in CTLs. Bezafibrate also increased fatty acid oxidation (FAO) and mitochondrial respiratory capacity, which supports the extra energy demands of cells in emergencies, allowing cell survival. Carnitine palmitoyl transferase 1 (Cpt1), which is needed for FAO, and Bcl2 were both upregulated. Cpt1 and Bcl2 can form a complex to prevent apoptosis of CTLs. Together, these results indicate that bezafibrate increases or maintains the number of functional CTLs by activating mitochondrial and cellular metabolism, leading in turn to enhanced antitumor immunity during PD-1 blockade.
. |
Author | Honjo, Tasuku Kumar, Alok Chamoto, Kenji Chowdhury, Partha S |
Author_xml | – sequence: 1 givenname: Partha S surname: Chowdhury fullname: Chowdhury, Partha S organization: Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan – sequence: 2 givenname: Kenji surname: Chamoto fullname: Chamoto, Kenji organization: Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan – sequence: 3 givenname: Alok orcidid: 0000-0002-4269-3971 surname: Kumar fullname: Kumar, Alok organization: Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan – sequence: 4 givenname: Tasuku surname: Honjo fullname: Honjo, Tasuku email: honjo@mfour.med.kyoto-u.ac.jp organization: Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan. honjo@mfour.med.kyoto-u.ac.jp |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30143538$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kFFLwzAAhIMobs79BCXvkpk0SZs8ls5pYbgx6vNI0pRF2nS0qbhn_7gVp_dycPAd3N2AS996C8AdwQtCuHiMaBSjGMfxIst3iAiEseQXYHrOEzYB875_x6OEYISzazChmDDKqZiCr-023aHcl4OxJVypEE4wNa6Em09XquBaD52HBcxsXfcw96azqrc9DAcLX4dG2w62FSyGpu3QzioT3IeF2VLAh39I-Z9i42oXVBjR1AeHtktEYHGwnTqebsFVperezs8-A2-rpyJ7QevNc56la2RoIgOqSqUZMVJHhGkqsDBGc4KNlNYwqlkyjlI04byKcSTGXMtKSCKNiAhVkkQzcP_bexx0Y8v9sXON6k77vzeib6ebYNc |
CitedBy_id | crossref_primary_10_1016_j_biomaterials_2024_123022 crossref_primary_10_1093_intimm_dxaa036 crossref_primary_10_3389_fphar_2023_1186064 crossref_primary_10_1136_jitc_2019_000501 crossref_primary_10_1002_cam4_4847 crossref_primary_10_1038_s41587_023_02060_8 crossref_primary_10_3390_genes14101953 crossref_primary_10_1038_s41571_019_0203_7 crossref_primary_10_2139_ssrn_4113512 crossref_primary_10_1172_jci_insight_143811 crossref_primary_10_3390_genes13071216 crossref_primary_10_1038_s41418_022_01022_y crossref_primary_10_1186_s12929_023_00956_w crossref_primary_10_1093_intimm_dxaa046 crossref_primary_10_1111_exd_14072 crossref_primary_10_1016_j_addr_2019_06_005 crossref_primary_10_3389_fimmu_2023_1322746 crossref_primary_10_1016_j_autrev_2024_103583 crossref_primary_10_3389_fbioe_2020_00348 crossref_primary_10_1016_j_bbcan_2025_189259 crossref_primary_10_1126_science_abj3510 crossref_primary_10_3389_fonc_2022_993437 crossref_primary_10_1186_s12943_024_01988_y crossref_primary_10_1155_2024_6639205 crossref_primary_10_3389_fimmu_2021_645242 crossref_primary_10_1136_jitc_2022_006522 crossref_primary_10_3389_fimmu_2020_01834 crossref_primary_10_1080_2162402X_2021_1906500 crossref_primary_10_3389_fimmu_2018_02736 crossref_primary_10_1084_jem_20221140 crossref_primary_10_1111_cas_14930 crossref_primary_10_3390_cancers12040852 crossref_primary_10_1093_ijnp_pyaa008 crossref_primary_10_1158_2767_9764_CRC_24_0153 crossref_primary_10_3390_biomedicines12010109 crossref_primary_10_7554_eLife_62420 crossref_primary_10_3390_cells11193103 crossref_primary_10_3390_ijms23052878 crossref_primary_10_1016_j_cmet_2019_10_013 crossref_primary_10_3389_fimmu_2023_1186383 crossref_primary_10_26508_lsa_202302200 crossref_primary_10_3390_cells11152432 crossref_primary_10_1002_eji_201848058 crossref_primary_10_1111_sji_12793 crossref_primary_10_3390_ijms24043114 crossref_primary_10_1186_s43556_020_00012_1 crossref_primary_10_1007_s40501_024_00339_4 crossref_primary_10_1136_jitc_2023_006817 crossref_primary_10_1158_2767_9764_CRC_24_0264 crossref_primary_10_3389_fimmu_2023_1121565 crossref_primary_10_1016_j_smim_2021_101485 crossref_primary_10_1016_j_chembiol_2021_08_001 crossref_primary_10_1096_fj_202000767R crossref_primary_10_3389_fimmu_2022_937406 crossref_primary_10_1007_s10147_019_01588_7 crossref_primary_10_3390_ijms23126857 crossref_primary_10_1016_j_heliyon_2024_e28441 crossref_primary_10_3389_fimmu_2024_1353787 crossref_primary_10_3389_fonc_2020_00851 crossref_primary_10_3389_fonc_2021_770268 crossref_primary_10_1007_s12291_023_01166_9 crossref_primary_10_1111_febs_16181 crossref_primary_10_1186_s13046_022_02399_x crossref_primary_10_1002_cbin_11896 crossref_primary_10_1136_jitc_2021_003958 crossref_primary_10_1038_s41423_025_01260_3 crossref_primary_10_3389_fimmu_2020_573326 crossref_primary_10_3390_ijms22136779 crossref_primary_10_1186_s40364_022_00412_1 crossref_primary_10_1158_1078_0432_CCR_18_3781 crossref_primary_10_1186_s12943_023_01885_w crossref_primary_10_3389_fonc_2019_01408 crossref_primary_10_1038_s41467_022_29342_0 crossref_primary_10_1111_imm_13575 crossref_primary_10_1177_11782234231215183 crossref_primary_10_4049_jimmunol_2100194 crossref_primary_10_1016_j_ymthe_2022_08_017 crossref_primary_10_1016_j_clnu_2023_12_005 crossref_primary_10_1016_j_celrep_2020_107848 crossref_primary_10_1016_j_apsb_2022_10_027 crossref_primary_10_1134_S0006297923110159 crossref_primary_10_1038_s42255_020_00280_9 crossref_primary_10_3389_fmmed_2022_1055028 crossref_primary_10_1186_s12915_024_02086_7 crossref_primary_10_3389_fphar_2023_1163160 crossref_primary_10_1016_j_apsb_2024_07_021 crossref_primary_10_1016_j_biopha_2023_115131 crossref_primary_10_1038_s41586_023_06733_x crossref_primary_10_1016_j_coisb_2021_100361 crossref_primary_10_1007_s10147_020_01643_8 crossref_primary_10_1073_pnas_2103730118 crossref_primary_10_3389_fcell_2023_1104709 crossref_primary_10_1186_s12951_021_01011_2 crossref_primary_10_3389_fimmu_2018_02810 crossref_primary_10_1016_j_smim_2020_101435 crossref_primary_10_1158_1541_7786_MCR_19_1057 crossref_primary_10_3390_nu15163638 crossref_primary_10_1016_j_semcancer_2022_02_010 crossref_primary_10_1152_physrev_00018_2019 crossref_primary_10_1038_s43018_024_00896_w crossref_primary_10_1038_s41419_023_05937_3 crossref_primary_10_1007_s11912_022_01223_1 crossref_primary_10_1186_s12967_024_05552_6 crossref_primary_10_3389_fonc_2021_599995 crossref_primary_10_1186_s40164_024_00535_1 crossref_primary_10_1016_j_isci_2022_104435 crossref_primary_10_3389_fonc_2019_00322 crossref_primary_10_3390_ijms21176176 crossref_primary_10_1158_2326_6066_CIR_21_0110 crossref_primary_10_1016_j_biopha_2019_109746 crossref_primary_10_3389_fimmu_2024_1467151 crossref_primary_10_3389_fimmu_2023_1127071 crossref_primary_10_1186_s12866_024_03372_8 crossref_primary_10_1016_j_pharmthera_2022_108298 crossref_primary_10_1038_s42255_020_0256_z crossref_primary_10_1016_j_biopha_2023_114420 crossref_primary_10_3389_fonc_2020_615375 crossref_primary_10_3389_fphar_2021_599598 crossref_primary_10_1016_j_apsb_2022_11_025 crossref_primary_10_1186_s13045_021_01200_4 crossref_primary_10_1093_lifemeta_loac038 crossref_primary_10_2139_ssrn_3910128 crossref_primary_10_3390_cancers16010180 crossref_primary_10_1126_scitranslmed_abq0021 crossref_primary_10_3389_fonc_2023_1289222 crossref_primary_10_1002_ijc_32990 crossref_primary_10_1073_pnas_2010981117 crossref_primary_10_1016_j_imlet_2020_01_006 crossref_primary_10_3389_fimmu_2022_1046755 crossref_primary_10_1038_s41467_024_46377_7 crossref_primary_10_3389_fonc_2022_984560 crossref_primary_10_3390_ijms22094460 crossref_primary_10_1016_j_intimp_2023_111441 crossref_primary_10_1038_s41585_019_0263_6 crossref_primary_10_1515_oncologie_2024_0596 crossref_primary_10_1161_CIRCRESAHA_124_323660 crossref_primary_10_3390_cancers14174160 crossref_primary_10_1016_j_bcp_2019_113787 crossref_primary_10_1007_s11427_021_1999_2 crossref_primary_10_1016_j_tem_2024_11_014 crossref_primary_10_7717_peerj_16825 crossref_primary_10_3389_fonc_2022_1072739 crossref_primary_10_1016_j_canlet_2023_216267 crossref_primary_10_1124_jpet_118_254359 crossref_primary_10_1097_CM9_0000000000002989 crossref_primary_10_3389_fimmu_2025_1535464 crossref_primary_10_1016_j_molmet_2024_102044 crossref_primary_10_3389_fimmu_2024_1428596 crossref_primary_10_1016_j_canlet_2023_216396 crossref_primary_10_1111_imm_13638 crossref_primary_10_1007_s12038_023_00383_x crossref_primary_10_1002_med_21727 crossref_primary_10_3389_fimmu_2023_1281744 crossref_primary_10_1186_s13045_022_01255_x crossref_primary_10_1038_s41392_023_01547_9 crossref_primary_10_3389_fonc_2022_1046630 crossref_primary_10_1016_j_it_2021_12_004 crossref_primary_10_1080_13543776_2024_2332661 crossref_primary_10_1126_sciimmunol_abc8644 crossref_primary_10_1172_jci_insight_133501 crossref_primary_10_1038_s42255_023_00861_4 crossref_primary_10_1038_s41420_024_01807_9 crossref_primary_10_7554_eLife_52330 crossref_primary_10_1016_j_intimp_2024_112571 crossref_primary_10_3390_cancers15153898 crossref_primary_10_1158_2326_6066_CIR_19_0115 crossref_primary_10_1007_s40820_020_00555_6 crossref_primary_10_1002_ijc_34045 crossref_primary_10_1016_j_heliyon_2024_e28284 crossref_primary_10_2139_ssrn_4192515 crossref_primary_10_3390_cancers13020288 crossref_primary_10_1038_s41577_021_00537_8 crossref_primary_10_3389_fonc_2022_900985 crossref_primary_10_1146_annurev_immunol_101819_082015 crossref_primary_10_1177_0300891619868287 crossref_primary_10_3390_cells11040708 crossref_primary_10_1002_adbi_202101320 crossref_primary_10_1002_cam4_5734 crossref_primary_10_1158_2159_8290_CD_20_0569 crossref_primary_10_1016_j_bbadis_2022_166565 crossref_primary_10_1038_s41577_021_00624_w crossref_primary_10_1016_j_plipres_2020_101055 crossref_primary_10_1038_s41577_021_00541_y crossref_primary_10_1186_s13046_022_02439_6 crossref_primary_10_1111_imm_13164 crossref_primary_10_1146_annurev_chembioeng_092120_092914 crossref_primary_10_1155_2022_7212852 crossref_primary_10_1016_j_jri_2022_103627 crossref_primary_10_1038_s41392_024_01756_w crossref_primary_10_1038_s41587_023_01940_3 crossref_primary_10_1038_s41420_025_02313_2 crossref_primary_10_1111_cas_15999 crossref_primary_10_1136_jitc_2023_008334 crossref_primary_10_3390_cells11050768 crossref_primary_10_1016_j_molcel_2023_10_043 crossref_primary_10_1007_s12016_020_08793_7 crossref_primary_10_1146_annurev_cancerbio_030518_055817 crossref_primary_10_1126_sciimmunol_abq2424 crossref_primary_10_1016_j_cels_2024_11_010 crossref_primary_10_20900_immunometab20200004 crossref_primary_10_3390_ijms26051953 crossref_primary_10_3389_fonc_2021_737776 crossref_primary_10_3389_fimmu_2023_1172931 crossref_primary_10_1016_j_devcel_2021_04_013 crossref_primary_10_1186_s43141_021_00179_2 crossref_primary_10_1172_jci_insight_138729 crossref_primary_10_1186_s13045_023_01498_2 crossref_primary_10_1016_j_cej_2020_125239 crossref_primary_10_31857_S0320972523110167 crossref_primary_10_1016_j_canlet_2023_216223 crossref_primary_10_1038_s41577_023_00867_9 crossref_primary_10_3389_fimmu_2024_1347181 crossref_primary_10_1016_j_metabol_2020_154338 crossref_primary_10_1038_s41573_024_01100_5 crossref_primary_10_1002_ijc_33781 crossref_primary_10_1111_imr_13213 crossref_primary_10_3390_ijms241713661 crossref_primary_10_1007_s12094_023_03134_4 crossref_primary_10_1038_s41423_024_01224_z crossref_primary_10_1159_000538659 crossref_primary_10_1084_jem_20201605 crossref_primary_10_1111_1759_7714_13691 crossref_primary_10_1016_j_ijbiomac_2024_135647 crossref_primary_10_1016_j_heliyon_2025_e42794 crossref_primary_10_1016_j_metabol_2023_155747 crossref_primary_10_1007_s00262_023_03501_8 crossref_primary_10_1007_s11684_023_1025_7 crossref_primary_10_1186_s40779_024_00536_5 crossref_primary_10_1007_s00262_021_02979_4 crossref_primary_10_1093_oxfimm_iqad006 crossref_primary_10_1016_j_canlet_2024_217076 crossref_primary_10_1039_D4CS00679H crossref_primary_10_3389_fimmu_2022_845923 crossref_primary_10_2174_1568009623666230712095021 |
ContentType | Journal Article |
Copyright | 2018 American Association for Cancer Research. |
Copyright_xml | – notice: 2018 American Association for Cancer Research. |
DBID | NPM |
DOI | 10.1158/2326-6066.CIR-18-0095 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2326-6074 |
ExternalDocumentID | 30143538 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 53G ADCOW AENEX AFHIN AFUMD ALMA_UNASSIGNED_HOLDINGS EBS EJD H13 NPM OK1 RCR RHI |
ID | FETCH-LOGICAL-c379t-fdab41c9b214b3808ccb510c99ec43b47014a3755f60280c9b9f8919c8213a912 |
IngestDate | Thu Apr 03 07:03:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 2018 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c379t-fdab41c9b214b3808ccb510c99ec43b47014a3755f60280c9b9f8919c8213a912 |
ORCID | 0000-0002-4269-3971 |
PMID | 30143538 |
ParticipantIDs | pubmed_primary_30143538 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-00 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer immunology research |
PublicationTitleAlternate | Cancer Immunol Res |
PublicationYear | 2018 |
SSID | ssj0000884154 |
Score | 2.580557 |
Snippet | Although PD-1 blockade cancer immunotherapy has shown potential for a wide range of patients with cancer, its efficacy is limited, in part, due to the loss of... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1375 |
Title | PPAR-Induced Fatty Acid Oxidation in T Cells Increases the Number of Tumor-Reactive CD8 + T Cells and Facilitates Anti-PD-1 Therapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30143538 |
Volume | 6 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3db9MwEMCtDqRpL4jvb-QH3iqPObHT5DFkVAVpUFWZtLcpthM1o0smlgrEK38S_yB3tpuGMRDwElVx7Ca5ny7ns--OkJdGB5GSImBYwZiJqAyYCmTIjNGcG5mURqG_4-h9NDsW707kyWj0fbBrad2pff312riS_5EqnAO5YpTsP0i2HxROwG-QLxxBwnD8KxnP5-mCYfENXMSfFh0Y1KmuzfjDl9qVSkJvRj7OytXqEjUBbkDHlA64r9FWAkFTMV-ft5_Yoiys5htnhzHg8Lrvho71aaFdMm_onDZdzeaHjONmjT4hwTbXgYZRaww6ccmdfDKh3umcLdvPZukX7-fwTMti633NlgWQ0_p4obN6u87k94Gnq7aPLJq1zZm9NC8u1x_XQ_cFj30cn_36WDUHJl0EpLhaPRudHA3R4wMFy0NXaOVXzS8xmsEPFkX72dsFg39DE3J4PQjw4tzigHPJULrUMn9uvZKQe9O0Q3ZgaoK1Vr2DyH784xhMIuFjxeCmXl17S3tkdzPMlfmMtWvy2-SWn5DQ1NF1h4zK5i7ZPfJbLu6Rb0PIqIWMImS0h4zWDc2ppYX2kFGAjDrIaFvRnyGjABkd950AMTpAjPaIUY_YfXI8fZNnM-YrdzAdTpKOVaZQgutEBVyoMD6ItVag_HWSlFqESkzg2QuQpKwiXNqHC5MqTnii44CHRcKDB-RG0zblI0KriZYw5QA7SgQCnQnQT0gdcm1keRCpx-She32nFy49y-nmxT75bctTsrdF8Rm5WYE-KJ-DcdmpF1acPwCYJ3Ks |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PPAR-Induced+Fatty+Acid+Oxidation+in+T+Cells+Increases+the+Number+of+Tumor-Reactive+CD8+%2B+T+Cells+and+Facilitates+Anti-PD-1+Therapy&rft.jtitle=Cancer+immunology+research&rft.au=Chowdhury%2C+Partha+S&rft.au=Chamoto%2C+Kenji&rft.au=Kumar%2C+Alok&rft.au=Honjo%2C+Tasuku&rft.date=2018-11-01&rft.eissn=2326-6074&rft.volume=6&rft.issue=11&rft.spage=1375&rft_id=info:doi/10.1158%2F2326-6066.CIR-18-0095&rft_id=info%3Apmid%2F30143538&rft_id=info%3Apmid%2F30143538&rft.externalDocID=30143538 |