Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils — A myth revisited
There is a general consensus that adsorption/desorption (i.e. sorption) is the major process controlling dissolved PO4. However, many uncertainties exist with respect to PO4 sorption capacity and properties of clay minerals as compared to Fe/Al oxides. I reviewed experimental studies performed over...
Saved in:
Published in | Geoderma Vol. 262; pp. 213 - 226 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2016
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is a general consensus that adsorption/desorption (i.e. sorption) is the major process controlling dissolved PO4. However, many uncertainties exist with respect to PO4 sorption capacity and properties of clay minerals as compared to Fe/Al oxides. I reviewed experimental studies performed over a time period of 70years in an attempt to rationalize this knowledge. I found that the binding capacity of clay minerals may be close to or even higher than that of Fe/Al oxides, depending on the specific surface area of these soil constituents. I also found that the pH-dependency of PO4 sorption on clay minerals can differ greatly from that on Fe/Al oxides depending on PO4 loading. Surface reactions occurring at structural Al sites of clay minerals appeared to consistently control sorption at low PO4 concentrations. The analysis indicates that different sorption sites such as structural Fe sites and/or other processes such as the penetration of PO4 into amorphous regions of the mineral are more effective at controlling PO4 sorption at high concentrations. The implications of these findings in soil and rhizosphere are discussed. The possible contributions of kaolinite and goethite to PO4 sorption in a clayed ferralitic soil were estimated. Results suggest that in most soils clay minerals should be considered per se as important PO4-binding constituents, possibly outcompeting Fe/Al oxides.
[Display omitted]
•Clay minerals can bind substantial phosphate with respect to goethite and gibbsite.•Clay minerals and metal oxides can exhibit different sorption envelopes.•The same sorption envelopes are observed at elevated phosphate loading.•Phosphate sorption seems to occur onto two types of structural sites. |
---|---|
AbstractList | There is a general consensus that adsorption/desorption (i.e. sorption) is the major process controlling dissolved PO4. However, many uncertainties exist with respect to PO4 sorption capacity and properties of clay minerals as compared to Fe/Al oxides. I reviewed experimental studies performed over a time period of 70 years in an attempt to rationalize this knowledge. I found that the binding capacity of clay minerals may be close to or even higher than that of Fe/Al oxides, depending on the specific surface area of these soil constituents. I also found that the pH-dependency of PO4 sorption on clay minerals can differ greatly from that on Fe/Al oxides depending on PO4 loading. Surface reactions occurring at structural Al sites of clay minerals appeared to consistently control sorption at low PO4 concentrations. The analysis indicates that different sorption sites such as structural Fe sites and/or other processes such as the penetration of PO4 into amorphous regions of the mineral are more effective at controlling PO4 sorption at high concentrations. The implications of these findings in soil and rhizosphere are discussed. The possible contributions of kaolinite and goethite to PO4 sorption in a clayed ferralitic soil were estimated. Results suggest that in most soils clay minerals should be considered per se as important PO4-binding constituents, possibly outcompeting Fe/Al oxides. There is a general consensus that adsorption/desorption (i.e. sorption) is the major process controlling dissolved PO4. However, many uncertainties exist with respect to PO4 sorption capacity and properties of clay minerals as compared to Fe/Al oxides. I reviewed experimental studies performed over a time period of 70years in an attempt to rationalize this knowledge. I found that the binding capacity of clay minerals may be close to or even higher than that of Fe/Al oxides, depending on the specific surface area of these soil constituents. I also found that the pH-dependency of PO4 sorption on clay minerals can differ greatly from that on Fe/Al oxides depending on PO4 loading. Surface reactions occurring at structural Al sites of clay minerals appeared to consistently control sorption at low PO4 concentrations. The analysis indicates that different sorption sites such as structural Fe sites and/or other processes such as the penetration of PO4 into amorphous regions of the mineral are more effective at controlling PO4 sorption at high concentrations. The implications of these findings in soil and rhizosphere are discussed. The possible contributions of kaolinite and goethite to PO4 sorption in a clayed ferralitic soil were estimated. Results suggest that in most soils clay minerals should be considered per se as important PO4-binding constituents, possibly outcompeting Fe/Al oxides. There is a general consensus that adsorption/desorption (i.e. sorption) is the major process controlling dissolved PO4. However, many uncertainties exist with respect to PO4 sorption capacity and properties of clay minerals as compared to Fe/Al oxides. I reviewed experimental studies performed over a time period of 70years in an attempt to rationalize this knowledge. I found that the binding capacity of clay minerals may be close to or even higher than that of Fe/Al oxides, depending on the specific surface area of these soil constituents. I also found that the pH-dependency of PO4 sorption on clay minerals can differ greatly from that on Fe/Al oxides depending on PO4 loading. Surface reactions occurring at structural Al sites of clay minerals appeared to consistently control sorption at low PO4 concentrations. The analysis indicates that different sorption sites such as structural Fe sites and/or other processes such as the penetration of PO4 into amorphous regions of the mineral are more effective at controlling PO4 sorption at high concentrations. The implications of these findings in soil and rhizosphere are discussed. The possible contributions of kaolinite and goethite to PO4 sorption in a clayed ferralitic soil were estimated. Results suggest that in most soils clay minerals should be considered per se as important PO4-binding constituents, possibly outcompeting Fe/Al oxides. [Display omitted] •Clay minerals can bind substantial phosphate with respect to goethite and gibbsite.•Clay minerals and metal oxides can exhibit different sorption envelopes.•The same sorption envelopes are observed at elevated phosphate loading.•Phosphate sorption seems to occur onto two types of structural sites. |
Author | Gérard, Frédéric |
Author_xml | – sequence: 1 givenname: Frederic surname: Gerard fullname: Gerard, Frederic organization: Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes |
BackLink | https://hal.science/hal-01269249$$DView record in HAL |
BookMark | eNqFkc1u1DAUhS3USkxLXwF5CRJJ7fw5llgwGgFFGolNu7Y8zg25o8QOtjPq7HgInpAnwdMBFmy68c_Rd86V7rkiF9ZZIOQ1ZzlnvLnd59_AdeAnnReM1zlrc1Y2L8iKt6LImqKWF2TFEpkJ1vCX5CqEffoKVrAVcZtRH-mEFrwewzuK3tlbPS5JWSbqHrGDpGrb0TgAemqcjR53S0RnaXR0HlyYBx2BBufnJxVteuMY6K8fP-maTsc4UA8HDBihe0Uu-zQIbv7c1-Th08f7zV22_fr5y2a9zUwpZMz62si2a2UjeAtc6qeTSaEZSCEYq3vd9UJWYNqyYk2li17Loq9bEGa3q8rymrw95w56VLPHSfujchrV3XqrThrjRSOLSh54Yt-c2dm77wuEqCYMBsZRW3BLUAXnTStZKauENmfUeBeCh_5fNmfq1Ibaq79tqFMbirUqtZGM7_8zGoz6tK_oNY7P2z-c7ZB2dkDwKhgEa6BDDyaqzuFzEb8BtjmuOg |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2018_03_246 crossref_primary_10_3390_su11236787 crossref_primary_10_1002_saj2_20706 crossref_primary_10_1016_j_atech_2024_100699 crossref_primary_10_1016_j_clay_2022_106729 crossref_primary_10_1007_s10661_023_11412_5 crossref_primary_10_4236_ojss_2025_151005 crossref_primary_10_1016_j_ecoenv_2020_111345 crossref_primary_10_1016_j_jece_2016_04_023 crossref_primary_10_2134_jeq2018_01_0037 crossref_primary_10_1002_ldr_5355 crossref_primary_10_1590_1413_70542016404023016 crossref_primary_10_1111_ejss_13326 crossref_primary_10_1016_j_apsoil_2024_105376 crossref_primary_10_2139_ssrn_3986063 crossref_primary_10_32604_phyton_2021_014376 crossref_primary_10_3390_min15030203 crossref_primary_10_1111_nph_16242 crossref_primary_10_1016_j_scitotenv_2022_160315 crossref_primary_10_1016_S1002_0160_20_60053_4 crossref_primary_10_1080_00103624_2020_1763393 crossref_primary_10_1007_s11368_019_02420_5 crossref_primary_10_1016_j_geoderma_2019_06_024 crossref_primary_10_1016_j_jclepro_2024_143266 crossref_primary_10_1111_sum_12894 crossref_primary_10_1016_j_scitotenv_2022_157278 crossref_primary_10_1016_j_scitotenv_2016_07_004 crossref_primary_10_1016_j_heliyon_2024_e35784 crossref_primary_10_3389_fenvs_2022_874902 crossref_primary_10_1007_s11368_018_1923_5 crossref_primary_10_1155_2024_4227265 crossref_primary_10_1071_SR18223 crossref_primary_10_5194_bg_17_441_2020 crossref_primary_10_1007_s42729_024_02033_z crossref_primary_10_1016_j_pce_2022_103271 crossref_primary_10_1007_s11368_020_02564_9 crossref_primary_10_1016_j_wasman_2022_11_011 crossref_primary_10_1016_j_jece_2024_112232 crossref_primary_10_3390_min11020121 crossref_primary_10_1016_j_geoderma_2021_115320 crossref_primary_10_1139_cjc_2024_0079 crossref_primary_10_1016_j_geoderma_2022_115847 crossref_primary_10_1016_j_geoderma_2021_115324 crossref_primary_10_1016_j_geoderma_2021_115326 crossref_primary_10_1016_j_agwat_2021_107178 crossref_primary_10_1007_s11356_019_06762_y crossref_primary_10_1016_j_catena_2022_106407 crossref_primary_10_1186_s13717_025_00586_0 crossref_primary_10_1007_s00374_024_01810_3 crossref_primary_10_3390_agronomy10070990 crossref_primary_10_1007_s11356_017_9242_8 crossref_primary_10_1007_s10021_018_0302_9 crossref_primary_10_1016_j_soilbio_2018_04_002 crossref_primary_10_1016_j_clay_2021_106120 crossref_primary_10_1002_jpln_201700543 crossref_primary_10_3390_agriengineering7030083 crossref_primary_10_1007_s00203_022_03322_w crossref_primary_10_1016_j_geoderma_2018_03_002 crossref_primary_10_1007_s10653_021_01184_7 crossref_primary_10_1371_journal_pone_0246428 crossref_primary_10_1007_s11356_024_32790_4 crossref_primary_10_1016_j_scitotenv_2021_147131 crossref_primary_10_3390_agriculture13020375 crossref_primary_10_1007_s11368_020_02819_5 crossref_primary_10_1016_j_jenvman_2021_114361 crossref_primary_10_1016_j_still_2016_04_018 crossref_primary_10_5194_hess_28_341_2024 crossref_primary_10_1016_j_envres_2020_109277 crossref_primary_10_1007_s41742_020_00305_x crossref_primary_10_1088_1755_1315_499_1_012003 crossref_primary_10_1021_acs_est_3c09072 crossref_primary_10_1016_j_sandf_2022_101241 crossref_primary_10_1016_j_scitotenv_2017_09_067 crossref_primary_10_1016_j_soilbio_2019_107583 crossref_primary_10_1016_j_fcr_2023_109169 crossref_primary_10_1016_j_agwat_2024_109250 crossref_primary_10_1016_j_apgeochem_2022_105293 crossref_primary_10_1016_j_scitotenv_2021_149443 crossref_primary_10_12789_geocanj_2023_50_201 crossref_primary_10_1016_j_eti_2023_103401 crossref_primary_10_1002_saj2_20519 crossref_primary_10_1007_s11368_017_1845_7 crossref_primary_10_1016_j_still_2022_105487 crossref_primary_10_3390_agronomy12102335 crossref_primary_10_1080_00103624_2017_1341919 crossref_primary_10_1007_s10661_023_11175_z crossref_primary_10_1016_j_scitotenv_2022_158322 crossref_primary_10_1007_s11104_024_06553_6 crossref_primary_10_1016_j_eja_2024_127144 crossref_primary_10_1061_JHTRBP_HZENG_1426 crossref_primary_10_1016_j_scitotenv_2025_178856 crossref_primary_10_1016_j_scitotenv_2021_150441 crossref_primary_10_1590_1413_70542017415006717 crossref_primary_10_3390_agronomy13061647 crossref_primary_10_1016_j_geoderma_2017_11_024 crossref_primary_10_1016_j_scitotenv_2022_160644 crossref_primary_10_1016_j_still_2023_105895 crossref_primary_10_1002_jeq2_20210 crossref_primary_10_1007_s11368_018_2122_0 crossref_primary_10_1016_j_chemosphere_2023_138519 crossref_primary_10_1155_2021_9943663 crossref_primary_10_1016_j_scitotenv_2022_160532 crossref_primary_10_1016_j_jes_2020_10_011 crossref_primary_10_26599_JGSE_2024_9280026 crossref_primary_10_3390_su16052142 crossref_primary_10_1016_j_geoderma_2018_03_033 crossref_primary_10_1111_sum_12527 crossref_primary_10_1002_jeq2_20202 crossref_primary_10_1111_ejss_13464 crossref_primary_10_1016_j_heliyon_2023_e23179 crossref_primary_10_1016_j_still_2023_105647 crossref_primary_10_5194_essd_15_1059_2023 crossref_primary_10_3390_agronomy13030813 crossref_primary_10_5194_bg_17_89_2020 crossref_primary_10_1088_1742_6596_2314_1_012008 crossref_primary_10_1590_2179_8087_012518 crossref_primary_10_5897_AJAR2024_16634 crossref_primary_10_1016_j_scitotenv_2024_172257 crossref_primary_10_1016_j_chemgeo_2024_122510 crossref_primary_10_1038_s41598_023_31908_x crossref_primary_10_1016_j_sjbs_2022_02_056 crossref_primary_10_1016_j_geodrs_2023_e00689 crossref_primary_10_1007_s11270_020_04833_2 crossref_primary_10_1016_j_chemosphere_2022_136749 crossref_primary_10_1080_00103624_2021_1956522 crossref_primary_10_1080_00103624_2022_2072861 crossref_primary_10_3390_agriculture13112164 crossref_primary_10_1590_1678_4499_20230291 crossref_primary_10_1016_j_clay_2024_107304 crossref_primary_10_1016_j_sjbs_2021_08_086 crossref_primary_10_1016_j_jclepro_2022_131202 crossref_primary_10_1016_S2095_3119_21_63628_6 crossref_primary_10_1007_s10533_016_0274_9 crossref_primary_10_1080_01904167_2019_1676906 crossref_primary_10_3390_land11122192 crossref_primary_10_1016_j_geodrs_2020_e00298 crossref_primary_10_1016_j_gca_2021_07_027 crossref_primary_10_5897_AJAR2018_12996 crossref_primary_10_1007_s10705_021_10151_8 crossref_primary_10_15446_agron_colomb_v35n1_58671 crossref_primary_10_1016_j_still_2025_106479 crossref_primary_10_1016_j_geoderma_2020_114580 crossref_primary_10_1016_j_still_2024_106099 crossref_primary_10_1016_j_agee_2020_107165 crossref_primary_10_1016_j_still_2022_105446 crossref_primary_10_1029_2022JG007029 crossref_primary_10_1016_j_still_2023_105702 crossref_primary_10_1016_j_still_2023_105700 crossref_primary_10_1021_acs_est_4c05988 crossref_primary_10_1371_journal_pone_0220476 crossref_primary_10_1080_20442041_2022_2052785 crossref_primary_10_3389_fpls_2024_1416852 crossref_primary_10_1016_j_ssnmr_2020_101698 crossref_primary_10_1016_j_still_2021_105251 crossref_primary_10_3389_fpls_2021_679916 crossref_primary_10_5194_bg_13_2493_2016 crossref_primary_10_1016_j_still_2021_105139 crossref_primary_10_1002_jeq2_20090 crossref_primary_10_1016_j_agee_2021_107306 crossref_primary_10_1016_j_gfs_2021_100545 crossref_primary_10_1016_j_geodrs_2020_e00271 crossref_primary_10_1016_j_clay_2024_107442 crossref_primary_10_2136_sssaj2016_07_0220 crossref_primary_10_2136_sssaj2018_01_0020 crossref_primary_10_1021_acs_est_0c08407 crossref_primary_10_1007_s42729_019_00127_7 crossref_primary_10_1007_s11104_022_05830_6 crossref_primary_10_1016_j_still_2023_105840 crossref_primary_10_1016_j_still_2025_106452 crossref_primary_10_19047_0136_1694_2021_107_61_91 crossref_primary_10_1007_s13593_023_00939_z crossref_primary_10_1111_ejss_12849 crossref_primary_10_1007_s11273_024_09976_1 crossref_primary_10_1016_j_geoderma_2018_11_001 crossref_primary_10_1002_jpln_202000488 crossref_primary_10_1007_s40995_023_01426_6 crossref_primary_10_1016_j_jenvman_2021_113426 crossref_primary_10_1016_j_jenvman_2021_112575 crossref_primary_10_3390_w9070501 crossref_primary_10_1016_j_chemosphere_2021_130837 crossref_primary_10_1039_C9EN00539K crossref_primary_10_1155_2021_4158151 crossref_primary_10_1016_j_scitotenv_2020_140604 crossref_primary_10_1134_S1064229323601877 crossref_primary_10_1002_ldr_4617 crossref_primary_10_1021_acs_est_0c02163 crossref_primary_10_3389_ffgc_2020_604200 crossref_primary_10_3390_microorganisms9112224 crossref_primary_10_1007_s11356_024_34383_7 crossref_primary_10_1002_sae2_12039 crossref_primary_10_1016_j_chemgeo_2024_121976 crossref_primary_10_1038_s41598_020_58913_8 crossref_primary_10_1007_s42729_023_01444_8 crossref_primary_10_1016_j_plana_2024_100112 crossref_primary_10_1007_s00374_024_01833_w crossref_primary_10_1007_s42729_020_00344_5 crossref_primary_10_1007_s11676_022_01551_9 crossref_primary_10_1080_00380768_2023_2185751 crossref_primary_10_1016_j_colsurfa_2023_132905 crossref_primary_10_1021_acs_jafc_0c01287 crossref_primary_10_1016_j_jwpe_2020_101473 crossref_primary_10_1016_j_wasman_2023_06_035 crossref_primary_10_1038_s41586_024_08429_2 crossref_primary_10_1016_j_cej_2021_134225 crossref_primary_10_1007_s10661_020_08260_y crossref_primary_10_1016_j_ecolind_2022_109482 crossref_primary_10_1016_j_jenvman_2022_116222 crossref_primary_10_1016_j_still_2018_11_016 crossref_primary_10_21930_rcta_vol18_num3_art_742 crossref_primary_10_1080_15320383_2024_2341061 crossref_primary_10_1002_ldr_3978 crossref_primary_10_1016_j_geoderma_2020_114853 crossref_primary_10_1007_s12665_024_11711_1 crossref_primary_10_1016_j_scitotenv_2023_165962 crossref_primary_10_3390_agronomy13081956 crossref_primary_10_1007_s12517_021_06629_y crossref_primary_10_1016_j_scitotenv_2020_138744 crossref_primary_10_1007_s13762_024_06147_w crossref_primary_10_1016_j_geodrs_2022_e00573 crossref_primary_10_1016_j_pedsph_2023_03_014 crossref_primary_10_2139_ssrn_4125294 crossref_primary_10_1016_j_chemgeo_2023_121786 crossref_primary_10_1590_18069657rbcs20160272 crossref_primary_10_1111_nph_19078 crossref_primary_10_1016_j_trgeo_2022_100854 crossref_primary_10_1111_geb_12576 crossref_primary_10_1016_j_jhydrol_2019_124256 crossref_primary_10_1071_CP21043 crossref_primary_10_1016_j_geoderma_2022_116125 crossref_primary_10_1002_ldr_4816 crossref_primary_10_1071_SR20099 crossref_primary_10_1016_j_gsd_2024_101283 crossref_primary_10_36783_18069657rbcs20210146 crossref_primary_10_1111_gcb_17104 crossref_primary_10_3390_plants13243478 crossref_primary_10_1080_10643389_2018_1551300 crossref_primary_10_1002_saj2_20391 crossref_primary_10_2134_agronj2017_01_0038 crossref_primary_10_1002_jpln_202400258 crossref_primary_10_1016_j_chemosphere_2016_11_058 crossref_primary_10_3390_microorganisms13030582 crossref_primary_10_1002_ldr_3832 crossref_primary_10_5194_bg_15_105_2018 crossref_primary_10_1002_clen_201700662 crossref_primary_10_3390_land12010196 crossref_primary_10_1007_s10341_023_01004_5 crossref_primary_10_2139_ssrn_4161490 crossref_primary_10_1080_00380768_2023_2245420 crossref_primary_10_1016_j_geoderma_2023_116739 crossref_primary_10_1007_s00248_020_01635_1 crossref_primary_10_1021_acs_est_5b04814 crossref_primary_10_3390_ijms23179860 crossref_primary_10_1007_s11368_021_02993_0 crossref_primary_10_1371_journal_pone_0306145 crossref_primary_10_1007_s11368_019_02493_2 crossref_primary_10_1111_sum_13088 crossref_primary_10_2136_sssaj2018_09_0320 crossref_primary_10_1016_j_geoderma_2018_09_056 crossref_primary_10_1016_j_catena_2023_107125 crossref_primary_10_1016_j_chemosphere_2019_124709 crossref_primary_10_1002_jpln_202000525 crossref_primary_10_1007_s11356_018_3968_9 crossref_primary_10_3390_ijerph17207693 crossref_primary_10_1016_j_geoderma_2018_02_047 crossref_primary_10_1016_j_heliyon_2024_e40128 crossref_primary_10_1007_s11356_023_30313_1 crossref_primary_10_1111_sum_13038 crossref_primary_10_1016_j_geoderma_2022_116316 crossref_primary_10_3389_fsufs_2022_893525 crossref_primary_10_1016_j_scitotenv_2024_173537 crossref_primary_10_3390_w13141983 crossref_primary_10_3390_w17020218 crossref_primary_10_1002_jpln_202100266 crossref_primary_10_1080_09593330_2016_1185165 crossref_primary_10_1029_2020JB021422 crossref_primary_10_1590_1678_4499_20200047 crossref_primary_10_1002_saj2_20078 crossref_primary_10_1016_j_jenvman_2022_116038 crossref_primary_10_1080_00380768_2021_1874249 crossref_primary_10_1016_j_still_2024_106338 crossref_primary_10_4025_actasciagron_v44i1_55148 crossref_primary_10_1007_s10533_019_00633_x crossref_primary_10_1016_j_geoderma_2023_116650 crossref_primary_10_1002_saj2_20089 crossref_primary_10_1155_2022_6319739 crossref_primary_10_1016_j_colsurfa_2023_132068 crossref_primary_10_1016_j_geoderma_2022_116212 crossref_primary_10_3390_su132212349 crossref_primary_10_1007_s42729_020_00265_3 crossref_primary_10_1016_j_catena_2024_108682 crossref_primary_10_17221_41_2022_PSE crossref_primary_10_1007_s11104_023_06045_z crossref_primary_10_1016_j_scitotenv_2022_155525 crossref_primary_10_1186_s40538_022_00302_6 crossref_primary_10_1071_SR24118 crossref_primary_10_3390_f15020351 crossref_primary_10_1080_03650340_2019_1605166 crossref_primary_10_1016_j_still_2025_106532 crossref_primary_10_3390_bacteria2020008 crossref_primary_10_1111_ele_70011 crossref_primary_10_1007_s11356_020_12206_9 crossref_primary_10_1016_j_jenvman_2020_111435 crossref_primary_10_1016_j_geoderma_2020_114921 crossref_primary_10_3390_su13042253 crossref_primary_10_3390_agronomy11102010 crossref_primary_10_1016_j_geoderma_2017_05_012 crossref_primary_10_1590_0001_3765201820160701 crossref_primary_10_3390_agronomy11061086 crossref_primary_10_1016_j_apsoil_2022_104550 crossref_primary_10_1007_s11356_020_07998_9 crossref_primary_10_2136_sssaj2017_11_0380 crossref_primary_10_36783_18069657rbcs20230049 crossref_primary_10_1021_acsearthspacechem_4c00312 crossref_primary_10_1111_sum_13112 crossref_primary_10_1016_j_watres_2024_121770 crossref_primary_10_1016_j_envpol_2020_114175 crossref_primary_10_1016_j_jenvman_2019_109872 crossref_primary_10_5194_soil_10_49_2024 crossref_primary_10_1016_j_jclepro_2018_06_004 crossref_primary_10_1007_s11368_022_03378_7 crossref_primary_10_1016_j_chemosphere_2021_130239 crossref_primary_10_1002_saj2_20553 crossref_primary_10_1002_tqem_22004 crossref_primary_10_1016_j_biortech_2024_131075 crossref_primary_10_1016_j_scitotenv_2021_151039 crossref_primary_10_1021_acsearthspacechem_0c00281 crossref_primary_10_1061_JOEEDU_EEENG_7102 crossref_primary_10_1021_acs_jafc_2c03933 crossref_primary_10_1016_j_chemosphere_2019_124888 crossref_primary_10_1007_s11368_018_2013_4 crossref_primary_10_3389_fmars_2022_907527 crossref_primary_10_1007_s42729_020_00308_9 crossref_primary_10_1021_acs_est_9b01565 crossref_primary_10_1017_S0021859622000363 crossref_primary_10_5004_dwt_2017_20190 crossref_primary_10_2139_ssrn_4006877 crossref_primary_10_1016_j_scitotenv_2020_144004 crossref_primary_10_3390_agronomy13030626 crossref_primary_10_1007_s11157_021_09602_z crossref_primary_10_1039_C8RA10400J crossref_primary_10_5004_dwt_2022_28853 crossref_primary_10_3390_soilsystems3010020 crossref_primary_10_1007_s42729_025_02253_x crossref_primary_10_1080_10643389_2023_2240211 crossref_primary_10_1016_j_precamres_2024_107498 crossref_primary_10_1016_j_scitotenv_2024_178341 crossref_primary_10_1590_18069657rbcs20180041 crossref_primary_10_1016_j_geoderma_2021_115274 crossref_primary_10_1016_j_envpol_2020_115172 crossref_primary_10_1016_j_jclepro_2020_122728 crossref_primary_10_1007_s11270_021_05336_4 crossref_primary_10_1021_acs_est_1c03629 crossref_primary_10_1111_sum_13006 crossref_primary_10_20961_stjssa_v21i1_79310 crossref_primary_10_1007_s11104_016_3092_x crossref_primary_10_1002_jpln_202100410 crossref_primary_10_1038_s41467_023_44240_9 crossref_primary_10_3390_pr9091521 crossref_primary_10_1021_acsearthspacechem_1c00239 crossref_primary_10_1016_j_agee_2024_109310 crossref_primary_10_1016_j_geoderma_2021_115462 crossref_primary_10_1007_s42729_024_02200_2 crossref_primary_10_1016_j_geoderma_2025_117242 crossref_primary_10_1016_j_geoderma_2018_09_028 crossref_primary_10_1016_j_soilbio_2018_04_011 crossref_primary_10_1007_s10661_020_08365_4 crossref_primary_10_1016_j_chemosphere_2023_140523 crossref_primary_10_1007_s10653_020_00561_y crossref_primary_10_1016_j_ecoenv_2019_04_040 crossref_primary_10_1016_j_scitotenv_2021_151589 crossref_primary_10_3390_su13137181 crossref_primary_10_3390_app11093731 crossref_primary_10_3390_min11070674 crossref_primary_10_1180_clm_2020_24 crossref_primary_10_1038_s41467_021_23304_8 crossref_primary_10_1002_advs_202409585 crossref_primary_10_1021_acssuschemeng_1c08537 crossref_primary_10_1007_s42729_023_01166_x crossref_primary_10_3389_fpls_2024_1372634 crossref_primary_10_1007_s42773_022_00135_4 crossref_primary_10_1016_j_jhazmat_2023_132572 crossref_primary_10_1016_j_scitotenv_2023_163971 crossref_primary_10_1016_j_geoderma_2019_01_016 crossref_primary_10_1080_15226514_2018_1556583 crossref_primary_10_1016_j_chemosphere_2023_138684 crossref_primary_10_4236_ojss_2019_912016 crossref_primary_10_1111_ejss_13198 crossref_primary_10_1016_j_jclepro_2022_132915 crossref_primary_10_1111_wej_12671 crossref_primary_10_3390_soilsystems4040073 crossref_primary_10_1007_s42247_024_00816_9 crossref_primary_10_3390_toxics11030230 crossref_primary_10_1016_j_agee_2024_109408 crossref_primary_10_1016_j_apgeochem_2020_104534 crossref_primary_10_1007_s11368_024_03923_6 crossref_primary_10_2136_sssaj2017_08_0288 crossref_primary_10_1016_j_geoderma_2021_115590 crossref_primary_10_1016_j_envexpbot_2024_105800 crossref_primary_10_1111_ejss_70033 crossref_primary_10_17221_492_2019_PSE crossref_primary_10_1016_j_geoderma_2021_115592 crossref_primary_10_1002_jpln_201800201 crossref_primary_10_1016_j_agee_2023_108374 crossref_primary_10_1016_j_eja_2023_126967 crossref_primary_10_1016_j_ecoenv_2022_114402 crossref_primary_10_1002_ldr_5007 crossref_primary_10_1016_j_scitotenv_2017_05_133 crossref_primary_10_1016_j_scitotenv_2018_07_261 crossref_primary_10_1016_j_jclepro_2020_121319 crossref_primary_10_1016_j_geoderma_2016_12_020 crossref_primary_10_5194_bg_20_505_2023 |
Cites_doi | 10.1016/0021-9797(73)90388-3 10.1016/j.envpol.2012.03.052 10.1038/nature01014 10.1016/j.geoderma.2011.12.030 10.1016/j.jcis.2004.01.035 10.1111/j.1365-2389.1997.tb00189.x 10.1007/s002690050125 10.1007/s11270-012-1374-3 10.1039/c1ee02093e 10.3390/su3102027 10.1016/j.gca.2009.10.018 10.2136/sssaj1943.036159950007000C0019x 10.1016/j.geoderma.2013.05.026 10.1016/j.jcis.2004.12.032 10.1111/j.1365-2389.1966.tb01468.x 10.1021/es60116a001 10.2136/sssaj2002.1788 10.2138/am-2000-0114 10.1016/j.gloenvcha.2008.10.009 10.1016/j.gca.2009.10.019 10.1007/s00269-002-0286-y 10.1016/j.apgeochem.2009.09.020 10.1002/etc.2612 10.1346/CCMN.1996.0440504 10.1346/CCMN.1983.0310309 10.1016/j.gca.2011.02.034 10.2134/jeq2003.3350 10.1346/CCMN.1992.0400315 10.1111/j.1365-2389.1994.tb00485.x 10.1023/A:1009709005147 10.1346/CCMN.2006.0540108 10.1021/es404258h 10.2136/sssaj2005.0077a 10.2136/sssaj1996.03615995006000010020x 10.1111/j.1365-2389.1979.tb00972.x 10.1016/j.chemosphere.2011.01.065 10.1093/aob/mcq098 10.1346/CCMN.1992.0400103 10.1016/j.apgeochem.2014.02.006 10.2136/sssaj1990.03615995005400040012x 10.1073/pnas.96.11.5995 10.1016/j.gca.2013.03.044 10.1180/0009855033810080 10.1111/j.1365-2389.1992.tb00165.x 10.1111/j.1365-2389.1966.tb01467.x 10.1346/000986002760832810 10.2136/sssaj1985.03615995004900050015x 10.2136/sssaj1992.03615995005600030050x 10.1111/j.1365-2389.1972.tb01652.x 10.1016/j.jhazmat.2010.02.086 10.2136/sssaj1988.03615995005200030009x 10.2136/sssaj1988.03615995005200060011x 10.1071/BT06118 10.1111/j.1365-2389.1975.tb01950.x 10.1007/s10705-006-6687-4 10.2136/sssaj2005.0250 10.1021/es950290x 10.1016/0016-7037(94)90380-8 10.1016/S0065-2113(06)94003-6 10.1097/SS.0b013e3181f1b4dd 10.1016/j.gca.2012.05.042 10.2136/sssaj2000.6441347x 10.1007/BF01416093 10.4141/cjss68-018 10.1046/j.1365-2389.1997.00090.x 10.1006/jcis.1999.6448 10.1016/0021-9797(75)90004-1 10.1007/s00269-012-0521-0 10.1111/j.1365-2389.1985.tb00323.x 10.1016/0021-9797(73)90389-5 10.1016/j.geoderma.2012.05.014 10.1007/s11104-011-0935-3 10.3109/10408444.2013.770820 10.1021/la9515074 10.1016/j.apgeochem.2013.03.018 10.1557/jmr.2005.0403 10.1006/jcis.1997.4970 10.1016/j.geoderma.2013.09.001 10.1046/j.1365-2389.2001.00414.x 10.1180/0009855023740069 10.1097/SS.0b013e31828683f8 10.1007/s10533-005-0712-6 10.1016/j.clay.2011.04.006 10.1111/j.1365-2389.1979.tb01019.x 10.2136/sssaj1997.03615995006100030011x 10.1021/la803302m 10.2136/sssaj1985.03615995004900050014x 10.1006/jcis.2000.7072 10.1016/j.apgeochem.2014.02.011 10.1016/j.apgeochem.2013.09.017 10.2136/sssaj2006.0424 10.1039/f19868201733 10.1007/s11104-011-0950-4 10.1111/j.1475-2743.2007.00122.x 10.1180/0009855023730049 10.1021/es201844d 10.2136/sssaj2005.0080 10.1016/j.gca.2011.02.031 10.1016/0021-9797(80)90270-2 10.1007/s003740000206 10.1021/es400526q 10.1021/la062965n 10.1021/es000210b 10.2136/sssaj1977.03615995004100050011x 10.1104/pp.111.175331 10.1021/es401301z |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC |
DOI | 10.1016/j.geoderma.2015.08.036 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 226 |
ExternalDocumentID | oai_HAL_hal_01269249v1 10_1016_j_geoderma_2015_08_036 S0016706115300653 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c379t-f5c98d896718e19a18e19097a0e977005fadf794ec834064a2fa92f58e7cbb433 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jun 13 07:01:47 EDT 2025 Thu Jul 10 23:32:52 EDT 2025 Tue Jul 01 04:04:40 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Fri Feb 23 02:30:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phosphorus Kaolinite Montmorillonite Goethite Gibbsite Illite |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-f5c98d896718e19a18e19097a0e977005fadf794ec834064a2fa92f58e7cbb433 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2116890394 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_hal_01269249v1 proquest_miscellaneous_2116890394 crossref_primary_10_1016_j_geoderma_2015_08_036 crossref_citationtrail_10_1016_j_geoderma_2015_08_036 elsevier_sciencedirect_doi_10_1016_j_geoderma_2015_08_036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-15 |
PublicationDateYYYYMMDD | 2016-01-15 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2016 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Juang, Chung (bb0260) 2004; 275 St. Pierre, Singh, Webb, Gilkes (bb0425) 1992; 40 Van Riemsdijk, Lyklema (bb0480) 1980; 76 Hiemstra, Antelo, Rahnemaie, van Riemsdijk (bb0210) 2010; 74 Gustafsson, Mwamila, Kergoat (bb0180) 2012; 189 Rahnemaie, Hiemstra, van Riemsdijk (bb0370) 2007; 23 Ioannou, Dimirkou (bb0240) 1997; 192 Jara, Violante, Pigna, Mora (bb0250) 2006; 70 Wei, Tan, Liu, Zhao, Weng (bb0515) 2014; 213 Ioannou, Dimirkou, Ioannou (bb0245) 2013; 224 Manning, Goldberg (bb0325) 1996; 44 Strahm, Harrison (bb0430) 2007; 71 Manceau (bb0320) 2000; 85 Litaor (bb0285) 2003; 32 Torrent, Schwertmann, Barron (bb0465) 1994; 45 Gimsing, Borggaard (bb0165) 2002; 37 Bolan, Barrow, Posner (bb0045) 1985; 36 He, Yang, Yuan, Zhu (bb0195) 1994; 162 Yan (bb0525) 2010; 179 Sei, Jumas, Olivier-Fourcade, Quiquampoix, Staunton (bb0410) 2002; 50 Geelhoed, Findenegg, VanRiemsdijk (bb0150) 1997; 48 Hiemstra, Antelo, van Rotterdam, van Riemsdijk (bb0215) 2010; 74 Duputel, Van Hoye, Toucet, Gérard (bb0125) 2013; 39 Devau, Hinsinger, Le Cadre, Colomb, Gérard (bb0105) 2013; 124 Dogan (bb0115) 2006; 54 Giesler, Andersson, Lovgren, Persson (bb0160) 2005; 69 Torrent, Schwertmann, Barron (bb0460) 1992; 40 Rajan, Perrott (bb0375) 1975; 26 Richardson (bb0380) 2011; 349 Devau, Hinsinger, Le Cadre, Colomb, Gérard (bb0095) 2011; 75 Mikutta, Kleber, Torn, Jahn (bb0340) 2006; 77 Devau, Le Cadre, Hinsinger, Gérard (bb0090) 2010; 105 Hingston, Posner, Quirk (bb0220) 1972; 23 Arai, Sparks (bb0020) 2007; vol. 94 Cordell, Drangert, White (bb0075) 2009; 19 Muljadi, Posner, Quirk (bb0345) 1966; 17 Strauss, Brummer, Barrow (bb0435) 1997; 48 Antelo, Avena, Fiol, Lopez, Arce (bb0015) 2005; 285 Devau, Hinsinger, Le Cadre, Gérard (bb0100) 2011; 348 Breeuwsma, Lyklema (bb0055) 1973; 43 Duputel (bb0130) 2014; 46 Vantelon (bb0485) 2003; 30 Barron, Herruzo, Torrent (bb0030) 1988; 52 Baker, Strawn (bb0025) 2012; 39 Suzuki, Inomata, Sawada (bb0440) 1986; 82 Gustafsson, Lumsdon (bb0175) 2014; 46 Cui, Weng (bb0080) 2013; 47 So, Postma, Jakobsen, Larsen (bb0420) 2011; 75 Wang (bb0505) 2013; 178 Rothbaum, McGaveston, Wall, Johnston, Mattingly (bb0390) 1979; 30 Webster, Laing, Florance, Santos (bb0510) 2014; 48 Tilman, Cassman, Matson, Naylor, Polasky (bb0450) 2002; 418 He, Zelazny, Baligar, Ritchey, Martens (bb0200) 1997; 61 Tilman (bb0445) 1999; 96 Jiao, Chen, Chang, Page (bb0255) 2012; 168 Muljadi, Posner, Quirk (bb0350) 1966; 17 Mikutta, Lang, Kaupenjohann (bb0335) 2006; 70 Baryosef, Kafkafi, Rosenberg, Sposito (bb0035) 1988; 52 Macht, Eusterhues, Pronk, Totsche (bb0305) 2011; 53 Weng, Vega, Van Riemsdijk (bb0520) 2011; 45 Hinsinger (bb0225) 2011; 156 Manning, Goldberg (bb0330) 1996; 60 Borggaard (bb0050) 1983; 31 Veith, Sposito (bb0490) 1977; 41 Edzwald, Toensing, Leung (bb0135) 1976; 10 Herlihy, McGrath (bb0205) 2007; 77 Gustafsson (bb0170) 2001; 52 Lynch (bb0300) 2007; 55 Gerke (bb0155) 2010; 175 Chen, Butler, Stumm (bb0060) 1973; 43 Fontes, Weed, Bowen (bb0140) 1992; 56 Pérez, Antelo, Fiol, Arce (bb0360) 2014; 33 Saidy, Smernik, Baldock, Kaiser, Sanderman (bb0400) 2013; 209 Saidy (bb0395) 2012; 173 Hart (bb0185) 2002; 37 Wang (bb0500) 2013; 47 Torrent, Barron, Schwertmann (bb0455) 1990; 54 Huang, Foster, Honeychuck, Schreifels (bb0235) 2009; 25 Yean (bb0535) 2005; 20 Cordell, White (bb0070) 2012; 3 Duputel (bb0120) 2013; 35 Pissarides, Stewart, Rennie (bb0365) 1968; 48 diCristofaro (bb0110) 2000; 64 Laiti, Persson, Ohman (bb0275) 1996; 12 Liu, Sun, Forsling, Du, Tang (bb0290) 1999; 219 Devau, Le Cadre, Hinsinger, Jaillard, Gérard (bb0085) 2009; 24 Gaume, Weidler, Frossard (bb0145) 2000; 31 Torrent, Barberis, Gil-Sotres (bb0470) 2007; 23 Ainsworth, Sumner, Hurst (bb0010) 1985; 49 Tunesi, Poggi, Gessa (bb0475) 1999; 53 Yao, Millero (bb0530) 1996; 30 Rietra, Hiemstra, Van Riemsdijk (bb0385) 2001; 35 Schroder, Smit, Cordell, Rosemarin (bb0405) 2011; 84 Black (bb0040) 1943; 7 Lumsdon (bb0295) 2012; 92 Singh, Gilkes (bb0415) 1992; 43 Huang (bb0230) 1975; 53 Hart, Wiriyakitnateekul, Gilkes (bb0190) 2003; 38 Kier, Kirkland (bb0265) 2013; 43 Manceau, Chateigner, Gates (bb0315) 1998; 25 Kim, Li, Philips, Grey (bb0270) 2011; 4 Madrid, Posner (bb0310) 1979; 30 Colombo, Barron, Torrent (bb0065) 1994; 58 Ainsworth, Sumner (bb0005) 1985; 49 Violante, Pigna (bb0495) 2002; 66 Li, Stanforth (bb0280) 2000; 230 Zhang, Dong, Tao (bb0540) 2006; 278 diCristofaro (10.1016/j.geoderma.2015.08.036_bb0110) 2000; 64 Madrid (10.1016/j.geoderma.2015.08.036_bb0310) 1979; 30 Antelo (10.1016/j.geoderma.2015.08.036_bb0015) 2005; 285 Huang (10.1016/j.geoderma.2015.08.036_bb0230) 1975; 53 Li (10.1016/j.geoderma.2015.08.036_bb0280) 2000; 230 Torrent (10.1016/j.geoderma.2015.08.036_bb0455) 1990; 54 Huang (10.1016/j.geoderma.2015.08.036_bb0235) 2009; 25 Torrent (10.1016/j.geoderma.2015.08.036_bb0460) 1992; 40 Gerke (10.1016/j.geoderma.2015.08.036_bb0155) 2010; 175 Richardson (10.1016/j.geoderma.2015.08.036_bb0380) 2011; 349 Zhang (10.1016/j.geoderma.2015.08.036_bb0540) 2006; 278 Devau (10.1016/j.geoderma.2015.08.036_bb0100) 2011; 348 Yean (10.1016/j.geoderma.2015.08.036_bb0535) 2005; 20 Hart (10.1016/j.geoderma.2015.08.036_bb0185) 2002; 37 Strauss (10.1016/j.geoderma.2015.08.036_bb0435) 1997; 48 Breeuwsma (10.1016/j.geoderma.2015.08.036_bb0055) 1973; 43 Geelhoed (10.1016/j.geoderma.2015.08.036_bb0150) 1997; 48 Manning (10.1016/j.geoderma.2015.08.036_bb0325) 1996; 44 Hiemstra (10.1016/j.geoderma.2015.08.036_bb0215) 2010; 74 Liu (10.1016/j.geoderma.2015.08.036_bb0290) 1999; 219 Wang (10.1016/j.geoderma.2015.08.036_bb0500) 2013; 47 Bolan (10.1016/j.geoderma.2015.08.036_bb0045) 1985; 36 Wang (10.1016/j.geoderma.2015.08.036_bb0505) 2013; 178 Hart (10.1016/j.geoderma.2015.08.036_bb0190) 2003; 38 Juang (10.1016/j.geoderma.2015.08.036_bb0260) 2004; 275 St. Pierre (10.1016/j.geoderma.2015.08.036_bb0425) 1992; 40 Hingston (10.1016/j.geoderma.2015.08.036_bb0220) 1972; 23 Cordell (10.1016/j.geoderma.2015.08.036_bb0075) 2009; 19 Baker (10.1016/j.geoderma.2015.08.036_bb0025) 2012; 39 Colombo (10.1016/j.geoderma.2015.08.036_bb0065) 1994; 58 Devau (10.1016/j.geoderma.2015.08.036_bb0090) 2010; 105 Arai (10.1016/j.geoderma.2015.08.036_bb0020) 2007; vol. 94 Ainsworth (10.1016/j.geoderma.2015.08.036_bb0005) 1985; 49 Sei (10.1016/j.geoderma.2015.08.036_bb0410) 2002; 50 Devau (10.1016/j.geoderma.2015.08.036_bb0105) 2013; 124 Litaor (10.1016/j.geoderma.2015.08.036_bb0285) 2003; 32 Gustafsson (10.1016/j.geoderma.2015.08.036_bb0170) 2001; 52 Jiao (10.1016/j.geoderma.2015.08.036_bb0255) 2012; 168 Van Riemsdijk (10.1016/j.geoderma.2015.08.036_bb0480) 1980; 76 Yan (10.1016/j.geoderma.2015.08.036_bb0525) 2010; 179 Tilman (10.1016/j.geoderma.2015.08.036_bb0450) 2002; 418 Weng (10.1016/j.geoderma.2015.08.036_bb0520) 2011; 45 Fontes (10.1016/j.geoderma.2015.08.036_bb0140) 1992; 56 Manceau (10.1016/j.geoderma.2015.08.036_bb0315) 1998; 25 Veith (10.1016/j.geoderma.2015.08.036_bb0490) 1977; 41 Macht (10.1016/j.geoderma.2015.08.036_bb0305) 2011; 53 Rietra (10.1016/j.geoderma.2015.08.036_bb0385) 2001; 35 Yao (10.1016/j.geoderma.2015.08.036_bb0530) 1996; 30 Baryosef (10.1016/j.geoderma.2015.08.036_bb0035) 1988; 52 Barron (10.1016/j.geoderma.2015.08.036_bb0030) 1988; 52 Gustafsson (10.1016/j.geoderma.2015.08.036_bb0175) 2014; 46 Tunesi (10.1016/j.geoderma.2015.08.036_bb0475) 1999; 53 Mikutta (10.1016/j.geoderma.2015.08.036_bb0335) 2006; 70 Singh (10.1016/j.geoderma.2015.08.036_bb0415) 1992; 43 Gimsing (10.1016/j.geoderma.2015.08.036_bb0165) 2002; 37 Giesler (10.1016/j.geoderma.2015.08.036_bb0160) 2005; 69 Devau (10.1016/j.geoderma.2015.08.036_bb0095) 2011; 75 Duputel (10.1016/j.geoderma.2015.08.036_bb0125) 2013; 39 Duputel (10.1016/j.geoderma.2015.08.036_bb0130) 2014; 46 Kier (10.1016/j.geoderma.2015.08.036_bb0265) 2013; 43 Wei (10.1016/j.geoderma.2015.08.036_bb0515) 2014; 213 Laiti (10.1016/j.geoderma.2015.08.036_bb0275) 1996; 12 Strahm (10.1016/j.geoderma.2015.08.036_bb0430) 2007; 71 Borggaard (10.1016/j.geoderma.2015.08.036_bb0050) 1983; 31 Manceau (10.1016/j.geoderma.2015.08.036_bb0320) 2000; 85 Pissarides (10.1016/j.geoderma.2015.08.036_bb0365) 1968; 48 Torrent (10.1016/j.geoderma.2015.08.036_bb0465) 1994; 45 Kim (10.1016/j.geoderma.2015.08.036_bb0270) 2011; 4 Schroder (10.1016/j.geoderma.2015.08.036_bb0405) 2011; 84 Vantelon (10.1016/j.geoderma.2015.08.036_bb0485) 2003; 30 Ainsworth (10.1016/j.geoderma.2015.08.036_bb0010) 1985; 49 Manning (10.1016/j.geoderma.2015.08.036_bb0330) 1996; 60 Cordell (10.1016/j.geoderma.2015.08.036_bb0070) 2012; 3 Saidy (10.1016/j.geoderma.2015.08.036_bb0400) 2013; 209 Pérez (10.1016/j.geoderma.2015.08.036_bb0360) 2014; 33 Gustafsson (10.1016/j.geoderma.2015.08.036_bb0180) 2012; 189 Hinsinger (10.1016/j.geoderma.2015.08.036_bb0225) 2011; 156 Black (10.1016/j.geoderma.2015.08.036_bb0040) 1943; 7 Devau (10.1016/j.geoderma.2015.08.036_bb0085) 2009; 24 He (10.1016/j.geoderma.2015.08.036_bb0195) 1994; 162 Chen (10.1016/j.geoderma.2015.08.036_bb0060) 1973; 43 Rothbaum (10.1016/j.geoderma.2015.08.036_bb0390) 1979; 30 Ioannou (10.1016/j.geoderma.2015.08.036_bb0240) 1997; 192 He (10.1016/j.geoderma.2015.08.036_bb0200) 1997; 61 Lynch (10.1016/j.geoderma.2015.08.036_bb0300) 2007; 55 Jara (10.1016/j.geoderma.2015.08.036_bb0250) 2006; 70 Ioannou (10.1016/j.geoderma.2015.08.036_bb0245) 2013; 224 Muljadi (10.1016/j.geoderma.2015.08.036_bb0345) 1966; 17 Suzuki (10.1016/j.geoderma.2015.08.036_bb0440) 1986; 82 Rahnemaie (10.1016/j.geoderma.2015.08.036_bb0370) 2007; 23 Hiemstra (10.1016/j.geoderma.2015.08.036_bb0210) 2010; 74 Herlihy (10.1016/j.geoderma.2015.08.036_bb0205) 2007; 77 Duputel (10.1016/j.geoderma.2015.08.036_bb0120) 2013; 35 Gaume (10.1016/j.geoderma.2015.08.036_bb0145) 2000; 31 Edzwald (10.1016/j.geoderma.2015.08.036_bb0135) 1976; 10 Lumsdon (10.1016/j.geoderma.2015.08.036_bb0295) 2012; 92 Webster (10.1016/j.geoderma.2015.08.036_bb0510) 2014; 48 Cui (10.1016/j.geoderma.2015.08.036_bb0080) 2013; 47 So (10.1016/j.geoderma.2015.08.036_bb0420) 2011; 75 Torrent (10.1016/j.geoderma.2015.08.036_bb0470) 2007; 23 Tilman (10.1016/j.geoderma.2015.08.036_bb0445) 1999; 96 Muljadi (10.1016/j.geoderma.2015.08.036_bb0350) 1966; 17 Dogan (10.1016/j.geoderma.2015.08.036_bb0115) 2006; 54 Saidy (10.1016/j.geoderma.2015.08.036_bb0395) 2012; 173 Mikutta (10.1016/j.geoderma.2015.08.036_bb0340) 2006; 77 Rajan (10.1016/j.geoderma.2015.08.036_bb0375) 1975; 26 Violante (10.1016/j.geoderma.2015.08.036_bb0495) 2002; 66 |
References_xml | – volume: 43 start-page: 283 year: 2013 end-page: 315 ident: bb0265 article-title: Review of genotoxicity studies of glyphosate and glyphosate-based formulations publication-title: Crit. Rev. Toxicol. – volume: 46 start-page: 85 year: 2014 end-page: 89 ident: bb0175 article-title: Comment on “Citrate adsorption can decrease soluble phosphate concentration in soils: Results of theoretical modelling” by Marek Duputel, Nicolas Devau, Michel Brossard, Benoit Jaillard, Davey L. Jones, Philippe Hinsinger and Frederic Gerard (2013) publication-title: Appl. Geochem. – volume: 48 start-page: 151 year: 1968 end-page: 157 ident: bb0365 article-title: Influence of cation saturation on phosphorus adsorption by selected clay minerals publication-title: Can. J. Soil Sci. – volume: vol. 94 start-page: 135 year: 2007 end-page: 179 ident: bb0020 article-title: Phosphate reaction dynamics in soils and soil components: a multiscale approach publication-title: Advances in Agronomy – volume: 20 start-page: 3255 year: 2005 end-page: 3264 ident: bb0535 article-title: Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate publication-title: J. Mater. Res. – volume: 10 start-page: 485 year: 1976 end-page: 490 ident: bb0135 article-title: Phosphate adsorption reactions with clay-minerals publication-title: Environ. Sci. Technol. – volume: 60 start-page: 121 year: 1996 end-page: 131 ident: bb0330 article-title: Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals publication-title: Soil Sci. Soc. Am. J. – volume: 52 start-page: 647 year: 1988 end-page: 651 ident: bb0030 article-title: Phosphate adsorption by aluminous hematites of different shapes publication-title: Soil Sci. Soc. Am. J. – volume: 40 start-page: 14 year: 1992 end-page: 21 ident: bb0460 article-title: Fast and slow phosphate sorption by goethite-rich natural materials publication-title: Clay Clay Miner. – volume: 74 start-page: 59 year: 2010 end-page: 69 ident: bb0215 article-title: Nanoparticles in natural systems II: the natural oxide fraction at interaction with natural organic matter and phosphate publication-title: Geochim. Cosmochim. Acta – volume: 33 start-page: 2208 year: 2014 end-page: 2216 ident: bb0360 article-title: Modelling oxyanion adsorption on ferralic soil, part 1: parameter validation with phosphate ion publication-title: Environ. Toxicol. Chem. – volume: 105 start-page: 1183 year: 2010 end-page: 1197 ident: bb0090 article-title: A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability publication-title: Ann. Bot. – volume: 39 start-page: 85 year: 2013 end-page: 92 ident: bb0125 article-title: Citrate adsorption can decrease soluble phosphate concentration in soils: experimental and modeling evidence publication-title: Appl. Geochem. – volume: 52 start-page: 1580 year: 1988 end-page: 1585 ident: bb0035 article-title: Phosphorus adsorption by kaolinite and montmorillonite. 1. Effect of time, ionic-strength, and pH publication-title: Soil Sci. Soc. Am. J. – volume: 23 start-page: 3680 year: 2007 end-page: 3689 ident: bb0370 article-title: Geometry, charge distribution, and surface speciation of phosphate on goethite publication-title: Langmuir – volume: 36 start-page: 187 year: 1985 end-page: 197 ident: bb0045 article-title: Describing the effect of time on sorption of phosphate by iron and aluminum hydroxides publication-title: Eur. J. Soil Sci. – volume: 85 start-page: 133 year: 2000 end-page: 152 ident: bb0320 article-title: Oxidation–reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites publication-title: Am. Mineral. – volume: 162 start-page: 89 year: 1994 end-page: 97 ident: bb0195 article-title: Desorption and plant-availability of phosphate sorbed by some important minerals publication-title: Plant Soil – volume: 213 start-page: 478 year: 2014 end-page: 484 ident: bb0515 article-title: Surface properties and phosphate adsorption of binary systems containing goethite and kaolinite publication-title: Geoderma – volume: 23 start-page: 25 year: 2007 end-page: 35 ident: bb0470 article-title: Agriculture as a source of phosphorus for eutrophication in southern Europe publication-title: Soil Use Manag. – volume: 66 start-page: 1788 year: 2002 end-page: 1796 ident: bb0495 article-title: Competitive sorption of arsenate and phosphate on different clay minerals and soils publication-title: Soil Sci. Soc. Am. J. – volume: 189 start-page: 304 year: 2012 end-page: 311 ident: bb0180 article-title: The pH dependence of phosphate sorption and desorption in Swedish agricultural soils publication-title: Geoderma – volume: 70 start-page: 541 year: 2006 end-page: 549 ident: bb0335 article-title: Kinetics of phosphate sorption to polygalacturonate-coated goethite publication-title: Soil Sci. Soc. Am. J. – volume: 7 start-page: 123 year: 1943 end-page: 133 ident: bb0040 article-title: Phosphate fixation by kaolinite and other clays as affected by pH, phosphate concentration, and time of contact publication-title: Soil Sci. Soc. Am. J. – volume: 44 start-page: 609 year: 1996 end-page: 623 ident: bb0325 article-title: Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite publication-title: Clay Clay Miner. – volume: 349 start-page: 121 year: 2011 end-page: 156 ident: bb0380 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant Soil – volume: 54 start-page: 1007 year: 1990 end-page: 1012 ident: bb0455 article-title: Phosphate adsorption and desorption by goethites differing in crystal morphology publication-title: Soil Sci. Soc. Am. J. – volume: 48 start-page: 1271 year: 2014 end-page: 1279 ident: bb0510 article-title: Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish ( publication-title: Environ. Sci. Technol. – volume: 55 start-page: 493 year: 2007 end-page: 512 ident: bb0300 article-title: Roots of the second green revolution publication-title: Aust. J. Bot. – volume: 56 start-page: 982 year: 1992 end-page: 990 ident: bb0140 article-title: Association of microcrystalline goethite and humic-acid in some oxisols from Brazil publication-title: Soil Sci. Soc. Am. J. – volume: 31 start-page: 525 year: 2000 end-page: 532 ident: bb0145 article-title: Effect of maize root mucilage on phosphate adsorption and exchangeability on a synthetic ferrihydrite publication-title: Biol. Fertil. Soils – volume: 175 start-page: 417 year: 2010 end-page: 425 ident: bb0155 article-title: Humic (organic matter)–Al(Fe)–phosphate complexes: an underestimated phosphate form in soils and source of plant-available phosphate publication-title: Soil Sci. – volume: 76 start-page: 55 year: 1980 end-page: 66 ident: bb0480 article-title: Reaction of phosphate with gibbsite (Al(OH)3) beyond the adsorption maximum publication-title: J. Colloid Interface Sci. – volume: 46 start-page: 90 year: 2014 end-page: 94 ident: bb0130 article-title: Reply to the comment by JP Gustafsson and D. G. Lumsdon on “Citrate adsorption can decrease soluble phosphate concentration in soils: Results of theoretical modeling” by M. Duputel, N. Devau, M. Brossard, B. Jaillard, DL Jones, P. Hinsinger, and F. Gerard publication-title: Appl. Geochem. – volume: 39 start-page: 675 year: 2012 end-page: 684 ident: bb0025 article-title: Fe K-edge XAFS spectra of phyllosilicates of varying crystallinity publication-title: Phys. Chem. Miner. – volume: 50 start-page: 217 year: 2002 end-page: 222 ident: bb0410 article-title: Role of iron oxides in the phosphate adsorption properties of kaolinites from the Ivory Coast publication-title: Clay Clay Miner. – volume: 285 start-page: 476 year: 2005 end-page: 486 ident: bb0015 article-title: Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface publication-title: J. Colloid Interface Sci. – volume: 77 start-page: 25 year: 2006 end-page: 56 ident: bb0340 article-title: Stabilization of soil organic matter: association with minerals or chemical recalcitrance? publication-title: Biogeochemistry – volume: 48 start-page: 101 year: 1997 end-page: 114 ident: bb0435 article-title: Effects of crystallinity of goethite. 2. Rates of sorption and desorption of phosphate publication-title: Eur. J. Soil Sci. – volume: 45 start-page: 45 year: 1994 end-page: 51 ident: bb0465 article-title: Phosphate sorption by natural hematites publication-title: Eur. J. Soil Sci. – volume: 45 start-page: 8420 year: 2011 end-page: 8428 ident: bb0520 article-title: Competitive and synergistic effects in ph dependent phosphate adsorption in soils: LCD modeling publication-title: Environ. Sci. Technol. – volume: 179 start-page: 244 year: 2010 end-page: 250 ident: bb0525 article-title: Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron–aluminum pillared bentonites publication-title: J. Hazard. Mater. – volume: 71 start-page: 1926 year: 2007 end-page: 1933 ident: bb0430 article-title: Mineral and organic matter controls on the sorption of macronutrient anions in variable-charge soils publication-title: Soil Sci. Soc. Am. J. – volume: 92 start-page: 260 year: 2012 end-page: 264 ident: bb0295 article-title: Comment on “Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils” by Nicolas Devau et al. (2011) publication-title: Geochim. Cosmochim. Acta – volume: 75 start-page: 2911 year: 2011 end-page: 2923 ident: bb0420 article-title: Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling publication-title: Geochim. Cosmochim. Acta – volume: 48 start-page: 473 year: 1997 end-page: 481 ident: bb0150 article-title: Availability to plants of phosphate adsorbed on goethite: experiment and simulation publication-title: Eur. J. Soil Sci. – volume: 75 start-page: 2980 year: 2011 end-page: 2996 ident: bb0095 article-title: Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils publication-title: Geochim. Cosmochim. Acta – volume: 64 start-page: 1347 year: 2000 end-page: 1355 ident: bb0110 article-title: Adsorption of phosphate and tartrate on hydroxy-oxalate precipitates publication-title: Soil Sci. Soc. Am. J. – volume: 17 start-page: 212 year: 1966 end-page: 228 ident: bb0350 article-title: The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboehmite. Part I: the isotherms and the effect of pH on adsorption publication-title: Eur. J. Soil Sci. – volume: 25 start-page: 4450 year: 2009 end-page: 4461 ident: bb0235 article-title: The maximum of phosphate adsorption at pH publication-title: Langmuir – volume: 47 start-page: 10322 year: 2013 end-page: 10331 ident: bb0500 article-title: Effect of ferrihydrite crystallite size on phosphate adsorption reactivity publication-title: Environ. Sci. Technol. – volume: 38 start-page: 71 year: 2003 end-page: 94 ident: bb0190 article-title: Properties of soil kaolins from Thailand publication-title: Clay Miner. – volume: 418 start-page: 671 year: 2002 end-page: 677 ident: bb0450 article-title: Agricultural sustainability and intensive production practices publication-title: Nature – volume: 23 start-page: 177 year: 1972 end-page: 192 ident: bb0220 article-title: Anion adsorption by goethite and gibbsite. I. The role of the proton in determining adsorption envelopes publication-title: Eur. J. Soil Sci. – volume: 30 start-page: 147 year: 1979 end-page: 153 ident: bb0390 article-title: Uranium accumulation in soils from long-continued applications of super-phosphate publication-title: Eur. J. Soil Sci. – volume: 53 start-page: 219 year: 1999 end-page: 227 ident: bb0475 article-title: Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals publication-title: Nutr. Cycl. Agroecosyst. – volume: 74 start-page: 41 year: 2010 end-page: 58 ident: bb0210 article-title: Nanoparticles in natural systems I: the effective reactive surface area of the natural oxide fraction in field samples publication-title: Geochim. Cosmochim. Acta – volume: 209 start-page: 15 year: 2013 end-page: 21 ident: bb0400 article-title: The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide publication-title: Geoderma – volume: 348 start-page: 203 year: 2011 end-page: 218 ident: bb0100 article-title: Root-induced processes controlling phosphate availability in soils with contrasted P-fertilized treatments publication-title: Plant Soil – volume: 43 start-page: 437 year: 1973 end-page: 448 ident: bb0055 article-title: Physical and chemical adsorption of ions in the electrical double layer on hematite (α-Fe publication-title: J. Colloid Interface Sci. – volume: 25 start-page: 347 year: 1998 end-page: 365 ident: bb0315 article-title: Polarized EXAFS, distance-valence least-squares modeling (DVLS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite publication-title: Phys. Chem. Miner. – volume: 30 start-page: 536 year: 1996 end-page: 541 ident: bb0530 article-title: Adsorption of phosphate on manganese dioxide in seawater publication-title: Environ. Sci. Technol. – volume: 124 start-page: 410 year: 2013 end-page: 417 ident: bb0105 article-title: Reply to the comment by D.G. Lumsdon on “Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils” by N. Devau, P. Hinsinger, E. Le Cadre, B. Colomb and F. Gérard publication-title: Geochim. Cosmochim. Acta – volume: 26 start-page: 257 year: 1975 end-page: 266 ident: bb0375 article-title: Phosphate adsorption by synthetic amorphous aluminosilicates publication-title: Eur. J. Soil Sci. – volume: 230 start-page: 12 year: 2000 end-page: 21 ident: bb0280 article-title: Distinguishing adsorption and surface precipitation of phosphate on goethite publication-title: J. Colloid Interface Sci. – volume: 30 start-page: 697 year: 1979 end-page: 707 ident: bb0310 article-title: Desorption of phosphate from goethite publication-title: Eur. J. Soil Sci. – volume: 4 start-page: 4298 year: 2011 end-page: 4305 ident: bb0270 article-title: Phosphate adsorption on the iron oxyhydroxides goethite (alpha-FeOOH), akaganeite (beta-FeOOH), and lepidocrocite (gamma-FeOOH): a P-31 NMR Study publication-title: Energy Environ. Sci. – volume: 43 start-page: 421 year: 1973 end-page: 439 ident: bb0060 article-title: Adsorption of phosphate on alumina and kaolinite from dilute aqueous solutions publication-title: J. Colloid Interface Sci. – volume: 32 start-page: 335 year: 2003 end-page: 343 ident: bb0285 article-title: Spatial analysis of phosphorus sorption capacity in a semiarid altered wetland publication-title: J. Environ. Qual. – volume: 49 start-page: 1149 year: 1985 end-page: 1153 ident: bb0005 article-title: Effect of aluminum substitution in goethite on phosphorus adsorption. 2. Rate of adsorption publication-title: Soil Sci. Soc. Am. J. – volume: 12 start-page: 2969 year: 1996 end-page: 2975 ident: bb0275 article-title: Surface complexation and precipitation at the H publication-title: Langmuir – volume: 96 start-page: 5995 year: 1999 end-page: 6000 ident: bb0445 article-title: Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 53 start-page: 178 year: 1975 end-page: 186 ident: bb0230 article-title: Adsorption of phosphate at the hydrous γ-Al publication-title: J. Colloid Interface Sci. – volume: 178 start-page: 1 year: 2013 end-page: 11 ident: bb0505 article-title: Characteristics of phosphate adsorption–desorption onto ferrihydrite: comparison with well-crystalline Fe (Hydr)oxides publication-title: Soil Sci. – volume: 3 start-page: 2027 year: 2012 end-page: 2049 ident: bb0070 article-title: Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security publication-title: Sustainability – volume: 52 start-page: 639 year: 2001 end-page: 653 ident: bb0170 article-title: Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil publication-title: Eur. J. Soil Sci. – volume: 43 start-page: 645 year: 1992 end-page: 667 ident: bb0415 article-title: Properties of soil kaolinites from South-Western Australia publication-title: Eur. J. Soil Sci. – volume: 19 start-page: 292 year: 2009 end-page: 305 ident: bb0075 article-title: The story of phosphorus: global food security and food for thought publication-title: Glob. Environ. Change-Human Policy Dimens. – volume: 224 year: 2013 ident: bb0245 article-title: Phosphate adsorption from aqueous solutions onto goethite, bentonite, and bentonite–goethite system publication-title: Water Air Soil Pollut. – volume: 40 start-page: 341 year: 1992 end-page: 346 ident: bb0425 article-title: Mössbauer spectra of soil kaolins from south-western Australia publication-title: Clay Clay Miner. – volume: 49 start-page: 1142 year: 1985 end-page: 1149 ident: bb0010 article-title: Effect of aluminum substitution in goethite on phosphorus adsorption. 1. Adsorption and isotopic exchange publication-title: Soil Sci. Soc. Am. J. – volume: 61 start-page: 784 year: 1997 end-page: 793 ident: bb0200 article-title: Ionic strength effects on sulfate and phosphate adsorption on γ-alumina and kaolinite: triple-layer model publication-title: Soil Sci. Soc. Am. J. – volume: 58 start-page: 1261 year: 1994 end-page: 1269 ident: bb0065 article-title: Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites publication-title: Geochim. Cosmochim. Acta – volume: 69 start-page: 77 year: 2005 end-page: 86 ident: bb0160 article-title: Phosphate sorption in aluminum- and iron-rich humus soils publication-title: Soil Sci. Soc. Am. J. – volume: 82 start-page: 1733 year: 1986 end-page: 1743 ident: bb0440 article-title: Adsorption of phosphate on calcite publication-title: J. Chem. Soc., Faraday Trans. 1 – volume: 47 start-page: 7269 year: 2013 end-page: 7276 ident: bb0080 article-title: Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling publication-title: Environ. Sci. Technol. – volume: 168 start-page: 44 year: 2012 end-page: 53 ident: bb0255 article-title: Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review publication-title: Environ. Pollut. – volume: 84 start-page: 822 year: 2011 end-page: 831 ident: bb0405 article-title: Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use publication-title: Chemosphere – volume: 35 start-page: 120 year: 2013 end-page: 131 ident: bb0120 article-title: Citrate adsorption can decrease soluble phosphate concentration in soils: results of theoretical modeling publication-title: Appl. Geochem. – volume: 70 start-page: 337 year: 2006 end-page: 346 ident: bb0250 article-title: Mutual interactions of sulfate, oxalate, citrate, and phosphate on synthetic and natural allophanes publication-title: Soil Sci. Soc. Am. J. – volume: 275 start-page: 53 year: 2004 end-page: 60 ident: bb0260 article-title: Equilibrium sorption of heavy metals and phosphate from single- and binary-sorbate solutions on goethite publication-title: J. Colloid Interface Sci. – volume: 54 start-page: 62 year: 2006 end-page: 66 ident: bb0115 article-title: Baseline studies of The Clay Minerals Society source clays: specific surface area by the Brunauer Emmett Teller (BET) method publication-title: Clay Clay Miner. – volume: 24 start-page: 2163 year: 2009 end-page: 2174 ident: bb0085 article-title: Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches publication-title: Appl. Geochem. – volume: 77 start-page: 15 year: 2007 end-page: 27 ident: bb0205 article-title: Phosphorus fractions and adsorption characteristics in grassland soils of varied soil phosphorus status publication-title: Nutr. Cycl. Agroecosyst. – volume: 31 start-page: 230 year: 1983 end-page: 232 ident: bb0050 article-title: Effect of surface-area and mineralogy of iron-oxides on their surface-charge and anion-adsorption properties publication-title: Clay Clay Miner. – volume: 30 start-page: 44 year: 2003 end-page: 53 ident: bb0485 article-title: Iron distribution in the octahedral sheet of dioctahedral smectites. An FeK-edge X-ray absorption spectroscopy study publication-title: Phys. Chem. Miner. – volume: 156 start-page: 1078 year: 2011 end-page: 1086 ident: bb0225 article-title: P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species publication-title: Plant Physiol. – volume: 35 start-page: 3369 year: 2001 end-page: 3374 ident: bb0385 article-title: Interaction between calcium and phosphate adsorption on goethite publication-title: Environ. Sci. Technol. – volume: 173 start-page: 104 year: 2012 end-page: 110 ident: bb0395 article-title: Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation publication-title: Geoderma – volume: 192 start-page: 119 year: 1997 end-page: 128 ident: bb0240 article-title: Phosphate adsorption on hematite, kaolinite, and kaolinite–hematite (k–h) systems as described by a constant capacitance model publication-title: J. Colloid Interface Sci. – volume: 41 start-page: 870 year: 1977 end-page: 876 ident: bb0490 article-title: Reactions of aluminosilicates, aluminum hydrous oxides, and aluminum-oxide with ortho-phosphate — formation of X-ray amorphous analogs of variscite and montebrasite publication-title: Soil Sci. Soc. Am. J. – volume: 37 start-page: 509 year: 2002 end-page: 515 ident: bb0165 article-title: Competitive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides publication-title: Clay Miner. – volume: 278 start-page: 46 year: 2006 end-page: 52 ident: bb0540 article-title: Sorption of thorium(W) ions on gibbsite: effects of contact time, pH, ionic strength, concentration, phosphate and fulvic acid publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 37 start-page: 671 year: 2002 end-page: 685 ident: bb0185 article-title: Iron in soil kaolins from Indonesia and western Australia publication-title: Clay Miner. – volume: 53 start-page: 20 year: 2011 end-page: 26 ident: bb0305 article-title: Specific surface area of clay minerals: comparison between atomic force microscopy measurements and bulk-gas (N-2) and -liquid (EGME) adsorption methods publication-title: Appl. Clay Sci. – volume: 219 start-page: 48 year: 1999 end-page: 61 ident: bb0290 article-title: A comparative study of surface acid–base characteristics of natural illites from different origins publication-title: J. Colloid Interface Sci. – volume: 17 start-page: 230 year: 1966 end-page: 237 ident: bb0345 article-title: The mechanism of phosphate adsorption by kaolinite, gibbsite and pseudoboehmite. Part II. The location of the adsorption sites publication-title: Eur. J. Soil Sci. – volume: 43 start-page: 421 year: 1973 ident: 10.1016/j.geoderma.2015.08.036_bb0060 article-title: Adsorption of phosphate on alumina and kaolinite from dilute aqueous solutions publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(73)90388-3 – volume: 168 start-page: 44 year: 2012 ident: 10.1016/j.geoderma.2015.08.036_bb0255 article-title: Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2012.03.052 – volume: 418 start-page: 671 year: 2002 ident: 10.1016/j.geoderma.2015.08.036_bb0450 article-title: Agricultural sustainability and intensive production practices publication-title: Nature doi: 10.1038/nature01014 – volume: 173 start-page: 104 year: 2012 ident: 10.1016/j.geoderma.2015.08.036_bb0395 article-title: Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation publication-title: Geoderma doi: 10.1016/j.geoderma.2011.12.030 – volume: 275 start-page: 53 issue: 1 year: 2004 ident: 10.1016/j.geoderma.2015.08.036_bb0260 article-title: Equilibrium sorption of heavy metals and phosphate from single- and binary-sorbate solutions on goethite publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.01.035 – volume: 48 start-page: 101 issue: 1 year: 1997 ident: 10.1016/j.geoderma.2015.08.036_bb0435 article-title: Effects of crystallinity of goethite. 2. Rates of sorption and desorption of phosphate publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1997.tb00189.x – volume: 25 start-page: 347 issue: 5 year: 1998 ident: 10.1016/j.geoderma.2015.08.036_bb0315 article-title: Polarized EXAFS, distance-valence least-squares modeling (DVLS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite publication-title: Phys. Chem. Miner. doi: 10.1007/s002690050125 – volume: 224 issue: 3 year: 2013 ident: 10.1016/j.geoderma.2015.08.036_bb0245 article-title: Phosphate adsorption from aqueous solutions onto goethite, bentonite, and bentonite–goethite system publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-012-1374-3 – volume: 4 start-page: 4298 issue: 10 year: 2011 ident: 10.1016/j.geoderma.2015.08.036_bb0270 article-title: Phosphate adsorption on the iron oxyhydroxides goethite (alpha-FeOOH), akaganeite (beta-FeOOH), and lepidocrocite (gamma-FeOOH): a P-31 NMR Study publication-title: Energy Environ. Sci. doi: 10.1039/c1ee02093e – volume: 3 start-page: 2027 issue: 10 year: 2012 ident: 10.1016/j.geoderma.2015.08.036_bb0070 article-title: Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security publication-title: Sustainability doi: 10.3390/su3102027 – volume: 74 start-page: 41 issue: 1 year: 2010 ident: 10.1016/j.geoderma.2015.08.036_bb0210 article-title: Nanoparticles in natural systems I: the effective reactive surface area of the natural oxide fraction in field samples publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.10.018 – volume: 7 start-page: 123 year: 1943 ident: 10.1016/j.geoderma.2015.08.036_bb0040 article-title: Phosphate fixation by kaolinite and other clays as affected by pH, phosphate concentration, and time of contact publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1943.036159950007000C0019x – volume: 209 start-page: 15 year: 2013 ident: 10.1016/j.geoderma.2015.08.036_bb0400 article-title: The sorption of organic carbon onto differing clay minerals in the presence and absence of hydrous iron oxide publication-title: Geoderma doi: 10.1016/j.geoderma.2013.05.026 – volume: 285 start-page: 476 year: 2005 ident: 10.1016/j.geoderma.2015.08.036_bb0015 article-title: Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.12.032 – volume: 17 start-page: 230 issue: 2 year: 1966 ident: 10.1016/j.geoderma.2015.08.036_bb0345 article-title: The mechanism of phosphate adsorption by kaolinite, gibbsite and pseudoboehmite. Part II. The location of the adsorption sites publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1966.tb01468.x – volume: 10 start-page: 485 issue: 5 year: 1976 ident: 10.1016/j.geoderma.2015.08.036_bb0135 article-title: Phosphate adsorption reactions with clay-minerals publication-title: Environ. Sci. Technol. doi: 10.1021/es60116a001 – volume: 66 start-page: 1788 issue: 6 year: 2002 ident: 10.1016/j.geoderma.2015.08.036_bb0495 article-title: Competitive sorption of arsenate and phosphate on different clay minerals and soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.1788 – volume: 85 start-page: 133 issue: 1 year: 2000 ident: 10.1016/j.geoderma.2015.08.036_bb0320 article-title: Oxidation–reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites publication-title: Am. Mineral. doi: 10.2138/am-2000-0114 – volume: 19 start-page: 292 issue: 2 year: 2009 ident: 10.1016/j.geoderma.2015.08.036_bb0075 article-title: The story of phosphorus: global food security and food for thought publication-title: Glob. Environ. Change-Human Policy Dimens. doi: 10.1016/j.gloenvcha.2008.10.009 – volume: 74 start-page: 59 issue: 1 year: 2010 ident: 10.1016/j.geoderma.2015.08.036_bb0215 article-title: Nanoparticles in natural systems II: the natural oxide fraction at interaction with natural organic matter and phosphate publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.10.019 – volume: 30 start-page: 44 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2015.08.036_bb0485 article-title: Iron distribution in the octahedral sheet of dioctahedral smectites. An FeK-edge X-ray absorption spectroscopy study publication-title: Phys. Chem. Miner. doi: 10.1007/s00269-002-0286-y – volume: 24 start-page: 2163 year: 2009 ident: 10.1016/j.geoderma.2015.08.036_bb0085 article-title: Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2009.09.020 – volume: 33 start-page: 2208 issue: 10 year: 2014 ident: 10.1016/j.geoderma.2015.08.036_bb0360 article-title: Modelling oxyanion adsorption on ferralic soil, part 1: parameter validation with phosphate ion publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.2612 – volume: 44 start-page: 609 issue: 5 year: 1996 ident: 10.1016/j.geoderma.2015.08.036_bb0325 article-title: Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite publication-title: Clay Clay Miner. doi: 10.1346/CCMN.1996.0440504 – volume: 31 start-page: 230 year: 1983 ident: 10.1016/j.geoderma.2015.08.036_bb0050 article-title: Effect of surface-area and mineralogy of iron-oxides on their surface-charge and anion-adsorption properties publication-title: Clay Clay Miner. doi: 10.1346/CCMN.1983.0310309 – volume: 75 start-page: 2980 year: 2011 ident: 10.1016/j.geoderma.2015.08.036_bb0095 article-title: Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.02.034 – volume: 32 start-page: 335 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2015.08.036_bb0285 article-title: Spatial analysis of phosphorus sorption capacity in a semiarid altered wetland publication-title: J. Environ. Qual. doi: 10.2134/jeq2003.3350 – volume: 40 start-page: 341 year: 1992 ident: 10.1016/j.geoderma.2015.08.036_bb0425 article-title: Mössbauer spectra of soil kaolins from south-western Australia publication-title: Clay Clay Miner. doi: 10.1346/CCMN.1992.0400315 – volume: 45 start-page: 45 issue: 1 year: 1994 ident: 10.1016/j.geoderma.2015.08.036_bb0465 article-title: Phosphate sorption by natural hematites publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1994.tb00485.x – volume: 53 start-page: 219 year: 1999 ident: 10.1016/j.geoderma.2015.08.036_bb0475 article-title: Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/A:1009709005147 – volume: 54 start-page: 62 issue: 1 year: 2006 ident: 10.1016/j.geoderma.2015.08.036_bb0115 article-title: Baseline studies of The Clay Minerals Society source clays: specific surface area by the Brunauer Emmett Teller (BET) method publication-title: Clay Clay Miner. doi: 10.1346/CCMN.2006.0540108 – volume: 278 start-page: 46 issue: 1–3 year: 2006 ident: 10.1016/j.geoderma.2015.08.036_bb0540 article-title: Sorption of thorium(W) ions on gibbsite: effects of contact time, pH, ionic strength, concentration, phosphate and fulvic acid publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 48 start-page: 1271 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2015.08.036_bb0510 article-title: Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio) publication-title: Environ. Sci. Technol. doi: 10.1021/es404258h – volume: 69 start-page: 77 issue: 1 year: 2005 ident: 10.1016/j.geoderma.2015.08.036_bb0160 article-title: Phosphate sorption in aluminum- and iron-rich humus soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0077a – volume: 60 start-page: 121 issue: 1 year: 1996 ident: 10.1016/j.geoderma.2015.08.036_bb0330 article-title: Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1996.03615995006000010020x – volume: 30 start-page: 147 issue: 1 year: 1979 ident: 10.1016/j.geoderma.2015.08.036_bb0390 article-title: Uranium accumulation in soils from long-continued applications of super-phosphate publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1979.tb00972.x – volume: 84 start-page: 822 issue: 6 year: 2011 ident: 10.1016/j.geoderma.2015.08.036_bb0405 article-title: Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.01.065 – volume: 105 start-page: 1183 year: 2010 ident: 10.1016/j.geoderma.2015.08.036_bb0090 article-title: A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability publication-title: Ann. Bot. doi: 10.1093/aob/mcq098 – volume: 40 start-page: 14 issue: 1 year: 1992 ident: 10.1016/j.geoderma.2015.08.036_bb0460 article-title: Fast and slow phosphate sorption by goethite-rich natural materials publication-title: Clay Clay Miner. doi: 10.1346/CCMN.1992.0400103 – volume: 46 start-page: 85 year: 2014 ident: 10.1016/j.geoderma.2015.08.036_bb0175 article-title: Comment on “Citrate adsorption can decrease soluble phosphate concentration in soils: Results of theoretical modelling” by Marek Duputel, Nicolas Devau, Michel Brossard, Benoit Jaillard, Davey L. Jones, Philippe Hinsinger and Frederic Gerard (2013) publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2014.02.006 – volume: 54 start-page: 1007 issue: 4 year: 1990 ident: 10.1016/j.geoderma.2015.08.036_bb0455 article-title: Phosphate adsorption and desorption by goethites differing in crystal morphology publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1990.03615995005400040012x – volume: 96 start-page: 5995 issue: 11 year: 1999 ident: 10.1016/j.geoderma.2015.08.036_bb0445 article-title: Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.11.5995 – volume: 124 start-page: 410 year: 2013 ident: 10.1016/j.geoderma.2015.08.036_bb0105 article-title: Reply to the comment by D.G. Lumsdon on “Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils” by N. Devau, P. Hinsinger, E. Le Cadre, B. Colomb and F. Gérard publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.03.044 – volume: 38 start-page: 71 issue: 1 year: 2003 ident: 10.1016/j.geoderma.2015.08.036_bb0190 article-title: Properties of soil kaolins from Thailand publication-title: Clay Miner. doi: 10.1180/0009855033810080 – volume: 43 start-page: 645 year: 1992 ident: 10.1016/j.geoderma.2015.08.036_bb0415 article-title: Properties of soil kaolinites from South-Western Australia publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1992.tb00165.x – volume: 17 start-page: 212 year: 1966 ident: 10.1016/j.geoderma.2015.08.036_bb0350 article-title: The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboehmite. Part I: the isotherms and the effect of pH on adsorption publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1966.tb01467.x – volume: 50 start-page: 217 issue: 2 year: 2002 ident: 10.1016/j.geoderma.2015.08.036_bb0410 article-title: Role of iron oxides in the phosphate adsorption properties of kaolinites from the Ivory Coast publication-title: Clay Clay Miner. doi: 10.1346/000986002760832810 – volume: 49 start-page: 1149 issue: 5 year: 1985 ident: 10.1016/j.geoderma.2015.08.036_bb0005 article-title: Effect of aluminum substitution in goethite on phosphorus adsorption. 2. Rate of adsorption publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1985.03615995004900050015x – volume: 56 start-page: 982 issue: 3 year: 1992 ident: 10.1016/j.geoderma.2015.08.036_bb0140 article-title: Association of microcrystalline goethite and humic-acid in some oxisols from Brazil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1992.03615995005600030050x – volume: 23 start-page: 177 year: 1972 ident: 10.1016/j.geoderma.2015.08.036_bb0220 article-title: Anion adsorption by goethite and gibbsite. I. The role of the proton in determining adsorption envelopes publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1972.tb01652.x – volume: 179 start-page: 244 issue: 1–3 year: 2010 ident: 10.1016/j.geoderma.2015.08.036_bb0525 article-title: Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron–aluminum pillared bentonites publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.02.086 – volume: 52 start-page: 647 issue: 3 year: 1988 ident: 10.1016/j.geoderma.2015.08.036_bb0030 article-title: Phosphate adsorption by aluminous hematites of different shapes publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1988.03615995005200030009x – volume: 52 start-page: 1580 year: 1988 ident: 10.1016/j.geoderma.2015.08.036_bb0035 article-title: Phosphorus adsorption by kaolinite and montmorillonite. 1. Effect of time, ionic-strength, and pH publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1988.03615995005200060011x – volume: 55 start-page: 493 year: 2007 ident: 10.1016/j.geoderma.2015.08.036_bb0300 article-title: Roots of the second green revolution publication-title: Aust. J. Bot. doi: 10.1071/BT06118 – volume: 26 start-page: 257 issue: 3 year: 1975 ident: 10.1016/j.geoderma.2015.08.036_bb0375 article-title: Phosphate adsorption by synthetic amorphous aluminosilicates publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1975.tb01950.x – volume: 77 start-page: 15 issue: 1 year: 2007 ident: 10.1016/j.geoderma.2015.08.036_bb0205 article-title: Phosphorus fractions and adsorption characteristics in grassland soils of varied soil phosphorus status publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-006-6687-4 – volume: 70 start-page: 541 issue: 2 year: 2006 ident: 10.1016/j.geoderma.2015.08.036_bb0335 article-title: Kinetics of phosphate sorption to polygalacturonate-coated goethite publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0250 – volume: 30 start-page: 536 issue: 2 year: 1996 ident: 10.1016/j.geoderma.2015.08.036_bb0530 article-title: Adsorption of phosphate on manganese dioxide in seawater publication-title: Environ. Sci. Technol. doi: 10.1021/es950290x – volume: 58 start-page: 1261 issue: 4 year: 1994 ident: 10.1016/j.geoderma.2015.08.036_bb0065 article-title: Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(94)90380-8 – volume: vol. 94 start-page: 135 year: 2007 ident: 10.1016/j.geoderma.2015.08.036_bb0020 article-title: Phosphate reaction dynamics in soils and soil components: a multiscale approach doi: 10.1016/S0065-2113(06)94003-6 – volume: 175 start-page: 417 issue: 9 year: 2010 ident: 10.1016/j.geoderma.2015.08.036_bb0155 article-title: Humic (organic matter)–Al(Fe)–phosphate complexes: an underestimated phosphate form in soils and source of plant-available phosphate publication-title: Soil Sci. doi: 10.1097/SS.0b013e3181f1b4dd – volume: 92 start-page: 260 year: 2012 ident: 10.1016/j.geoderma.2015.08.036_bb0295 article-title: Comment on “Fertilization and pH effects on processes and mechanisms controlling dissolved inorganic phosphorus in soils” by Nicolas Devau et al. (2011) publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2012.05.042 – volume: 64 start-page: 1347 year: 2000 ident: 10.1016/j.geoderma.2015.08.036_bb0110 article-title: Adsorption of phosphate and tartrate on hydroxy-oxalate precipitates publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.6441347x – volume: 162 start-page: 89 issue: 1 year: 1994 ident: 10.1016/j.geoderma.2015.08.036_bb0195 article-title: Desorption and plant-availability of phosphate sorbed by some important minerals publication-title: Plant Soil doi: 10.1007/BF01416093 – volume: 48 start-page: 151 year: 1968 ident: 10.1016/j.geoderma.2015.08.036_bb0365 article-title: Influence of cation saturation on phosphorus adsorption by selected clay minerals publication-title: Can. J. Soil Sci. doi: 10.4141/cjss68-018 – volume: 48 start-page: 473 issue: 3 year: 1997 ident: 10.1016/j.geoderma.2015.08.036_bb0150 article-title: Availability to plants of phosphate adsorbed on goethite: experiment and simulation publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.1997.00090.x – volume: 219 start-page: 48 issue: 1 year: 1999 ident: 10.1016/j.geoderma.2015.08.036_bb0290 article-title: A comparative study of surface acid–base characteristics of natural illites from different origins publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1999.6448 – volume: 53 start-page: 178 year: 1975 ident: 10.1016/j.geoderma.2015.08.036_bb0230 article-title: Adsorption of phosphate at the hydrous γ-Al2O3–electrolyte interface publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(75)90004-1 – volume: 39 start-page: 675 issue: 8 year: 2012 ident: 10.1016/j.geoderma.2015.08.036_bb0025 article-title: Fe K-edge XAFS spectra of phyllosilicates of varying crystallinity publication-title: Phys. Chem. Miner. doi: 10.1007/s00269-012-0521-0 – volume: 36 start-page: 187 issue: 2 year: 1985 ident: 10.1016/j.geoderma.2015.08.036_bb0045 article-title: Describing the effect of time on sorption of phosphate by iron and aluminum hydroxides publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1985.tb00323.x – volume: 43 start-page: 437 year: 1973 ident: 10.1016/j.geoderma.2015.08.036_bb0055 article-title: Physical and chemical adsorption of ions in the electrical double layer on hematite (α-Fe2O3) publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(73)90389-5 – volume: 189 start-page: 304 year: 2012 ident: 10.1016/j.geoderma.2015.08.036_bb0180 article-title: The pH dependence of phosphate sorption and desorption in Swedish agricultural soils publication-title: Geoderma doi: 10.1016/j.geoderma.2012.05.014 – volume: 348 start-page: 203 year: 2011 ident: 10.1016/j.geoderma.2015.08.036_bb0100 article-title: Root-induced processes controlling phosphate availability in soils with contrasted P-fertilized treatments publication-title: Plant Soil doi: 10.1007/s11104-011-0935-3 – volume: 43 start-page: 283 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2015.08.036_bb0265 article-title: Review of genotoxicity studies of glyphosate and glyphosate-based formulations publication-title: Crit. Rev. Toxicol. doi: 10.3109/10408444.2013.770820 – volume: 12 start-page: 2969 issue: 12 year: 1996 ident: 10.1016/j.geoderma.2015.08.036_bb0275 article-title: Surface complexation and precipitation at the H+-orthophosphate-aged gamma-Al2O3/water interface publication-title: Langmuir doi: 10.1021/la9515074 – volume: 35 start-page: 120 year: 2013 ident: 10.1016/j.geoderma.2015.08.036_bb0120 article-title: Citrate adsorption can decrease soluble phosphate concentration in soils: results of theoretical modeling publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2013.03.018 – volume: 20 start-page: 3255 issue: 12 year: 2005 ident: 10.1016/j.geoderma.2015.08.036_bb0535 article-title: Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate publication-title: J. Mater. Res. doi: 10.1557/jmr.2005.0403 – volume: 192 start-page: 119 year: 1997 ident: 10.1016/j.geoderma.2015.08.036_bb0240 article-title: Phosphate adsorption on hematite, kaolinite, and kaolinite–hematite (k–h) systems as described by a constant capacitance model publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1997.4970 – volume: 213 start-page: 478 year: 2014 ident: 10.1016/j.geoderma.2015.08.036_bb0515 article-title: Surface properties and phosphate adsorption of binary systems containing goethite and kaolinite publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.001 – volume: 52 start-page: 639 year: 2001 ident: 10.1016/j.geoderma.2015.08.036_bb0170 article-title: Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.2001.00414.x – volume: 37 start-page: 671 issue: 4 year: 2002 ident: 10.1016/j.geoderma.2015.08.036_bb0185 article-title: Iron in soil kaolins from Indonesia and western Australia publication-title: Clay Miner. doi: 10.1180/0009855023740069 – volume: 178 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.geoderma.2015.08.036_bb0505 article-title: Characteristics of phosphate adsorption–desorption onto ferrihydrite: comparison with well-crystalline Fe (Hydr)oxides publication-title: Soil Sci. doi: 10.1097/SS.0b013e31828683f8 – volume: 77 start-page: 25 issue: 1 year: 2006 ident: 10.1016/j.geoderma.2015.08.036_bb0340 article-title: Stabilization of soil organic matter: association with minerals or chemical recalcitrance? publication-title: Biogeochemistry doi: 10.1007/s10533-005-0712-6 – volume: 53 start-page: 20 issue: 1 year: 2011 ident: 10.1016/j.geoderma.2015.08.036_bb0305 article-title: Specific surface area of clay minerals: comparison between atomic force microscopy measurements and bulk-gas (N-2) and -liquid (EGME) adsorption methods publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2011.04.006 – volume: 30 start-page: 697 year: 1979 ident: 10.1016/j.geoderma.2015.08.036_bb0310 article-title: Desorption of phosphate from goethite publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1979.tb01019.x – volume: 61 start-page: 784 year: 1997 ident: 10.1016/j.geoderma.2015.08.036_bb0200 article-title: Ionic strength effects on sulfate and phosphate adsorption on γ-alumina and kaolinite: triple-layer model publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1997.03615995006100030011x – volume: 25 start-page: 4450 issue: 8 year: 2009 ident: 10.1016/j.geoderma.2015.08.036_bb0235 article-title: The maximum of phosphate adsorption at pH4.0: why it appears on aluminum oxides but not on iron oxides publication-title: Langmuir doi: 10.1021/la803302m – volume: 49 start-page: 1142 issue: 5 year: 1985 ident: 10.1016/j.geoderma.2015.08.036_bb0010 article-title: Effect of aluminum substitution in goethite on phosphorus adsorption. 1. Adsorption and isotopic exchange publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1985.03615995004900050014x – volume: 230 start-page: 12 year: 2000 ident: 10.1016/j.geoderma.2015.08.036_bb0280 article-title: Distinguishing adsorption and surface precipitation of phosphate on goethite publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.7072 – volume: 46 start-page: 90 year: 2014 ident: 10.1016/j.geoderma.2015.08.036_bb0130 article-title: Reply to the comment by JP Gustafsson and D. G. Lumsdon on “Citrate adsorption can decrease soluble phosphate concentration in soils: Results of theoretical modeling” by M. Duputel, N. Devau, M. Brossard, B. Jaillard, DL Jones, P. Hinsinger, and F. Gerard publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2014.02.011 – volume: 39 start-page: 85 year: 2013 ident: 10.1016/j.geoderma.2015.08.036_bb0125 article-title: Citrate adsorption can decrease soluble phosphate concentration in soils: experimental and modeling evidence publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2013.09.017 – volume: 71 start-page: 1926 issue: 6 year: 2007 ident: 10.1016/j.geoderma.2015.08.036_bb0430 article-title: Mineral and organic matter controls on the sorption of macronutrient anions in variable-charge soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0424 – volume: 82 start-page: 1733 year: 1986 ident: 10.1016/j.geoderma.2015.08.036_bb0440 article-title: Adsorption of phosphate on calcite publication-title: J. Chem. Soc., Faraday Trans. 1 doi: 10.1039/f19868201733 – volume: 349 start-page: 121 issue: 1–2 year: 2011 ident: 10.1016/j.geoderma.2015.08.036_bb0380 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant Soil doi: 10.1007/s11104-011-0950-4 – volume: 23 start-page: 25 year: 2007 ident: 10.1016/j.geoderma.2015.08.036_bb0470 article-title: Agriculture as a source of phosphorus for eutrophication in southern Europe publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.2007.00122.x – volume: 37 start-page: 509 issue: 3 year: 2002 ident: 10.1016/j.geoderma.2015.08.036_bb0165 article-title: Competitive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides publication-title: Clay Miner. doi: 10.1180/0009855023730049 – volume: 45 start-page: 8420 issue: 19 year: 2011 ident: 10.1016/j.geoderma.2015.08.036_bb0520 article-title: Competitive and synergistic effects in ph dependent phosphate adsorption in soils: LCD modeling publication-title: Environ. Sci. Technol. doi: 10.1021/es201844d – volume: 70 start-page: 337 issue: 2 year: 2006 ident: 10.1016/j.geoderma.2015.08.036_bb0250 article-title: Mutual interactions of sulfate, oxalate, citrate, and phosphate on synthetic and natural allophanes publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0080 – volume: 75 start-page: 2911 issue: 10 year: 2011 ident: 10.1016/j.geoderma.2015.08.036_bb0420 article-title: Sorption of phosphate onto calcite; results from batch experiments and surface complexation modeling publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.02.031 – volume: 76 start-page: 55 issue: 1 year: 1980 ident: 10.1016/j.geoderma.2015.08.036_bb0480 article-title: Reaction of phosphate with gibbsite (Al(OH)3) beyond the adsorption maximum publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(80)90270-2 – volume: 31 start-page: 525 issue: 6 year: 2000 ident: 10.1016/j.geoderma.2015.08.036_bb0145 article-title: Effect of maize root mucilage on phosphate adsorption and exchangeability on a synthetic ferrihydrite publication-title: Biol. Fertil. Soils doi: 10.1007/s003740000206 – volume: 47 start-page: 7269 issue: 13 year: 2013 ident: 10.1016/j.geoderma.2015.08.036_bb0080 article-title: Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling publication-title: Environ. Sci. Technol. doi: 10.1021/es400526q – volume: 23 start-page: 3680 year: 2007 ident: 10.1016/j.geoderma.2015.08.036_bb0370 article-title: Geometry, charge distribution, and surface speciation of phosphate on goethite publication-title: Langmuir doi: 10.1021/la062965n – volume: 35 start-page: 3369 year: 2001 ident: 10.1016/j.geoderma.2015.08.036_bb0385 article-title: Interaction between calcium and phosphate adsorption on goethite publication-title: Environ. Sci. Technol. doi: 10.1021/es000210b – volume: 41 start-page: 870 issue: 5 year: 1977 ident: 10.1016/j.geoderma.2015.08.036_bb0490 article-title: Reactions of aluminosilicates, aluminum hydrous oxides, and aluminum-oxide with ortho-phosphate — formation of X-ray amorphous analogs of variscite and montebrasite publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1977.03615995004100050011x – volume: 156 start-page: 1078 issue: 3 year: 2011 ident: 10.1016/j.geoderma.2015.08.036_bb0225 article-title: P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species publication-title: Plant Physiol. doi: 10.1104/pp.111.175331 – volume: 47 start-page: 10322 year: 2013 ident: 10.1016/j.geoderma.2015.08.036_bb0500 article-title: Effect of ferrihydrite crystallite size on phosphate adsorption reactivity publication-title: Environ. Sci. Technol. doi: 10.1021/es401301z |
SSID | ssj0017020 |
Score | 2.618373 |
SecondaryResourceType | review_article |
Snippet | There is a general consensus that adsorption/desorption (i.e. sorption) is the major process controlling dissolved PO4. However, many uncertainties exist with... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 213 |
SubjectTerms | adsorption aluminum aluminum oxide binding capacity desorption Earth Sciences Geochemistry Gibbsite Goethite Illite iron Kaolinite Montmorillonite phosphates Phosphorus rhizosphere Sciences of the Universe soil surface area uncertainty |
Title | Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils — A myth revisited |
URI | https://dx.doi.org/10.1016/j.geoderma.2015.08.036 https://www.proquest.com/docview/2116890394 https://hal.science/hal-01269249 |
Volume | 262 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELaW5QIHxK8oCyuDOBIaJ44TH6OKVfnbEyvtzXLiCc2qm1RNi9gL4iF4Qp6EGdepACHtgUtkWbbieOz5xvHMN4y91EpChsgVKbTnI1R4KqrIcc0JqFySAJYpUPjjqZqfyXfn2fkBm42xMORWGXT_Tqd7bR1qpmE2p6u2pRhfoXKEI9yznmGVIthlTqv89be9m4fI40DNKFRErX-LEr5AGVHCMc8_JDJP5empmv8JUDcW5Cn5l8L2KHRyl90J5iMvdyO8xw6gu89ul5_XgUIDHrB-trRX_LL1dNLDK05xbFOLOqjttpe8_9o6wFrbOe4vCbh3Vg9Zr_im56tFP6wWaILyoV97hcLbDsvtcuA_v__gJaf_oXztw9LRXn3Izk7efJrNo5BWIarTXG-iJqt14QqtEJZAaOufsc5tDGgM4q5srGtwm0JdpAj30iaN1UmTFZDXVSXT9BE77PoOHjNeOLQ_AOUKEpvKCrHfgtRxCllROacnLBvn0tSBc5xSXyzN6Fx2YUYZGJKBoZyYqZqw6b7fase6cW0PPYrK_LF-DELDtX1foGz3LyLC7Xn5wVAdwreiE-oXMWHPR9Eb3IF0rWI76LeDwSO0KvCbtXzyH4M4YrcSWqOxiET2lB1u1lt4hvbOpjr2C_qY3Szfvp-f_gIMCwCw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VcgAOFb8i_C4IbpjYznrtPXCIClVK055aqbdl7R03rlI7ipNCL4iH4E14I56Emc06AoTUA-olslZZxdmZ_eZbe-Ybxl4pKSDByBVI5PMBAp4MckpcsxHkNo4Br6lQeP9Ajo7Ex-PkeIP96GphKK3SY_8K0x1a-5G-X83-rKqoxjeSKYYj3LNOYdVnVu7BxWc8t7Xvdt-jkV_H8c6Hw-1R4FsLBMUgVYugTAqV2UxJhGaIlHGfoUpNCEiI0DNLY0t0VSiyAYY8YeLSqLhMMkiLPBf0FBRx_7pAuKC2CW-_rvNKojT0WpCRDOj2fitLPkWnoA5nTvAoSpx2qNOG_mdEvDah1My_IoQLezu32Zbnq3y4WpI7bAPqu-zW8GTuNTvgHmu2p-aCn1VOv7p9w6lwrm8Q9Kp6ecabL5UFHDW15e6tBHfZ8b7NFl80fDZp2tkEOS9vm7lDMF7VeF1NW_7z23c-5PQAls9dHTwS5Pvs6EoW-wHbrJsaHjKeWSQ8gI4EAr8qciQbBoQKB5BkubWqx5JuLXXhRc6p18ZUd9lsp7qzgSYbaGrCOZA91l_Pm61kPi6doTpT6T8cVmMsunTuS7Tt-odI4Xs0HGsaQ74g6Uh8HvXYi870Grc8vccxNTTLVuOZXWb4n5V49B838ZzdGB3uj_V492DvMbsZk7-GURAlT9jmYr6Ep0i2Fvkz59ycfbrq3fQLbOU7sg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clay+minerals%2C+iron%2Faluminum+oxides%2C+and+their+contribution+to+phosphate+sorption+in+soils+%E2%80%94+A+myth+revisited&rft.jtitle=Geoderma&rft.au=G%C3%A9rard%2C+Fr%C3%A9d%C3%A9ric&rft.date=2016-01-15&rft.issn=0016-7061&rft.volume=262&rft.spage=213&rft.epage=226&rft_id=info:doi/10.1016%2Fj.geoderma.2015.08.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2015_08_036 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |