Adaptive optics in an oblique plane microscope
Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers in vivo and in vitro , and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detect...
Saved in:
Published in | Biomedical optics express Vol. 15; no. 8; pp. 4498 - 4512 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Optica Publishing Group
01.08.2024
|
Online Access | Get full text |
ISSN | 2156-7085 2156-7085 |
DOI | 10.1364/BOE.524013 |
Cover
Loading…
Abstract | Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers
in vivo
and
in vitro
, and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detection paths are separate and subject to different optical aberrations. To achieve optimal microscope performance, it is necessary to sense and correct these aberrations in both light paths, resulting in a complex microscope system. Here, we show that in an oblique plane microscope (OPM), a type of LSFM with a single primary objective lens, the same deformable mirror can correct both illumination and fluorescence detection. Besides reducing the complexity, we show that AO in OPM also restores the relative alignment of the light-sheet and focal plane, and that a projection imaging mode can stabilize and improve the wavefront correction in a sensorless AO format. We demonstrate OPM with AO on fluorescent nanospheres and by imaging the vasculature and cancer cells in zebrafish embryos embedded in a glass capillary, restoring diffraction limited resolution and improving the signal strength twofold. |
---|---|
AbstractList | Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers in vivo and in vitro, and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detection paths are separate and subject to different optical aberrations. To achieve optimal microscope performance, it is necessary to sense and correct these aberrations in both light paths, resulting in a complex microscope system. Here, we show that in an oblique plane microscope (OPM), a type of LSFM with a single primary objective lens, the same deformable mirror can correct both illumination and fluorescence detection. Besides reducing the complexity, we show that AO in OPM also restores the relative alignment of the light-sheet and focal plane, and that a projection imaging mode can stabilize and improve the wavefront correction in a sensorless AO format. We demonstrate OPM with AO on fluorescent nanospheres and by imaging the vasculature and cancer cells in zebrafish embryos embedded in a glass capillary, restoring diffraction limited resolution and improving the signal strength twofold.Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers in vivo and in vitro, and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detection paths are separate and subject to different optical aberrations. To achieve optimal microscope performance, it is necessary to sense and correct these aberrations in both light paths, resulting in a complex microscope system. Here, we show that in an oblique plane microscope (OPM), a type of LSFM with a single primary objective lens, the same deformable mirror can correct both illumination and fluorescence detection. Besides reducing the complexity, we show that AO in OPM also restores the relative alignment of the light-sheet and focal plane, and that a projection imaging mode can stabilize and improve the wavefront correction in a sensorless AO format. We demonstrate OPM with AO on fluorescent nanospheres and by imaging the vasculature and cancer cells in zebrafish embryos embedded in a glass capillary, restoring diffraction limited resolution and improving the signal strength twofold. Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers in vivo and in vitro , and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detection paths are separate and subject to different optical aberrations. To achieve optimal microscope performance, it is necessary to sense and correct these aberrations in both light paths, resulting in a complex microscope system. Here, we show that in an oblique plane microscope (OPM), a type of LSFM with a single primary objective lens, the same deformable mirror can correct both illumination and fluorescence detection. Besides reducing the complexity, we show that AO in OPM also restores the relative alignment of the light-sheet and focal plane, and that a projection imaging mode can stabilize and improve the wavefront correction in a sensorless AO format. We demonstrate OPM with AO on fluorescent nanospheres and by imaging the vasculature and cancer cells in zebrafish embryos embedded in a glass capillary, restoring diffraction limited resolution and improving the signal strength twofold. Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers and , and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detection paths are separate and subject to different optical aberrations. To achieve optimal microscope performance, it is necessary to sense and correct these aberrations in both light paths, resulting in a complex microscope system. Here, we show that in an oblique plane microscope (OPM), a type of LSFM with a single primary objective lens, the same deformable mirror can correct both illumination and fluorescence detection. Besides reducing the complexity, we show that AO in OPM also restores the relative alignment of the light-sheet and focal plane, and that a projection imaging mode can stabilize and improve the wavefront correction in a sensorless AO format. We demonstrate OPM with AO on fluorescent nanospheres and by imaging the vasculature and cancer cells in zebrafish embryos embedded in a glass capillary, restoring diffraction limited resolution and improving the signal strength twofold. |
Author | Marin, Zach Dean, Kevin M. Wang, Xiaoding Mcfadden, Conor Chen, Bingying Fiolka, Reto Rajendran, Divya Daetwyler, Stephan |
Author_xml | – sequence: 1 givenname: Conor surname: Mcfadden fullname: Mcfadden, Conor – sequence: 2 givenname: Zach surname: Marin fullname: Marin, Zach – sequence: 3 givenname: Bingying surname: Chen fullname: Chen, Bingying – sequence: 4 givenname: Stephan orcidid: 0000-0002-7444-4734 surname: Daetwyler fullname: Daetwyler, Stephan – sequence: 5 givenname: Xiaoding surname: Wang fullname: Wang, Xiaoding – sequence: 6 givenname: Divya surname: Rajendran fullname: Rajendran, Divya – sequence: 7 givenname: Kevin M. orcidid: 0000-0003-0839-2320 surname: Dean fullname: Dean, Kevin M. – sequence: 8 givenname: Reto surname: Fiolka fullname: Fiolka, Reto |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39346993$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd9LwzAQx4NM3Jx78Q-QPorQmWvSpHmSOeYPGOxFn0Oaphrpmtp0A_97UzbHFHMPF7hPvpe77zka1K42CF0CngJh9PZ-tZimCcVATtAogZTFHGfp4Og-RBPvP3A4lHJMsjM0JIJQJgQZoemsUE1ntyZyIWkf2TpSdeTyyn5uTNRUqjbR2urWee0ac4FOS1V5M9nnMXp9WLzMn-Ll6vF5PlvGmnDRxYVKqBCFZlBiwRloYYqMCc5ZASXoLNMKDMVpLmgIlrEih0zTlBiVM8wzMkZ3O91mk69NoU3dtaqSTWvXqv2STln5u1Lbd_nmthKAJjyBXuF6r9C6MInv5Np6bap-ILfxkgBAgimnNKBXx80OXX62FICbHdCvwbemPCCAZe-CDC7InQsBxn9gbTvVWdd_1Fb_PfkGK6mHuA |
CitedBy_id | crossref_primary_10_1364_BOE_553545 |
Cites_doi | 10.1364/OPTICA.502243 10.1364/3D.2018.JTu5B.5 10.1364/BOE.467969 10.1038/nmeth.1411 10.1073/pnas.1119590109 10.3389/fnins.2022.954949 10.1038/s41467-021-23449-6 10.1126/science.aaq1392 10.1364/OL.34.002495 10.1364/OE.20.020998 10.1364/OPTICA.416841 10.1364/OE.26.013027 10.1364/OL.32.000005 10.1038/s41592-019-0515-7 10.1038/s41592-018-0053-8 10.1038/s41467-021-24666-9 10.1038/s43586-021-00066-7 10.1038/ncomms8276 10.1364/OE.16.020306 10.1038/s41467-023-39896-2 10.1364/OL.32.002007 10.1038/s41592-019-0579-4 10.1046/j.1365-2818.2000.00770.x 10.1016/j.optcom.2009.08.010 10.6084/m9.figshare.25939270 10.1364/JOSAA.2.000808 10.1364/OE.23.013677 10.1101/2024.02.09.579083 10.1364/BOE.503801 10.7554/eLife.57681 10.1364/OPTICA.6.000370 10.1038/nbt.3708 10.1038/s41467-021-23647-2 10.1364/OL.36.001062 10.1038/s43586-021-00069-4 10.1146/annurev-astro-081811-125447 10.1364/JOSAA.17.000356 10.1038/s41467-024-46693-y 10.1038/nphoton.2016.252 10.1364/BOE.2.003135 10.1063/5.0022523 10.1038/s41592-021-01175-7 10.1364/OE.20.004957 10.1038/nphoton.2012.205 10.1098/rsta.2007.0013 |
ContentType | Journal Article |
Copyright | 2024 Optica Publishing Group. 2024 Optica Publishing Group 2024 Optica Publishing Group |
Copyright_xml | – notice: 2024 Optica Publishing Group. – notice: 2024 Optica Publishing Group 2024 Optica Publishing Group |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1364/BOE.524013 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 2156-7085 |
EndPage | 4512 |
ExternalDocumentID | PMC11427218 39346993 10_1364_BOE_524013 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM133522 – fundername: NIBIB NIH HHS grantid: R01 EB035538 – fundername: NCI NIH HHS grantid: U54 CA268072 – fundername: National Institute of Biomedical Imaging and Bioengineering grantid: R01EB035538 – fundername: National Institute of General Medical Sciences grantid: R35GM133522; RM1GM145399 – fundername: Division of Cancer Prevention, National Cancer Institute grantid: U54 CA268072 |
GroupedDBID | 4.4 53G 8SL AAFWJ AAWJZ AAYXX ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS AOIJS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION DIK DSZJF E3Z EBS GROUPED_DOAJ GX1 HYE KQ8 LPK M~E O5R O5S OFLFD OK1 OPJBK ROL ROS RPM TR6 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c379t-da2499dc61f09761c9ed869776d1f1c88ca1e405b94949686db18c453eab60783 |
ISSN | 2156-7085 |
IngestDate | Thu Aug 21 18:31:24 EDT 2025 Fri Jul 11 06:23:43 EDT 2025 Tue Jul 22 01:42:05 EDT 2025 Tue Jul 01 01:36:42 EDT 2025 Thu Apr 24 23:11:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2024 Optica Publishing Group. https://doi.org/10.1364/OA_License_v2#VOR-OA 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c379t-da2499dc61f09761c9ed869776d1f1c88ca1e405b94949686db18c453eab60783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7444-4734 0000-0003-0839-2320 |
OpenAccessLink | http://dx.doi.org/10.1364/BOE.524013 |
PMID | 39346993 |
PQID | 3111204744 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11427218 proquest_miscellaneous_3111204744 pubmed_primary_39346993 crossref_primary_10_1364_BOE_524013 crossref_citationtrail_10_1364_BOE_524013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biomedical optics express |
PublicationTitleAlternate | Biomed Opt Express |
PublicationYear | 2024 |
Publisher | Optica Publishing Group |
Publisher_xml | – name: Optica Publishing Group |
References | Botcherby (boe-15-8-4498-R28) 2007; 32 Park (boe-15-8-4498-R17) 2023; 14 Daetwyler (boe-15-8-4498-R31) 2023; 10 Chang (boe-15-8-4498-R26) 2021; 18 Ji (boe-15-8-4498-R6) 2010; 7 Velasco (boe-15-8-4498-R14) 2021; 8 Neil (boe-15-8-4498-R7) 2000; 200 Gong (boe-15-8-4498-R10) 2023; 14 Mlodzianoski (boe-15-8-4498-R19) 2018; 15 Hampson (boe-15-8-4498-R4) 2021; 1 Gould (boe-15-8-4498-R13) 2012; 20 Booth (boe-15-8-4498-R3) 2007; 365 Van den Bos (boe-15-8-4498-R41) 2000; 17 Royer (boe-15-8-4498-R24) 2016; 34 Maréchal (boe-15-8-4498-R42) 1948 Hung (boe-15-8-4498-R16) 2022; 16 Descloux (boe-15-8-4498-R39) 2019; 16 Tang (boe-15-8-4498-R8) 2012; 109 Lin (boe-15-8-4498-R11) 2021; 12 Marin (boe-15-8-4498-R34) 2024 Kumar (boe-15-8-4498-R29) 2018; 26 Dunsby (boe-15-8-4498-R23) 2008; 16 Wang (boe-15-8-4498-R44) 2015; 6 Wang (boe-15-8-4498-R37) 2009; 282 Si (boe-15-8-4498-R47) 2012; 6 Izeddin (boe-15-8-4498-R20) 2012; 20 Voleti (boe-15-8-4498-R30) 2019; 16 Chew (boe-15-8-4498-R27) 1985; 2 McFadden (boe-15-8-4498-R33) 2024 Stelzer (boe-15-8-4498-R1) 2021; 1 Débarre (boe-15-8-4498-R5) 2009; 34 Tehrani (boe-15-8-4498-R15) 2015; 23 Liu (boe-15-8-4498-R21) 2018; 360 Aviles-Espinosa (boe-15-8-4498-R45) 2011; 2 Sapoznik (boe-15-8-4498-R40) 2020; 9 Chen (boe-15-8-4498-R43) 2024; 15 Žurauskas (boe-15-8-4498-R12) 2019; 6 Wilding (boe-15-8-4498-R22) 2018 Siemons (boe-15-8-4498-R18) 2021; 12 Chen (boe-15-8-4498-R32) 2022; 13 Tao (boe-15-8-4498-R46) 2011; 36 Papadopoulos (boe-15-8-4498-R9) 2017; 11 Davies (boe-15-8-4498-R2) 2012; 50 May (boe-15-8-4498-R36) 2021; 12 Booth (boe-15-8-4498-R25) 2007; 32 Hu (boe-15-8-4498-R35) 2020; 5 38562744 - bioRxiv. 2024 Mar 22:2024.03.21.586191. doi: 10.1101/2024.03.21.586191. |
References_xml | – volume: 10 start-page: 1571 year: 2023 ident: boe-15-8-4498-R31 publication-title: Optica doi: 10.1364/OPTICA.502243 – year: 2018 ident: boe-15-8-4498-R22 article-title: Two-Photon light-sheet microscope with adaptive optics in the illumination and detection path doi: 10.1364/3D.2018.JTu5B.5 – volume: 13 start-page: 5616 year: 2022 ident: boe-15-8-4498-R32 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.467969 – volume: 7 start-page: 141 year: 2010 ident: boe-15-8-4498-R6 publication-title: Nat. Methods doi: 10.1038/nmeth.1411 – volume: 109 start-page: 8434 year: 2012 ident: boe-15-8-4498-R8 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1119590109 – volume: 16 start-page: 954949 year: 2022 ident: boe-15-8-4498-R16 publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.954949 – volume: 12 start-page: 3148 year: 2021 ident: boe-15-8-4498-R11 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23449-6 – volume: 360 start-page: eaaq1392 year: 2018 ident: boe-15-8-4498-R21 publication-title: Science doi: 10.1126/science.aaq1392 – volume: 34 start-page: 2495 year: 2009 ident: boe-15-8-4498-R5 publication-title: Opt. Lett. doi: 10.1364/OL.34.002495 – volume: 20 start-page: 20998 year: 2012 ident: boe-15-8-4498-R13 publication-title: Opt. Express doi: 10.1364/OE.20.020998 – volume: 8 start-page: 442 year: 2021 ident: boe-15-8-4498-R14 publication-title: Optica doi: 10.1364/OPTICA.416841 – volume: 26 start-page: 13027 year: 2018 ident: boe-15-8-4498-R29 publication-title: Opt. Express doi: 10.1364/OE.26.013027 – volume: 32 start-page: 5 year: 2007 ident: boe-15-8-4498-R25 publication-title: Opt. Lett. doi: 10.1364/OL.32.000005 – volume: 16 start-page: 918 year: 2019 ident: boe-15-8-4498-R39 publication-title: Nat. Methods doi: 10.1038/s41592-019-0515-7 – volume: 15 start-page: 583 year: 2018 ident: boe-15-8-4498-R19 publication-title: Nat. Methods doi: 10.1038/s41592-018-0053-8 – volume: 12 start-page: 4340 year: 2021 ident: boe-15-8-4498-R36 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24666-9 – volume: 1 start-page: 68 year: 2021 ident: boe-15-8-4498-R4 publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-021-00066-7 – volume: 6 start-page: 7276 year: 2015 ident: boe-15-8-4498-R44 publication-title: Nat. Commun. doi: 10.1038/ncomms8276 – volume: 16 start-page: 20306 volume-title: Opt. Express year: 2008 ident: boe-15-8-4498-R23 article-title: Optically sectioned imaging by oblique plane microscopy doi: 10.1364/OE.16.020306 – volume: 14 start-page: 4185 year: 2023 ident: boe-15-8-4498-R17 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39896-2 – volume: 32 start-page: 2007 year: 2007 ident: boe-15-8-4498-R28 publication-title: Opt. Lett. doi: 10.1364/OL.32.002007 – volume: 16 start-page: 1054 year: 2019 ident: boe-15-8-4498-R30 publication-title: Nat. Methods doi: 10.1038/s41592-019-0579-4 – volume: 200 start-page: 105 year: 2000 ident: boe-15-8-4498-R7 publication-title: J. Microsc. doi: 10.1046/j.1365-2818.2000.00770.x – volume: 282 start-page: 4467 year: 2009 ident: boe-15-8-4498-R37 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2009.08.010 – year: 2024 ident: boe-15-8-4498-R33 doi: 10.6084/m9.figshare.25939270 – year: 1948 ident: boe-15-8-4498-R42 – volume: 2 start-page: 808 year: 1985 ident: boe-15-8-4498-R27 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.2.000808 – volume: 23 start-page: 13677 year: 2015 ident: boe-15-8-4498-R15 publication-title: Opt. Express doi: 10.1364/OE.23.013677 – year: 2024 ident: boe-15-8-4498-R34 doi: 10.1101/2024.02.09.579083 – volume: 14 start-page: 6381 year: 2023 ident: boe-15-8-4498-R10 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.503801 – volume: 9 start-page: e57681 year: 2020 ident: boe-15-8-4498-R40 publication-title: eLife doi: 10.7554/eLife.57681 – volume: 6 start-page: 370 year: 2019 ident: boe-15-8-4498-R12 publication-title: Optica doi: 10.1364/OPTICA.6.000370 – volume: 34 start-page: 1267 year: 2016 ident: boe-15-8-4498-R24 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3708 – volume: 12 start-page: 3407 year: 2021 ident: boe-15-8-4498-R18 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23647-2 – volume: 36 start-page: 1062 year: 2011 ident: boe-15-8-4498-R46 publication-title: Opt. Lett. doi: 10.1364/OL.36.001062 – volume: 1 start-page: 73 year: 2021 ident: boe-15-8-4498-R1 publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-021-00069-4 – volume: 50 start-page: 305 year: 2012 ident: boe-15-8-4498-R2 publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev-astro-081811-125447 – volume: 17 start-page: 356 year: 2000 ident: boe-15-8-4498-R41 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.17.000356 – volume: 15 start-page: 2755 year: 2024 ident: boe-15-8-4498-R43 publication-title: Nat. Commun. doi: 10.1038/s41467-024-46693-y – volume: 11 start-page: 116 year: 2017 ident: boe-15-8-4498-R9 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.252 – volume: 2 start-page: 3135 year: 2011 ident: boe-15-8-4498-R45 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.2.003135 – volume: 5 start-page: 100801 year: 2020 ident: boe-15-8-4498-R35 publication-title: APL Photonics doi: 10.1063/5.0022523 – volume: 18 start-page: 829 year: 2021 ident: boe-15-8-4498-R26 publication-title: Nat. Methods doi: 10.1038/s41592-021-01175-7 – volume: 20 start-page: 4957 year: 2012 ident: boe-15-8-4498-R20 publication-title: Opt. Express doi: 10.1364/OE.20.004957 – volume: 6 start-page: 657 year: 2012 ident: boe-15-8-4498-R47 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.205 – volume: 365 start-page: 2829 year: 2007 ident: boe-15-8-4498-R3 publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rsta.2007.0013 – reference: 38562744 - bioRxiv. 2024 Mar 22:2024.03.21.586191. doi: 10.1101/2024.03.21.586191. |
SSID | ssj0000447038 |
Score | 2.3768396 |
Snippet | Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers
in vivo
and
in vitro
, and as such, is of interest... Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers and , and as such, is of interest for advanced 3D... Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers in vivo and in vitro, and as such, is of interest... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4498 |
Title | Adaptive optics in an oblique plane microscope |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39346993 https://www.proquest.com/docview/3111204744 https://pubmed.ncbi.nlm.nih.gov/PMC11427218 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBa9QOkextrdskvx2F5KcWbZsiI_diFdGU37kkDYi9HNLNDZZnPZul-_I1mWkzUPXV9MUBQlOedw9J07Qh8UlTxOVBZKwnhoWrqFQvMiLHSiKFUAlKRxDUwv6fmcfFmki35woq0uacRQ_tlYV_IQrsIa8NVUyf4HZ_2hsACvgb_wBA7D8148PlW8tqk_VW27LS9NZvFJJa5tU9ba5LGefDcZd7b2ZC1-a6vuLYPcZ_Xv2mdjWD9d4XXSuCorn8M7BeParn7l0ruSx67G4xNchLfdZWj937r5deuKDW1CmRNG52eIic9yc-oIsAENR1E7YGeoN6x1-jRdkRu2ohwJaQdO39HaCSUmF_1qMkxjY-_1d1MXj7-8ys_mFxf5bLKYbaPdGGwCo4U_L7B3qEWEgPayEwi7X-Xa0cLxH_vD1wHIHavi3-TYFbQxe4IeOzMhOG15foC2dHmIHq00jzxEe1OXFvEUDTtBCFpmBssy4GXgBCGwghD0gvAMzc8ms_F56AZhhDIZZU2oOBjJmZIUFxHARywzrRgF5E4VLrBkTHKsAXmLzPQaoowqgZkkaaK5oCZO-xztlFWpX6IgoymWERGEA1bHVHCBizTiQD4JyFjJATruqJNL1yXeDCu5zm3ok5IcKJm3lByg935v3fZG2bjrXUfkHFSXiUfBn65ufuYJ3LNxREaEDNCLluj-nCRLCAXsPEBsjR1-g2mLvv5Oufxm26Ob6nAQD_bqHl_8Gu33sv4G7TQ_bvRbQJmNOLLemSMrY38BQ5p9-g |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+optics+in+an+oblique+plane+microscope&rft.jtitle=Biomedical+optics+express&rft.au=Mcfadden%2C+Conor&rft.au=Marin%2C+Zach&rft.au=Chen%2C+Bingying&rft.au=Daetwyler%2C+Stephan&rft.date=2024-08-01&rft.issn=2156-7085&rft.eissn=2156-7085&rft.volume=15&rft.issue=8&rft.spage=4498&rft_id=info:doi/10.1364%2FBOE.524013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-7085&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-7085&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-7085&client=summon |