Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils — A myth revisited

There is a general consensus that adsorption/desorption (i.e. sorption) is the major process controlling dissolved PO4. However, many uncertainties exist with respect to PO4 sorption capacity and properties of clay minerals as compared to Fe/Al oxides. I reviewed experimental studies performed over...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 262; pp. 213 - 226
Main Author Gerard, Frederic
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2016
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There is a general consensus that adsorption/desorption (i.e. sorption) is the major process controlling dissolved PO4. However, many uncertainties exist with respect to PO4 sorption capacity and properties of clay minerals as compared to Fe/Al oxides. I reviewed experimental studies performed over a time period of 70years in an attempt to rationalize this knowledge. I found that the binding capacity of clay minerals may be close to or even higher than that of Fe/Al oxides, depending on the specific surface area of these soil constituents. I also found that the pH-dependency of PO4 sorption on clay minerals can differ greatly from that on Fe/Al oxides depending on PO4 loading. Surface reactions occurring at structural Al sites of clay minerals appeared to consistently control sorption at low PO4 concentrations. The analysis indicates that different sorption sites such as structural Fe sites and/or other processes such as the penetration of PO4 into amorphous regions of the mineral are more effective at controlling PO4 sorption at high concentrations. The implications of these findings in soil and rhizosphere are discussed. The possible contributions of kaolinite and goethite to PO4 sorption in a clayed ferralitic soil were estimated. Results suggest that in most soils clay minerals should be considered per se as important PO4-binding constituents, possibly outcompeting Fe/Al oxides. [Display omitted] •Clay minerals can bind substantial phosphate with respect to goethite and gibbsite.•Clay minerals and metal oxides can exhibit different sorption envelopes.•The same sorption envelopes are observed at elevated phosphate loading.•Phosphate sorption seems to occur onto two types of structural sites.
AbstractList There is a general consensus that adsorption/desorption (i.e. sorption) is the major process controlling dissolved PO4. However, many uncertainties exist with respect to PO4 sorption capacity and properties of clay minerals as compared to Fe/Al oxides. I reviewed experimental studies performed over a time period of 70 years in an attempt to rationalize this knowledge. I found that the binding capacity of clay minerals may be close to or even higher than that of Fe/Al oxides, depending on the specific surface area of these soil constituents. I also found that the pH-dependency of PO4 sorption on clay minerals can differ greatly from that on Fe/Al oxides depending on PO4 loading. Surface reactions occurring at structural Al sites of clay minerals appeared to consistently control sorption at low PO4 concentrations. The analysis indicates that different sorption sites such as structural Fe sites and/or other processes such as the penetration of PO4 into amorphous regions of the mineral are more effective at controlling PO4 sorption at high concentrations. The implications of these findings in soil and rhizosphere are discussed. The possible contributions of kaolinite and goethite to PO4 sorption in a clayed ferralitic soil were estimated. Results suggest that in most soils clay minerals should be considered per se as important PO4-binding constituents, possibly outcompeting Fe/Al oxides.
There is a general consensus that adsorption/desorption (i.e. sorption) is the major process controlling dissolved PO4. However, many uncertainties exist with respect to PO4 sorption capacity and properties of clay minerals as compared to Fe/Al oxides. I reviewed experimental studies performed over a time period of 70years in an attempt to rationalize this knowledge. I found that the binding capacity of clay minerals may be close to or even higher than that of Fe/Al oxides, depending on the specific surface area of these soil constituents. I also found that the pH-dependency of PO4 sorption on clay minerals can differ greatly from that on Fe/Al oxides depending on PO4 loading. Surface reactions occurring at structural Al sites of clay minerals appeared to consistently control sorption at low PO4 concentrations. The analysis indicates that different sorption sites such as structural Fe sites and/or other processes such as the penetration of PO4 into amorphous regions of the mineral are more effective at controlling PO4 sorption at high concentrations. The implications of these findings in soil and rhizosphere are discussed. The possible contributions of kaolinite and goethite to PO4 sorption in a clayed ferralitic soil were estimated. Results suggest that in most soils clay minerals should be considered per se as important PO4-binding constituents, possibly outcompeting Fe/Al oxides.
There is a general consensus that adsorption/desorption (i.e. sorption) is the major process controlling dissolved PO4. However, many uncertainties exist with respect to PO4 sorption capacity and properties of clay minerals as compared to Fe/Al oxides. I reviewed experimental studies performed over a time period of 70years in an attempt to rationalize this knowledge. I found that the binding capacity of clay minerals may be close to or even higher than that of Fe/Al oxides, depending on the specific surface area of these soil constituents. I also found that the pH-dependency of PO4 sorption on clay minerals can differ greatly from that on Fe/Al oxides depending on PO4 loading. Surface reactions occurring at structural Al sites of clay minerals appeared to consistently control sorption at low PO4 concentrations. The analysis indicates that different sorption sites such as structural Fe sites and/or other processes such as the penetration of PO4 into amorphous regions of the mineral are more effective at controlling PO4 sorption at high concentrations. The implications of these findings in soil and rhizosphere are discussed. The possible contributions of kaolinite and goethite to PO4 sorption in a clayed ferralitic soil were estimated. Results suggest that in most soils clay minerals should be considered per se as important PO4-binding constituents, possibly outcompeting Fe/Al oxides. [Display omitted] •Clay minerals can bind substantial phosphate with respect to goethite and gibbsite.•Clay minerals and metal oxides can exhibit different sorption envelopes.•The same sorption envelopes are observed at elevated phosphate loading.•Phosphate sorption seems to occur onto two types of structural sites.
Author Gérard, Frédéric
Author_xml – sequence: 1
  givenname: Frederic
  surname: Gerard
  fullname: Gerard, Frederic
  organization: Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes
BackLink https://hal.science/hal-01269249$$DView record in HAL
BookMark eNqFkc1u1DAUhS3USkxLXwF5CRJJ7fw5llgwGgFFGolNu7Y8zg25o8QOtjPq7HgInpAnwdMBFmy68c_Rd86V7rkiF9ZZIOQ1ZzlnvLnd59_AdeAnnReM1zlrc1Y2L8iKt6LImqKWF2TFEpkJ1vCX5CqEffoKVrAVcZtRH-mEFrwewzuK3tlbPS5JWSbqHrGDpGrb0TgAemqcjR53S0RnaXR0HlyYBx2BBufnJxVteuMY6K8fP-maTsc4UA8HDBihe0Uu-zQIbv7c1-Th08f7zV22_fr5y2a9zUwpZMz62si2a2UjeAtc6qeTSaEZSCEYq3vd9UJWYNqyYk2li17Loq9bEGa3q8rymrw95w56VLPHSfujchrV3XqrThrjRSOLSh54Yt-c2dm77wuEqCYMBsZRW3BLUAXnTStZKauENmfUeBeCh_5fNmfq1Ibaq79tqFMbirUqtZGM7_8zGoz6tK_oNY7P2z-c7ZB2dkDwKhgEa6BDDyaqzuFzEb8BtjmuOg
CitedBy_id crossref_primary_10_1016_j_scitotenv_2018_03_246
crossref_primary_10_3390_su11236787
crossref_primary_10_1002_saj2_20706
crossref_primary_10_1016_j_atech_2024_100699
crossref_primary_10_1016_j_clay_2022_106729
crossref_primary_10_1007_s10661_023_11412_5
crossref_primary_10_4236_ojss_2025_151005
crossref_primary_10_1016_j_ecoenv_2020_111345
crossref_primary_10_1016_j_jece_2016_04_023
crossref_primary_10_2134_jeq2018_01_0037
crossref_primary_10_1002_ldr_5355
crossref_primary_10_1590_1413_70542016404023016
crossref_primary_10_1111_ejss_13326
crossref_primary_10_1016_j_apsoil_2024_105376
crossref_primary_10_2139_ssrn_3986063
crossref_primary_10_32604_phyton_2021_014376
crossref_primary_10_3390_min15030203
crossref_primary_10_1111_nph_16242
crossref_primary_10_1016_j_scitotenv_2022_160315
crossref_primary_10_1016_S1002_0160_20_60053_4
crossref_primary_10_1080_00103624_2020_1763393
crossref_primary_10_1007_s11368_019_02420_5
crossref_primary_10_1016_j_geoderma_2019_06_024
crossref_primary_10_1016_j_jclepro_2024_143266
crossref_primary_10_1111_sum_12894
crossref_primary_10_1016_j_scitotenv_2022_157278
crossref_primary_10_1016_j_scitotenv_2016_07_004
crossref_primary_10_1016_j_heliyon_2024_e35784
crossref_primary_10_3389_fenvs_2022_874902
crossref_primary_10_1007_s11368_018_1923_5
crossref_primary_10_1155_2024_4227265
crossref_primary_10_1071_SR18223
crossref_primary_10_5194_bg_17_441_2020
crossref_primary_10_1007_s42729_024_02033_z
crossref_primary_10_1016_j_pce_2022_103271
crossref_primary_10_1007_s11368_020_02564_9
crossref_primary_10_1016_j_wasman_2022_11_011
crossref_primary_10_1016_j_jece_2024_112232
crossref_primary_10_3390_min11020121
crossref_primary_10_1016_j_geoderma_2021_115320
crossref_primary_10_1139_cjc_2024_0079
crossref_primary_10_1016_j_geoderma_2022_115847
crossref_primary_10_1016_j_geoderma_2021_115324
crossref_primary_10_1016_j_geoderma_2021_115326
crossref_primary_10_1016_j_agwat_2021_107178
crossref_primary_10_1007_s11356_019_06762_y
crossref_primary_10_1016_j_catena_2022_106407
crossref_primary_10_1186_s13717_025_00586_0
crossref_primary_10_1007_s00374_024_01810_3
crossref_primary_10_3390_agronomy10070990
crossref_primary_10_1007_s11356_017_9242_8
crossref_primary_10_1007_s10021_018_0302_9
crossref_primary_10_1016_j_soilbio_2018_04_002
crossref_primary_10_1016_j_clay_2021_106120
crossref_primary_10_1002_jpln_201700543
crossref_primary_10_3390_agriengineering7030083
crossref_primary_10_1007_s00203_022_03322_w
crossref_primary_10_1016_j_geoderma_2018_03_002
crossref_primary_10_1007_s10653_021_01184_7
crossref_primary_10_1371_journal_pone_0246428
crossref_primary_10_1007_s11356_024_32790_4
crossref_primary_10_1016_j_scitotenv_2021_147131
crossref_primary_10_3390_agriculture13020375
crossref_primary_10_1007_s11368_020_02819_5
crossref_primary_10_1016_j_jenvman_2021_114361
crossref_primary_10_1016_j_still_2016_04_018
crossref_primary_10_5194_hess_28_341_2024
crossref_primary_10_1016_j_envres_2020_109277
crossref_primary_10_1007_s41742_020_00305_x
crossref_primary_10_1088_1755_1315_499_1_012003
crossref_primary_10_1021_acs_est_3c09072
crossref_primary_10_1016_j_sandf_2022_101241
crossref_primary_10_1016_j_scitotenv_2017_09_067
crossref_primary_10_1016_j_soilbio_2019_107583
crossref_primary_10_1016_j_fcr_2023_109169
crossref_primary_10_1016_j_agwat_2024_109250
crossref_primary_10_1016_j_apgeochem_2022_105293
crossref_primary_10_1016_j_scitotenv_2021_149443
crossref_primary_10_12789_geocanj_2023_50_201
crossref_primary_10_1016_j_eti_2023_103401
crossref_primary_10_1002_saj2_20519
crossref_primary_10_1007_s11368_017_1845_7
crossref_primary_10_1016_j_still_2022_105487
crossref_primary_10_3390_agronomy12102335
crossref_primary_10_1080_00103624_2017_1341919
crossref_primary_10_1007_s10661_023_11175_z
crossref_primary_10_1016_j_scitotenv_2022_158322
crossref_primary_10_1007_s11104_024_06553_6
crossref_primary_10_1016_j_eja_2024_127144
crossref_primary_10_1061_JHTRBP_HZENG_1426
crossref_primary_10_1016_j_scitotenv_2025_178856
crossref_primary_10_1016_j_scitotenv_2021_150441
crossref_primary_10_1590_1413_70542017415006717
crossref_primary_10_3390_agronomy13061647
crossref_primary_10_1016_j_geoderma_2017_11_024
crossref_primary_10_1016_j_scitotenv_2022_160644
crossref_primary_10_1016_j_still_2023_105895
crossref_primary_10_1002_jeq2_20210
crossref_primary_10_1007_s11368_018_2122_0
crossref_primary_10_1016_j_chemosphere_2023_138519
crossref_primary_10_1155_2021_9943663
crossref_primary_10_1016_j_scitotenv_2022_160532
crossref_primary_10_1016_j_jes_2020_10_011
crossref_primary_10_26599_JGSE_2024_9280026
crossref_primary_10_3390_su16052142
crossref_primary_10_1016_j_geoderma_2018_03_033
crossref_primary_10_1111_sum_12527
crossref_primary_10_1002_jeq2_20202
crossref_primary_10_1111_ejss_13464
crossref_primary_10_1016_j_heliyon_2023_e23179
crossref_primary_10_1016_j_still_2023_105647
crossref_primary_10_5194_essd_15_1059_2023
crossref_primary_10_3390_agronomy13030813
crossref_primary_10_5194_bg_17_89_2020
crossref_primary_10_1088_1742_6596_2314_1_012008
crossref_primary_10_1590_2179_8087_012518
crossref_primary_10_5897_AJAR2024_16634
crossref_primary_10_1016_j_scitotenv_2024_172257
crossref_primary_10_1016_j_chemgeo_2024_122510
crossref_primary_10_1038_s41598_023_31908_x
crossref_primary_10_1016_j_sjbs_2022_02_056
crossref_primary_10_1016_j_geodrs_2023_e00689
crossref_primary_10_1007_s11270_020_04833_2
crossref_primary_10_1016_j_chemosphere_2022_136749
crossref_primary_10_1080_00103624_2021_1956522
crossref_primary_10_1080_00103624_2022_2072861
crossref_primary_10_3390_agriculture13112164
crossref_primary_10_1590_1678_4499_20230291
crossref_primary_10_1016_j_clay_2024_107304
crossref_primary_10_1016_j_sjbs_2021_08_086
crossref_primary_10_1016_j_jclepro_2022_131202
crossref_primary_10_1016_S2095_3119_21_63628_6
crossref_primary_10_1007_s10533_016_0274_9
crossref_primary_10_1080_01904167_2019_1676906
crossref_primary_10_3390_land11122192
crossref_primary_10_1016_j_geodrs_2020_e00298
crossref_primary_10_1016_j_gca_2021_07_027
crossref_primary_10_5897_AJAR2018_12996
crossref_primary_10_1007_s10705_021_10151_8
crossref_primary_10_15446_agron_colomb_v35n1_58671
crossref_primary_10_1016_j_still_2025_106479
crossref_primary_10_1016_j_geoderma_2020_114580
crossref_primary_10_1016_j_still_2024_106099
crossref_primary_10_1016_j_agee_2020_107165
crossref_primary_10_1016_j_still_2022_105446
crossref_primary_10_1029_2022JG007029
crossref_primary_10_1016_j_still_2023_105702
crossref_primary_10_1016_j_still_2023_105700
crossref_primary_10_1021_acs_est_4c05988
crossref_primary_10_1371_journal_pone_0220476
crossref_primary_10_1080_20442041_2022_2052785
crossref_primary_10_3389_fpls_2024_1416852
crossref_primary_10_1016_j_ssnmr_2020_101698
crossref_primary_10_1016_j_still_2021_105251
crossref_primary_10_3389_fpls_2021_679916
crossref_primary_10_5194_bg_13_2493_2016
crossref_primary_10_1016_j_still_2021_105139
crossref_primary_10_1002_jeq2_20090
crossref_primary_10_1016_j_agee_2021_107306
crossref_primary_10_1016_j_gfs_2021_100545
crossref_primary_10_1016_j_geodrs_2020_e00271
crossref_primary_10_1016_j_clay_2024_107442
crossref_primary_10_2136_sssaj2016_07_0220
crossref_primary_10_2136_sssaj2018_01_0020
crossref_primary_10_1021_acs_est_0c08407
crossref_primary_10_1007_s42729_019_00127_7
crossref_primary_10_1007_s11104_022_05830_6
crossref_primary_10_1016_j_still_2023_105840
crossref_primary_10_1016_j_still_2025_106452
crossref_primary_10_19047_0136_1694_2021_107_61_91
crossref_primary_10_1007_s13593_023_00939_z
crossref_primary_10_1111_ejss_12849
crossref_primary_10_1007_s11273_024_09976_1
crossref_primary_10_1016_j_geoderma_2018_11_001
crossref_primary_10_1002_jpln_202000488
crossref_primary_10_1007_s40995_023_01426_6
crossref_primary_10_1016_j_jenvman_2021_113426
crossref_primary_10_1016_j_jenvman_2021_112575
crossref_primary_10_3390_w9070501
crossref_primary_10_1016_j_chemosphere_2021_130837
crossref_primary_10_1039_C9EN00539K
crossref_primary_10_1155_2021_4158151
crossref_primary_10_1016_j_scitotenv_2020_140604
crossref_primary_10_1134_S1064229323601877
crossref_primary_10_1002_ldr_4617
crossref_primary_10_1021_acs_est_0c02163
crossref_primary_10_3389_ffgc_2020_604200
crossref_primary_10_3390_microorganisms9112224
crossref_primary_10_1007_s11356_024_34383_7
crossref_primary_10_1002_sae2_12039
crossref_primary_10_1016_j_chemgeo_2024_121976
crossref_primary_10_1038_s41598_020_58913_8
crossref_primary_10_1007_s42729_023_01444_8
crossref_primary_10_1016_j_plana_2024_100112
crossref_primary_10_1007_s00374_024_01833_w
crossref_primary_10_1007_s42729_020_00344_5
crossref_primary_10_1007_s11676_022_01551_9
crossref_primary_10_1080_00380768_2023_2185751
crossref_primary_10_1016_j_colsurfa_2023_132905
crossref_primary_10_1021_acs_jafc_0c01287
crossref_primary_10_1016_j_jwpe_2020_101473
crossref_primary_10_1016_j_wasman_2023_06_035
crossref_primary_10_1038_s41586_024_08429_2
crossref_primary_10_1016_j_cej_2021_134225
crossref_primary_10_1007_s10661_020_08260_y
crossref_primary_10_1016_j_ecolind_2022_109482
crossref_primary_10_1016_j_jenvman_2022_116222
crossref_primary_10_1016_j_still_2018_11_016
crossref_primary_10_21930_rcta_vol18_num3_art_742
crossref_primary_10_1080_15320383_2024_2341061
crossref_primary_10_1002_ldr_3978
crossref_primary_10_1016_j_geoderma_2020_114853
crossref_primary_10_1007_s12665_024_11711_1
crossref_primary_10_1016_j_scitotenv_2023_165962
crossref_primary_10_3390_agronomy13081956
crossref_primary_10_1007_s12517_021_06629_y
crossref_primary_10_1016_j_scitotenv_2020_138744
crossref_primary_10_1007_s13762_024_06147_w
crossref_primary_10_1016_j_geodrs_2022_e00573
crossref_primary_10_1016_j_pedsph_2023_03_014
crossref_primary_10_2139_ssrn_4125294
crossref_primary_10_1016_j_chemgeo_2023_121786
crossref_primary_10_1590_18069657rbcs20160272
crossref_primary_10_1111_nph_19078
crossref_primary_10_1016_j_trgeo_2022_100854
crossref_primary_10_1111_geb_12576
crossref_primary_10_1016_j_jhydrol_2019_124256
crossref_primary_10_1071_CP21043
crossref_primary_10_1016_j_geoderma_2022_116125
crossref_primary_10_1002_ldr_4816
crossref_primary_10_1071_SR20099
crossref_primary_10_1016_j_gsd_2024_101283
crossref_primary_10_36783_18069657rbcs20210146
crossref_primary_10_1111_gcb_17104
crossref_primary_10_3390_plants13243478
crossref_primary_10_1080_10643389_2018_1551300
crossref_primary_10_1002_saj2_20391
crossref_primary_10_2134_agronj2017_01_0038
crossref_primary_10_1002_jpln_202400258
crossref_primary_10_1016_j_chemosphere_2016_11_058
crossref_primary_10_3390_microorganisms13030582
crossref_primary_10_1002_ldr_3832
crossref_primary_10_5194_bg_15_105_2018
crossref_primary_10_1002_clen_201700662
crossref_primary_10_3390_land12010196
crossref_primary_10_1007_s10341_023_01004_5
crossref_primary_10_2139_ssrn_4161490
crossref_primary_10_1080_00380768_2023_2245420
crossref_primary_10_1016_j_geoderma_2023_116739
crossref_primary_10_1007_s00248_020_01635_1
crossref_primary_10_1021_acs_est_5b04814
crossref_primary_10_3390_ijms23179860
crossref_primary_10_1007_s11368_021_02993_0
crossref_primary_10_1371_journal_pone_0306145
crossref_primary_10_1007_s11368_019_02493_2
crossref_primary_10_1111_sum_13088
crossref_primary_10_2136_sssaj2018_09_0320
crossref_primary_10_1016_j_geoderma_2018_09_056
crossref_primary_10_1016_j_catena_2023_107125
crossref_primary_10_1016_j_chemosphere_2019_124709
crossref_primary_10_1002_jpln_202000525
crossref_primary_10_1007_s11356_018_3968_9
crossref_primary_10_3390_ijerph17207693
crossref_primary_10_1016_j_geoderma_2018_02_047
crossref_primary_10_1016_j_heliyon_2024_e40128
crossref_primary_10_1007_s11356_023_30313_1
crossref_primary_10_1111_sum_13038
crossref_primary_10_1016_j_geoderma_2022_116316
crossref_primary_10_3389_fsufs_2022_893525
crossref_primary_10_1016_j_scitotenv_2024_173537
crossref_primary_10_3390_w13141983
crossref_primary_10_3390_w17020218
crossref_primary_10_1002_jpln_202100266
crossref_primary_10_1080_09593330_2016_1185165
crossref_primary_10_1029_2020JB021422
crossref_primary_10_1590_1678_4499_20200047
crossref_primary_10_1002_saj2_20078
crossref_primary_10_1016_j_jenvman_2022_116038
crossref_primary_10_1080_00380768_2021_1874249
crossref_primary_10_1016_j_still_2024_106338
crossref_primary_10_4025_actasciagron_v44i1_55148
crossref_primary_10_1007_s10533_019_00633_x
crossref_primary_10_1016_j_geoderma_2023_116650
crossref_primary_10_1002_saj2_20089
crossref_primary_10_1155_2022_6319739
crossref_primary_10_1016_j_colsurfa_2023_132068
crossref_primary_10_1016_j_geoderma_2022_116212
crossref_primary_10_3390_su132212349
crossref_primary_10_1007_s42729_020_00265_3
crossref_primary_10_1016_j_catena_2024_108682
crossref_primary_10_17221_41_2022_PSE
crossref_primary_10_1007_s11104_023_06045_z
crossref_primary_10_1016_j_scitotenv_2022_155525
crossref_primary_10_1186_s40538_022_00302_6
crossref_primary_10_1071_SR24118
crossref_primary_10_3390_f15020351
crossref_primary_10_1080_03650340_2019_1605166
crossref_primary_10_1016_j_still_2025_106532
crossref_primary_10_3390_bacteria2020008
crossref_primary_10_1111_ele_70011
crossref_primary_10_1007_s11356_020_12206_9
crossref_primary_10_1016_j_jenvman_2020_111435
crossref_primary_10_1016_j_geoderma_2020_114921
crossref_primary_10_3390_su13042253
crossref_primary_10_3390_agronomy11102010
crossref_primary_10_1016_j_geoderma_2017_05_012
crossref_primary_10_1590_0001_3765201820160701
crossref_primary_10_3390_agronomy11061086
crossref_primary_10_1016_j_apsoil_2022_104550
crossref_primary_10_1007_s11356_020_07998_9
crossref_primary_10_2136_sssaj2017_11_0380
crossref_primary_10_36783_18069657rbcs20230049
crossref_primary_10_1021_acsearthspacechem_4c00312
crossref_primary_10_1111_sum_13112
crossref_primary_10_1016_j_watres_2024_121770
crossref_primary_10_1016_j_envpol_2020_114175
crossref_primary_10_1016_j_jenvman_2019_109872
crossref_primary_10_5194_soil_10_49_2024
crossref_primary_10_1016_j_jclepro_2018_06_004
crossref_primary_10_1007_s11368_022_03378_7
crossref_primary_10_1016_j_chemosphere_2021_130239
crossref_primary_10_1002_saj2_20553
crossref_primary_10_1002_tqem_22004
crossref_primary_10_1016_j_biortech_2024_131075
crossref_primary_10_1016_j_scitotenv_2021_151039
crossref_primary_10_1021_acsearthspacechem_0c00281
crossref_primary_10_1061_JOEEDU_EEENG_7102
crossref_primary_10_1021_acs_jafc_2c03933
crossref_primary_10_1016_j_chemosphere_2019_124888
crossref_primary_10_1007_s11368_018_2013_4
crossref_primary_10_3389_fmars_2022_907527
crossref_primary_10_1007_s42729_020_00308_9
crossref_primary_10_1021_acs_est_9b01565
crossref_primary_10_1017_S0021859622000363
crossref_primary_10_5004_dwt_2017_20190
crossref_primary_10_2139_ssrn_4006877
crossref_primary_10_1016_j_scitotenv_2020_144004
crossref_primary_10_3390_agronomy13030626
crossref_primary_10_1007_s11157_021_09602_z
crossref_primary_10_1039_C8RA10400J
crossref_primary_10_5004_dwt_2022_28853
crossref_primary_10_3390_soilsystems3010020
crossref_primary_10_1007_s42729_025_02253_x
crossref_primary_10_1080_10643389_2023_2240211
crossref_primary_10_1016_j_precamres_2024_107498
crossref_primary_10_1016_j_scitotenv_2024_178341
crossref_primary_10_1590_18069657rbcs20180041
crossref_primary_10_1016_j_geoderma_2021_115274
crossref_primary_10_1016_j_envpol_2020_115172
crossref_primary_10_1016_j_jclepro_2020_122728
crossref_primary_10_1007_s11270_021_05336_4
crossref_primary_10_1021_acs_est_1c03629
crossref_primary_10_1111_sum_13006
crossref_primary_10_20961_stjssa_v21i1_79310
crossref_primary_10_1007_s11104_016_3092_x
crossref_primary_10_1002_jpln_202100410
crossref_primary_10_1038_s41467_023_44240_9
crossref_primary_10_3390_pr9091521
crossref_primary_10_1021_acsearthspacechem_1c00239
crossref_primary_10_1016_j_agee_2024_109310
crossref_primary_10_1016_j_geoderma_2021_115462
crossref_primary_10_1007_s42729_024_02200_2
crossref_primary_10_1016_j_geoderma_2025_117242
crossref_primary_10_1016_j_geoderma_2018_09_028
crossref_primary_10_1016_j_soilbio_2018_04_011
crossref_primary_10_1007_s10661_020_08365_4
crossref_primary_10_1016_j_chemosphere_2023_140523
crossref_primary_10_1007_s10653_020_00561_y
crossref_primary_10_1016_j_ecoenv_2019_04_040
crossref_primary_10_1016_j_scitotenv_2021_151589
crossref_primary_10_3390_su13137181
crossref_primary_10_3390_app11093731
crossref_primary_10_3390_min11070674
crossref_primary_10_1180_clm_2020_24
crossref_primary_10_1038_s41467_021_23304_8
crossref_primary_10_1002_advs_202409585
crossref_primary_10_1021_acssuschemeng_1c08537
crossref_primary_10_1007_s42729_023_01166_x
crossref_primary_10_3389_fpls_2024_1372634
crossref_primary_10_1007_s42773_022_00135_4
crossref_primary_10_1016_j_jhazmat_2023_132572
crossref_primary_10_1016_j_scitotenv_2023_163971
crossref_primary_10_1016_j_geoderma_2019_01_016
crossref_primary_10_1080_15226514_2018_1556583
crossref_primary_10_1016_j_chemosphere_2023_138684
crossref_primary_10_4236_ojss_2019_912016
crossref_primary_10_1111_ejss_13198
crossref_primary_10_1016_j_jclepro_2022_132915
crossref_primary_10_1111_wej_12671
crossref_primary_10_3390_soilsystems4040073
crossref_primary_10_1007_s42247_024_00816_9
crossref_primary_10_3390_toxics11030230
crossref_primary_10_1016_j_agee_2024_109408
crossref_primary_10_1016_j_apgeochem_2020_104534
crossref_primary_10_1007_s11368_024_03923_6
crossref_primary_10_2136_sssaj2017_08_0288
crossref_primary_10_1016_j_geoderma_2021_115590
crossref_primary_10_1016_j_envexpbot_2024_105800
crossref_primary_10_1111_ejss_70033
crossref_primary_10_17221_492_2019_PSE
crossref_primary_10_1016_j_geoderma_2021_115592
crossref_primary_10_1002_jpln_201800201
crossref_primary_10_1016_j_agee_2023_108374
crossref_primary_10_1016_j_eja_2023_126967
crossref_primary_10_1016_j_ecoenv_2022_114402
crossref_primary_10_1002_ldr_5007
crossref_primary_10_1016_j_scitotenv_2017_05_133
crossref_primary_10_1016_j_scitotenv_2018_07_261
crossref_primary_10_1016_j_jclepro_2020_121319
crossref_primary_10_1016_j_geoderma_2016_12_020
crossref_primary_10_5194_bg_20_505_2023
Cites_doi 10.1016/0021-9797(73)90388-3
10.1016/j.envpol.2012.03.052
10.1038/nature01014
10.1016/j.geoderma.2011.12.030
10.1016/j.jcis.2004.01.035
10.1111/j.1365-2389.1997.tb00189.x
10.1007/s002690050125
10.1007/s11270-012-1374-3
10.1039/c1ee02093e
10.3390/su3102027
10.1016/j.gca.2009.10.018
10.2136/sssaj1943.036159950007000C0019x
10.1016/j.geoderma.2013.05.026
10.1016/j.jcis.2004.12.032
10.1111/j.1365-2389.1966.tb01468.x
10.1021/es60116a001
10.2136/sssaj2002.1788
10.2138/am-2000-0114
10.1016/j.gloenvcha.2008.10.009
10.1016/j.gca.2009.10.019
10.1007/s00269-002-0286-y
10.1016/j.apgeochem.2009.09.020
10.1002/etc.2612
10.1346/CCMN.1996.0440504
10.1346/CCMN.1983.0310309
10.1016/j.gca.2011.02.034
10.2134/jeq2003.3350
10.1346/CCMN.1992.0400315
10.1111/j.1365-2389.1994.tb00485.x
10.1023/A:1009709005147
10.1346/CCMN.2006.0540108
10.1021/es404258h
10.2136/sssaj2005.0077a
10.2136/sssaj1996.03615995006000010020x
10.1111/j.1365-2389.1979.tb00972.x
10.1016/j.chemosphere.2011.01.065
10.1093/aob/mcq098
10.1346/CCMN.1992.0400103
10.1016/j.apgeochem.2014.02.006
10.2136/sssaj1990.03615995005400040012x
10.1073/pnas.96.11.5995
10.1016/j.gca.2013.03.044
10.1180/0009855033810080
10.1111/j.1365-2389.1992.tb00165.x
10.1111/j.1365-2389.1966.tb01467.x
10.1346/000986002760832810
10.2136/sssaj1985.03615995004900050015x
10.2136/sssaj1992.03615995005600030050x
10.1111/j.1365-2389.1972.tb01652.x
10.1016/j.jhazmat.2010.02.086
10.2136/sssaj1988.03615995005200030009x
10.2136/sssaj1988.03615995005200060011x
10.1071/BT06118
10.1111/j.1365-2389.1975.tb01950.x
10.1007/s10705-006-6687-4
10.2136/sssaj2005.0250
10.1021/es950290x
10.1016/0016-7037(94)90380-8
10.1016/S0065-2113(06)94003-6
10.1097/SS.0b013e3181f1b4dd
10.1016/j.gca.2012.05.042
10.2136/sssaj2000.6441347x
10.1007/BF01416093
10.4141/cjss68-018
10.1046/j.1365-2389.1997.00090.x
10.1006/jcis.1999.6448
10.1016/0021-9797(75)90004-1
10.1007/s00269-012-0521-0
10.1111/j.1365-2389.1985.tb00323.x
10.1016/0021-9797(73)90389-5
10.1016/j.geoderma.2012.05.014
10.1007/s11104-011-0935-3
10.3109/10408444.2013.770820
10.1021/la9515074
10.1016/j.apgeochem.2013.03.018
10.1557/jmr.2005.0403
10.1006/jcis.1997.4970
10.1016/j.geoderma.2013.09.001
10.1046/j.1365-2389.2001.00414.x
10.1180/0009855023740069
10.1097/SS.0b013e31828683f8
10.1007/s10533-005-0712-6
10.1016/j.clay.2011.04.006
10.1111/j.1365-2389.1979.tb01019.x
10.2136/sssaj1997.03615995006100030011x
10.1021/la803302m
10.2136/sssaj1985.03615995004900050014x
10.1006/jcis.2000.7072
10.1016/j.apgeochem.2014.02.011
10.1016/j.apgeochem.2013.09.017
10.2136/sssaj2006.0424
10.1039/f19868201733
10.1007/s11104-011-0950-4
10.1111/j.1475-2743.2007.00122.x
10.1180/0009855023730049
10.1021/es201844d
10.2136/sssaj2005.0080
10.1016/j.gca.2011.02.031
10.1016/0021-9797(80)90270-2
10.1007/s003740000206
10.1021/es400526q
10.1021/la062965n
10.1021/es000210b
10.2136/sssaj1977.03615995004100050011x
10.1104/pp.111.175331
10.1021/es401301z
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
DOI 10.1016/j.geoderma.2015.08.036
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 226
ExternalDocumentID oai_HAL_hal_01269249v1
10_1016_j_geoderma_2015_08_036
S0016706115300653
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
1XC
ID FETCH-LOGICAL-c379t-f5c98d896718e19a18e19097a0e977005fadf794ec834064a2fa92f58e7cbb433
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jun 13 07:01:47 EDT 2025
Thu Jul 10 23:32:52 EDT 2025
Tue Jul 01 04:04:40 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Fri Feb 23 02:30:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Phosphorus
Kaolinite
Montmorillonite
Goethite
Gibbsite
Illite
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-f5c98d896718e19a18e19097a0e977005fadf794ec834064a2fa92f58e7cbb433
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2116890394
PQPubID 24069
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_01269249v1
proquest_miscellaneous_2116890394
crossref_primary_10_1016_j_geoderma_2015_08_036
crossref_citationtrail_10_1016_j_geoderma_2015_08_036
elsevier_sciencedirect_doi_10_1016_j_geoderma_2015_08_036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-15
PublicationDateYYYYMMDD 2016-01-15
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2016
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Juang, Chung (bb0260) 2004; 275
St. Pierre, Singh, Webb, Gilkes (bb0425) 1992; 40
Van Riemsdijk, Lyklema (bb0480) 1980; 76
Hiemstra, Antelo, Rahnemaie, van Riemsdijk (bb0210) 2010; 74
Gustafsson, Mwamila, Kergoat (bb0180) 2012; 189
Rahnemaie, Hiemstra, van Riemsdijk (bb0370) 2007; 23
Ioannou, Dimirkou (bb0240) 1997; 192
Jara, Violante, Pigna, Mora (bb0250) 2006; 70
Wei, Tan, Liu, Zhao, Weng (bb0515) 2014; 213
Ioannou, Dimirkou, Ioannou (bb0245) 2013; 224
Manning, Goldberg (bb0325) 1996; 44
Strahm, Harrison (bb0430) 2007; 71
Manceau (bb0320) 2000; 85
Litaor (bb0285) 2003; 32
Torrent, Schwertmann, Barron (bb0465) 1994; 45
Gimsing, Borggaard (bb0165) 2002; 37
Bolan, Barrow, Posner (bb0045) 1985; 36
He, Yang, Yuan, Zhu (bb0195) 1994; 162
Yan (bb0525) 2010; 179
Sei, Jumas, Olivier-Fourcade, Quiquampoix, Staunton (bb0410) 2002; 50
Geelhoed, Findenegg, VanRiemsdijk (bb0150) 1997; 48
Hiemstra, Antelo, van Rotterdam, van Riemsdijk (bb0215) 2010; 74
Duputel, Van Hoye, Toucet, Gérard (bb0125) 2013; 39
Devau, Hinsinger, Le Cadre, Colomb, Gérard (bb0105) 2013; 124
Dogan (bb0115) 2006; 54
Giesler, Andersson, Lovgren, Persson (bb0160) 2005; 69
Torrent, Schwertmann, Barron (bb0460) 1992; 40
Rajan, Perrott (bb0375) 1975; 26
Richardson (bb0380) 2011; 349
Devau, Hinsinger, Le Cadre, Colomb, Gérard (bb0095) 2011; 75
Mikutta, Kleber, Torn, Jahn (bb0340) 2006; 77
Devau, Le Cadre, Hinsinger, Gérard (bb0090) 2010; 105
Hingston, Posner, Quirk (bb0220) 1972; 23
Arai, Sparks (bb0020) 2007; vol. 94
Cordell, Drangert, White (bb0075) 2009; 19
Muljadi, Posner, Quirk (bb0345) 1966; 17
Strauss, Brummer, Barrow (bb0435) 1997; 48
Antelo, Avena, Fiol, Lopez, Arce (bb0015) 2005; 285
Devau, Hinsinger, Le Cadre, Gérard (bb0100) 2011; 348
Breeuwsma, Lyklema (bb0055) 1973; 43
Duputel (bb0130) 2014; 46
Vantelon (bb0485) 2003; 30
Barron, Herruzo, Torrent (bb0030) 1988; 52
Baker, Strawn (bb0025) 2012; 39
Suzuki, Inomata, Sawada (bb0440) 1986; 82
Gustafsson, Lumsdon (bb0175) 2014; 46
Cui, Weng (bb0080) 2013; 47
So, Postma, Jakobsen, Larsen (bb0420) 2011; 75
Wang (bb0505) 2013; 178
Rothbaum, McGaveston, Wall, Johnston, Mattingly (bb0390) 1979; 30
Webster, Laing, Florance, Santos (bb0510) 2014; 48
Tilman, Cassman, Matson, Naylor, Polasky (bb0450) 2002; 418
He, Zelazny, Baligar, Ritchey, Martens (bb0200) 1997; 61
Tilman (bb0445) 1999; 96
Jiao, Chen, Chang, Page (bb0255) 2012; 168
Muljadi, Posner, Quirk (bb0350) 1966; 17
Mikutta, Lang, Kaupenjohann (bb0335) 2006; 70
Baryosef, Kafkafi, Rosenberg, Sposito (bb0035) 1988; 52
Macht, Eusterhues, Pronk, Totsche (bb0305) 2011; 53
Weng, Vega, Van Riemsdijk (bb0520) 2011; 45
Hinsinger (bb0225) 2011; 156
Manning, Goldberg (bb0330) 1996; 60
Borggaard (bb0050) 1983; 31
Veith, Sposito (bb0490) 1977; 41
Edzwald, Toensing, Leung (bb0135) 1976; 10
Herlihy, McGrath (bb0205) 2007; 77
Gustafsson (bb0170) 2001; 52
Lynch (bb0300) 2007; 55
Gerke (bb0155) 2010; 175
Chen, Butler, Stumm (bb0060) 1973; 43
Fontes, Weed, Bowen (bb0140) 1992; 56
Pérez, Antelo, Fiol, Arce (bb0360) 2014; 33
Saidy, Smernik, Baldock, Kaiser, Sanderman (bb0400) 2013; 209
Saidy (bb0395) 2012; 173
Hart (bb0185) 2002; 37
Wang (bb0500) 2013; 47
Torrent, Barron, Schwertmann (bb0455) 1990; 54
Huang, Foster, Honeychuck, Schreifels (bb0235) 2009; 25
Yean (bb0535) 2005; 20
Cordell, White (bb0070) 2012; 3
Duputel (bb0120) 2013; 35
Pissarides, Stewart, Rennie (bb0365) 1968; 48
diCristofaro (bb0110) 2000; 64
Laiti, Persson, Ohman (bb0275) 1996; 12
Liu, Sun, Forsling, Du, Tang (bb0290) 1999; 219
Devau, Le Cadre, Hinsinger, Jaillard, Gérard (bb0085) 2009; 24
Gaume, Weidler, Frossard (bb0145) 2000; 31
Torrent, Barberis, Gil-Sotres (bb0470) 2007; 23
Ainsworth, Sumner, Hurst (bb0010) 1985; 49
Tunesi, Poggi, Gessa (bb0475) 1999; 53
Yao, Millero (bb0530) 1996; 30
Rietra, Hiemstra, Van Riemsdijk (bb0385) 2001; 35
Schroder, Smit, Cordell, Rosemarin (bb0405) 2011; 84
Black (bb0040) 1943; 7
Lumsdon (bb0295) 2012; 92
Singh, Gilkes (bb0415) 1992; 43
Huang (bb0230) 1975; 53
Hart, Wiriyakitnateekul, Gilkes (bb0190) 2003; 38
Kier, Kirkland (bb0265) 2013; 43
Manceau, Chateigner, Gates (bb0315) 1998; 25
Kim, Li, Philips, Grey (bb0270) 2011; 4
Madrid, Posner (bb0310) 1979; 30
Colombo, Barron, Torrent (bb0065) 1994; 58
Ainsworth, Sumner (bb0005) 1985; 49
Violante, Pigna (bb0495) 2002; 66
Li, Stanforth (bb0280) 2000; 230
Zhang, Dong, Tao (bb0540) 2006; 278
diCristofaro (10.1016/j.geoderma.2015.08.036_bb0110) 2000; 64
Madrid (10.1016/j.geoderma.2015.08.036_bb0310) 1979; 30
Antelo (10.1016/j.geoderma.2015.08.036_bb0015) 2005; 285
Huang (10.1016/j.geoderma.2015.08.036_bb0230) 1975; 53
Li (10.1016/j.geoderma.2015.08.036_bb0280) 2000; 230
Torrent (10.1016/j.geoderma.2015.08.036_bb0455) 1990; 54
Huang (10.1016/j.geoderma.2015.08.036_bb0235) 2009; 25
Torrent (10.1016/j.geoderma.2015.08.036_bb0460) 1992; 40
Gerke (10.1016/j.geoderma.2015.08.036_bb0155) 2010; 175
Richardson (10.1016/j.geoderma.2015.08.036_bb0380) 2011; 349
Zhang (10.1016/j.geoderma.2015.08.036_bb0540) 2006; 278
Devau (10.1016/j.geoderma.2015.08.036_bb0100) 2011; 348
Yean (10.1016/j.geoderma.2015.08.036_bb0535) 2005; 20
Hart (10.1016/j.geoderma.2015.08.036_bb0185) 2002; 37
Strauss (10.1016/j.geoderma.2015.08.036_bb0435) 1997; 48
Breeuwsma (10.1016/j.geoderma.2015.08.036_bb0055) 1973; 43
Geelhoed (10.1016/j.geoderma.2015.08.036_bb0150) 1997; 48
Manning (10.1016/j.geoderma.2015.08.036_bb0325) 1996; 44
Hiemstra (10.1016/j.geoderma.2015.08.036_bb0215) 2010; 74
Liu (10.1016/j.geoderma.2015.08.036_bb0290) 1999; 219
Wang (10.1016/j.geoderma.2015.08.036_bb0500) 2013; 47
Bolan (10.1016/j.geoderma.2015.08.036_bb0045) 1985; 36
Wang (10.1016/j.geoderma.2015.08.036_bb0505) 2013; 178
Hart (10.1016/j.geoderma.2015.08.036_bb0190) 2003; 38
Juang (10.1016/j.geoderma.2015.08.036_bb0260) 2004; 275
St. Pierre (10.1016/j.geoderma.2015.08.036_bb0425) 1992; 40
Hingston (10.1016/j.geoderma.2015.08.036_bb0220) 1972; 23
Cordell (10.1016/j.geoderma.2015.08.036_bb0075) 2009; 19
Baker (10.1016/j.geoderma.2015.08.036_bb0025) 2012; 39
Colombo (10.1016/j.geoderma.2015.08.036_bb0065) 1994; 58
Devau (10.1016/j.geoderma.2015.08.036_bb0090) 2010; 105
Arai (10.1016/j.geoderma.2015.08.036_bb0020) 2007; vol. 94
Ainsworth (10.1016/j.geoderma.2015.08.036_bb0005) 1985; 49
Sei (10.1016/j.geoderma.2015.08.036_bb0410) 2002; 50
Devau (10.1016/j.geoderma.2015.08.036_bb0105) 2013; 124
Litaor (10.1016/j.geoderma.2015.08.036_bb0285) 2003; 32
Gustafsson (10.1016/j.geoderma.2015.08.036_bb0170) 2001; 52
Jiao (10.1016/j.geoderma.2015.08.036_bb0255) 2012; 168
Van Riemsdijk (10.1016/j.geoderma.2015.08.036_bb0480) 1980; 76
Yan (10.1016/j.geoderma.2015.08.036_bb0525) 2010; 179
Tilman (10.1016/j.geoderma.2015.08.036_bb0450) 2002; 418
Weng (10.1016/j.geoderma.2015.08.036_bb0520) 2011; 45
Fontes (10.1016/j.geoderma.2015.08.036_bb0140) 1992; 56
Manceau (10.1016/j.geoderma.2015.08.036_bb0315) 1998; 25
Veith (10.1016/j.geoderma.2015.08.036_bb0490) 1977; 41
Macht (10.1016/j.geoderma.2015.08.036_bb0305) 2011; 53
Rietra (10.1016/j.geoderma.2015.08.036_bb0385) 2001; 35
Yao (10.1016/j.geoderma.2015.08.036_bb0530) 1996; 30
Baryosef (10.1016/j.geoderma.2015.08.036_bb0035) 1988; 52
Barron (10.1016/j.geoderma.2015.08.036_bb0030) 1988; 52
Gustafsson (10.1016/j.geoderma.2015.08.036_bb0175) 2014; 46
Tunesi (10.1016/j.geoderma.2015.08.036_bb0475) 1999; 53
Mikutta (10.1016/j.geoderma.2015.08.036_bb0335) 2006; 70
Singh (10.1016/j.geoderma.2015.08.036_bb0415) 1992; 43
Gimsing (10.1016/j.geoderma.2015.08.036_bb0165) 2002; 37
Giesler (10.1016/j.geoderma.2015.08.036_bb0160) 2005; 69
Devau (10.1016/j.geoderma.2015.08.036_bb0095) 2011; 75
Duputel (10.1016/j.geoderma.2015.08.036_bb0125) 2013; 39
Duputel (10.1016/j.geoderma.2015.08.036_bb0130) 2014; 46
Kier (10.1016/j.geoderma.2015.08.036_bb0265) 2013; 43
Wei (10.1016/j.geoderma.2015.08.036_bb0515) 2014; 213
Laiti (10.1016/j.geoderma.2015.08.036_bb0275) 1996; 12
Strahm (10.1016/j.geoderma.2015.08.036_bb0430) 2007; 71
Borggaard (10.1016/j.geoderma.2015.08.036_bb0050) 1983; 31
Manceau (10.1016/j.geoderma.2015.08.036_bb0320) 2000; 85
Pissarides (10.1016/j.geoderma.2015.08.036_bb0365) 1968; 48
Torrent (10.1016/j.geoderma.2015.08.036_bb0465) 1994; 45
Kim (10.1016/j.geoderma.2015.08.036_bb0270) 2011; 4
Schroder (10.1016/j.geoderma.2015.08.036_bb0405) 2011; 84
Vantelon (10.1016/j.geoderma.2015.08.036_bb0485) 2003; 30
Ainsworth (10.1016/j.geoderma.2015.08.036_bb0010) 1985; 49
Manning (10.1016/j.geoderma.2015.08.036_bb0330) 1996; 60
Cordell (10.1016/j.geoderma.2015.08.036_bb0070) 2012; 3
Saidy (10.1016/j.geoderma.2015.08.036_bb0400) 2013; 209
Pérez (10.1016/j.geoderma.2015.08.036_bb0360) 2014; 33
Gustafsson (10.1016/j.geoderma.2015.08.036_bb0180) 2012; 189
Hinsinger (10.1016/j.geoderma.2015.08.036_bb0225) 2011; 156
Black (10.1016/j.geoderma.2015.08.036_bb0040) 1943; 7
Devau (10.1016/j.geoderma.2015.08.036_bb0085) 2009; 24
He (10.1016/j.geoderma.2015.08.036_bb0195) 1994; 162
Chen (10.1016/j.geoderma.2015.08.036_bb0060) 1973; 43
Rothbaum (10.1016/j.geoderma.2015.08.036_bb0390) 1979; 30
Ioannou (10.1016/j.geoderma.2015.08.036_bb0240) 1997; 192
He (10.1016/j.geoderma.2015.08.036_bb0200) 1997; 61
Lynch (10.1016/j.geoderma.2015.08.036_bb0300) 2007; 55
Jara (10.1016/j.geoderma.2015.08.036_bb0250) 2006; 70
Ioannou (10.1016/j.geoderma.2015.08.036_bb0245) 2013; 224
Muljadi (10.1016/j.geoderma.2015.08.036_bb0345) 1966; 17
Suzuki (10.1016/j.geoderma.2015.08.036_bb0440) 1986; 82
Rahnemaie (10.1016/j.geoderma.2015.08.036_bb0370) 2007; 23
Hiemstra (10.1016/j.geoderma.2015.08.036_bb0210) 2010; 74
Herlihy (10.1016/j.geoderma.2015.08.036_bb0205) 2007; 77
Duputel (10.1016/j.geoderma.2015.08.036_bb0120) 2013; 35
Gaume (10.1016/j.geoderma.2015.08.036_bb0145) 2000; 31
Edzwald (10.1016/j.geoderma.2015.08.036_bb0135) 1976; 10
Lumsdon (10.1016/j.geoderma.2015.08.036_bb0295) 2012; 92
Webster (10.1016/j.geoderma.2015.08.036_bb0510) 2014; 48
Cui (10.1016/j.geoderma.2015.08.036_bb0080) 2013; 47
So (10.1016/j.geoderma.2015.08.036_bb0420) 2011; 75
Torrent (10.1016/j.geoderma.2015.08.036_bb0470) 2007; 23
Tilman (10.1016/j.geoderma.2015.08.036_bb0445) 1999; 96
Muljadi (10.1016/j.geoderma.2015.08.036_bb0350) 1966; 17
Dogan (10.1016/j.geoderma.2015.08.036_bb0115) 2006; 54
Saidy (10.1016/j.geoderma.2015.08.036_bb0395) 2012; 173
Mikutta (10.1016/j.geoderma.2015.08.036_bb0340) 2006; 77
Rajan (10.1016/j.geoderma.2015.08.036_bb0375) 1975; 26
Violante (10.1016/j.geoderma.2015.08.036_bb0495) 2002; 66
References_xml – volume: 43
  start-page: 283
  year: 2013
  end-page: 315
  ident: bb0265
  article-title: Review of genotoxicity studies of glyphosate and glyphosate-based formulations
  publication-title: Crit. Rev. Toxicol.
– volume: 46
  start-page: 85
  year: 2014
  end-page: 89
  ident: bb0175
  article-title: Comment on “Citrate adsorption can decrease soluble phosphate concentration in soils: Results of theoretical modelling” by Marek Duputel, Nicolas Devau, Michel Brossard, Benoit Jaillard, Davey L. Jones, Philippe Hinsinger and Frederic Gerard (2013)
  publication-title: Appl. Geochem.
– volume: 48
  start-page: 151
  year: 1968
  end-page: 157
  ident: bb0365
  article-title: Influence of cation saturation on phosphorus adsorption by selected clay minerals
  publication-title: Can. J. Soil Sci.
– volume: vol. 94
  start-page: 135
  year: 2007
  end-page: 179
  ident: bb0020
  article-title: Phosphate reaction dynamics in soils and soil components: a multiscale approach
  publication-title: Advances in Agronomy
– volume: 20
  start-page: 3255
  year: 2005
  end-page: 3264
  ident: bb0535
  article-title: Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate
  publication-title: J. Mater. Res.
– volume: 10
  start-page: 485
  year: 1976
  end-page: 490
  ident: bb0135
  article-title: Phosphate adsorption reactions with clay-minerals
  publication-title: Environ. Sci. Technol.
– volume: 60
  start-page: 121
  year: 1996
  end-page: 131
  ident: bb0330
  article-title: Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals
  publication-title: Soil Sci. Soc. Am. J.
– volume: 52
  start-page: 647
  year: 1988
  end-page: 651
  ident: bb0030
  article-title: Phosphate adsorption by aluminous hematites of different shapes
  publication-title: Soil Sci. Soc. Am. J.
– volume: 40
  start-page: 14
  year: 1992
  end-page: 21
  ident: bb0460
  article-title: Fast and slow phosphate sorption by goethite-rich natural materials
  publication-title: Clay Clay Miner.
– volume: 74
  start-page: 59
  year: 2010
  end-page: 69
  ident: bb0215
  article-title: Nanoparticles in natural systems II: the natural oxide fraction at interaction with natural organic matter and phosphate
  publication-title: Geochim. Cosmochim. Acta
– volume: 33
  start-page: 2208
  year: 2014
  end-page: 2216
  ident: bb0360
  article-title: Modelling oxyanion adsorption on ferralic soil, part 1: parameter validation with phosphate ion
  publication-title: Environ. Toxicol. Chem.
– volume: 105
  start-page: 1183
  year: 2010
  end-page: 1197
  ident: bb0090
  article-title: A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability
  publication-title: Ann. Bot.
– volume: 39
  start-page: 85
  year: 2013
  end-page: 92
  ident: bb0125
  article-title: Citrate adsorption can decrease soluble phosphate concentration in soils: experimental and modeling evidence
  publication-title: Appl. Geochem.
– volume: 52
  start-page: 1580
  year: 1988
  end-page: 1585
  ident: bb0035
  article-title: Phosphorus adsorption by kaolinite and montmorillonite. 1. Effect of time, ionic-strength, and pH
  publication-title: Soil Sci. Soc. Am. J.
– volume: 23
  start-page: 3680
  year: 2007
  end-page: 3689
  ident: bb0370
  article-title: Geometry, charge distribution, and surface speciation of phosphate on goethite
  publication-title: Langmuir
– volume: 36
  start-page: 187
  year: 1985
  end-page: 197
  ident: bb0045
  article-title: Describing the effect of time on sorption of phosphate by iron and aluminum hydroxides
  publication-title: Eur. J. Soil Sci.
– volume: 85
  start-page: 133
  year: 2000
  end-page: 152
  ident: bb0320
  article-title: Oxidation–reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites
  publication-title: Am. Mineral.
– volume: 162
  start-page: 89
  year: 1994
  end-page: 97
  ident: bb0195
  article-title: Desorption and plant-availability of phosphate sorbed by some important minerals
  publication-title: Plant Soil
– volume: 213
  start-page: 478
  year: 2014
  end-page: 484
  ident: bb0515
  article-title: Surface properties and phosphate adsorption of binary systems containing goethite and kaolinite
  publication-title: Geoderma
– volume: 23
  start-page: 25
  year: 2007
  end-page: 35
  ident: bb0470
  article-title: Agriculture as a source of phosphorus for eutrophication in southern Europe
  publication-title: Soil Use Manag.
– volume: 66
  start-page: 1788
  year: 2002
  end-page: 1796
  ident: bb0495
  article-title: Competitive sorption of arsenate and phosphate on different clay minerals and soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 189
  start-page: 304
  year: 2012
  end-page: 311
  ident: bb0180
  article-title: The pH dependence of phosphate sorption and desorption in Swedish agricultural soils
  publication-title: Geoderma
– volume: 70
  start-page: 541
  year: 2006
  end-page: 549
  ident: bb0335
  article-title: Kinetics of phosphate sorption to polygalacturonate-coated goethite
  publication-title: Soil Sci. Soc. Am. J.
– volume: 7
  start-page: 123
  year: 1943
  end-page: 133
  ident: bb0040
  article-title: Phosphate fixation by kaolinite and other clays as affected by pH, phosphate concentration, and time of contact
  publication-title: Soil Sci. Soc. Am. J.
– volume: 44
  start-page: 609
  year: 1996
  end-page: 623
  ident: bb0325
  article-title: Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite
  publication-title: Clay Clay Miner.
– volume: 349
  start-page: 121
  year: 2011
  end-page: 156
  ident: bb0380
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant Soil
– volume: 54
  start-page: 1007
  year: 1990
  end-page: 1012
  ident: bb0455
  article-title: Phosphate adsorption and desorption by goethites differing in crystal morphology
  publication-title: Soil Sci. Soc. Am. J.
– volume: 48
  start-page: 1271
  year: 2014
  end-page: 1279
  ident: bb0510
  article-title: Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 493
  year: 2007
  end-page: 512
  ident: bb0300
  article-title: Roots of the second green revolution
  publication-title: Aust. J. Bot.
– volume: 56
  start-page: 982
  year: 1992
  end-page: 990
  ident: bb0140
  article-title: Association of microcrystalline goethite and humic-acid in some oxisols from Brazil
  publication-title: Soil Sci. Soc. Am. J.
– volume: 31
  start-page: 525
  year: 2000
  end-page: 532
  ident: bb0145
  article-title: Effect of maize root mucilage on phosphate adsorption and exchangeability on a synthetic ferrihydrite
  publication-title: Biol. Fertil. Soils
– volume: 175
  start-page: 417
  year: 2010
  end-page: 425
  ident: bb0155
  article-title: Humic (organic matter)–Al(Fe)–phosphate complexes: an underestimated phosphate form in soils and source of plant-available phosphate
  publication-title: Soil Sci.
– volume: 76
  start-page: 55
  year: 1980
  end-page: 66
  ident: bb0480
  article-title: Reaction of phosphate with gibbsite (Al(OH)3) beyond the adsorption maximum
  publication-title: J. Colloid Interface Sci.
– volume: 46
  start-page: 90
  year: 2014
  end-page: 94
  ident: bb0130
  article-title: Reply to the comment by JP Gustafsson and D. G. Lumsdon on “Citrate adsorption can decrease soluble phosphate concentration in soils: Results of theoretical modeling” by M. Duputel, N. Devau, M. Brossard, B. Jaillard, DL Jones, P. Hinsinger, and F. Gerard
  publication-title: Appl. Geochem.
– volume: 39
  start-page: 675
  year: 2012
  end-page: 684
  ident: bb0025
  article-title: Fe K-edge XAFS spectra of phyllosilicates of varying crystallinity
  publication-title: Phys. Chem. Miner.
– volume: 50
  start-page: 217
  year: 2002
  end-page: 222
  ident: bb0410
  article-title: Role of iron oxides in the phosphate adsorption properties of kaolinites from the Ivory Coast
  publication-title: Clay Clay Miner.
– volume: 285
  start-page: 476
  year: 2005
  end-page: 486
  ident: bb0015
  article-title: Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface
  publication-title: J. Colloid Interface Sci.
– volume: 77
  start-page: 25
  year: 2006
  end-page: 56
  ident: bb0340
  article-title: Stabilization of soil organic matter: association with minerals or chemical recalcitrance?
  publication-title: Biogeochemistry
– volume: 48
  start-page: 101
  year: 1997
  end-page: 114
  ident: bb0435
  article-title: Effects of crystallinity of goethite. 2. Rates of sorption and desorption of phosphate
  publication-title: Eur. J. Soil Sci.
– volume: 45
  start-page: 45
  year: 1994
  end-page: 51
  ident: bb0465
  article-title: Phosphate sorption by natural hematites
  publication-title: Eur. J. Soil Sci.
– volume: 45
  start-page: 8420
  year: 2011
  end-page: 8428
  ident: bb0520
  article-title: Competitive and synergistic effects in ph dependent phosphate adsorption in soils: LCD modeling
  publication-title: Environ. Sci. Technol.
– volume: 179
  start-page: 244
  year: 2010
  end-page: 250
  ident: bb0525
  article-title: Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron–aluminum pillared bentonites
  publication-title: J. Hazard. Mater.
– volume: 71
  start-page: 1926
  year: 2007
  end-page: 1933
  ident: bb0430
  article-title: Mineral and organic matter controls on the sorption of macronutrient anions in variable-charge soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 92
  start-page: 260
  year: 2012
  end-page: 264
  ident: bb0295
  article-title: Comment on “Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils” by Nicolas Devau et al. (2011)
  publication-title: Geochim. Cosmochim. Acta
– volume: 75
  start-page: 2911
  year: 2011
  end-page: 2923
  ident: bb0420
  article-title: Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling
  publication-title: Geochim. Cosmochim. Acta
– volume: 48
  start-page: 473
  year: 1997
  end-page: 481
  ident: bb0150
  article-title: Availability to plants of phosphate adsorbed on goethite: experiment and simulation
  publication-title: Eur. J. Soil Sci.
– volume: 75
  start-page: 2980
  year: 2011
  end-page: 2996
  ident: bb0095
  article-title: Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils
  publication-title: Geochim. Cosmochim. Acta
– volume: 64
  start-page: 1347
  year: 2000
  end-page: 1355
  ident: bb0110
  article-title: Adsorption of phosphate and tartrate on hydroxy-oxalate precipitates
  publication-title: Soil Sci. Soc. Am. J.
– volume: 17
  start-page: 212
  year: 1966
  end-page: 228
  ident: bb0350
  article-title: The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboehmite. Part I: the isotherms and the effect of pH on adsorption
  publication-title: Eur. J. Soil Sci.
– volume: 25
  start-page: 4450
  year: 2009
  end-page: 4461
  ident: bb0235
  article-title: The maximum of phosphate adsorption at pH
  publication-title: Langmuir
– volume: 47
  start-page: 10322
  year: 2013
  end-page: 10331
  ident: bb0500
  article-title: Effect of ferrihydrite crystallite size on phosphate adsorption reactivity
  publication-title: Environ. Sci. Technol.
– volume: 38
  start-page: 71
  year: 2003
  end-page: 94
  ident: bb0190
  article-title: Properties of soil kaolins from Thailand
  publication-title: Clay Miner.
– volume: 418
  start-page: 671
  year: 2002
  end-page: 677
  ident: bb0450
  article-title: Agricultural sustainability and intensive production practices
  publication-title: Nature
– volume: 23
  start-page: 177
  year: 1972
  end-page: 192
  ident: bb0220
  article-title: Anion adsorption by goethite and gibbsite. I. The role of the proton in determining adsorption envelopes
  publication-title: Eur. J. Soil Sci.
– volume: 30
  start-page: 147
  year: 1979
  end-page: 153
  ident: bb0390
  article-title: Uranium accumulation in soils from long-continued applications of super-phosphate
  publication-title: Eur. J. Soil Sci.
– volume: 53
  start-page: 219
  year: 1999
  end-page: 227
  ident: bb0475
  article-title: Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 74
  start-page: 41
  year: 2010
  end-page: 58
  ident: bb0210
  article-title: Nanoparticles in natural systems I: the effective reactive surface area of the natural oxide fraction in field samples
  publication-title: Geochim. Cosmochim. Acta
– volume: 209
  start-page: 15
  year: 2013
  end-page: 21
  ident: bb0400
  article-title: The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide
  publication-title: Geoderma
– volume: 348
  start-page: 203
  year: 2011
  end-page: 218
  ident: bb0100
  article-title: Root-induced processes controlling phosphate availability in soils with contrasted P-fertilized treatments
  publication-title: Plant Soil
– volume: 43
  start-page: 437
  year: 1973
  end-page: 448
  ident: bb0055
  article-title: Physical and chemical adsorption of ions in the electrical double layer on hematite (α-Fe
  publication-title: J. Colloid Interface Sci.
– volume: 25
  start-page: 347
  year: 1998
  end-page: 365
  ident: bb0315
  article-title: Polarized EXAFS, distance-valence least-squares modeling (DVLS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite
  publication-title: Phys. Chem. Miner.
– volume: 30
  start-page: 536
  year: 1996
  end-page: 541
  ident: bb0530
  article-title: Adsorption of phosphate on manganese dioxide in seawater
  publication-title: Environ. Sci. Technol.
– volume: 124
  start-page: 410
  year: 2013
  end-page: 417
  ident: bb0105
  article-title: Reply to the comment by D.G. Lumsdon on “Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils” by N. Devau, P. Hinsinger, E. Le Cadre, B. Colomb and F. Gérard
  publication-title: Geochim. Cosmochim. Acta
– volume: 26
  start-page: 257
  year: 1975
  end-page: 266
  ident: bb0375
  article-title: Phosphate adsorption by synthetic amorphous aluminosilicates
  publication-title: Eur. J. Soil Sci.
– volume: 230
  start-page: 12
  year: 2000
  end-page: 21
  ident: bb0280
  article-title: Distinguishing adsorption and surface precipitation of phosphate on goethite
  publication-title: J. Colloid Interface Sci.
– volume: 30
  start-page: 697
  year: 1979
  end-page: 707
  ident: bb0310
  article-title: Desorption of phosphate from goethite
  publication-title: Eur. J. Soil Sci.
– volume: 4
  start-page: 4298
  year: 2011
  end-page: 4305
  ident: bb0270
  article-title: Phosphate adsorption on the iron oxyhydroxides goethite (alpha-FeOOH), akaganeite (beta-FeOOH), and lepidocrocite (gamma-FeOOH): a P-31 NMR Study
  publication-title: Energy Environ. Sci.
– volume: 43
  start-page: 421
  year: 1973
  end-page: 439
  ident: bb0060
  article-title: Adsorption of phosphate on alumina and kaolinite from dilute aqueous solutions
  publication-title: J. Colloid Interface Sci.
– volume: 32
  start-page: 335
  year: 2003
  end-page: 343
  ident: bb0285
  article-title: Spatial analysis of phosphorus sorption capacity in a semiarid altered wetland
  publication-title: J. Environ. Qual.
– volume: 49
  start-page: 1149
  year: 1985
  end-page: 1153
  ident: bb0005
  article-title: Effect of aluminum substitution in goethite on phosphorus adsorption. 2. Rate of adsorption
  publication-title: Soil Sci. Soc. Am. J.
– volume: 12
  start-page: 2969
  year: 1996
  end-page: 2975
  ident: bb0275
  article-title: Surface complexation and precipitation at the H
  publication-title: Langmuir
– volume: 96
  start-page: 5995
  year: 1999
  end-page: 6000
  ident: bb0445
  article-title: Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 53
  start-page: 178
  year: 1975
  end-page: 186
  ident: bb0230
  article-title: Adsorption of phosphate at the hydrous γ-Al
  publication-title: J. Colloid Interface Sci.
– volume: 178
  start-page: 1
  year: 2013
  end-page: 11
  ident: bb0505
  article-title: Characteristics of phosphate adsorption–desorption onto ferrihydrite: comparison with well-crystalline Fe (Hydr)oxides
  publication-title: Soil Sci.
– volume: 3
  start-page: 2027
  year: 2012
  end-page: 2049
  ident: bb0070
  article-title: Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security
  publication-title: Sustainability
– volume: 52
  start-page: 639
  year: 2001
  end-page: 653
  ident: bb0170
  article-title: Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil
  publication-title: Eur. J. Soil Sci.
– volume: 43
  start-page: 645
  year: 1992
  end-page: 667
  ident: bb0415
  article-title: Properties of soil kaolinites from South-Western Australia
  publication-title: Eur. J. Soil Sci.
– volume: 19
  start-page: 292
  year: 2009
  end-page: 305
  ident: bb0075
  article-title: The story of phosphorus: global food security and food for thought
  publication-title: Glob. Environ. Change-Human Policy Dimens.
– volume: 224
  year: 2013
  ident: bb0245
  article-title: Phosphate adsorption from aqueous solutions onto goethite, bentonite, and bentonite–goethite system
  publication-title: Water Air Soil Pollut.
– volume: 40
  start-page: 341
  year: 1992
  end-page: 346
  ident: bb0425
  article-title: Mössbauer spectra of soil kaolins from south-western Australia
  publication-title: Clay Clay Miner.
– volume: 49
  start-page: 1142
  year: 1985
  end-page: 1149
  ident: bb0010
  article-title: Effect of aluminum substitution in goethite on phosphorus adsorption. 1. Adsorption and isotopic exchange
  publication-title: Soil Sci. Soc. Am. J.
– volume: 61
  start-page: 784
  year: 1997
  end-page: 793
  ident: bb0200
  article-title: Ionic strength effects on sulfate and phosphate adsorption on γ-alumina and kaolinite: triple-layer model
  publication-title: Soil Sci. Soc. Am. J.
– volume: 58
  start-page: 1261
  year: 1994
  end-page: 1269
  ident: bb0065
  article-title: Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites
  publication-title: Geochim. Cosmochim. Acta
– volume: 69
  start-page: 77
  year: 2005
  end-page: 86
  ident: bb0160
  article-title: Phosphate sorption in aluminum- and iron-rich humus soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 82
  start-page: 1733
  year: 1986
  end-page: 1743
  ident: bb0440
  article-title: Adsorption of phosphate on calcite
  publication-title: J. Chem. Soc., Faraday Trans. 1
– volume: 47
  start-page: 7269
  year: 2013
  end-page: 7276
  ident: bb0080
  article-title: Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling
  publication-title: Environ. Sci. Technol.
– volume: 168
  start-page: 44
  year: 2012
  end-page: 53
  ident: bb0255
  article-title: Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review
  publication-title: Environ. Pollut.
– volume: 84
  start-page: 822
  year: 2011
  end-page: 831
  ident: bb0405
  article-title: Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use
  publication-title: Chemosphere
– volume: 35
  start-page: 120
  year: 2013
  end-page: 131
  ident: bb0120
  article-title: Citrate adsorption can decrease soluble phosphate concentration in soils: results of theoretical modeling
  publication-title: Appl. Geochem.
– volume: 70
  start-page: 337
  year: 2006
  end-page: 346
  ident: bb0250
  article-title: Mutual interactions of sulfate, oxalate, citrate, and phosphate on synthetic and natural allophanes
  publication-title: Soil Sci. Soc. Am. J.
– volume: 275
  start-page: 53
  year: 2004
  end-page: 60
  ident: bb0260
  article-title: Equilibrium sorption of heavy metals and phosphate from single- and binary-sorbate solutions on goethite
  publication-title: J. Colloid Interface Sci.
– volume: 54
  start-page: 62
  year: 2006
  end-page: 66
  ident: bb0115
  article-title: Baseline studies of The Clay Minerals Society source clays: specific surface area by the Brunauer Emmett Teller (BET) method
  publication-title: Clay Clay Miner.
– volume: 24
  start-page: 2163
  year: 2009
  end-page: 2174
  ident: bb0085
  article-title: Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches
  publication-title: Appl. Geochem.
– volume: 77
  start-page: 15
  year: 2007
  end-page: 27
  ident: bb0205
  article-title: Phosphorus fractions and adsorption characteristics in grassland soils of varied soil phosphorus status
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 31
  start-page: 230
  year: 1983
  end-page: 232
  ident: bb0050
  article-title: Effect of surface-area and mineralogy of iron-oxides on their surface-charge and anion-adsorption properties
  publication-title: Clay Clay Miner.
– volume: 30
  start-page: 44
  year: 2003
  end-page: 53
  ident: bb0485
  article-title: Iron distribution in the octahedral sheet of dioctahedral smectites. An FeK-edge X-ray absorption spectroscopy study
  publication-title: Phys. Chem. Miner.
– volume: 156
  start-page: 1078
  year: 2011
  end-page: 1086
  ident: bb0225
  article-title: P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species
  publication-title: Plant Physiol.
– volume: 35
  start-page: 3369
  year: 2001
  end-page: 3374
  ident: bb0385
  article-title: Interaction between calcium and phosphate adsorption on goethite
  publication-title: Environ. Sci. Technol.
– volume: 173
  start-page: 104
  year: 2012
  end-page: 110
  ident: bb0395
  article-title: Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation
  publication-title: Geoderma
– volume: 192
  start-page: 119
  year: 1997
  end-page: 128
  ident: bb0240
  article-title: Phosphate adsorption on hematite, kaolinite, and kaolinite–hematite (k–h) systems as described by a constant capacitance model
  publication-title: J. Colloid Interface Sci.
– volume: 41
  start-page: 870
  year: 1977
  end-page: 876
  ident: bb0490
  article-title: Reactions of aluminosilicates, aluminum hydrous oxides, and aluminum-oxide with ortho-phosphate — formation of X-ray amorphous analogs of variscite and montebrasite
  publication-title: Soil Sci. Soc. Am. J.
– volume: 37
  start-page: 509
  year: 2002
  end-page: 515
  ident: bb0165
  article-title: Competitive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides
  publication-title: Clay Miner.
– volume: 278
  start-page: 46
  year: 2006
  end-page: 52
  ident: bb0540
  article-title: Sorption of thorium(W) ions on gibbsite: effects of contact time, pH, ionic strength, concentration, phosphate and fulvic acid
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 37
  start-page: 671
  year: 2002
  end-page: 685
  ident: bb0185
  article-title: Iron in soil kaolins from Indonesia and western Australia
  publication-title: Clay Miner.
– volume: 53
  start-page: 20
  year: 2011
  end-page: 26
  ident: bb0305
  article-title: Specific surface area of clay minerals: comparison between atomic force microscopy measurements and bulk-gas (N-2) and -liquid (EGME) adsorption methods
  publication-title: Appl. Clay Sci.
– volume: 219
  start-page: 48
  year: 1999
  end-page: 61
  ident: bb0290
  article-title: A comparative study of surface acid–base characteristics of natural illites from different origins
  publication-title: J. Colloid Interface Sci.
– volume: 17
  start-page: 230
  year: 1966
  end-page: 237
  ident: bb0345
  article-title: The mechanism of phosphate adsorption by kaolinite, gibbsite and pseudoboehmite. Part II. The location of the adsorption sites
  publication-title: Eur. J. Soil Sci.
– volume: 43
  start-page: 421
  year: 1973
  ident: 10.1016/j.geoderma.2015.08.036_bb0060
  article-title: Adsorption of phosphate on alumina and kaolinite from dilute aqueous solutions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(73)90388-3
– volume: 168
  start-page: 44
  year: 2012
  ident: 10.1016/j.geoderma.2015.08.036_bb0255
  article-title: Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2012.03.052
– volume: 418
  start-page: 671
  year: 2002
  ident: 10.1016/j.geoderma.2015.08.036_bb0450
  article-title: Agricultural sustainability and intensive production practices
  publication-title: Nature
  doi: 10.1038/nature01014
– volume: 173
  start-page: 104
  year: 2012
  ident: 10.1016/j.geoderma.2015.08.036_bb0395
  article-title: Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.12.030
– volume: 275
  start-page: 53
  issue: 1
  year: 2004
  ident: 10.1016/j.geoderma.2015.08.036_bb0260
  article-title: Equilibrium sorption of heavy metals and phosphate from single- and binary-sorbate solutions on goethite
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.01.035
– volume: 48
  start-page: 101
  issue: 1
  year: 1997
  ident: 10.1016/j.geoderma.2015.08.036_bb0435
  article-title: Effects of crystallinity of goethite. 2. Rates of sorption and desorption of phosphate
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1997.tb00189.x
– volume: 25
  start-page: 347
  issue: 5
  year: 1998
  ident: 10.1016/j.geoderma.2015.08.036_bb0315
  article-title: Polarized EXAFS, distance-valence least-squares modeling (DVLS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s002690050125
– volume: 224
  issue: 3
  year: 2013
  ident: 10.1016/j.geoderma.2015.08.036_bb0245
  article-title: Phosphate adsorption from aqueous solutions onto goethite, bentonite, and bentonite–goethite system
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-012-1374-3
– volume: 4
  start-page: 4298
  issue: 10
  year: 2011
  ident: 10.1016/j.geoderma.2015.08.036_bb0270
  article-title: Phosphate adsorption on the iron oxyhydroxides goethite (alpha-FeOOH), akaganeite (beta-FeOOH), and lepidocrocite (gamma-FeOOH): a P-31 NMR Study
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee02093e
– volume: 3
  start-page: 2027
  issue: 10
  year: 2012
  ident: 10.1016/j.geoderma.2015.08.036_bb0070
  article-title: Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security
  publication-title: Sustainability
  doi: 10.3390/su3102027
– volume: 74
  start-page: 41
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2015.08.036_bb0210
  article-title: Nanoparticles in natural systems I: the effective reactive surface area of the natural oxide fraction in field samples
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.10.018
– volume: 7
  start-page: 123
  year: 1943
  ident: 10.1016/j.geoderma.2015.08.036_bb0040
  article-title: Phosphate fixation by kaolinite and other clays as affected by pH, phosphate concentration, and time of contact
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1943.036159950007000C0019x
– volume: 209
  start-page: 15
  year: 2013
  ident: 10.1016/j.geoderma.2015.08.036_bb0400
  article-title: The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.05.026
– volume: 285
  start-page: 476
  year: 2005
  ident: 10.1016/j.geoderma.2015.08.036_bb0015
  article-title: Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.12.032
– volume: 17
  start-page: 230
  issue: 2
  year: 1966
  ident: 10.1016/j.geoderma.2015.08.036_bb0345
  article-title: The mechanism of phosphate adsorption by kaolinite, gibbsite and pseudoboehmite. Part II. The location of the adsorption sites
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1966.tb01468.x
– volume: 10
  start-page: 485
  issue: 5
  year: 1976
  ident: 10.1016/j.geoderma.2015.08.036_bb0135
  article-title: Phosphate adsorption reactions with clay-minerals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es60116a001
– volume: 66
  start-page: 1788
  issue: 6
  year: 2002
  ident: 10.1016/j.geoderma.2015.08.036_bb0495
  article-title: Competitive sorption of arsenate and phosphate on different clay minerals and soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.1788
– volume: 85
  start-page: 133
  issue: 1
  year: 2000
  ident: 10.1016/j.geoderma.2015.08.036_bb0320
  article-title: Oxidation–reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites
  publication-title: Am. Mineral.
  doi: 10.2138/am-2000-0114
– volume: 19
  start-page: 292
  issue: 2
  year: 2009
  ident: 10.1016/j.geoderma.2015.08.036_bb0075
  article-title: The story of phosphorus: global food security and food for thought
  publication-title: Glob. Environ. Change-Human Policy Dimens.
  doi: 10.1016/j.gloenvcha.2008.10.009
– volume: 74
  start-page: 59
  issue: 1
  year: 2010
  ident: 10.1016/j.geoderma.2015.08.036_bb0215
  article-title: Nanoparticles in natural systems II: the natural oxide fraction at interaction with natural organic matter and phosphate
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.10.019
– volume: 30
  start-page: 44
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2015.08.036_bb0485
  article-title: Iron distribution in the octahedral sheet of dioctahedral smectites. An FeK-edge X-ray absorption spectroscopy study
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s00269-002-0286-y
– volume: 24
  start-page: 2163
  year: 2009
  ident: 10.1016/j.geoderma.2015.08.036_bb0085
  article-title: Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2009.09.020
– volume: 33
  start-page: 2208
  issue: 10
  year: 2014
  ident: 10.1016/j.geoderma.2015.08.036_bb0360
  article-title: Modelling oxyanion adsorption on ferralic soil, part 1: parameter validation with phosphate ion
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.2612
– volume: 44
  start-page: 609
  issue: 5
  year: 1996
  ident: 10.1016/j.geoderma.2015.08.036_bb0325
  article-title: Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.1996.0440504
– volume: 31
  start-page: 230
  year: 1983
  ident: 10.1016/j.geoderma.2015.08.036_bb0050
  article-title: Effect of surface-area and mineralogy of iron-oxides on their surface-charge and anion-adsorption properties
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.1983.0310309
– volume: 75
  start-page: 2980
  year: 2011
  ident: 10.1016/j.geoderma.2015.08.036_bb0095
  article-title: Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.02.034
– volume: 32
  start-page: 335
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2015.08.036_bb0285
  article-title: Spatial analysis of phosphorus sorption capacity in a semiarid altered wetland
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2003.3350
– volume: 40
  start-page: 341
  year: 1992
  ident: 10.1016/j.geoderma.2015.08.036_bb0425
  article-title: Mössbauer spectra of soil kaolins from south-western Australia
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.1992.0400315
– volume: 45
  start-page: 45
  issue: 1
  year: 1994
  ident: 10.1016/j.geoderma.2015.08.036_bb0465
  article-title: Phosphate sorption by natural hematites
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1994.tb00485.x
– volume: 53
  start-page: 219
  year: 1999
  ident: 10.1016/j.geoderma.2015.08.036_bb0475
  article-title: Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/A:1009709005147
– volume: 54
  start-page: 62
  issue: 1
  year: 2006
  ident: 10.1016/j.geoderma.2015.08.036_bb0115
  article-title: Baseline studies of The Clay Minerals Society source clays: specific surface area by the Brunauer Emmett Teller (BET) method
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.2006.0540108
– volume: 278
  start-page: 46
  issue: 1–3
  year: 2006
  ident: 10.1016/j.geoderma.2015.08.036_bb0540
  article-title: Sorption of thorium(W) ions on gibbsite: effects of contact time, pH, ionic strength, concentration, phosphate and fulvic acid
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 48
  start-page: 1271
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2015.08.036_bb0510
  article-title: Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404258h
– volume: 69
  start-page: 77
  issue: 1
  year: 2005
  ident: 10.1016/j.geoderma.2015.08.036_bb0160
  article-title: Phosphate sorption in aluminum- and iron-rich humus soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0077a
– volume: 60
  start-page: 121
  issue: 1
  year: 1996
  ident: 10.1016/j.geoderma.2015.08.036_bb0330
  article-title: Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1996.03615995006000010020x
– volume: 30
  start-page: 147
  issue: 1
  year: 1979
  ident: 10.1016/j.geoderma.2015.08.036_bb0390
  article-title: Uranium accumulation in soils from long-continued applications of super-phosphate
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1979.tb00972.x
– volume: 84
  start-page: 822
  issue: 6
  year: 2011
  ident: 10.1016/j.geoderma.2015.08.036_bb0405
  article-title: Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.01.065
– volume: 105
  start-page: 1183
  year: 2010
  ident: 10.1016/j.geoderma.2015.08.036_bb0090
  article-title: A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcq098
– volume: 40
  start-page: 14
  issue: 1
  year: 1992
  ident: 10.1016/j.geoderma.2015.08.036_bb0460
  article-title: Fast and slow phosphate sorption by goethite-rich natural materials
  publication-title: Clay Clay Miner.
  doi: 10.1346/CCMN.1992.0400103
– volume: 46
  start-page: 85
  year: 2014
  ident: 10.1016/j.geoderma.2015.08.036_bb0175
  article-title: Comment on “Citrate adsorption can decrease soluble phosphate concentration in soils: Results of theoretical modelling” by Marek Duputel, Nicolas Devau, Michel Brossard, Benoit Jaillard, Davey L. Jones, Philippe Hinsinger and Frederic Gerard (2013)
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2014.02.006
– volume: 54
  start-page: 1007
  issue: 4
  year: 1990
  ident: 10.1016/j.geoderma.2015.08.036_bb0455
  article-title: Phosphate adsorption and desorption by goethites differing in crystal morphology
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1990.03615995005400040012x
– volume: 96
  start-page: 5995
  issue: 11
  year: 1999
  ident: 10.1016/j.geoderma.2015.08.036_bb0445
  article-title: Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.11.5995
– volume: 124
  start-page: 410
  year: 2013
  ident: 10.1016/j.geoderma.2015.08.036_bb0105
  article-title: Reply to the comment by D.G. Lumsdon on “Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils” by N. Devau, P. Hinsinger, E. Le Cadre, B. Colomb and F. Gérard
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2013.03.044
– volume: 38
  start-page: 71
  issue: 1
  year: 2003
  ident: 10.1016/j.geoderma.2015.08.036_bb0190
  article-title: Properties of soil kaolins from Thailand
  publication-title: Clay Miner.
  doi: 10.1180/0009855033810080
– volume: 43
  start-page: 645
  year: 1992
  ident: 10.1016/j.geoderma.2015.08.036_bb0415
  article-title: Properties of soil kaolinites from South-Western Australia
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1992.tb00165.x
– volume: 17
  start-page: 212
  year: 1966
  ident: 10.1016/j.geoderma.2015.08.036_bb0350
  article-title: The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboehmite. Part I: the isotherms and the effect of pH on adsorption
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1966.tb01467.x
– volume: 50
  start-page: 217
  issue: 2
  year: 2002
  ident: 10.1016/j.geoderma.2015.08.036_bb0410
  article-title: Role of iron oxides in the phosphate adsorption properties of kaolinites from the Ivory Coast
  publication-title: Clay Clay Miner.
  doi: 10.1346/000986002760832810
– volume: 49
  start-page: 1149
  issue: 5
  year: 1985
  ident: 10.1016/j.geoderma.2015.08.036_bb0005
  article-title: Effect of aluminum substitution in goethite on phosphorus adsorption. 2. Rate of adsorption
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1985.03615995004900050015x
– volume: 56
  start-page: 982
  issue: 3
  year: 1992
  ident: 10.1016/j.geoderma.2015.08.036_bb0140
  article-title: Association of microcrystalline goethite and humic-acid in some oxisols from Brazil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1992.03615995005600030050x
– volume: 23
  start-page: 177
  year: 1972
  ident: 10.1016/j.geoderma.2015.08.036_bb0220
  article-title: Anion adsorption by goethite and gibbsite. I. The role of the proton in determining adsorption envelopes
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1972.tb01652.x
– volume: 179
  start-page: 244
  issue: 1–3
  year: 2010
  ident: 10.1016/j.geoderma.2015.08.036_bb0525
  article-title: Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron–aluminum pillared bentonites
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.02.086
– volume: 52
  start-page: 647
  issue: 3
  year: 1988
  ident: 10.1016/j.geoderma.2015.08.036_bb0030
  article-title: Phosphate adsorption by aluminous hematites of different shapes
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1988.03615995005200030009x
– volume: 52
  start-page: 1580
  year: 1988
  ident: 10.1016/j.geoderma.2015.08.036_bb0035
  article-title: Phosphorus adsorption by kaolinite and montmorillonite. 1. Effect of time, ionic-strength, and pH
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1988.03615995005200060011x
– volume: 55
  start-page: 493
  year: 2007
  ident: 10.1016/j.geoderma.2015.08.036_bb0300
  article-title: Roots of the second green revolution
  publication-title: Aust. J. Bot.
  doi: 10.1071/BT06118
– volume: 26
  start-page: 257
  issue: 3
  year: 1975
  ident: 10.1016/j.geoderma.2015.08.036_bb0375
  article-title: Phosphate adsorption by synthetic amorphous aluminosilicates
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1975.tb01950.x
– volume: 77
  start-page: 15
  issue: 1
  year: 2007
  ident: 10.1016/j.geoderma.2015.08.036_bb0205
  article-title: Phosphorus fractions and adsorption characteristics in grassland soils of varied soil phosphorus status
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-006-6687-4
– volume: 70
  start-page: 541
  issue: 2
  year: 2006
  ident: 10.1016/j.geoderma.2015.08.036_bb0335
  article-title: Kinetics of phosphate sorption to polygalacturonate-coated goethite
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0250
– volume: 30
  start-page: 536
  issue: 2
  year: 1996
  ident: 10.1016/j.geoderma.2015.08.036_bb0530
  article-title: Adsorption of phosphate on manganese dioxide in seawater
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es950290x
– volume: 58
  start-page: 1261
  issue: 4
  year: 1994
  ident: 10.1016/j.geoderma.2015.08.036_bb0065
  article-title: Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(94)90380-8
– volume: vol. 94
  start-page: 135
  year: 2007
  ident: 10.1016/j.geoderma.2015.08.036_bb0020
  article-title: Phosphate reaction dynamics in soils and soil components: a multiscale approach
  doi: 10.1016/S0065-2113(06)94003-6
– volume: 175
  start-page: 417
  issue: 9
  year: 2010
  ident: 10.1016/j.geoderma.2015.08.036_bb0155
  article-title: Humic (organic matter)–Al(Fe)–phosphate complexes: an underestimated phosphate form in soils and source of plant-available phosphate
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3181f1b4dd
– volume: 92
  start-page: 260
  year: 2012
  ident: 10.1016/j.geoderma.2015.08.036_bb0295
  article-title: Comment on “Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils” by Nicolas Devau et al. (2011)
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2012.05.042
– volume: 64
  start-page: 1347
  year: 2000
  ident: 10.1016/j.geoderma.2015.08.036_bb0110
  article-title: Adsorption of phosphate and tartrate on hydroxy-oxalate precipitates
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.6441347x
– volume: 162
  start-page: 89
  issue: 1
  year: 1994
  ident: 10.1016/j.geoderma.2015.08.036_bb0195
  article-title: Desorption and plant-availability of phosphate sorbed by some important minerals
  publication-title: Plant Soil
  doi: 10.1007/BF01416093
– volume: 48
  start-page: 151
  year: 1968
  ident: 10.1016/j.geoderma.2015.08.036_bb0365
  article-title: Influence of cation saturation on phosphorus adsorption by selected clay minerals
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/cjss68-018
– volume: 48
  start-page: 473
  issue: 3
  year: 1997
  ident: 10.1016/j.geoderma.2015.08.036_bb0150
  article-title: Availability to plants of phosphate adsorbed on goethite: experiment and simulation
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.1997.00090.x
– volume: 219
  start-page: 48
  issue: 1
  year: 1999
  ident: 10.1016/j.geoderma.2015.08.036_bb0290
  article-title: A comparative study of surface acid–base characteristics of natural illites from different origins
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1999.6448
– volume: 53
  start-page: 178
  year: 1975
  ident: 10.1016/j.geoderma.2015.08.036_bb0230
  article-title: Adsorption of phosphate at the hydrous γ-Al2O3–electrolyte interface
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(75)90004-1
– volume: 39
  start-page: 675
  issue: 8
  year: 2012
  ident: 10.1016/j.geoderma.2015.08.036_bb0025
  article-title: Fe K-edge XAFS spectra of phyllosilicates of varying crystallinity
  publication-title: Phys. Chem. Miner.
  doi: 10.1007/s00269-012-0521-0
– volume: 36
  start-page: 187
  issue: 2
  year: 1985
  ident: 10.1016/j.geoderma.2015.08.036_bb0045
  article-title: Describing the effect of time on sorption of phosphate by iron and aluminum hydroxides
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1985.tb00323.x
– volume: 43
  start-page: 437
  year: 1973
  ident: 10.1016/j.geoderma.2015.08.036_bb0055
  article-title: Physical and chemical adsorption of ions in the electrical double layer on hematite (α-Fe2O3)
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(73)90389-5
– volume: 189
  start-page: 304
  year: 2012
  ident: 10.1016/j.geoderma.2015.08.036_bb0180
  article-title: The pH dependence of phosphate sorption and desorption in Swedish agricultural soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.05.014
– volume: 348
  start-page: 203
  year: 2011
  ident: 10.1016/j.geoderma.2015.08.036_bb0100
  article-title: Root-induced processes controlling phosphate availability in soils with contrasted P-fertilized treatments
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0935-3
– volume: 43
  start-page: 283
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2015.08.036_bb0265
  article-title: Review of genotoxicity studies of glyphosate and glyphosate-based formulations
  publication-title: Crit. Rev. Toxicol.
  doi: 10.3109/10408444.2013.770820
– volume: 12
  start-page: 2969
  issue: 12
  year: 1996
  ident: 10.1016/j.geoderma.2015.08.036_bb0275
  article-title: Surface complexation and precipitation at the H+-orthophosphate-aged gamma-Al2O3/water interface
  publication-title: Langmuir
  doi: 10.1021/la9515074
– volume: 35
  start-page: 120
  year: 2013
  ident: 10.1016/j.geoderma.2015.08.036_bb0120
  article-title: Citrate adsorption can decrease soluble phosphate concentration in soils: results of theoretical modeling
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2013.03.018
– volume: 20
  start-page: 3255
  issue: 12
  year: 2005
  ident: 10.1016/j.geoderma.2015.08.036_bb0535
  article-title: Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2005.0403
– volume: 192
  start-page: 119
  year: 1997
  ident: 10.1016/j.geoderma.2015.08.036_bb0240
  article-title: Phosphate adsorption on hematite, kaolinite, and kaolinite–hematite (k–h) systems as described by a constant capacitance model
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1997.4970
– volume: 213
  start-page: 478
  year: 2014
  ident: 10.1016/j.geoderma.2015.08.036_bb0515
  article-title: Surface properties and phosphate adsorption of binary systems containing goethite and kaolinite
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.001
– volume: 52
  start-page: 639
  year: 2001
  ident: 10.1016/j.geoderma.2015.08.036_bb0170
  article-title: Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil
  publication-title: Eur. J. Soil Sci.
  doi: 10.1046/j.1365-2389.2001.00414.x
– volume: 37
  start-page: 671
  issue: 4
  year: 2002
  ident: 10.1016/j.geoderma.2015.08.036_bb0185
  article-title: Iron in soil kaolins from Indonesia and western Australia
  publication-title: Clay Miner.
  doi: 10.1180/0009855023740069
– volume: 178
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.geoderma.2015.08.036_bb0505
  article-title: Characteristics of phosphate adsorption–desorption onto ferrihydrite: comparison with well-crystalline Fe (Hydr)oxides
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e31828683f8
– volume: 77
  start-page: 25
  issue: 1
  year: 2006
  ident: 10.1016/j.geoderma.2015.08.036_bb0340
  article-title: Stabilization of soil organic matter: association with minerals or chemical recalcitrance?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-005-0712-6
– volume: 53
  start-page: 20
  issue: 1
  year: 2011
  ident: 10.1016/j.geoderma.2015.08.036_bb0305
  article-title: Specific surface area of clay minerals: comparison between atomic force microscopy measurements and bulk-gas (N-2) and -liquid (EGME) adsorption methods
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2011.04.006
– volume: 30
  start-page: 697
  year: 1979
  ident: 10.1016/j.geoderma.2015.08.036_bb0310
  article-title: Desorption of phosphate from goethite
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1979.tb01019.x
– volume: 61
  start-page: 784
  year: 1997
  ident: 10.1016/j.geoderma.2015.08.036_bb0200
  article-title: Ionic strength effects on sulfate and phosphate adsorption on γ-alumina and kaolinite: triple-layer model
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1997.03615995006100030011x
– volume: 25
  start-page: 4450
  issue: 8
  year: 2009
  ident: 10.1016/j.geoderma.2015.08.036_bb0235
  article-title: The maximum of phosphate adsorption at pH4.0: why it appears on aluminum oxides but not on iron oxides
  publication-title: Langmuir
  doi: 10.1021/la803302m
– volume: 49
  start-page: 1142
  issue: 5
  year: 1985
  ident: 10.1016/j.geoderma.2015.08.036_bb0010
  article-title: Effect of aluminum substitution in goethite on phosphorus adsorption. 1. Adsorption and isotopic exchange
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1985.03615995004900050014x
– volume: 230
  start-page: 12
  year: 2000
  ident: 10.1016/j.geoderma.2015.08.036_bb0280
  article-title: Distinguishing adsorption and surface precipitation of phosphate on goethite
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2000.7072
– volume: 46
  start-page: 90
  year: 2014
  ident: 10.1016/j.geoderma.2015.08.036_bb0130
  article-title: Reply to the comment by JP Gustafsson and D. G. Lumsdon on “Citrate adsorption can decrease soluble phosphate concentration in soils: Results of theoretical modeling” by M. Duputel, N. Devau, M. Brossard, B. Jaillard, DL Jones, P. Hinsinger, and F. Gerard
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2014.02.011
– volume: 39
  start-page: 85
  year: 2013
  ident: 10.1016/j.geoderma.2015.08.036_bb0125
  article-title: Citrate adsorption can decrease soluble phosphate concentration in soils: experimental and modeling evidence
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2013.09.017
– volume: 71
  start-page: 1926
  issue: 6
  year: 2007
  ident: 10.1016/j.geoderma.2015.08.036_bb0430
  article-title: Mineral and organic matter controls on the sorption of macronutrient anions in variable-charge soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0424
– volume: 82
  start-page: 1733
  year: 1986
  ident: 10.1016/j.geoderma.2015.08.036_bb0440
  article-title: Adsorption of phosphate on calcite
  publication-title: J. Chem. Soc., Faraday Trans. 1
  doi: 10.1039/f19868201733
– volume: 349
  start-page: 121
  issue: 1–2
  year: 2011
  ident: 10.1016/j.geoderma.2015.08.036_bb0380
  article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0950-4
– volume: 23
  start-page: 25
  year: 2007
  ident: 10.1016/j.geoderma.2015.08.036_bb0470
  article-title: Agriculture as a source of phosphorus for eutrophication in southern Europe
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.2007.00122.x
– volume: 37
  start-page: 509
  issue: 3
  year: 2002
  ident: 10.1016/j.geoderma.2015.08.036_bb0165
  article-title: Competitive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides
  publication-title: Clay Miner.
  doi: 10.1180/0009855023730049
– volume: 45
  start-page: 8420
  issue: 19
  year: 2011
  ident: 10.1016/j.geoderma.2015.08.036_bb0520
  article-title: Competitive and synergistic effects in ph dependent phosphate adsorption in soils: LCD modeling
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201844d
– volume: 70
  start-page: 337
  issue: 2
  year: 2006
  ident: 10.1016/j.geoderma.2015.08.036_bb0250
  article-title: Mutual interactions of sulfate, oxalate, citrate, and phosphate on synthetic and natural allophanes
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0080
– volume: 75
  start-page: 2911
  issue: 10
  year: 2011
  ident: 10.1016/j.geoderma.2015.08.036_bb0420
  article-title: Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.02.031
– volume: 76
  start-page: 55
  issue: 1
  year: 1980
  ident: 10.1016/j.geoderma.2015.08.036_bb0480
  article-title: Reaction of phosphate with gibbsite (Al(OH)3) beyond the adsorption maximum
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(80)90270-2
– volume: 31
  start-page: 525
  issue: 6
  year: 2000
  ident: 10.1016/j.geoderma.2015.08.036_bb0145
  article-title: Effect of maize root mucilage on phosphate adsorption and exchangeability on a synthetic ferrihydrite
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s003740000206
– volume: 47
  start-page: 7269
  issue: 13
  year: 2013
  ident: 10.1016/j.geoderma.2015.08.036_bb0080
  article-title: Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400526q
– volume: 23
  start-page: 3680
  year: 2007
  ident: 10.1016/j.geoderma.2015.08.036_bb0370
  article-title: Geometry, charge distribution, and surface speciation of phosphate on goethite
  publication-title: Langmuir
  doi: 10.1021/la062965n
– volume: 35
  start-page: 3369
  year: 2001
  ident: 10.1016/j.geoderma.2015.08.036_bb0385
  article-title: Interaction between calcium and phosphate adsorption on goethite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es000210b
– volume: 41
  start-page: 870
  issue: 5
  year: 1977
  ident: 10.1016/j.geoderma.2015.08.036_bb0490
  article-title: Reactions of aluminosilicates, aluminum hydrous oxides, and aluminum-oxide with ortho-phosphate — formation of X-ray amorphous analogs of variscite and montebrasite
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1977.03615995004100050011x
– volume: 156
  start-page: 1078
  issue: 3
  year: 2011
  ident: 10.1016/j.geoderma.2015.08.036_bb0225
  article-title: P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175331
– volume: 47
  start-page: 10322
  year: 2013
  ident: 10.1016/j.geoderma.2015.08.036_bb0500
  article-title: Effect of ferrihydrite crystallite size on phosphate adsorption reactivity
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401301z
SSID ssj0017020
Score 2.618373
SecondaryResourceType review_article
Snippet There is a general consensus that adsorption/desorption (i.e. sorption) is the major process controlling dissolved PO4. However, many uncertainties exist with...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 213
SubjectTerms adsorption
aluminum
aluminum oxide
binding capacity
desorption
Earth Sciences
Geochemistry
Gibbsite
Goethite
Illite
iron
Kaolinite
Montmorillonite
phosphates
Phosphorus
rhizosphere
Sciences of the Universe
soil
surface area
uncertainty
Title Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils — A myth revisited
URI https://dx.doi.org/10.1016/j.geoderma.2015.08.036
https://www.proquest.com/docview/2116890394
https://hal.science/hal-01269249
Volume 262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELaW5QIHxK8oCyuDOBIaJ44TH6OKVfnbEyvtzXLiCc2qm1RNi9gL4iF4Qp6EGdepACHtgUtkWbbieOz5xvHMN4y91EpChsgVKbTnI1R4KqrIcc0JqFySAJYpUPjjqZqfyXfn2fkBm42xMORWGXT_Tqd7bR1qpmE2p6u2pRhfoXKEI9yznmGVIthlTqv89be9m4fI40DNKFRErX-LEr5AGVHCMc8_JDJP5empmv8JUDcW5Cn5l8L2KHRyl90J5iMvdyO8xw6gu89ul5_XgUIDHrB-trRX_LL1dNLDK05xbFOLOqjttpe8_9o6wFrbOe4vCbh3Vg9Zr_im56tFP6wWaILyoV97hcLbDsvtcuA_v__gJaf_oXztw9LRXn3Izk7efJrNo5BWIarTXG-iJqt14QqtEJZAaOufsc5tDGgM4q5srGtwm0JdpAj30iaN1UmTFZDXVSXT9BE77PoOHjNeOLQ_AOUKEpvKCrHfgtRxCllROacnLBvn0tSBc5xSXyzN6Fx2YUYZGJKBoZyYqZqw6b7fase6cW0PPYrK_LF-DELDtX1foGz3LyLC7Xn5wVAdwreiE-oXMWHPR9Eb3IF0rWI76LeDwSO0KvCbtXzyH4M4YrcSWqOxiET2lB1u1lt4hvbOpjr2C_qY3Szfvp-f_gIMCwCw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VcgAOFb8i_C4IbpjYznrtPXCIClVK055aqbdl7R03rlI7ipNCL4iH4E14I56Emc06AoTUA-olslZZxdmZ_eZbe-Ybxl4pKSDByBVI5PMBAp4MckpcsxHkNo4Br6lQeP9Ajo7Ex-PkeIP96GphKK3SY_8K0x1a-5G-X83-rKqoxjeSKYYj3LNOYdVnVu7BxWc8t7Xvdt-jkV_H8c6Hw-1R4FsLBMUgVYugTAqV2UxJhGaIlHGfoUpNCEiI0DNLY0t0VSiyAYY8YeLSqLhMMkiLPBf0FBRx_7pAuKC2CW-_rvNKojT0WpCRDOj2fitLPkWnoA5nTvAoSpx2qNOG_mdEvDah1My_IoQLezu32Zbnq3y4WpI7bAPqu-zW8GTuNTvgHmu2p-aCn1VOv7p9w6lwrm8Q9Kp6ecabL5UFHDW15e6tBHfZ8b7NFl80fDZp2tkEOS9vm7lDMF7VeF1NW_7z23c-5PQAls9dHTwS5Pvs6EoW-wHbrJsaHjKeWSQ8gI4EAr8qciQbBoQKB5BkubWqx5JuLXXhRc6p18ZUd9lsp7qzgSYbaGrCOZA91l_Pm61kPi6doTpT6T8cVmMsunTuS7Tt-odI4Xs0HGsaQ74g6Uh8HvXYi870Grc8vccxNTTLVuOZXWb4n5V49B838ZzdGB3uj_V492DvMbsZk7-GURAlT9jmYr6Ep0i2Fvkz59ycfbrq3fQLbOU7sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clay+minerals%2C+iron%2Faluminum+oxides%2C+and+their+contribution+to+phosphate+sorption+in+soils+%E2%80%94+A+myth+revisited&rft.jtitle=Geoderma&rft.au=G%C3%A9rard%2C+Fr%C3%A9d%C3%A9ric&rft.date=2016-01-15&rft.issn=0016-7061&rft.volume=262&rft.spage=213&rft.epage=226&rft_id=info:doi/10.1016%2Fj.geoderma.2015.08.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2015_08_036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon