Group extraction from professional social network using a new semi-supervised hierarchical clustering
Recently, social network has been given much attention. This paper addresses the issue of extraction groups from professional social network and enriches the representation of the user profile and its related groups through building a social network warehousing. Several criteria may be applied to de...
Saved in:
Published in | Knowledge and information systems Vol. 40; no. 1; pp. 29 - 47 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.07.2014
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, social network has been given much attention. This paper addresses the issue of extraction groups from professional social network and enriches the representation of the user profile and its related groups through building a social network warehousing. Several criteria may be applied to detect groups within professional communities, such as the area of expertise, the job openings proposed by the group, the security of the group, and the time of the group creation. In this paper, we aim to find, extract, and fuse the
LinkedIn
users. Indeed, we deal with the group extraction of
LinkedIn
users based on their profiles using our innovative semi-supervised clustering method based on quantitative constraints ranking. The encouraging experimental results carried out on our real professional warehouse show the usefulness of our approach. |
---|---|
AbstractList | Recently, social network has been given much attention. This paper addresses the issue of extraction groups from professional social network and enriches the representation of the user profile and its related groups through building a social network warehousing. Several criteria may be applied to detect groups within professional communities, such as the area of expertise, the job openings proposed by the group, the security of the group, and the time of the group creation. In this paper, we aim to find, extract, and fuse the LinkedIn users. Indeed, we deal with the group extraction of LinkedIn users based on their profiles using our innovative semi-supervised clustering method based on quantitative constraints ranking. The encouraging experimental results carried out on our real professional warehouse show the usefulness of our approach. Recently, social network has been given much attention. This paper addresses the issue of extraction groups from professional social network and enriches the representation of the user profile and its related groups through building a social network warehousing. Several criteria may be applied to detect groups within professional communities, such as the area of expertise, the job openings proposed by the group, the security of the group, and the time of the group creation. In this paper, we aim to find, extract, and fuse the LinkedIn users. Indeed, we deal with the group extraction of LinkedIn users based on their profiles using our innovative semi-supervised clustering method based on quantitative constraints ranking. The encouraging experimental results carried out on our real professional warehouse show the usefulness of our approach.[PUBLICATION ABSTRACT] Recently, social network has been given much attention. This paper addresses the issue of extraction groups from professional social network and enriches the representation of the user profile and its related groups through building a social network warehousing. Several criteria may be applied to detect groups within professional communities, such as the area of expertise, the job openings proposed by the group, the security of the group, and the time of the group creation. In this paper, we aim to find, extract, and fuse the LinkedIn users. Indeed, we deal with the group extraction of LinkedIn users based on their profiles using our innovative semi-supervised clustering method based on quantitative constraints ranking. The encouraging experimental results carried out on our real professional warehouse show the usefulness of our approach. |
Author | Nabli, Ahlem Ben Ahmed, Eya Gargouri, Faïez |
Author_xml | – sequence: 1 givenname: Eya surname: Ben Ahmed fullname: Ben Ahmed, Eya email: eya.benahmed@gmail.com organization: High Institute of Management of Tunis, University of Tunis – sequence: 2 givenname: Ahlem surname: Nabli fullname: Nabli, Ahlem organization: Faculty of Sciences of Sfax, University of Sfax – sequence: 3 givenname: Faïez surname: Gargouri fullname: Gargouri, Faïez organization: High Institute of Computer and Multimedia of Sfax, University of Sfax |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28535885$$DView record in Pascal Francis |
BookMark | eNp1kE1LJDEQhoO4oM7uD9hbgyx4aU0lk_44ivgFgpfdc0jHyhrt6bSpbp3999YwgyyCh6RS5KmXt94jsT-kAYX4CfIUpKzPCCSAKSXoUlZ6Wa73xKFU0JYaoNrfvUHX9YE4InqSEuoK4FDgdU7zWOB6ys5PMQ1FyGlVjDkFJOLe9QUlH7kMOL2l_FzMFIe_heP-rSBcxZLmEfNrJHwoHiNml_1j9Dzg-5kmzEx_F9-C6wl_7OpC_Lm6_H1xU97dX99enN-VXtftVGJovJetaqrQKOx8MPVDIwOArkLd8V6u61SllAE0WndLI32rlh74SN3y_0KcbHXZ_8uMNNlVJI997wZMM1kwBmStVNMyevwJfUpz5nU3lNamZRuSKdhSPieijMGOOa5c_mdB2k3wdhu85eDtJni75plfO2VHHEPIbvCRPgZVY7Rp-FoIteVo3GSE-T8HX4q_A4WklbU |
CODEN | KISNCR |
CitedBy_id | crossref_primary_10_1109_TEM_2020_2996644 crossref_primary_10_1007_s12652_017_0484_6 crossref_primary_10_1109_TCYB_2016_2546965 crossref_primary_10_1016_j_comcom_2016_12_011 crossref_primary_10_1016_j_future_2018_07_060 crossref_primary_10_1016_j_im_2019_103182 crossref_primary_10_1016_j_ins_2023_02_088 crossref_primary_10_1016_j_jss_2018_11_005 crossref_primary_10_4185_RLCS_2015_1047 crossref_primary_10_1109_TCYB_2018_2871503 crossref_primary_10_1109_TIP_2014_2378017 crossref_primary_10_1155_2015_451476 |
Cites_doi | 10.1073/pnas.122653799 10.1016/j.bushor.2011.01.005 10.1145/1353343.1353398 10.1016/j.datak.2008.08.008 10.1145/2245276.2245318 10.1142/S0219525903001067 10.1007/s10618-008-0103-4 10.1007/978-3-540-74958-5_48 10.1613/jair.3003 10.1007/3-540-44503-X_26 10.1073/pnas.0400054101 10.1007/s00500-012-0859-8 10.1007/11829898_6 10.1017/CBO9780511815478 10.1007/BF00116251 10.1007/978-3-642-31488-9_16 10.1038/nature05670 |
ContentType | Journal Article |
Copyright | Springer-Verlag London 2013 2015 INIST-CNRS Springer-Verlag London 2014 |
Copyright_xml | – notice: Springer-Verlag London 2013 – notice: 2015 INIST-CNRS – notice: Springer-Verlag London 2014 |
DBID | IQODW AAYXX CITATION 0U~ 1-H 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L7M L~C L~D M0C M0N P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s10115-013-0634-x |
DatabaseName | Pascal-Francis CrossRef Global News & ABI/Inform Professional Trade PRO ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Trade PRO ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central Global News & ABI/Inform Professional ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 0219-3116 |
EndPage | 47 |
ExternalDocumentID | 3327236841 10_1007_s10115_013_0634_x 28535885 |
Genre | Feature |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29L 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6KP 6NX 7WY 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAS LLZTM M0C M0N M4Y MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR ~A9 ADTIX H13 IPNFZ IQODW PQEST PQUKI AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION PQBZA 0U~ 1-H 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PRINS Q9U AAYZH |
ID | FETCH-LOGICAL-c379t-ef8cc09286f82ebcf57d80f1136f7b063abb262251e533b450c924c124c039063 |
IEDL.DBID | 8FG |
ISSN | 0219-1377 |
IngestDate | Fri Oct 25 06:19:19 EDT 2024 Thu Oct 10 16:29:54 EDT 2024 Thu Sep 12 17:00:27 EDT 2024 Thu Nov 24 18:33:19 EST 2022 Sat Dec 16 12:02:51 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Group Professional social network Constraint Professional network warehousing Group extraction Social network User profile Semi-supervised clustering Quantitative ranked constraints Clustering Data warehouse Cluster analysis Group building Hierarchical classification Social group Cluster Experimental result Semi-supervised learning User behavior |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-ef8cc09286f82ebcf57d80f1136f7b063abb262251e533b450c924c124c039063 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1533599280 |
PQPubID | 43394 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1551072289 proquest_journals_1533599280 crossref_primary_10_1007_s10115_013_0634_x pascalfrancis_primary_28535885 springer_journals_10_1007_s10115_013_0634_x |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationSubtitle | An International Journal |
PublicationTitle | Knowledge and information systems |
PublicationTitleAbbrev | Knowl Inf Syst |
PublicationYear | 2014 |
Publisher | Springer London Springer Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer – name: Springer Nature B.V |
References | Wagstaff K, Cardie C, Rogers S, Schroedel S (2001) Constrained K-means clustering with background knowledge. In: International conference on machine learning, pp 577–584 PallaGBarabasiA-LVicsekTQuantifying social group evolutionNature200744666466710.1038/nature05670 Bade K, Hermkes M, Nürnberger A (2007) User oriented hierarchical information organization and retrieval. In: Proceedings of the 18th European conference on machine learning. LNCS, pp 518–526 DasguptaSNgVWhich clustering do you want? Inducing your ideal clustering with minimal feedbackJ Artif Intell Res2010395816321210.680892804435 Tung AKH, Han J, Lakshmanan LVS, Ng RT (2001) Constraint-based clustering in large databases. In: Proceedings of the international conference on database theory (ICDT ’01), London, UK Golfarelli M, Maio D, Rizzi S (1998) Conceptual design of data warehouses from E/R schemes. In: 31st Hawaii international conference on system sciences Benitez E, Collet C, Adiba, Entrepôts de données M (2001) caractéristiques et problématique. Revue TSI 20(2) MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: 5th Berkeley symposium on mathematics and statistical probability Ghosh Strehl J, Mooney R (2000) Impact of similarity measures on web-page clustering. In: Workshop on artificial intelligence for web search (AAI-2000) GleiserPDanonLCommunity structure in jazzAdv Complex Syst2003656510.1142/S0219525903001067 HuangRLamWAn active learning framework for semi-supervised document clustering with language modelingData Knowl Eng2009681496710.1016/j.datak.2008.08.008 Ben Ahmed E, Nabli A, Gargouri F (2012) SHACUN: semi-supervised hierarchical active clustering based on ranking constraints. In: 12th Industrial conference on data mining, Berlin, Germany, pp 194–208 Bohm C, Plant C (2008) Hissclu: a hierarchical density-based method for semi-supervised clustering. In: Proceedings of the 11th international conference on extending database technology, New York, NY, USA, pp 440–451 Basu S, Banerjee A, Mooney RJ (2002) Semi-supervised clustering by seeding. In: International conference on machine learning, pp 27–34 GirvanMNewmanMEJCommunity structure in social and biological networksProc Natl Acad Sci USA200299127821782610.1073/pnas.1226537991908073 Kestler HA, Kraus JM, Palm G, Schwenker F (2006) On the effects of constraints in semi-supervised hierarchical clustering. Artificial Neural Network Pattern Recognition. LNCS, pp 57–66 QuinlanJRInduction of decision treesMach Learn19861181106 Kamvar SD, Klein D, Manning CD (2003) Spectral learning. In: International joint conference on artificial intelligence, pp 561–566 KietzmannHJHermkensKSocial media? Get serious! Understanding the functional building blocks of social mediaBus Horiz20115424125110.1016/j.bushor.2011.01.005 PalomaresILiuJXuYMartinezLModelling experts’ attitudes in group decision makingJ Soft Comput2012161017551766 JainAKDubesRCAlgorithms for clustering data1988Upper Saddle RiverPrentice-Hall0665.62061 WassermanSFaustKSocial network analysis: methods and applications1994New YorkCambridge University Press10.1017/CBO9780511815478 Nogueira BM, Jorge AM, Rezende SO (2012) Hierarchical confidence-based active clustering. In: The 27th symposium on applied computing, pp 535–537 Traud AL, Kelsic ED, Mucha PJ, Porter MA Community structure in online collegiate social networks [eprint arXiv:0809.0690] JaccardPNouvelles recherches sur la distribution floraleBulletin de la Société de Vaudoise des Sciences Naturelles190844223270 Xing EP, Andrew YNg, Jordan MI, Russell S (2002) Distance metric learning with application to clustering with side-information. In:Advances in neural information processing system pp 505–512 RadicchiFCastellanoCCecconiFLoretoVParisiDDefining and identifying communities in networksProc Natl Acad Sci200410122658266310.1073/pnas.0400054101 DavidsonIRaviSSUsing instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical resultsData Min Knowl Discov2009182257282 Klein D, Kamvar SD, Manning CD (2002) From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering. In: Proceedings of the 19th international conference on machine learning, CA, USA, pp 307–314 HJ Kietzmann (634_CR17) 2011; 54 F Radicchi (634_CR24) 2004; 101 634_CR11 S Wasserman (634_CR28) 1994 G Palla (634_CR21) 2007; 446 634_CR15 P Gleiser (634_CR10) 2003; 6 634_CR13 634_CR19 634_CR18 AK Jain (634_CR14) 1988 634_CR16 M Girvan (634_CR9) 2002; 99 S Dasgupta (634_CR6) 2010; 39 634_CR1 634_CR2 634_CR3 634_CR4 634_CR5 634_CR7 634_CR8 634_CR22 634_CR20 634_CR26 634_CR25 634_CR23 634_CR29 R Huang (634_CR12) 2009; 68 634_CR27 |
References_xml | – volume: 99 start-page: 78217826 issue: 12 year: 2002 ident: 634_CR9 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.122653799 contributor: fullname: M Girvan – volume-title: Algorithms for clustering data year: 1988 ident: 634_CR14 contributor: fullname: AK Jain – volume: 54 start-page: 241251 year: 2011 ident: 634_CR17 publication-title: Bus Horiz doi: 10.1016/j.bushor.2011.01.005 contributor: fullname: HJ Kietzmann – ident: 634_CR15 – ident: 634_CR5 doi: 10.1145/1353343.1353398 – ident: 634_CR13 – ident: 634_CR11 – ident: 634_CR19 – volume: 68 start-page: 49 issue: 1 year: 2009 ident: 634_CR12 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2008.08.008 contributor: fullname: R Huang – ident: 634_CR20 doi: 10.1145/2245276.2245318 – volume: 6 start-page: 565 year: 2003 ident: 634_CR10 publication-title: Adv Complex Syst doi: 10.1142/S0219525903001067 contributor: fullname: P Gleiser – ident: 634_CR7 doi: 10.1007/s10618-008-0103-4 – ident: 634_CR1 doi: 10.1007/978-3-540-74958-5_48 – volume: 39 start-page: 581 year: 2010 ident: 634_CR6 publication-title: J Artif Intell Res doi: 10.1613/jair.3003 contributor: fullname: S Dasgupta – ident: 634_CR26 doi: 10.1007/3-540-44503-X_26 – ident: 634_CR29 – volume: 101 start-page: 2658 issue: 2 year: 2004 ident: 634_CR24 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0400054101 contributor: fullname: F Radicchi – ident: 634_CR22 doi: 10.1007/s00500-012-0859-8 – ident: 634_CR16 doi: 10.1007/11829898_6 – ident: 634_CR8 – volume-title: Social network analysis: methods and applications year: 1994 ident: 634_CR28 doi: 10.1017/CBO9780511815478 contributor: fullname: S Wasserman – ident: 634_CR18 – ident: 634_CR23 doi: 10.1007/BF00116251 – ident: 634_CR2 – ident: 634_CR3 doi: 10.1007/978-3-642-31488-9_16 – volume: 446 start-page: 664 year: 2007 ident: 634_CR21 publication-title: Nature doi: 10.1038/nature05670 contributor: fullname: G Palla – ident: 634_CR27 – ident: 634_CR4 – ident: 634_CR25 |
SSID | ssj0017611 |
Score | 2.1621666 |
Snippet | Recently, social network has been given much attention. This paper addresses the issue of extraction groups from professional social network and enriches the... |
SourceID | proquest crossref pascalfrancis springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 29 |
SubjectTerms | Analysis Applied sciences Clustering Communities Computer Science Computer science; control theory; systems Computer systems and distributed systems. User interface Criteria Data Mining and Knowledge Discovery Data processing. List processing. Character string processing Data warehouses Database Management Exact sciences and technology Extraction Fuses Information Storage and Retrieval Information systems Information Systems and Communication Service Information Systems Applications (incl.Internet) Information systems. Data bases IT in Business Job openings Memory organisation. Data processing Professional relationships Professionals Regular Paper Representations Social networks Social research Software Studies User generated content Web 2.0 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GfBHEb7E6RwSflEibNm3zOEQZgj452Ftp0kRE7cq6on--l37MTfTBx5I0pHe9y-_ucncAF4pLzgKe0czl1nUjXSqZEtR4KrKJlzquexE8PIbjSXA_5dMesKXrIn-97iKStaJeyXVD8EKbZgR-QBE3biB2CKzBNWGjZeQAzfK6Sx5KIrXV9LpI5m9LrJ1FW0VaIllM089iDXD-iJHWR8_dLmy3mJGMGibvQU_n-7DT9WMgrXgegK4dSQTV7bxJVyA2eYQUK9U3SOMjJ3lz-5vYa-_PJMXnD1Lq9xdaVoXVHqXOiO2SXccZcL9EvVW2pALOPoTJ3e3TzZi2bRSo8iOxoNrESrmCxaGJmZbK8CiLXWObuRjkTeinUrIQ5drTiP1kwF2FRpnCg1-5vsDxI-jns1wfA_GFn2UKMZunvUDjoqHIRCpFnKaCSeM5cNkRNCmaahnJd11kS_0EqZ9Y6iefDgzXSL58gyGE4HHMHRh0PEhaySoTi0-5wK9xHThfDqNM2EBHmutZZeegpokY2pIOXHW8W1nirx2d_Gv2KWwiegqau7sD6C_mlT5DhLKQw_qX_AJL3t8x priority: 102 providerName: Springer Nature |
Title | Group extraction from professional social network using a new semi-supervised hierarchical clustering |
URI | https://link.springer.com/article/10.1007/s10115-013-0634-x https://www.proquest.com/docview/1533599280 https://search.proquest.com/docview/1551072289 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9swED629mUwtq7bqLc2aLCnDjFbtmzpqSQladlYKGWB7slYsjwGnePVCevP351lp02hezJGtixOvtOnu9N9AB-tNFIksuRlKMl1Y0JuhNW8imxGBy-d6rgIvs3T80Xy5Upe9Q63tk-rHGxiZ6jLpSUf-WfCJVJrocKT5g8n1iiKrvYUGk9hNxJZRildana2iSLgFr1jzEOt5FRZb4hq-qNziIW45zaIE367tS49b4oWRVR5bost8PkgXtotQ7M9eNHjRzb2E_4Knrh6H14O3AysV9XX4DqnEkPTe-OPLjA6SMKae5U4mPeXs9pngjNKgf_JCrz_y1r3-xdv1w1ZktaVjBizu5gDjpfZ6zWVV8Cn38BiNv1-es57SgVu40yvuKuUtSFKMa2UcMZWMitVWBGxS4XzlMaFMSJFHY8cytskMrS4QbMIAmwYa2x_Czv1snYHwGIdl6VF_Ba5KHHYaapLXRitikILU0UBHA8CzRtfOSO_q5FM0s9R-jlJP78NYLQl8s0bAuGEVEoGcDjMQd5rWZvf_RMBfNg0o35Q0KOo3XJNz6DVyQTuKwP4NMzdvS4eG9G7_3_wPTxD6JT4xN1D2FndrN0RwpOVGXX_4Ah2x7PJZE7Xsx9fp3idTOcXl9i6EON_p4HoTA |
link.rule.ids | 315,783,787,12778,21401,27937,27938,33386,33387,33757,33758,41094,41536,42163,42605,43613,43818,52124,52247,74370,74637 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5UClquVRRNrtYiROIKt5OWufqoJAy2uFEEjcothxEBJkU7Kr8vM7EycLWwmOkR0nmvGMP8_Y8wHsGqFFGIuc576g0I32uQ6N4kVghnTx0sqGi-BinIxu4tNbcdsG3Or2WGXnExtHnU8Mxch_Ei4RSoXS_1X94cQaRdnVlkLjAyxTqSrZg-WDo_Hl1TyPgJv0hjMP7ZJTbb0ur-kuzyEa4o7dIIr588LK9KnKahRS4dgtFuDnfxnTZiE6XoXPLYJkv53K12DJluvwpWNnYK2xboBtwkoMne-Tu7zA6CoJq17V4mAuYs5Kdxac0SH4O5bh819W28d7Xs8q8iW1zRlxZjdZB_xfZh5mVGABe3-Fm-Oj68MRb0kVuImGasptIY3xUY5JIUOrTSGGufQLonYpUFNJlGkdJmjlgUWJ61j4BrdoBmGA8SOF7ZvQKyel3QIWqSjPDSK4wAaxxUETlatMK5llKtRF4MFeJ9C0crUz0pcqyST9FKWfkvTTZw8GCyKfvxEioBBSCg_6nQ7S1s7q9GVWeLAzb0YLobRHVtrJjPqg3xmGuLP0YL_T3ash3vqjb-9_cBtWRtcX5-n5yfjsO3xEIBW7Y7x96E2fZvYHgpWpHrQz8h9oH-cK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZT9wwEB4VkCokBL0QoUBdqU-tLHI5iZ8qrhW9VqgqEm9R7NgICbKB7Ap-PjOxs7CV2sfIjuOMPfY3nvF8AJ-0UCJORc3rUNDRjQq5irXkNtI5Xbw0Rc9F8GucnZ6n3y_EhY9_6nxY5bAm9gt1PdF0Rr5PuERIGRfhvvVhEWfHo6_tLScGKfK0ejqNJVjJ0yxBQ2zl8GR89nvuU0CDvefPQx3llGdv8HG6i3SIjLhjOkhS_rCwS621VYcCs47pYgGK_uU97Tel0StY92iSHbjhfw0vTPMGNgamBuYV9y2Y_oiJ4d_cuYsMjK6VsPZZXg7mTs9Z4-LCGQXEX7IKn-9ZZ26ueDdraV3pTM2IP7v3QGB_mb6eUbIFrP0Ozkcnf45OuSdY4DrJ5ZQbW2gdokwzW8RGaSvyuggt0bxYHLUsqZSKM9T4yKD0VSpCjeaaRkigw0Ri-SYsN5PGbAFLZFLXGtFcZKLUYKOZrGWlZFFVMlY2CuDzINCydXk0yqeMyST9EqVfkvTLhwD2FkQ-fyNGcCGKQgSwM4xB6XWuK59mSAAf58WoLeQCqRozmVEdXIPyGK3MAL4MY_esiX_1aPv_H_wAL3Eylj-_jX-8h1XEVKmL6N2B5endzOwibpmqPT8hHwE14Os- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+extraction+from+professional+social+network+using+a+new+semi-supervised+hierarchical+clustering&rft.jtitle=Knowledge+and+information+systems&rft.au=Ben+Ahmed%2C+Eya&rft.au=Nabli%2C+Ahlem&rft.au=Gargouri%2C+Fa%C3%AFez&rft.date=2014-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0219-1377&rft.eissn=0219-3116&rft.volume=40&rft.issue=1&rft.spage=29&rft_id=info:doi/10.1007%2Fs10115-013-0634-x&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3327236841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-1377&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-1377&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-1377&client=summon |