Group extraction from professional social network using a new semi-supervised hierarchical clustering

Recently, social network has been given much attention. This paper addresses the issue of extraction groups from professional social network and enriches the representation of the user profile and its related groups through building a social network warehousing. Several criteria may be applied to de...

Full description

Saved in:
Bibliographic Details
Published inKnowledge and information systems Vol. 40; no. 1; pp. 29 - 47
Main Authors Ben Ahmed, Eya, Nabli, Ahlem, Gargouri, Faïez
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2014
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, social network has been given much attention. This paper addresses the issue of extraction groups from professional social network and enriches the representation of the user profile and its related groups through building a social network warehousing. Several criteria may be applied to detect groups within professional communities, such as the area of expertise, the job openings proposed by the group, the security of the group, and the time of the group creation. In this paper, we aim to find, extract, and fuse the LinkedIn users. Indeed, we deal with the group extraction of LinkedIn users based on their profiles using our innovative semi-supervised clustering method based on quantitative constraints ranking. The encouraging experimental results carried out on our real professional warehouse show the usefulness of our approach.
AbstractList Recently, social network has been given much attention. This paper addresses the issue of extraction groups from professional social network and enriches the representation of the user profile and its related groups through building a social network warehousing. Several criteria may be applied to detect groups within professional communities, such as the area of expertise, the job openings proposed by the group, the security of the group, and the time of the group creation. In this paper, we aim to find, extract, and fuse the LinkedIn users. Indeed, we deal with the group extraction of LinkedIn users based on their profiles using our innovative semi-supervised clustering method based on quantitative constraints ranking. The encouraging experimental results carried out on our real professional warehouse show the usefulness of our approach.
Recently, social network has been given much attention. This paper addresses the issue of extraction groups from professional social network and enriches the representation of the user profile and its related groups through building a social network warehousing. Several criteria may be applied to detect groups within professional communities, such as the area of expertise, the job openings proposed by the group, the security of the group, and the time of the group creation. In this paper, we aim to find, extract, and fuse the LinkedIn users. Indeed, we deal with the group extraction of LinkedIn users based on their profiles using our innovative semi-supervised clustering method based on quantitative constraints ranking. The encouraging experimental results carried out on our real professional warehouse show the usefulness of our approach.[PUBLICATION ABSTRACT]
Recently, social network has been given much attention. This paper addresses the issue of extraction groups from professional social network and enriches the representation of the user profile and its related groups through building a social network warehousing. Several criteria may be applied to detect groups within professional communities, such as the area of expertise, the job openings proposed by the group, the security of the group, and the time of the group creation. In this paper, we aim to find, extract, and fuse the LinkedIn users. Indeed, we deal with the group extraction of LinkedIn users based on their profiles using our innovative semi-supervised clustering method based on quantitative constraints ranking. The encouraging experimental results carried out on our real professional warehouse show the usefulness of our approach.
Author Nabli, Ahlem
Ben Ahmed, Eya
Gargouri, Faïez
Author_xml – sequence: 1
  givenname: Eya
  surname: Ben Ahmed
  fullname: Ben Ahmed, Eya
  email: eya.benahmed@gmail.com
  organization: High Institute of Management of Tunis, University of Tunis
– sequence: 2
  givenname: Ahlem
  surname: Nabli
  fullname: Nabli, Ahlem
  organization: Faculty of Sciences of Sfax, University of Sfax
– sequence: 3
  givenname: Faïez
  surname: Gargouri
  fullname: Gargouri, Faïez
  organization: High Institute of Computer and Multimedia of Sfax, University of Sfax
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28535885$$DView record in Pascal Francis
BookMark eNp1kE1LJDEQhoO4oM7uD9hbgyx4aU0lk_44ivgFgpfdc0jHyhrt6bSpbp3999YwgyyCh6RS5KmXt94jsT-kAYX4CfIUpKzPCCSAKSXoUlZ6Wa73xKFU0JYaoNrfvUHX9YE4InqSEuoK4FDgdU7zWOB6ys5PMQ1FyGlVjDkFJOLe9QUlH7kMOL2l_FzMFIe_heP-rSBcxZLmEfNrJHwoHiNml_1j9Dzg-5kmzEx_F9-C6wl_7OpC_Lm6_H1xU97dX99enN-VXtftVGJovJetaqrQKOx8MPVDIwOArkLd8V6u61SllAE0WndLI32rlh74SN3y_0KcbHXZ_8uMNNlVJI997wZMM1kwBmStVNMyevwJfUpz5nU3lNamZRuSKdhSPieijMGOOa5c_mdB2k3wdhu85eDtJni75plfO2VHHEPIbvCRPgZVY7Rp-FoIteVo3GSE-T8HX4q_A4WklbU
CODEN KISNCR
CitedBy_id crossref_primary_10_1109_TEM_2020_2996644
crossref_primary_10_1007_s12652_017_0484_6
crossref_primary_10_1109_TCYB_2016_2546965
crossref_primary_10_1016_j_comcom_2016_12_011
crossref_primary_10_1016_j_future_2018_07_060
crossref_primary_10_1016_j_im_2019_103182
crossref_primary_10_1016_j_ins_2023_02_088
crossref_primary_10_1016_j_jss_2018_11_005
crossref_primary_10_4185_RLCS_2015_1047
crossref_primary_10_1109_TCYB_2018_2871503
crossref_primary_10_1109_TIP_2014_2378017
crossref_primary_10_1155_2015_451476
Cites_doi 10.1073/pnas.122653799
10.1016/j.bushor.2011.01.005
10.1145/1353343.1353398
10.1016/j.datak.2008.08.008
10.1145/2245276.2245318
10.1142/S0219525903001067
10.1007/s10618-008-0103-4
10.1007/978-3-540-74958-5_48
10.1613/jair.3003
10.1007/3-540-44503-X_26
10.1073/pnas.0400054101
10.1007/s00500-012-0859-8
10.1007/11829898_6
10.1017/CBO9780511815478
10.1007/BF00116251
10.1007/978-3-642-31488-9_16
10.1038/nature05670
ContentType Journal Article
Copyright Springer-Verlag London 2013
2015 INIST-CNRS
Springer-Verlag London 2014
Copyright_xml – notice: Springer-Verlag London 2013
– notice: 2015 INIST-CNRS
– notice: Springer-Verlag London 2014
DBID IQODW
AAYXX
CITATION
0U~
1-H
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10115-013-0634-x
DatabaseName Pascal-Francis
CrossRef
Global News & ABI/Inform Professional
Trade PRO
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Trade PRO
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
Global News & ABI/Inform Professional
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 0219-3116
EndPage 47
ExternalDocumentID 3327236841
10_1007_s10115_013_0634_x
28535885
Genre Feature
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29L
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6KP
6NX
7WY
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAS
LLZTM
M0C
M0N
M4Y
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
ADTIX
H13
IPNFZ
IQODW
PQEST
PQUKI
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
PQBZA
0U~
1-H
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PRINS
Q9U
AAYZH
ID FETCH-LOGICAL-c379t-ef8cc09286f82ebcf57d80f1136f7b063abb262251e533b450c924c124c039063
IEDL.DBID 8FG
ISSN 0219-1377
IngestDate Fri Oct 25 06:19:19 EDT 2024
Thu Oct 10 16:29:54 EDT 2024
Thu Sep 12 17:00:27 EDT 2024
Thu Nov 24 18:33:19 EST 2022
Sat Dec 16 12:02:51 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Group
Professional social network
Constraint
Professional network warehousing
Group extraction
Social network
User profile
Semi-supervised clustering
Quantitative ranked constraints
Clustering
Data warehouse
Cluster analysis
Group building
Hierarchical classification
Social group
Cluster
Experimental result
Semi-supervised learning
User behavior
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-ef8cc09286f82ebcf57d80f1136f7b063abb262251e533b450c924c124c039063
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1533599280
PQPubID 43394
PageCount 19
ParticipantIDs proquest_miscellaneous_1551072289
proquest_journals_1533599280
crossref_primary_10_1007_s10115_013_0634_x
pascalfrancis_primary_28535885
springer_journals_10_1007_s10115_013_0634_x
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationSubtitle An International Journal
PublicationTitle Knowledge and information systems
PublicationTitleAbbrev Knowl Inf Syst
PublicationYear 2014
Publisher Springer London
Springer
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer
– name: Springer Nature B.V
References Wagstaff K, Cardie C, Rogers S, Schroedel S (2001) Constrained K-means clustering with background knowledge. In: International conference on machine learning, pp 577–584
PallaGBarabasiA-LVicsekTQuantifying social group evolutionNature200744666466710.1038/nature05670
Bade K, Hermkes M, Nürnberger A (2007) User oriented hierarchical information organization and retrieval. In: Proceedings of the 18th European conference on machine learning. LNCS, pp 518–526
DasguptaSNgVWhich clustering do you want? Inducing your ideal clustering with minimal feedbackJ Artif Intell Res2010395816321210.680892804435
Tung AKH, Han J, Lakshmanan LVS, Ng RT (2001) Constraint-based clustering in large databases. In: Proceedings of the international conference on database theory (ICDT ’01), London, UK
Golfarelli M, Maio D, Rizzi S (1998) Conceptual design of data warehouses from E/R schemes. In: 31st Hawaii international conference on system sciences
Benitez E, Collet C, Adiba, Entrepôts de données M (2001) caractéristiques et problématique. Revue TSI 20(2)
MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: 5th Berkeley symposium on mathematics and statistical probability
Ghosh Strehl J, Mooney R (2000) Impact of similarity measures on web-page clustering. In: Workshop on artificial intelligence for web search (AAI-2000)
GleiserPDanonLCommunity structure in jazzAdv Complex Syst2003656510.1142/S0219525903001067
HuangRLamWAn active learning framework for semi-supervised document clustering with language modelingData Knowl Eng2009681496710.1016/j.datak.2008.08.008
Ben Ahmed E, Nabli A, Gargouri F (2012) SHACUN: semi-supervised hierarchical active clustering based on ranking constraints. In: 12th Industrial conference on data mining, Berlin, Germany, pp 194–208
Bohm C, Plant C (2008) Hissclu: a hierarchical density-based method for semi-supervised clustering. In: Proceedings of the 11th international conference on extending database technology, New York, NY, USA, pp 440–451
Basu S, Banerjee A, Mooney RJ (2002) Semi-supervised clustering by seeding. In: International conference on machine learning, pp 27–34
GirvanMNewmanMEJCommunity structure in social and biological networksProc Natl Acad Sci USA200299127821782610.1073/pnas.1226537991908073
Kestler HA, Kraus JM, Palm G, Schwenker F (2006) On the effects of constraints in semi-supervised hierarchical clustering. Artificial Neural Network Pattern Recognition. LNCS, pp 57–66
QuinlanJRInduction of decision treesMach Learn19861181106
Kamvar SD, Klein D, Manning CD (2003) Spectral learning. In: International joint conference on artificial intelligence, pp 561–566
KietzmannHJHermkensKSocial media? Get serious! Understanding the functional building blocks of social mediaBus Horiz20115424125110.1016/j.bushor.2011.01.005
PalomaresILiuJXuYMartinezLModelling experts’ attitudes in group decision makingJ Soft Comput2012161017551766
JainAKDubesRCAlgorithms for clustering data1988Upper Saddle RiverPrentice-Hall0665.62061
WassermanSFaustKSocial network analysis: methods and applications1994New YorkCambridge University Press10.1017/CBO9780511815478
Nogueira BM, Jorge AM, Rezende SO (2012) Hierarchical confidence-based active clustering. In: The 27th symposium on applied computing, pp 535–537
Traud AL, Kelsic ED, Mucha PJ, Porter MA Community structure in online collegiate social networks [eprint arXiv:0809.0690]
JaccardPNouvelles recherches sur la distribution floraleBulletin de la Société de Vaudoise des Sciences Naturelles190844223270
Xing EP, Andrew YNg, Jordan MI, Russell S (2002) Distance metric learning with application to clustering with side-information. In:Advances in neural information processing system pp 505–512
RadicchiFCastellanoCCecconiFLoretoVParisiDDefining and identifying communities in networksProc Natl Acad Sci200410122658266310.1073/pnas.0400054101
DavidsonIRaviSSUsing instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical resultsData Min Knowl Discov2009182257282
Klein D, Kamvar SD, Manning CD (2002) From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering. In: Proceedings of the 19th international conference on machine learning, CA, USA, pp 307–314
HJ Kietzmann (634_CR17) 2011; 54
F Radicchi (634_CR24) 2004; 101
634_CR11
S Wasserman (634_CR28) 1994
G Palla (634_CR21) 2007; 446
634_CR15
P Gleiser (634_CR10) 2003; 6
634_CR13
634_CR19
634_CR18
AK Jain (634_CR14) 1988
634_CR16
M Girvan (634_CR9) 2002; 99
S Dasgupta (634_CR6) 2010; 39
634_CR1
634_CR2
634_CR3
634_CR4
634_CR5
634_CR7
634_CR8
634_CR22
634_CR20
634_CR26
634_CR25
634_CR23
634_CR29
R Huang (634_CR12) 2009; 68
634_CR27
References_xml – volume: 99
  start-page: 78217826
  issue: 12
  year: 2002
  ident: 634_CR9
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.122653799
  contributor:
    fullname: M Girvan
– volume-title: Algorithms for clustering data
  year: 1988
  ident: 634_CR14
  contributor:
    fullname: AK Jain
– volume: 54
  start-page: 241251
  year: 2011
  ident: 634_CR17
  publication-title: Bus Horiz
  doi: 10.1016/j.bushor.2011.01.005
  contributor:
    fullname: HJ Kietzmann
– ident: 634_CR15
– ident: 634_CR5
  doi: 10.1145/1353343.1353398
– ident: 634_CR13
– ident: 634_CR11
– ident: 634_CR19
– volume: 68
  start-page: 49
  issue: 1
  year: 2009
  ident: 634_CR12
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2008.08.008
  contributor:
    fullname: R Huang
– ident: 634_CR20
  doi: 10.1145/2245276.2245318
– volume: 6
  start-page: 565
  year: 2003
  ident: 634_CR10
  publication-title: Adv Complex Syst
  doi: 10.1142/S0219525903001067
  contributor:
    fullname: P Gleiser
– ident: 634_CR7
  doi: 10.1007/s10618-008-0103-4
– ident: 634_CR1
  doi: 10.1007/978-3-540-74958-5_48
– volume: 39
  start-page: 581
  year: 2010
  ident: 634_CR6
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.3003
  contributor:
    fullname: S Dasgupta
– ident: 634_CR26
  doi: 10.1007/3-540-44503-X_26
– ident: 634_CR29
– volume: 101
  start-page: 2658
  issue: 2
  year: 2004
  ident: 634_CR24
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0400054101
  contributor:
    fullname: F Radicchi
– ident: 634_CR22
  doi: 10.1007/s00500-012-0859-8
– ident: 634_CR16
  doi: 10.1007/11829898_6
– ident: 634_CR8
– volume-title: Social network analysis: methods and applications
  year: 1994
  ident: 634_CR28
  doi: 10.1017/CBO9780511815478
  contributor:
    fullname: S Wasserman
– ident: 634_CR18
– ident: 634_CR23
  doi: 10.1007/BF00116251
– ident: 634_CR2
– ident: 634_CR3
  doi: 10.1007/978-3-642-31488-9_16
– volume: 446
  start-page: 664
  year: 2007
  ident: 634_CR21
  publication-title: Nature
  doi: 10.1038/nature05670
  contributor:
    fullname: G Palla
– ident: 634_CR27
– ident: 634_CR4
– ident: 634_CR25
SSID ssj0017611
Score 2.1621666
Snippet Recently, social network has been given much attention. This paper addresses the issue of extraction groups from professional social network and enriches the...
SourceID proquest
crossref
pascalfrancis
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 29
SubjectTerms Analysis
Applied sciences
Clustering
Communities
Computer Science
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Criteria
Data Mining and Knowledge Discovery
Data processing. List processing. Character string processing
Data warehouses
Database Management
Exact sciences and technology
Extraction
Fuses
Information Storage and Retrieval
Information systems
Information Systems and Communication Service
Information Systems Applications (incl.Internet)
Information systems. Data bases
IT in Business
Job openings
Memory organisation. Data processing
Professional relationships
Professionals
Regular Paper
Representations
Social networks
Social research
Software
Studies
User generated content
Web 2.0
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GfBHEb7E6RwSflEibNm3zOEQZgj452Ftp0kRE7cq6on--l37MTfTBx5I0pHe9y-_ucncAF4pLzgKe0czl1nUjXSqZEtR4KrKJlzquexE8PIbjSXA_5dMesKXrIn-97iKStaJeyXVD8EKbZgR-QBE3biB2CKzBNWGjZeQAzfK6Sx5KIrXV9LpI5m9LrJ1FW0VaIllM089iDXD-iJHWR8_dLmy3mJGMGibvQU_n-7DT9WMgrXgegK4dSQTV7bxJVyA2eYQUK9U3SOMjJ3lz-5vYa-_PJMXnD1Lq9xdaVoXVHqXOiO2SXccZcL9EvVW2pALOPoTJ3e3TzZi2bRSo8iOxoNrESrmCxaGJmZbK8CiLXWObuRjkTeinUrIQ5drTiP1kwF2FRpnCg1-5vsDxI-jns1wfA_GFn2UKMZunvUDjoqHIRCpFnKaCSeM5cNkRNCmaahnJd11kS_0EqZ9Y6iefDgzXSL58gyGE4HHMHRh0PEhaySoTi0-5wK9xHThfDqNM2EBHmutZZeegpokY2pIOXHW8W1nirx2d_Gv2KWwiegqau7sD6C_mlT5DhLKQw_qX_AJL3t8x
  priority: 102
  providerName: Springer Nature
Title Group extraction from professional social network using a new semi-supervised hierarchical clustering
URI https://link.springer.com/article/10.1007/s10115-013-0634-x
https://www.proquest.com/docview/1533599280
https://search.proquest.com/docview/1551072289
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9swED629mUwtq7bqLc2aLCnDjFbtmzpqSQladlYKGWB7slYsjwGnePVCevP351lp02hezJGtixOvtOnu9N9AB-tNFIksuRlKMl1Y0JuhNW8imxGBy-d6rgIvs3T80Xy5Upe9Q63tk-rHGxiZ6jLpSUf-WfCJVJrocKT5g8n1iiKrvYUGk9hNxJZRildana2iSLgFr1jzEOt5FRZb4hq-qNziIW45zaIE367tS49b4oWRVR5bost8PkgXtotQ7M9eNHjRzb2E_4Knrh6H14O3AysV9XX4DqnEkPTe-OPLjA6SMKae5U4mPeXs9pngjNKgf_JCrz_y1r3-xdv1w1ZktaVjBizu5gDjpfZ6zWVV8Cn38BiNv1-es57SgVu40yvuKuUtSFKMa2UcMZWMitVWBGxS4XzlMaFMSJFHY8cytskMrS4QbMIAmwYa2x_Czv1snYHwGIdl6VF_Ba5KHHYaapLXRitikILU0UBHA8CzRtfOSO_q5FM0s9R-jlJP78NYLQl8s0bAuGEVEoGcDjMQd5rWZvf_RMBfNg0o35Q0KOo3XJNz6DVyQTuKwP4NMzdvS4eG9G7_3_wPTxD6JT4xN1D2FndrN0RwpOVGXX_4Ah2x7PJZE7Xsx9fp3idTOcXl9i6EON_p4HoTA
link.rule.ids 315,783,787,12778,21401,27937,27938,33386,33387,33757,33758,41094,41536,42163,42605,43613,43818,52124,52247,74370,74637
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5UClquVRRNrtYiROIKt5OWufqoJAy2uFEEjcothxEBJkU7Kr8vM7EycLWwmOkR0nmvGMP8_Y8wHsGqFFGIuc576g0I32uQ6N4kVghnTx0sqGi-BinIxu4tNbcdsG3Or2WGXnExtHnU8Mxch_Ei4RSoXS_1X94cQaRdnVlkLjAyxTqSrZg-WDo_Hl1TyPgJv0hjMP7ZJTbb0ur-kuzyEa4o7dIIr588LK9KnKahRS4dgtFuDnfxnTZiE6XoXPLYJkv53K12DJluvwpWNnYK2xboBtwkoMne-Tu7zA6CoJq17V4mAuYs5Kdxac0SH4O5bh819W28d7Xs8q8iW1zRlxZjdZB_xfZh5mVGABe3-Fm-Oj68MRb0kVuImGasptIY3xUY5JIUOrTSGGufQLonYpUFNJlGkdJmjlgUWJ61j4BrdoBmGA8SOF7ZvQKyel3QIWqSjPDSK4wAaxxUETlatMK5llKtRF4MFeJ9C0crUz0pcqyST9FKWfkvTTZw8GCyKfvxEioBBSCg_6nQ7S1s7q9GVWeLAzb0YLobRHVtrJjPqg3xmGuLP0YL_T3ash3vqjb-9_cBtWRtcX5-n5yfjsO3xEIBW7Y7x96E2fZvYHgpWpHrQz8h9oH-cK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZT9wwEB4VkCokBL0QoUBdqU-tLHI5iZ8qrhW9VqgqEm9R7NgICbKB7Ap-PjOxs7CV2sfIjuOMPfY3nvF8AJ-0UCJORc3rUNDRjQq5irXkNtI5Xbw0Rc9F8GucnZ6n3y_EhY9_6nxY5bAm9gt1PdF0Rr5PuERIGRfhvvVhEWfHo6_tLScGKfK0ejqNJVjJ0yxBQ2zl8GR89nvuU0CDvefPQx3llGdv8HG6i3SIjLhjOkhS_rCwS621VYcCs47pYgGK_uU97Tel0StY92iSHbjhfw0vTPMGNgamBuYV9y2Y_oiJ4d_cuYsMjK6VsPZZXg7mTs9Z4-LCGQXEX7IKn-9ZZ26ueDdraV3pTM2IP7v3QGB_mb6eUbIFrP0Ozkcnf45OuSdY4DrJ5ZQbW2gdokwzW8RGaSvyuggt0bxYHLUsqZSKM9T4yKD0VSpCjeaaRkigw0Ri-SYsN5PGbAFLZFLXGtFcZKLUYKOZrGWlZFFVMlY2CuDzINCydXk0yqeMyST9EqVfkvTLhwD2FkQ-fyNGcCGKQgSwM4xB6XWuK59mSAAf58WoLeQCqRozmVEdXIPyGK3MAL4MY_esiX_1aPv_H_wAL3Eylj-_jX-8h1XEVKmL6N2B5endzOwibpmqPT8hHwE14Os-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+extraction+from+professional+social+network+using+a+new+semi-supervised+hierarchical+clustering&rft.jtitle=Knowledge+and+information+systems&rft.au=Ben+Ahmed%2C+Eya&rft.au=Nabli%2C+Ahlem&rft.au=Gargouri%2C+Fa%C3%AFez&rft.date=2014-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=40&rft.issue=1&rft.spage=29&rft_id=info:doi/10.1007%2Fs10115-013-0634-x&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3327236841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon