Magneto-optical trapping using planar optics

Laser-cooled atoms are a key technology for many calibration-free measurement platforms—including clocks, gyroscopes, and gravimeters—and are a promising system for quantum networking and quantum computing. The optics and vacuum hardware required to prepare these gases are often bulky and not amenab...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 23; no. 1; p. 13021
Main Authors McGehee, William R, Zhu, Wenqi, Barker, Daniel S, Westly, Daron, Yulaev, Alexander, Klimov, Nikolai, Agrawal, Amit, Eckel, Stephen, Aksyuk, Vladimir, McClelland, Jabez J
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Laser-cooled atoms are a key technology for many calibration-free measurement platforms—including clocks, gyroscopes, and gravimeters—and are a promising system for quantum networking and quantum computing. The optics and vacuum hardware required to prepare these gases are often bulky and not amenable to large-volume manufacturing, limiting the practical realization of devices benefiting from the properties of cold atoms. Planar, lithographically produced optics including photonic integrated circuits, optical metasurfaces (MSs), and gratings offer a pathway to develop chip-scale, manufacturable devices utilizing cold atoms. As a demonstration of this technology, we have realized laser cooling of atomic Rb in a grating-type magneto-optical trap (MOT) using planar optics for beam launching, beam shaping, and polarization control. Efficient use of available light is accomplished using MS-enabled beam shaping, and the performance of the planar optics MOT is competitive with Gaussian-beam illuminated grating MOTs.
AbstractList Laser-cooled atoms are a key technology for many calibration-free measurement platforms—including clocks, gyroscopes, and gravimeters—and are a promising system for quantum networking and quantum computing. The optics and vacuum hardware required to prepare these gases are often bulky and not amenable to large-volume manufacturing, limiting the practical realization of devices benefiting from the properties of cold atoms. Planar, lithographically produced optics including photonic integrated circuits, optical metasurfaces (MSs), and gratings offer a pathway to develop chip-scale, manufacturable devices utilizing cold atoms. As a demonstration of this technology, we have realized laser cooling of atomic Rb in a grating-type magneto-optical trap (MOT) using planar optics for beam launching, beam shaping, and polarization control. Efficient use of available light is accomplished using MS-enabled beam shaping, and the performance of the planar optics MOT is competitive with Gaussian-beam illuminated grating MOTs.
Author Eckel, Stephen
Aksyuk, Vladimir
Zhu, Wenqi
Barker, Daniel S
Westly, Daron
McClelland, Jabez J
Klimov, Nikolai
Yulaev, Alexander
McGehee, William R
Agrawal, Amit
Author_xml – sequence: 1
  givenname: William R
  orcidid: 0000-0003-0246-6173
  surname: McGehee
  fullname: McGehee, William R
– sequence: 2
  givenname: Wenqi
  surname: Zhu
  fullname: Zhu, Wenqi
– sequence: 3
  givenname: Daniel S
  surname: Barker
  fullname: Barker, Daniel S
– sequence: 4
  givenname: Daron
  surname: Westly
  fullname: Westly, Daron
– sequence: 5
  givenname: Alexander
  surname: Yulaev
  fullname: Yulaev, Alexander
– sequence: 6
  givenname: Nikolai
  surname: Klimov
  fullname: Klimov, Nikolai
– sequence: 7
  givenname: Amit
  surname: Agrawal
  fullname: Agrawal, Amit
– sequence: 8
  givenname: Stephen
  orcidid: 0000-0002-8887-0320
  surname: Eckel
  fullname: Eckel, Stephen
– sequence: 9
  givenname: Vladimir
  surname: Aksyuk
  fullname: Aksyuk, Vladimir
– sequence: 10
  givenname: Jabez J
  surname: McClelland
  fullname: McClelland, Jabez J
BookMark eNp1kMtLxDAQxoOs4O7q3eOCV-vm0SbNURYfCyte9BymeSxdalKT9uB_b7uVRQQZmAkz830Zfgs088FbhK4JviO4LNeEcZFRzvAaKqMtO0PzU2v2632BFikdMCakpHSObl9g720XstB2tYZm1UVo29rvV30ac9uAh7g6TtMlOnfQJHv1U5fo_fHhbfOc7V6ftpv7XaaZkF1mjDBFQQuCpS6AY8dlbvJKVo5gUxoLYLWh1LhCVJpKLIjB0spcC1Ya4YAt0XbyNQEOqo31B8QvFaBWx0aIewVxOKixylpsnBQ51ZzkVuellqRw1PKKO8kkHbxuJq82hs_epk4dQh_9cL6iuRwCS8GHLTxt6RhSitadfiVYjXzVCFCNANXEd5DwPxJdd9DVwQ8I6-Z_4TceSIHa
CitedBy_id crossref_primary_10_1103_PhysRevApplied_17_034031
crossref_primary_10_1364_OL_475353
crossref_primary_10_1364_JOSAB_522695
crossref_primary_10_1364_OE_469501
crossref_primary_10_3390_app13106076
crossref_primary_10_1103_PRXQuantum_3_030316
crossref_primary_10_1103_PhysRevApplied_23_L011001
crossref_primary_10_1103_PhysRevApplied_23_L031002
crossref_primary_10_1364_OL_515178
crossref_primary_10_1038_s41467_023_39166_1
crossref_primary_10_1088_1674_1056_ad607a
crossref_primary_10_3390_s23021040
crossref_primary_10_1038_s41467_022_31410_4
crossref_primary_10_1021_acs_nanolett_3c00791
crossref_primary_10_31857_S1234567824040050
crossref_primary_10_1063_5_0201107
crossref_primary_10_1364_OPTICAQ_540909
crossref_primary_10_1117_1_OE_63_5_054103
crossref_primary_10_3390_s23115089
crossref_primary_10_1063_5_0068725
crossref_primary_10_1038_s41467_023_38818_6
crossref_primary_10_1364_OE_444711
crossref_primary_10_1364_OL_420993
crossref_primary_10_1364_OE_453944
crossref_primary_10_1002_lpor_202300355
crossref_primary_10_1088_1367_2630_ad02ea
crossref_primary_10_1364_OE_549141
crossref_primary_10_1088_0256_307X_42_3_034203
crossref_primary_10_1364_OE_524027
crossref_primary_10_1063_5_0222456
crossref_primary_10_1134_S0021364023604189
crossref_primary_10_1088_1367_2630_adbc14
crossref_primary_10_1364_AOP_439986
crossref_primary_10_1088_1674_1056_ac6db0
crossref_primary_10_1038_s41377_023_01081_x
crossref_primary_10_1515_nanoph_2024_0296
crossref_primary_10_1364_OE_518268
crossref_primary_10_1063_5_0101628
crossref_primary_10_1364_AO_456686
crossref_primary_10_1103_PhysRevApplied_19_044015
crossref_primary_10_1364_OE_498606
crossref_primary_10_1007_s10909_021_02606_7
crossref_primary_10_1364_OL_526056
crossref_primary_10_1116_5_0095011
crossref_primary_10_1088_1402_4896_ad827c
crossref_primary_10_1126_sciadv_abp9006
crossref_primary_10_1063_5_0210124
crossref_primary_10_1364_OPTICAQ_532260
crossref_primary_10_3390_app14167062
crossref_primary_10_1364_JOSAB_519552
crossref_primary_10_1364_OE_525454
Cites_doi 10.1364/ol.26.001424
10.1364/optica.6.000680
10.1038/s41467-019-11529-7
10.1063/5.0019551
10.1038/s42254-019-0117-4
10.1038/s41598-018-19814-z
10.1103/revmodphys.70.721
10.1063/1.4904066
10.1126/sciadv.abb6667
10.1038/s41377-018-0073-2
10.1364/optica.5.000443
10.1063/1.5131683
10.1063/1.5026238
10.1073/pnas.1611740113
10.1103/revmodphys.71.1
10.1364/josab.33.001271
10.1103/physrevapplied.11.064023
10.1063/1.4971838
10.1080/09500340.2016.1178820
10.1038/nnano.2013.47
10.1103/physrevapplied.9.014019
10.1016/s0030-4018(98)00499-4
10.1088/1681-7575/aadbe4
10.1038/s41586-020-2823-6
10.1063/1.4803684
10.1021/acsphotonics.9b01000
10.1063/5.0014658
10.1103/physrevapplied.13.044038
10.1364/josab.6.002084
10.1364/oe.23.008948
10.1088/1367-2630/ab22d0
10.1021/acs.nanolett.7b01082
10.1364/ol.40.003368
10.1116/5.0009093
10.1103/physrevlett.69.897
10.1364/oe.17.013601
10.1088/1361-6382/ab4548
10.1364/josab.30.002869
10.1016/s0370-1573(02)00198-9
10.1038/s41586-018-0605-1
10.1038/s41598-019-48168-3
10.1016/s0030-4018(01)01107-5
10.1103/physreva.96.033636
10.1364/oe.378632
10.1038/s41598-017-00254-0
10.1103/physreva.85.033420
10.1038/s41586-020-1976-7
ContentType Journal Article
Copyright 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
H8D
L7M
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1088/1367-2630/abdce3
DatabaseName CrossRef
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Aerospace Database
Advanced Technologies Database with Aerospace
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1367-2630
ExternalDocumentID oai_doaj_org_article_ee0df9742c614ec48c915f2e6b6f9392
10_1088_1367_2630_abdce3
GroupedDBID 123
1JI
29N
2WC
5PX
5VS
7.M
AAFWJ
AAJIO
AAJKP
AAYXX
ABHWH
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
CBCFC
CCPQU
CEBXE
CITATION
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
GROUPED_DOAJ
GX1
HH5
IJHAN
IOP
IZVLO
J9A
KQ8
LAP
M48
M~E
N5L
N9A
O3W
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
W28
XPP
XSB
ZMT
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c379t-dd7d5525109c5a60f694d4b9bf10d8deaaecd22df57bc29071d09e94c738d7fa3
IEDL.DBID M48
ISSN 1367-2630
IngestDate Wed Aug 27 01:30:26 EDT 2025
Mon Jun 30 11:01:03 EDT 2025
Thu Apr 24 22:53:48 EDT 2025
Tue Jul 01 01:30:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-dd7d5525109c5a60f694d4b9bf10d8deaaecd22df57bc29071d09e94c738d7fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0246-6173
0000-0002-8887-0320
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1088/1367-2630/abdce3
PQID 2494940976
PQPubID 4491272
ParticipantIDs doaj_primary_oai_doaj_org_article_ee0df9742c614ec48c915f2e6b6f9392
proquest_journals_2494940976
crossref_primary_10_1088_1367_2630_abdce3
crossref_citationtrail_10_1088_1367_2630_abdce3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle New journal of physics
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Devlin (njpabdce3bib44) 2016; 113
Trimeche (njpabdce3bib48) 2019; 36
Sell (njpabdce3bib34) 2017; 17
Sitaram (njpabdce3bib25) 2020; 91
Stern (njpabdce3bib26) 2019; 10
Birkl (njpabdce3bib20) 2001; 191
Kim (njpabdce3bib30) 2018; 7
Becker (njpabdce3bib5) 2018; 562
McGilligan (njpabdce3bib43) 2017; 7
Lee (njpabdce3bib39) 2013; 30
Weiner (njpabdce3bib42) 1999; 71
Newman (njpabdce3bib3) 2019; 6
Elvin (njpabdce3bib4) 2019; 27
Rushton (njpabdce3bib18) 2014; 85
Keil (njpabdce3bib19) 2016; 63
Geiger (njpabdce3bib7) 2020; 2
Yulaev (njpabdce3bib31) 2018
Lett (njpabdce3bib37) 1989; 6
Chauhan (njpabdce3bib28) 2019
Yulaev (njpabdce3bib33) 2019; 6
Barker (njpabdce3bib23) 2019; 11
Hummon (njpabdce3bib1) 2018; 5
Phillips (njpabdce3bib12) 1998; 70
Bongs (njpabdce3bib6) 2019; 1
Eckel (njpabdce3bib9) 2018; 55
Kitching (njpabdce3bib17) 2018; 5
McGilligan (njpabdce3bib38) 2015; 23
Martin (njpabdce3bib2) 2018; 9
Straatsma (njpabdce3bib10) 2015; 40
McGilligan (njpabdce3bib16) 2016; 33
Bomzon (njpabdce3bib32) 2001; 26
Zhu (njpabdce3bib29) 2020; 6
McGilligan (njpabdce3bib45) 2020; 13
Loriani (njpabdce3bib49) 2019; 21
Blumenthal (njpabdce3bib21) 2020; 5
Yu (njpabdce3bib11) 2020; 578
Wallace (njpabdce3bib41) 1992; 69
Arlt (njpabdce3bib13) 1998; 157
Nshii (njpabdce3bib22) 2013; 8
Behbood (njpabdce3bib8) 2013; 102
Noh (njpabdce3bib14) 2002; 372
Rosi (njpabdce3bib40) 2018; 8
McGilligan (njpabdce3bib46) 2020; 117
Imhof (njpabdce3bib24) 2017; 96
Vangeleyn (njpabdce3bib35) 2009; 17
Mehta (njpabdce3bib27) 2020; 586
Arpornthip (njpabdce3bib36) 2012; 85
Bowden (njpabdce3bib15) 2019; 9
Squires (njpabdce3bib47) 2016; 109
References_xml – volume: 26
  start-page: 1424
  year: 2001
  ident: njpabdce3bib32
  article-title: Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings
  publication-title: Opt. Lett.
  doi: 10.1364/ol.26.001424
– volume: 6
  start-page: 680
  year: 2019
  ident: njpabdce3bib3
  article-title: Architecture for the photonic integration of an optical atomic clock
  publication-title: Optica
  doi: 10.1364/optica.6.000680
– volume: 10
  start-page: 1
  year: 2019
  ident: njpabdce3bib26
  article-title: Chip-scale atomic diffractive optical elements
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11529-7
– volume: 91
  year: 2020
  ident: njpabdce3bib25
  article-title: Confinement of an alkaline-earth element in a grating magneto-optical trap
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0019551
– volume: 1
  start-page: 731
  year: 2019
  ident: njpabdce3bib6
  article-title: Taking atom interferometric quantum sensors from the laboratory to real-world applications
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0117-4
– volume: 8
  start-page: 1301
  year: 2018
  ident: njpabdce3bib40
  article-title: Λ-enhanced grey molasses on the D2 transition of rubidium-87 atoms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19814-z
– volume: 70
  start-page: 721
  year: 1998
  ident: njpabdce3bib12
  article-title: Nobel Lecture: laser cooling and trapping of neutral atoms
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/revmodphys.70.721
– volume: 85
  year: 2014
  ident: njpabdce3bib18
  article-title: Contributed Review: the feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4904066
– volume: 6
  year: 2020
  ident: njpabdce3bib29
  article-title: A dielectric metasurface optical chip for the generation of cold atoms
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb6667
– volume: 7
  start-page: 72
  year: 2018
  ident: njpabdce3bib30
  article-title: Photonic waveguide to free-space Gaussian beam extreme mode converter
  publication-title: Light: Sci. Appl.
  doi: 10.1038/s41377-018-0073-2
– start-page: 1
  year: 2018
  ident: njpabdce3bib31
  article-title: Collimating a free-space Gaussian beam by means of a chip-scale photonic extreme mode converter
– volume: 5
  start-page: 443
  year: 2018
  ident: njpabdce3bib1
  article-title: Photonic chip for laser stabilization to an atomic vapor with 10−11 instability
  publication-title: Optica
  doi: 10.1364/optica.5.000443
– volume: 5
  year: 2020
  ident: njpabdce3bib21
  article-title: Photonic integration for UV to IR applications
  publication-title: APL Photonics
  doi: 10.1063/1.5131683
– volume: 5
  year: 2018
  ident: njpabdce3bib17
  article-title: Chip-scale atomic devices
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5026238
– volume: 113
  start-page: 10473
  year: 2016
  ident: njpabdce3bib44
  article-title: Broadband high-efficiency dielectric metasurfaces for the visible spectrum
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1611740113
– volume: 71
  start-page: 1
  year: 1999
  ident: njpabdce3bib42
  article-title: Experiments and theory in cold and ultracold collisions
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/revmodphys.71.1
– volume: 33
  start-page: 1271
  year: 2016
  ident: njpabdce3bib16
  article-title: Diffraction-grating characterization for cold-atom experiments
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/josab.33.001271
– volume: 11
  year: 2019
  ident: njpabdce3bib23
  article-title: Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/physrevapplied.11.064023
– volume: 109
  year: 2016
  ident: njpabdce3bib47
  article-title: Ex vacuo atom chip Bose–Einstein condensate
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4971838
– volume: 63
  start-page: 1840
  year: 2016
  ident: njpabdce3bib19
  article-title: Fifteen years of cold matter on the atom chip: promise, realizations, and prospects
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340.2016.1178820
– volume: 8
  start-page: 321
  year: 2013
  ident: njpabdce3bib22
  article-title: A surface-patterned chip as a strong source of ultracold atoms for quantum technologies
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.47
– volume: 9
  year: 2018
  ident: njpabdce3bib2
  article-title: Compact optical atomic clock based on a two-photon transition in rubidium
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/physrevapplied.9.014019
– volume: 157
  start-page: 303
  year: 1998
  ident: njpabdce3bib13
  article-title: A pyramidal magneto-optical trap as a source of slow atoms
  publication-title: Opt. Commun.
  doi: 10.1016/s0030-4018(98)00499-4
– volume: 55
  start-page: S182
  year: 2018
  ident: njpabdce3bib9
  article-title: Challenges to miniaturizing cold atom technology for deployable vacuum metrology
  publication-title: Metrologia
  doi: 10.1088/1681-7575/aadbe4
– volume: 586
  start-page: 533
  year: 2020
  ident: njpabdce3bib27
  article-title: Integrated optical multi-ion quantum logic
  publication-title: Nature
  doi: 10.1038/s41586-020-2823-6
– volume: 102
  year: 2013
  ident: njpabdce3bib8
  article-title: Real-time vector field tracking with a cold-atom magnetometer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4803684
– volume: 6
  start-page: 2902
  year: 2019
  ident: njpabdce3bib33
  article-title: Metasurface-integrated photonic platform for versatile free-space beam projection with polarization control
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b01000
– volume: 117
  year: 2020
  ident: njpabdce3bib46
  article-title: Laser cooling in a chip-scale platform
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0014658
– volume: 13
  year: 2020
  ident: njpabdce3bib45
  article-title: Dynamic characterization of an alkali-ion battery as a source for laser-cooled atoms
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/physrevapplied.13.044038
– volume: 6
  start-page: 2084
  year: 1989
  ident: njpabdce3bib37
  article-title: Optical molasses
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/josab.6.002084
– volume: 23
  start-page: 8948
  year: 2015
  ident: njpabdce3bib38
  article-title: Phase-space properties of magneto-optical traps utilising micro-fabricated gratings
  publication-title: Opt. Express
  doi: 10.1364/oe.23.008948
– volume: 21
  year: 2019
  ident: njpabdce3bib49
  article-title: Atomic source selection in space-borne gravitational wave detection
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab22d0
– volume: 17
  start-page: 3752
  year: 2017
  ident: njpabdce3bib34
  article-title: Large-angle, multifunctional metagratings based on freeform multimode geometries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01082
– volume: 40
  start-page: 3368
  year: 2015
  ident: njpabdce3bib10
  article-title: On-chip optical lattice for cold atom experiments
  publication-title: Opt. Lett.
  doi: 10.1364/ol.40.003368
– volume: 2
  year: 2020
  ident: njpabdce3bib7
  article-title: High-accuracy inertial measurements with cold-atom sensors
  publication-title: AVS Quantum Sci.
  doi: 10.1116/5.0009093
– volume: 69
  start-page: 897
  year: 1992
  ident: njpabdce3bib41
  article-title: Isotopic difference in trap loss collisions of laser cooled rubidium atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.69.897
– volume: 17
  start-page: 13601
  year: 2009
  ident: njpabdce3bib35
  article-title: Single-laser, one beam, tetrahedral magneto-optical trap
  publication-title: Opt. Express
  doi: 10.1364/oe.17.013601
– volume: 36
  year: 2019
  ident: njpabdce3bib48
  article-title: Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry
  publication-title: Class. Quantum Grav.
  doi: 10.1088/1361-6382/ab4548
– volume: 30
  start-page: 2869
  year: 2013
  ident: njpabdce3bib39
  article-title: Sub-Doppler cooling of neutral atoms in a grating magneto-optical trap
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/josab.30.002869
– start-page: p STu4O.3
  year: 2019
  ident: njpabdce3bib28
  article-title: Photonic integrated Si3N4 ultra-large-area grating waveguide MOT interface for 3D atomic clock laser cooling
– volume: 372
  start-page: 269
  year: 2002
  ident: njpabdce3bib14
  article-title: Atom optics with hollow optical systems
  publication-title: Phys. Rep.
  doi: 10.1016/s0370-1573(02)00198-9
– volume: 562
  start-page: 391
  year: 2018
  ident: njpabdce3bib5
  article-title: Space-borne Bose–Einstein condensation for precision interferometry
  publication-title: Nature
  doi: 10.1038/s41586-018-0605-1
– volume: 9
  start-page: 11704
  year: 2019
  ident: njpabdce3bib15
  article-title: A pyramid MOT with integrated optical cavities as a cold atom platform for an optical lattice clock
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48168-3
– volume: 191
  start-page: 67
  year: 2001
  ident: njpabdce3bib20
  article-title: Atom optics with microfabricated optical elements
  publication-title: Opt. Commun.
  doi: 10.1016/s0030-4018(01)01107-5
– volume: 96
  year: 2017
  ident: njpabdce3bib24
  article-title: Two-dimensional grating magneto-optical trap
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.96.033636
– volume: 27
  start-page: 38359
  year: 2019
  ident: njpabdce3bib4
  article-title: Cold-atom clock based on a diffractive optic
  publication-title: Opt. Express
  doi: 10.1364/oe.378632
– volume: 7
  start-page: 384
  year: 2017
  ident: njpabdce3bib43
  article-title: Grating chips for quantum technologies
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00254-0
– volume: 85
  year: 2012
  ident: njpabdce3bib36
  article-title: Vacuum-pressure measurement using a magneto-optical trap
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.85.033420
– volume: 578
  start-page: 240
  year: 2020
  ident: njpabdce3bib11
  article-title: Entanglement of two quantum memories via fibres over dozens of kilometres
  publication-title: Nature
  doi: 10.1038/s41586-020-1976-7
SSID ssj0011822
Score 2.541124
Snippet Laser-cooled atoms are a key technology for many calibration-free measurement platforms—including clocks, gyroscopes, and gravimeters—and are a promising...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 13021
SubjectTerms Clocks
Cold atoms
Gaussian beams (optics)
Gratings (spectra)
Gravimeters
Gravimetry
Gyroscopes
Integrated circuits
Laser cooling
metasurfaces
Optical trapping
Optics
photonic integrated circuits
Physics
Quantum computing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA4iCL6IP3E6pQ--CIa2aZMmjyqOIcwnB3sLaS7Zy-jGVv9_c2k3FEFffG1T2t5d8l3uLt8RcgeZkaW1BQ3WEDYoQbHU-FxRE8wrFxzPLmJAf_ImxtPydcZnX1p9YU1YRw_cCS51LgMfnF5mA5A4W0qrcu6ZE7XwKoA7rr4B87abqT5_ELxm1iclwzRKkZeMMlFkqanBuuIbCEWu_h9LccSX0TE56h3D5LH7oBOy55pTchALNO3mjDxMzLxx7ZIuVzH6nLRrg9QK8wQr1-fJamEas07i3c05mY5e3p_HtO90QG1RqZYCVMB5cDUyZbkRmReqhLJWtc8zkOCMcRYYA8-r2rKwn80hU06VtiokVN4UF2S_WTbukiSS86LilnuDyA2F8o5XALn0hpc1sAFJt7-ubU8Djt0oFjqmo6XUKCyNwtKdsAbkfvfEqqPA-GXsE0pzNw7Jq-OFoFLdq1T_pdIBGW51ofsZtdEMaXSQnEtc_cc7rskhw-qUGEwZkv12_eFugnvR1rfRkj4BlBHMRQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS8MwGA86EbyIT5wvevAiGNamTZucREUZwkREwVtI8yW7jHZu9f83X5ZNRNi1SQ_93q_-PkKuINWiMCanXhp8guIZS7XLJNVevLKS47-LWNAfvZTDj-L5k3_Ggts8jlUubWIw1NAarJEPGMKoIDhTeTv9org1CrurcYXGJtnyJliIHtm6f3x5fVv1EXz0zGJz0qvTAPHJKCvzdKBrMDb_44wCZv8_kxz8zNMe2Y0BYnK34Og-2bDNAdkOg5pmfkhuRnrc2K6l7TRUoZNuphFiYZzgBPs4mU50o2dJOJ0fkY-nx_eHIY0bD6jJK9lRgAo49yFHKg3XZepKWUBRy9plKQiwWlsDjIHjVW2Yz2szSKWVhalyAZXT-THpNW1jT0giOM8rbrjT6MEhl87yCiATTvOiBtYng-WnKxPhwHErxUSFtrQQComlkFhqQaw-uV69MV1AYay5e4_UXN1DEOvwoJ2NVdQJZW0KzuczzPgYwZpCGJlxx2xZl076uK1Pzpe8UFGz5upXDk7XH5-RHYbzJ6Fcck563ezbXvgAoqsvo5T8AFYJxQM
  priority: 102
  providerName: ProQuest
Title Magneto-optical trapping using planar optics
URI https://www.proquest.com/docview/2494940976
https://doaj.org/article/ee0df9742c614ec48c915f2e6b6f9392
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA66Ifgi_sTpHH3wRbCuTZs2eRBxsjGEDREHewtpLtnL6GZXQf97k6zbEIdPvrYJpXeX3He5y3cIXUMgaCxl5BtrMAGKUawvdMh8YcwrTIi9u2gP9AfDpD-Kn8dkvLkeXQlwsTW0s_2kRsX07vP968Es-PtlhRxtW9YxHydR0BYZSBXtorrxS6ntZzCINzkFg6RxlajcNuuHY3L8_b-2Z-dzeofooAKL3uNSu0doR-XHaM8VbcrFCbodiEmuypk_m7sTaa8shKVbmHi2mn3izaciF4Xn3i5O0ajXfXvq-1X3A19GKSt9gBQIMfAjYJKIJNAJiyHOWKbDACgoIZQEjEGTNJPYxLghBEyxWKYRhVSL6AzV8lmuzpFHCYlSIokW1ptDxLQiKUBItSBxBriB2qtf57KiBrcdKqbcpagp5VZY3AqLL4XVQDfrGfMlLcYfYztWmutxltDaPZgVE16tD65UANrENlgavKBkTCULicYqyRLNDIZroOZKF3xlJBxbah1L2JVc_Mc3LtE-thUr7oCliWpl8aGuDOQosxaqd7rDl9eWC9lbzq6-AQE71rM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE91S4Ec4ICEtYkdJ_EBIQqttrS7QqiVejOOx95LlSy7qRB_it-Ix5ssQki99Ro7kTL-7Hn6G4DXmJoqt1awgIbgoISFZcZnipkAr6yQdHeRAvqzeTG9yL9cyssd-D3chaGyyuFMjAc1tpZi5BNONCpEzlR8WP5g1DWKsqtDC40NLE7dr5_BZVu_P_kc1vcN58dH55-mrO8qwKwoVccQS5QyqPVUWWmK1Bcqx7xWtc9SrNAZ4yxyjl6WteXBd8wwVU7lthQVlt6I8N07sJuLIuUj2D08mn_9ts1bBGud98nQsH0nxIfGeCHSianROvGP8os9Av5TAVGvHT-EB71BmnzcIOgR7LjmMdyNhaF2_QTezcyicV3L2mWMeifdyhClwyKhivlFsrwyjVklcXT9FC5uRRbPYNS0jduDpJJSlNJKb8hiQKG8kyViVnkj8xr5GCbDr2vb049TF4wrHdPgVaVJWJqEpTfCGsPb7RvLDfXGDXMPSZrbeUSaHR-0q4Xu96B2LkUf_Cdug03ibF5ZlUnPXVEXXgU7cQwHw1rofiev9V_c7d88_AruTc9nZ_rsZH76HO5zqn2JoZoDGHWra_ciGC9d_bJHTALfbxukfwBHswNT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magneto-optical+trapping+using+planar+optics&rft.jtitle=New+journal+of+physics&rft.au=William+R+McGehee&rft.au=Wenqi+Zhu&rft.au=Daniel+S+Barker&rft.au=Daron+Westly&rft.date=2021-01-01&rft.pub=IOP+Publishing&rft.eissn=1367-2630&rft.volume=23&rft.issue=1&rft.spage=013021&rft_id=info:doi/10.1088%2F1367-2630%2Fabdce3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ee0df9742c614ec48c915f2e6b6f9392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon