Magneto-optical trapping using planar optics
Laser-cooled atoms are a key technology for many calibration-free measurement platforms—including clocks, gyroscopes, and gravimeters—and are a promising system for quantum networking and quantum computing. The optics and vacuum hardware required to prepare these gases are often bulky and not amenab...
Saved in:
Published in | New journal of physics Vol. 23; no. 1; p. 13021 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Laser-cooled atoms are a key technology for many calibration-free measurement platforms—including clocks, gyroscopes, and gravimeters—and are a promising system for quantum networking and quantum computing. The optics and vacuum hardware required to prepare these gases are often bulky and not amenable to large-volume manufacturing, limiting the practical realization of devices benefiting from the properties of cold atoms. Planar, lithographically produced optics including photonic integrated circuits, optical metasurfaces (MSs), and gratings offer a pathway to develop chip-scale, manufacturable devices utilizing cold atoms. As a demonstration of this technology, we have realized laser cooling of atomic Rb in a grating-type magneto-optical trap (MOT) using planar optics for beam launching, beam shaping, and polarization control. Efficient use of available light is accomplished using MS-enabled beam shaping, and the performance of the planar optics MOT is competitive with Gaussian-beam illuminated grating MOTs. |
---|---|
AbstractList | Laser-cooled atoms are a key technology for many calibration-free measurement platforms—including clocks, gyroscopes, and gravimeters—and are a promising system for quantum networking and quantum computing. The optics and vacuum hardware required to prepare these gases are often bulky and not amenable to large-volume manufacturing, limiting the practical realization of devices benefiting from the properties of cold atoms. Planar, lithographically produced optics including photonic integrated circuits, optical metasurfaces (MSs), and gratings offer a pathway to develop chip-scale, manufacturable devices utilizing cold atoms. As a demonstration of this technology, we have realized laser cooling of atomic Rb in a grating-type magneto-optical trap (MOT) using planar optics for beam launching, beam shaping, and polarization control. Efficient use of available light is accomplished using MS-enabled beam shaping, and the performance of the planar optics MOT is competitive with Gaussian-beam illuminated grating MOTs. |
Author | Eckel, Stephen Aksyuk, Vladimir Zhu, Wenqi Barker, Daniel S Westly, Daron McClelland, Jabez J Klimov, Nikolai Yulaev, Alexander McGehee, William R Agrawal, Amit |
Author_xml | – sequence: 1 givenname: William R orcidid: 0000-0003-0246-6173 surname: McGehee fullname: McGehee, William R – sequence: 2 givenname: Wenqi surname: Zhu fullname: Zhu, Wenqi – sequence: 3 givenname: Daniel S surname: Barker fullname: Barker, Daniel S – sequence: 4 givenname: Daron surname: Westly fullname: Westly, Daron – sequence: 5 givenname: Alexander surname: Yulaev fullname: Yulaev, Alexander – sequence: 6 givenname: Nikolai surname: Klimov fullname: Klimov, Nikolai – sequence: 7 givenname: Amit surname: Agrawal fullname: Agrawal, Amit – sequence: 8 givenname: Stephen orcidid: 0000-0002-8887-0320 surname: Eckel fullname: Eckel, Stephen – sequence: 9 givenname: Vladimir surname: Aksyuk fullname: Aksyuk, Vladimir – sequence: 10 givenname: Jabez J surname: McClelland fullname: McClelland, Jabez J |
BookMark | eNp1kMtLxDAQxoOs4O7q3eOCV-vm0SbNURYfCyte9BymeSxdalKT9uB_b7uVRQQZmAkz830Zfgs088FbhK4JviO4LNeEcZFRzvAaKqMtO0PzU2v2632BFikdMCakpHSObl9g720XstB2tYZm1UVo29rvV30ac9uAh7g6TtMlOnfQJHv1U5fo_fHhbfOc7V6ftpv7XaaZkF1mjDBFQQuCpS6AY8dlbvJKVo5gUxoLYLWh1LhCVJpKLIjB0spcC1Ya4YAt0XbyNQEOqo31B8QvFaBWx0aIewVxOKixylpsnBQ51ZzkVuellqRw1PKKO8kkHbxuJq82hs_epk4dQh_9cL6iuRwCS8GHLTxt6RhSitadfiVYjXzVCFCNANXEd5DwPxJdd9DVwQ8I6-Z_4TceSIHa |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_17_034031 crossref_primary_10_1364_OL_475353 crossref_primary_10_1364_JOSAB_522695 crossref_primary_10_1364_OE_469501 crossref_primary_10_3390_app13106076 crossref_primary_10_1103_PRXQuantum_3_030316 crossref_primary_10_1103_PhysRevApplied_23_L011001 crossref_primary_10_1103_PhysRevApplied_23_L031002 crossref_primary_10_1364_OL_515178 crossref_primary_10_1038_s41467_023_39166_1 crossref_primary_10_1088_1674_1056_ad607a crossref_primary_10_3390_s23021040 crossref_primary_10_1038_s41467_022_31410_4 crossref_primary_10_1021_acs_nanolett_3c00791 crossref_primary_10_31857_S1234567824040050 crossref_primary_10_1063_5_0201107 crossref_primary_10_1364_OPTICAQ_540909 crossref_primary_10_1117_1_OE_63_5_054103 crossref_primary_10_3390_s23115089 crossref_primary_10_1063_5_0068725 crossref_primary_10_1038_s41467_023_38818_6 crossref_primary_10_1364_OE_444711 crossref_primary_10_1364_OL_420993 crossref_primary_10_1364_OE_453944 crossref_primary_10_1002_lpor_202300355 crossref_primary_10_1088_1367_2630_ad02ea crossref_primary_10_1364_OE_549141 crossref_primary_10_1088_0256_307X_42_3_034203 crossref_primary_10_1364_OE_524027 crossref_primary_10_1063_5_0222456 crossref_primary_10_1134_S0021364023604189 crossref_primary_10_1088_1367_2630_adbc14 crossref_primary_10_1364_AOP_439986 crossref_primary_10_1088_1674_1056_ac6db0 crossref_primary_10_1038_s41377_023_01081_x crossref_primary_10_1515_nanoph_2024_0296 crossref_primary_10_1364_OE_518268 crossref_primary_10_1063_5_0101628 crossref_primary_10_1364_AO_456686 crossref_primary_10_1103_PhysRevApplied_19_044015 crossref_primary_10_1364_OE_498606 crossref_primary_10_1007_s10909_021_02606_7 crossref_primary_10_1364_OL_526056 crossref_primary_10_1116_5_0095011 crossref_primary_10_1088_1402_4896_ad827c crossref_primary_10_1126_sciadv_abp9006 crossref_primary_10_1063_5_0210124 crossref_primary_10_1364_OPTICAQ_532260 crossref_primary_10_3390_app14167062 crossref_primary_10_1364_JOSAB_519552 crossref_primary_10_1364_OE_525454 |
Cites_doi | 10.1364/ol.26.001424 10.1364/optica.6.000680 10.1038/s41467-019-11529-7 10.1063/5.0019551 10.1038/s42254-019-0117-4 10.1038/s41598-018-19814-z 10.1103/revmodphys.70.721 10.1063/1.4904066 10.1126/sciadv.abb6667 10.1038/s41377-018-0073-2 10.1364/optica.5.000443 10.1063/1.5131683 10.1063/1.5026238 10.1073/pnas.1611740113 10.1103/revmodphys.71.1 10.1364/josab.33.001271 10.1103/physrevapplied.11.064023 10.1063/1.4971838 10.1080/09500340.2016.1178820 10.1038/nnano.2013.47 10.1103/physrevapplied.9.014019 10.1016/s0030-4018(98)00499-4 10.1088/1681-7575/aadbe4 10.1038/s41586-020-2823-6 10.1063/1.4803684 10.1021/acsphotonics.9b01000 10.1063/5.0014658 10.1103/physrevapplied.13.044038 10.1364/josab.6.002084 10.1364/oe.23.008948 10.1088/1367-2630/ab22d0 10.1021/acs.nanolett.7b01082 10.1364/ol.40.003368 10.1116/5.0009093 10.1103/physrevlett.69.897 10.1364/oe.17.013601 10.1088/1361-6382/ab4548 10.1364/josab.30.002869 10.1016/s0370-1573(02)00198-9 10.1038/s41586-018-0605-1 10.1038/s41598-019-48168-3 10.1016/s0030-4018(01)01107-5 10.1103/physreva.96.033636 10.1364/oe.378632 10.1038/s41598-017-00254-0 10.1103/physreva.85.033420 10.1038/s41586-020-1976-7 |
ContentType | Journal Article |
Copyright | 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO H8D L7M PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1088/1367-2630/abdce3 |
DatabaseName | CrossRef Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Aerospace Database Advanced Technologies Database with Aerospace ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1367-2630 |
ExternalDocumentID | oai_doaj_org_article_ee0df9742c614ec48c915f2e6b6f9392 10_1088_1367_2630_abdce3 |
GroupedDBID | 123 1JI 29N 2WC 5PX 5VS 7.M AAFWJ AAJIO AAJKP AAYXX ABHWH ACAFW ACGFO ACHIP ADBBV AEFHF AEJGL AENEX AFKRA AFPKN AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR CBCFC CCPQU CEBXE CITATION CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P GROUPED_DOAJ GX1 HH5 IJHAN IOP IZVLO J9A KQ8 LAP M48 M~E N5L N9A O3W OK1 OVT P2P PHGZM PHGZT PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 W28 XPP XSB ZMT 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c379t-dd7d5525109c5a60f694d4b9bf10d8deaaecd22df57bc29071d09e94c738d7fa3 |
IEDL.DBID | M48 |
ISSN | 1367-2630 |
IngestDate | Wed Aug 27 01:30:26 EDT 2025 Mon Jun 30 11:01:03 EDT 2025 Thu Apr 24 22:53:48 EDT 2025 Tue Jul 01 01:30:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-dd7d5525109c5a60f694d4b9bf10d8deaaecd22df57bc29071d09e94c738d7fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0246-6173 0000-0002-8887-0320 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1088/1367-2630/abdce3 |
PQID | 2494940976 |
PQPubID | 4491272 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ee0df9742c614ec48c915f2e6b6f9392 proquest_journals_2494940976 crossref_primary_10_1088_1367_2630_abdce3 crossref_citationtrail_10_1088_1367_2630_abdce3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | New journal of physics |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Devlin (njpabdce3bib44) 2016; 113 Trimeche (njpabdce3bib48) 2019; 36 Sell (njpabdce3bib34) 2017; 17 Sitaram (njpabdce3bib25) 2020; 91 Stern (njpabdce3bib26) 2019; 10 Birkl (njpabdce3bib20) 2001; 191 Kim (njpabdce3bib30) 2018; 7 Becker (njpabdce3bib5) 2018; 562 McGilligan (njpabdce3bib43) 2017; 7 Lee (njpabdce3bib39) 2013; 30 Weiner (njpabdce3bib42) 1999; 71 Newman (njpabdce3bib3) 2019; 6 Elvin (njpabdce3bib4) 2019; 27 Rushton (njpabdce3bib18) 2014; 85 Keil (njpabdce3bib19) 2016; 63 Geiger (njpabdce3bib7) 2020; 2 Yulaev (njpabdce3bib31) 2018 Lett (njpabdce3bib37) 1989; 6 Chauhan (njpabdce3bib28) 2019 Yulaev (njpabdce3bib33) 2019; 6 Barker (njpabdce3bib23) 2019; 11 Hummon (njpabdce3bib1) 2018; 5 Phillips (njpabdce3bib12) 1998; 70 Bongs (njpabdce3bib6) 2019; 1 Eckel (njpabdce3bib9) 2018; 55 Kitching (njpabdce3bib17) 2018; 5 McGilligan (njpabdce3bib38) 2015; 23 Martin (njpabdce3bib2) 2018; 9 Straatsma (njpabdce3bib10) 2015; 40 McGilligan (njpabdce3bib16) 2016; 33 Bomzon (njpabdce3bib32) 2001; 26 Zhu (njpabdce3bib29) 2020; 6 McGilligan (njpabdce3bib45) 2020; 13 Loriani (njpabdce3bib49) 2019; 21 Blumenthal (njpabdce3bib21) 2020; 5 Yu (njpabdce3bib11) 2020; 578 Wallace (njpabdce3bib41) 1992; 69 Arlt (njpabdce3bib13) 1998; 157 Nshii (njpabdce3bib22) 2013; 8 Behbood (njpabdce3bib8) 2013; 102 Noh (njpabdce3bib14) 2002; 372 Rosi (njpabdce3bib40) 2018; 8 McGilligan (njpabdce3bib46) 2020; 117 Imhof (njpabdce3bib24) 2017; 96 Vangeleyn (njpabdce3bib35) 2009; 17 Mehta (njpabdce3bib27) 2020; 586 Arpornthip (njpabdce3bib36) 2012; 85 Bowden (njpabdce3bib15) 2019; 9 Squires (njpabdce3bib47) 2016; 109 |
References_xml | – volume: 26 start-page: 1424 year: 2001 ident: njpabdce3bib32 article-title: Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings publication-title: Opt. Lett. doi: 10.1364/ol.26.001424 – volume: 6 start-page: 680 year: 2019 ident: njpabdce3bib3 article-title: Architecture for the photonic integration of an optical atomic clock publication-title: Optica doi: 10.1364/optica.6.000680 – volume: 10 start-page: 1 year: 2019 ident: njpabdce3bib26 article-title: Chip-scale atomic diffractive optical elements publication-title: Nat. Commun. doi: 10.1038/s41467-019-11529-7 – volume: 91 year: 2020 ident: njpabdce3bib25 article-title: Confinement of an alkaline-earth element in a grating magneto-optical trap publication-title: Rev. Sci. Instrum. doi: 10.1063/5.0019551 – volume: 1 start-page: 731 year: 2019 ident: njpabdce3bib6 article-title: Taking atom interferometric quantum sensors from the laboratory to real-world applications publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0117-4 – volume: 8 start-page: 1301 year: 2018 ident: njpabdce3bib40 article-title: Λ-enhanced grey molasses on the D2 transition of rubidium-87 atoms publication-title: Sci. Rep. doi: 10.1038/s41598-018-19814-z – volume: 70 start-page: 721 year: 1998 ident: njpabdce3bib12 article-title: Nobel Lecture: laser cooling and trapping of neutral atoms publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.70.721 – volume: 85 year: 2014 ident: njpabdce3bib18 article-title: Contributed Review: the feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4904066 – volume: 6 year: 2020 ident: njpabdce3bib29 article-title: A dielectric metasurface optical chip for the generation of cold atoms publication-title: Sci. Adv. doi: 10.1126/sciadv.abb6667 – volume: 7 start-page: 72 year: 2018 ident: njpabdce3bib30 article-title: Photonic waveguide to free-space Gaussian beam extreme mode converter publication-title: Light: Sci. Appl. doi: 10.1038/s41377-018-0073-2 – start-page: 1 year: 2018 ident: njpabdce3bib31 article-title: Collimating a free-space Gaussian beam by means of a chip-scale photonic extreme mode converter – volume: 5 start-page: 443 year: 2018 ident: njpabdce3bib1 article-title: Photonic chip for laser stabilization to an atomic vapor with 10−11 instability publication-title: Optica doi: 10.1364/optica.5.000443 – volume: 5 year: 2020 ident: njpabdce3bib21 article-title: Photonic integration for UV to IR applications publication-title: APL Photonics doi: 10.1063/1.5131683 – volume: 5 year: 2018 ident: njpabdce3bib17 article-title: Chip-scale atomic devices publication-title: Appl. Phys. Rev. doi: 10.1063/1.5026238 – volume: 113 start-page: 10473 year: 2016 ident: njpabdce3bib44 article-title: Broadband high-efficiency dielectric metasurfaces for the visible spectrum publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1611740113 – volume: 71 start-page: 1 year: 1999 ident: njpabdce3bib42 article-title: Experiments and theory in cold and ultracold collisions publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.71.1 – volume: 33 start-page: 1271 year: 2016 ident: njpabdce3bib16 article-title: Diffraction-grating characterization for cold-atom experiments publication-title: J. Opt. Soc. Am. B doi: 10.1364/josab.33.001271 – volume: 11 year: 2019 ident: njpabdce3bib23 article-title: Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating publication-title: Phys. Rev. Appl. doi: 10.1103/physrevapplied.11.064023 – volume: 109 year: 2016 ident: njpabdce3bib47 article-title: Ex vacuo atom chip Bose–Einstein condensate publication-title: Appl. Phys. Lett. doi: 10.1063/1.4971838 – volume: 63 start-page: 1840 year: 2016 ident: njpabdce3bib19 article-title: Fifteen years of cold matter on the atom chip: promise, realizations, and prospects publication-title: J. Mod. Opt. doi: 10.1080/09500340.2016.1178820 – volume: 8 start-page: 321 year: 2013 ident: njpabdce3bib22 article-title: A surface-patterned chip as a strong source of ultracold atoms for quantum technologies publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.47 – volume: 9 year: 2018 ident: njpabdce3bib2 article-title: Compact optical atomic clock based on a two-photon transition in rubidium publication-title: Phys. Rev. Appl. doi: 10.1103/physrevapplied.9.014019 – volume: 157 start-page: 303 year: 1998 ident: njpabdce3bib13 article-title: A pyramidal magneto-optical trap as a source of slow atoms publication-title: Opt. Commun. doi: 10.1016/s0030-4018(98)00499-4 – volume: 55 start-page: S182 year: 2018 ident: njpabdce3bib9 article-title: Challenges to miniaturizing cold atom technology for deployable vacuum metrology publication-title: Metrologia doi: 10.1088/1681-7575/aadbe4 – volume: 586 start-page: 533 year: 2020 ident: njpabdce3bib27 article-title: Integrated optical multi-ion quantum logic publication-title: Nature doi: 10.1038/s41586-020-2823-6 – volume: 102 year: 2013 ident: njpabdce3bib8 article-title: Real-time vector field tracking with a cold-atom magnetometer publication-title: Appl. Phys. Lett. doi: 10.1063/1.4803684 – volume: 6 start-page: 2902 year: 2019 ident: njpabdce3bib33 article-title: Metasurface-integrated photonic platform for versatile free-space beam projection with polarization control publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b01000 – volume: 117 year: 2020 ident: njpabdce3bib46 article-title: Laser cooling in a chip-scale platform publication-title: Appl. Phys. Lett. doi: 10.1063/5.0014658 – volume: 13 year: 2020 ident: njpabdce3bib45 article-title: Dynamic characterization of an alkali-ion battery as a source for laser-cooled atoms publication-title: Phys. Rev. Appl. doi: 10.1103/physrevapplied.13.044038 – volume: 6 start-page: 2084 year: 1989 ident: njpabdce3bib37 article-title: Optical molasses publication-title: J. Opt. Soc. Am. B doi: 10.1364/josab.6.002084 – volume: 23 start-page: 8948 year: 2015 ident: njpabdce3bib38 article-title: Phase-space properties of magneto-optical traps utilising micro-fabricated gratings publication-title: Opt. Express doi: 10.1364/oe.23.008948 – volume: 21 year: 2019 ident: njpabdce3bib49 article-title: Atomic source selection in space-borne gravitational wave detection publication-title: New J. Phys. doi: 10.1088/1367-2630/ab22d0 – volume: 17 start-page: 3752 year: 2017 ident: njpabdce3bib34 article-title: Large-angle, multifunctional metagratings based on freeform multimode geometries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01082 – volume: 40 start-page: 3368 year: 2015 ident: njpabdce3bib10 article-title: On-chip optical lattice for cold atom experiments publication-title: Opt. Lett. doi: 10.1364/ol.40.003368 – volume: 2 year: 2020 ident: njpabdce3bib7 article-title: High-accuracy inertial measurements with cold-atom sensors publication-title: AVS Quantum Sci. doi: 10.1116/5.0009093 – volume: 69 start-page: 897 year: 1992 ident: njpabdce3bib41 article-title: Isotopic difference in trap loss collisions of laser cooled rubidium atoms publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.69.897 – volume: 17 start-page: 13601 year: 2009 ident: njpabdce3bib35 article-title: Single-laser, one beam, tetrahedral magneto-optical trap publication-title: Opt. Express doi: 10.1364/oe.17.013601 – volume: 36 year: 2019 ident: njpabdce3bib48 article-title: Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/ab4548 – volume: 30 start-page: 2869 year: 2013 ident: njpabdce3bib39 article-title: Sub-Doppler cooling of neutral atoms in a grating magneto-optical trap publication-title: J. Opt. Soc. Am. B doi: 10.1364/josab.30.002869 – start-page: p STu4O.3 year: 2019 ident: njpabdce3bib28 article-title: Photonic integrated Si3N4 ultra-large-area grating waveguide MOT interface for 3D atomic clock laser cooling – volume: 372 start-page: 269 year: 2002 ident: njpabdce3bib14 article-title: Atom optics with hollow optical systems publication-title: Phys. Rep. doi: 10.1016/s0370-1573(02)00198-9 – volume: 562 start-page: 391 year: 2018 ident: njpabdce3bib5 article-title: Space-borne Bose–Einstein condensation for precision interferometry publication-title: Nature doi: 10.1038/s41586-018-0605-1 – volume: 9 start-page: 11704 year: 2019 ident: njpabdce3bib15 article-title: A pyramid MOT with integrated optical cavities as a cold atom platform for an optical lattice clock publication-title: Sci. Rep. doi: 10.1038/s41598-019-48168-3 – volume: 191 start-page: 67 year: 2001 ident: njpabdce3bib20 article-title: Atom optics with microfabricated optical elements publication-title: Opt. Commun. doi: 10.1016/s0030-4018(01)01107-5 – volume: 96 year: 2017 ident: njpabdce3bib24 article-title: Two-dimensional grating magneto-optical trap publication-title: Phys. Rev. A doi: 10.1103/physreva.96.033636 – volume: 27 start-page: 38359 year: 2019 ident: njpabdce3bib4 article-title: Cold-atom clock based on a diffractive optic publication-title: Opt. Express doi: 10.1364/oe.378632 – volume: 7 start-page: 384 year: 2017 ident: njpabdce3bib43 article-title: Grating chips for quantum technologies publication-title: Sci. Rep. doi: 10.1038/s41598-017-00254-0 – volume: 85 year: 2012 ident: njpabdce3bib36 article-title: Vacuum-pressure measurement using a magneto-optical trap publication-title: Phys. Rev. A doi: 10.1103/physreva.85.033420 – volume: 578 start-page: 240 year: 2020 ident: njpabdce3bib11 article-title: Entanglement of two quantum memories via fibres over dozens of kilometres publication-title: Nature doi: 10.1038/s41586-020-1976-7 |
SSID | ssj0011822 |
Score | 2.541124 |
Snippet | Laser-cooled atoms are a key technology for many calibration-free measurement platforms—including clocks, gyroscopes, and gravimeters—and are a promising... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 13021 |
SubjectTerms | Clocks Cold atoms Gaussian beams (optics) Gratings (spectra) Gravimeters Gravimetry Gyroscopes Integrated circuits Laser cooling metasurfaces Optical trapping Optics photonic integrated circuits Physics Quantum computing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA4iCL6IP3E6pQ--CIa2aZMmjyqOIcwnB3sLaS7Zy-jGVv9_c2k3FEFffG1T2t5d8l3uLt8RcgeZkaW1BQ3WEDYoQbHU-FxRE8wrFxzPLmJAf_ImxtPydcZnX1p9YU1YRw_cCS51LgMfnF5mA5A4W0qrcu6ZE7XwKoA7rr4B87abqT5_ELxm1iclwzRKkZeMMlFkqanBuuIbCEWu_h9LccSX0TE56h3D5LH7oBOy55pTchALNO3mjDxMzLxx7ZIuVzH6nLRrg9QK8wQr1-fJamEas07i3c05mY5e3p_HtO90QG1RqZYCVMB5cDUyZbkRmReqhLJWtc8zkOCMcRYYA8-r2rKwn80hU06VtiokVN4UF2S_WTbukiSS86LilnuDyA2F8o5XALn0hpc1sAFJt7-ubU8Djt0oFjqmo6XUKCyNwtKdsAbkfvfEqqPA-GXsE0pzNw7Jq-OFoFLdq1T_pdIBGW51ofsZtdEMaXSQnEtc_cc7rskhw-qUGEwZkv12_eFugnvR1rfRkj4BlBHMRQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS8MwGA86EbyIT5wvevAiGNamTZucREUZwkREwVtI8yW7jHZu9f83X5ZNRNi1SQ_93q_-PkKuINWiMCanXhp8guIZS7XLJNVevLKS47-LWNAfvZTDj-L5k3_Ggts8jlUubWIw1NAarJEPGMKoIDhTeTv9org1CrurcYXGJtnyJliIHtm6f3x5fVv1EXz0zGJz0qvTAPHJKCvzdKBrMDb_44wCZv8_kxz8zNMe2Y0BYnK34Og-2bDNAdkOg5pmfkhuRnrc2K6l7TRUoZNuphFiYZzgBPs4mU50o2dJOJ0fkY-nx_eHIY0bD6jJK9lRgAo49yFHKg3XZepKWUBRy9plKQiwWlsDjIHjVW2Yz2szSKWVhalyAZXT-THpNW1jT0giOM8rbrjT6MEhl87yCiATTvOiBtYng-WnKxPhwHErxUSFtrQQComlkFhqQaw-uV69MV1AYay5e4_UXN1DEOvwoJ2NVdQJZW0KzuczzPgYwZpCGJlxx2xZl076uK1Pzpe8UFGz5upXDk7XH5-RHYbzJ6Fcck563ezbXvgAoqsvo5T8AFYJxQM priority: 102 providerName: ProQuest |
Title | Magneto-optical trapping using planar optics |
URI | https://www.proquest.com/docview/2494940976 https://doaj.org/article/ee0df9742c614ec48c915f2e6b6f9392 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA66Ifgi_sTpHH3wRbCuTZs2eRBxsjGEDREHewtpLtnL6GZXQf97k6zbEIdPvrYJpXeX3He5y3cIXUMgaCxl5BtrMAGKUawvdMh8YcwrTIi9u2gP9AfDpD-Kn8dkvLkeXQlwsTW0s_2kRsX07vP968Es-PtlhRxtW9YxHydR0BYZSBXtorrxS6ntZzCINzkFg6RxlajcNuuHY3L8_b-2Z-dzeofooAKL3uNSu0doR-XHaM8VbcrFCbodiEmuypk_m7sTaa8shKVbmHi2mn3izaciF4Xn3i5O0ajXfXvq-1X3A19GKSt9gBQIMfAjYJKIJNAJiyHOWKbDACgoIZQEjEGTNJPYxLghBEyxWKYRhVSL6AzV8lmuzpFHCYlSIokW1ptDxLQiKUBItSBxBriB2qtf57KiBrcdKqbcpagp5VZY3AqLL4XVQDfrGfMlLcYfYztWmutxltDaPZgVE16tD65UANrENlgavKBkTCULicYqyRLNDIZroOZKF3xlJBxbah1L2JVc_Mc3LtE-thUr7oCliWpl8aGuDOQosxaqd7rDl9eWC9lbzq6-AQE71rM |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE91S4Ec4ICEtYkdJ_EBIQqttrS7QqiVejOOx95LlSy7qRB_it-Ix5ssQki99Ro7kTL-7Hn6G4DXmJoqt1awgIbgoISFZcZnipkAr6yQdHeRAvqzeTG9yL9cyssd-D3chaGyyuFMjAc1tpZi5BNONCpEzlR8WP5g1DWKsqtDC40NLE7dr5_BZVu_P_kc1vcN58dH55-mrO8qwKwoVccQS5QyqPVUWWmK1Bcqx7xWtc9SrNAZ4yxyjl6WteXBd8wwVU7lthQVlt6I8N07sJuLIuUj2D08mn_9ts1bBGud98nQsH0nxIfGeCHSianROvGP8os9Av5TAVGvHT-EB71BmnzcIOgR7LjmMdyNhaF2_QTezcyicV3L2mWMeifdyhClwyKhivlFsrwyjVklcXT9FC5uRRbPYNS0jduDpJJSlNJKb8hiQKG8kyViVnkj8xr5GCbDr2vb049TF4wrHdPgVaVJWJqEpTfCGsPb7RvLDfXGDXMPSZrbeUSaHR-0q4Xu96B2LkUf_Cdug03ibF5ZlUnPXVEXXgU7cQwHw1rofiev9V_c7d88_AruTc9nZ_rsZH76HO5zqn2JoZoDGHWra_ciGC9d_bJHTALfbxukfwBHswNT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magneto-optical+trapping+using+planar+optics&rft.jtitle=New+journal+of+physics&rft.au=William+R+McGehee&rft.au=Wenqi+Zhu&rft.au=Daniel+S+Barker&rft.au=Daron+Westly&rft.date=2021-01-01&rft.pub=IOP+Publishing&rft.eissn=1367-2630&rft.volume=23&rft.issue=1&rft.spage=013021&rft_id=info:doi/10.1088%2F1367-2630%2Fabdce3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ee0df9742c614ec48c915f2e6b6f9392 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon |