Adaptive optics in an oblique plane microscope

Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers in vivo and in vitro , and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detect...

Full description

Saved in:
Bibliographic Details
Published inBiomedical optics express Vol. 15; no. 8; pp. 4498 - 4512
Main Authors Mcfadden, Conor, Marin, Zach, Chen, Bingying, Daetwyler, Stephan, Wang, Xiaoding, Rajendran, Divya, Dean, Kevin M., Fiolka, Reto
Format Journal Article
LanguageEnglish
Published United States Optica Publishing Group 01.08.2024
Online AccessGet full text
ISSN2156-7085
2156-7085
DOI10.1364/BOE.524013

Cover

Loading…
Abstract Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers in vivo and in vitro , and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detection paths are separate and subject to different optical aberrations. To achieve optimal microscope performance, it is necessary to sense and correct these aberrations in both light paths, resulting in a complex microscope system. Here, we show that in an oblique plane microscope (OPM), a type of LSFM with a single primary objective lens, the same deformable mirror can correct both illumination and fluorescence detection. Besides reducing the complexity, we show that AO in OPM also restores the relative alignment of the light-sheet and focal plane, and that a projection imaging mode can stabilize and improve the wavefront correction in a sensorless AO format. We demonstrate OPM with AO on fluorescent nanospheres and by imaging the vasculature and cancer cells in zebrafish embryos embedded in a glass capillary, restoring diffraction limited resolution and improving the signal strength twofold.
AbstractList Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers in vivo and in vitro, and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detection paths are separate and subject to different optical aberrations. To achieve optimal microscope performance, it is necessary to sense and correct these aberrations in both light paths, resulting in a complex microscope system. Here, we show that in an oblique plane microscope (OPM), a type of LSFM with a single primary objective lens, the same deformable mirror can correct both illumination and fluorescence detection. Besides reducing the complexity, we show that AO in OPM also restores the relative alignment of the light-sheet and focal plane, and that a projection imaging mode can stabilize and improve the wavefront correction in a sensorless AO format. We demonstrate OPM with AO on fluorescent nanospheres and by imaging the vasculature and cancer cells in zebrafish embryos embedded in a glass capillary, restoring diffraction limited resolution and improving the signal strength twofold.Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers in vivo and in vitro, and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detection paths are separate and subject to different optical aberrations. To achieve optimal microscope performance, it is necessary to sense and correct these aberrations in both light paths, resulting in a complex microscope system. Here, we show that in an oblique plane microscope (OPM), a type of LSFM with a single primary objective lens, the same deformable mirror can correct both illumination and fluorescence detection. Besides reducing the complexity, we show that AO in OPM also restores the relative alignment of the light-sheet and focal plane, and that a projection imaging mode can stabilize and improve the wavefront correction in a sensorless AO format. We demonstrate OPM with AO on fluorescent nanospheres and by imaging the vasculature and cancer cells in zebrafish embryos embedded in a glass capillary, restoring diffraction limited resolution and improving the signal strength twofold.
Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers in vivo and in vitro , and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detection paths are separate and subject to different optical aberrations. To achieve optimal microscope performance, it is necessary to sense and correct these aberrations in both light paths, resulting in a complex microscope system. Here, we show that in an oblique plane microscope (OPM), a type of LSFM with a single primary objective lens, the same deformable mirror can correct both illumination and fluorescence detection. Besides reducing the complexity, we show that AO in OPM also restores the relative alignment of the light-sheet and focal plane, and that a projection imaging mode can stabilize and improve the wavefront correction in a sensorless AO format. We demonstrate OPM with AO on fluorescent nanospheres and by imaging the vasculature and cancer cells in zebrafish embryos embedded in a glass capillary, restoring diffraction limited resolution and improving the signal strength twofold.
Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers and , and as such, is of interest for advanced 3D microscopy methods such as light-sheet fluorescence microscopy (LSFM). In a typical LSFM system, the illumination and detection paths are separate and subject to different optical aberrations. To achieve optimal microscope performance, it is necessary to sense and correct these aberrations in both light paths, resulting in a complex microscope system. Here, we show that in an oblique plane microscope (OPM), a type of LSFM with a single primary objective lens, the same deformable mirror can correct both illumination and fluorescence detection. Besides reducing the complexity, we show that AO in OPM also restores the relative alignment of the light-sheet and focal plane, and that a projection imaging mode can stabilize and improve the wavefront correction in a sensorless AO format. We demonstrate OPM with AO on fluorescent nanospheres and by imaging the vasculature and cancer cells in zebrafish embryos embedded in a glass capillary, restoring diffraction limited resolution and improving the signal strength twofold.
Author Marin, Zach
Dean, Kevin M.
Wang, Xiaoding
Mcfadden, Conor
Chen, Bingying
Fiolka, Reto
Rajendran, Divya
Daetwyler, Stephan
Author_xml – sequence: 1
  givenname: Conor
  surname: Mcfadden
  fullname: Mcfadden, Conor
– sequence: 2
  givenname: Zach
  surname: Marin
  fullname: Marin, Zach
– sequence: 3
  givenname: Bingying
  surname: Chen
  fullname: Chen, Bingying
– sequence: 4
  givenname: Stephan
  orcidid: 0000-0002-7444-4734
  surname: Daetwyler
  fullname: Daetwyler, Stephan
– sequence: 5
  givenname: Xiaoding
  surname: Wang
  fullname: Wang, Xiaoding
– sequence: 6
  givenname: Divya
  surname: Rajendran
  fullname: Rajendran, Divya
– sequence: 7
  givenname: Kevin M.
  orcidid: 0000-0003-0839-2320
  surname: Dean
  fullname: Dean, Kevin M.
– sequence: 8
  givenname: Reto
  surname: Fiolka
  fullname: Fiolka, Reto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39346993$$D View this record in MEDLINE/PubMed
BookMark eNptkd9LwzAQx4NM3Jx78Q-QPorQmWvSpHmSOeYPGOxFn0Oaphrpmtp0A_97UzbHFHMPF7hPvpe77zka1K42CF0CngJh9PZ-tZimCcVATtAogZTFHGfp4Og-RBPvP3A4lHJMsjM0JIJQJgQZoemsUE1ntyZyIWkf2TpSdeTyyn5uTNRUqjbR2urWee0ac4FOS1V5M9nnMXp9WLzMn-Ll6vF5PlvGmnDRxYVKqBCFZlBiwRloYYqMCc5ZASXoLNMKDMVpLmgIlrEih0zTlBiVM8wzMkZ3O91mk69NoU3dtaqSTWvXqv2STln5u1Lbd_nmthKAJjyBXuF6r9C6MInv5Np6bap-ILfxkgBAgimnNKBXx80OXX62FICbHdCvwbemPCCAZe-CDC7InQsBxn9gbTvVWdd_1Fb_PfkGK6mHuA
CitedBy_id crossref_primary_10_1364_BOE_553545
Cites_doi 10.1364/OPTICA.502243
10.1364/3D.2018.JTu5B.5
10.1364/BOE.467969
10.1038/nmeth.1411
10.1073/pnas.1119590109
10.3389/fnins.2022.954949
10.1038/s41467-021-23449-6
10.1126/science.aaq1392
10.1364/OL.34.002495
10.1364/OE.20.020998
10.1364/OPTICA.416841
10.1364/OE.26.013027
10.1364/OL.32.000005
10.1038/s41592-019-0515-7
10.1038/s41592-018-0053-8
10.1038/s41467-021-24666-9
10.1038/s43586-021-00066-7
10.1038/ncomms8276
10.1364/OE.16.020306
10.1038/s41467-023-39896-2
10.1364/OL.32.002007
10.1038/s41592-019-0579-4
10.1046/j.1365-2818.2000.00770.x
10.1016/j.optcom.2009.08.010
10.6084/m9.figshare.25939270
10.1364/JOSAA.2.000808
10.1364/OE.23.013677
10.1101/2024.02.09.579083
10.1364/BOE.503801
10.7554/eLife.57681
10.1364/OPTICA.6.000370
10.1038/nbt.3708
10.1038/s41467-021-23647-2
10.1364/OL.36.001062
10.1038/s43586-021-00069-4
10.1146/annurev-astro-081811-125447
10.1364/JOSAA.17.000356
10.1038/s41467-024-46693-y
10.1038/nphoton.2016.252
10.1364/BOE.2.003135
10.1063/5.0022523
10.1038/s41592-021-01175-7
10.1364/OE.20.004957
10.1038/nphoton.2012.205
10.1098/rsta.2007.0013
ContentType Journal Article
Copyright 2024 Optica Publishing Group.
2024 Optica Publishing Group 2024 Optica Publishing Group
Copyright_xml – notice: 2024 Optica Publishing Group.
– notice: 2024 Optica Publishing Group 2024 Optica Publishing Group
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1364/BOE.524013
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 2156-7085
EndPage 4512
ExternalDocumentID PMC11427218
39346993
10_1364_BOE_524013
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM133522
– fundername: NIBIB NIH HHS
  grantid: R01 EB035538
– fundername: NCI NIH HHS
  grantid: U54 CA268072
– fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: R01EB035538
– fundername: National Institute of General Medical Sciences
  grantid: R35GM133522; RM1GM145399
– fundername: Division of Cancer Prevention, National Cancer Institute
  grantid: U54 CA268072
GroupedDBID 4.4
53G
8SL
AAFWJ
AAWJZ
AAYXX
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
DIK
DSZJF
E3Z
EBS
GROUPED_DOAJ
GX1
HYE
KQ8
LPK
M~E
O5R
O5S
OFLFD
OK1
OPJBK
ROL
ROS
RPM
TR6
NPM
7X8
5PM
ID FETCH-LOGICAL-c379t-da2499dc61f09761c9ed869776d1f1c88ca1e405b94949686db18c453eab60783
ISSN 2156-7085
IngestDate Thu Aug 21 18:31:24 EDT 2025
Fri Jul 11 06:23:43 EDT 2025
Tue Jul 22 01:42:05 EDT 2025
Tue Jul 01 01:36:42 EDT 2025
Thu Apr 24 23:11:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2024 Optica Publishing Group.
https://doi.org/10.1364/OA_License_v2#VOR-OA
2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c379t-da2499dc61f09761c9ed869776d1f1c88ca1e405b94949686db18c453eab60783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7444-4734
0000-0003-0839-2320
OpenAccessLink http://dx.doi.org/10.1364/BOE.524013
PMID 39346993
PQID 3111204744
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11427218
proquest_miscellaneous_3111204744
pubmed_primary_39346993
crossref_primary_10_1364_BOE_524013
crossref_citationtrail_10_1364_BOE_524013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomedical optics express
PublicationTitleAlternate Biomed Opt Express
PublicationYear 2024
Publisher Optica Publishing Group
Publisher_xml – name: Optica Publishing Group
References Botcherby (boe-15-8-4498-R28) 2007; 32
Park (boe-15-8-4498-R17) 2023; 14
Daetwyler (boe-15-8-4498-R31) 2023; 10
Chang (boe-15-8-4498-R26) 2021; 18
Ji (boe-15-8-4498-R6) 2010; 7
Velasco (boe-15-8-4498-R14) 2021; 8
Neil (boe-15-8-4498-R7) 2000; 200
Gong (boe-15-8-4498-R10) 2023; 14
Mlodzianoski (boe-15-8-4498-R19) 2018; 15
Hampson (boe-15-8-4498-R4) 2021; 1
Gould (boe-15-8-4498-R13) 2012; 20
Booth (boe-15-8-4498-R3) 2007; 365
Van den Bos (boe-15-8-4498-R41) 2000; 17
Royer (boe-15-8-4498-R24) 2016; 34
Maréchal (boe-15-8-4498-R42) 1948
Hung (boe-15-8-4498-R16) 2022; 16
Descloux (boe-15-8-4498-R39) 2019; 16
Tang (boe-15-8-4498-R8) 2012; 109
Lin (boe-15-8-4498-R11) 2021; 12
Marin (boe-15-8-4498-R34) 2024
Kumar (boe-15-8-4498-R29) 2018; 26
Dunsby (boe-15-8-4498-R23) 2008; 16
Wang (boe-15-8-4498-R44) 2015; 6
Wang (boe-15-8-4498-R37) 2009; 282
Si (boe-15-8-4498-R47) 2012; 6
Izeddin (boe-15-8-4498-R20) 2012; 20
Voleti (boe-15-8-4498-R30) 2019; 16
Chew (boe-15-8-4498-R27) 1985; 2
McFadden (boe-15-8-4498-R33) 2024
Stelzer (boe-15-8-4498-R1) 2021; 1
Débarre (boe-15-8-4498-R5) 2009; 34
Tehrani (boe-15-8-4498-R15) 2015; 23
Liu (boe-15-8-4498-R21) 2018; 360
Aviles-Espinosa (boe-15-8-4498-R45) 2011; 2
Sapoznik (boe-15-8-4498-R40) 2020; 9
Chen (boe-15-8-4498-R43) 2024; 15
Žurauskas (boe-15-8-4498-R12) 2019; 6
Wilding (boe-15-8-4498-R22) 2018
Siemons (boe-15-8-4498-R18) 2021; 12
Chen (boe-15-8-4498-R32) 2022; 13
Tao (boe-15-8-4498-R46) 2011; 36
Papadopoulos (boe-15-8-4498-R9) 2017; 11
Davies (boe-15-8-4498-R2) 2012; 50
May (boe-15-8-4498-R36) 2021; 12
Booth (boe-15-8-4498-R25) 2007; 32
Hu (boe-15-8-4498-R35) 2020; 5
38562744 - bioRxiv. 2024 Mar 22:2024.03.21.586191. doi: 10.1101/2024.03.21.586191.
References_xml – volume: 10
  start-page: 1571
  year: 2023
  ident: boe-15-8-4498-R31
  publication-title: Optica
  doi: 10.1364/OPTICA.502243
– year: 2018
  ident: boe-15-8-4498-R22
  article-title: Two-Photon light-sheet microscope with adaptive optics in the illumination and detection path
  doi: 10.1364/3D.2018.JTu5B.5
– volume: 13
  start-page: 5616
  year: 2022
  ident: boe-15-8-4498-R32
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.467969
– volume: 7
  start-page: 141
  year: 2010
  ident: boe-15-8-4498-R6
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1411
– volume: 109
  start-page: 8434
  year: 2012
  ident: boe-15-8-4498-R8
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1119590109
– volume: 16
  start-page: 954949
  year: 2022
  ident: boe-15-8-4498-R16
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.954949
– volume: 12
  start-page: 3148
  year: 2021
  ident: boe-15-8-4498-R11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23449-6
– volume: 360
  start-page: eaaq1392
  year: 2018
  ident: boe-15-8-4498-R21
  publication-title: Science
  doi: 10.1126/science.aaq1392
– volume: 34
  start-page: 2495
  year: 2009
  ident: boe-15-8-4498-R5
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.002495
– volume: 20
  start-page: 20998
  year: 2012
  ident: boe-15-8-4498-R13
  publication-title: Opt. Express
  doi: 10.1364/OE.20.020998
– volume: 8
  start-page: 442
  year: 2021
  ident: boe-15-8-4498-R14
  publication-title: Optica
  doi: 10.1364/OPTICA.416841
– volume: 26
  start-page: 13027
  year: 2018
  ident: boe-15-8-4498-R29
  publication-title: Opt. Express
  doi: 10.1364/OE.26.013027
– volume: 32
  start-page: 5
  year: 2007
  ident: boe-15-8-4498-R25
  publication-title: Opt. Lett.
  doi: 10.1364/OL.32.000005
– volume: 16
  start-page: 918
  year: 2019
  ident: boe-15-8-4498-R39
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0515-7
– volume: 15
  start-page: 583
  year: 2018
  ident: boe-15-8-4498-R19
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0053-8
– volume: 12
  start-page: 4340
  year: 2021
  ident: boe-15-8-4498-R36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24666-9
– volume: 1
  start-page: 68
  year: 2021
  ident: boe-15-8-4498-R4
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-021-00066-7
– volume: 6
  start-page: 7276
  year: 2015
  ident: boe-15-8-4498-R44
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8276
– volume: 16
  start-page: 20306
  volume-title: Opt. Express
  year: 2008
  ident: boe-15-8-4498-R23
  article-title: Optically sectioned imaging by oblique plane microscopy
  doi: 10.1364/OE.16.020306
– volume: 14
  start-page: 4185
  year: 2023
  ident: boe-15-8-4498-R17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39896-2
– volume: 32
  start-page: 2007
  year: 2007
  ident: boe-15-8-4498-R28
  publication-title: Opt. Lett.
  doi: 10.1364/OL.32.002007
– volume: 16
  start-page: 1054
  year: 2019
  ident: boe-15-8-4498-R30
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0579-4
– volume: 200
  start-page: 105
  year: 2000
  ident: boe-15-8-4498-R7
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.2000.00770.x
– volume: 282
  start-page: 4467
  year: 2009
  ident: boe-15-8-4498-R37
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2009.08.010
– year: 2024
  ident: boe-15-8-4498-R33
  doi: 10.6084/m9.figshare.25939270
– year: 1948
  ident: boe-15-8-4498-R42
– volume: 2
  start-page: 808
  year: 1985
  ident: boe-15-8-4498-R27
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.2.000808
– volume: 23
  start-page: 13677
  year: 2015
  ident: boe-15-8-4498-R15
  publication-title: Opt. Express
  doi: 10.1364/OE.23.013677
– year: 2024
  ident: boe-15-8-4498-R34
  doi: 10.1101/2024.02.09.579083
– volume: 14
  start-page: 6381
  year: 2023
  ident: boe-15-8-4498-R10
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.503801
– volume: 9
  start-page: e57681
  year: 2020
  ident: boe-15-8-4498-R40
  publication-title: eLife
  doi: 10.7554/eLife.57681
– volume: 6
  start-page: 370
  year: 2019
  ident: boe-15-8-4498-R12
  publication-title: Optica
  doi: 10.1364/OPTICA.6.000370
– volume: 34
  start-page: 1267
  year: 2016
  ident: boe-15-8-4498-R24
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3708
– volume: 12
  start-page: 3407
  year: 2021
  ident: boe-15-8-4498-R18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23647-2
– volume: 36
  start-page: 1062
  year: 2011
  ident: boe-15-8-4498-R46
  publication-title: Opt. Lett.
  doi: 10.1364/OL.36.001062
– volume: 1
  start-page: 73
  year: 2021
  ident: boe-15-8-4498-R1
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-021-00069-4
– volume: 50
  start-page: 305
  year: 2012
  ident: boe-15-8-4498-R2
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev-astro-081811-125447
– volume: 17
  start-page: 356
  year: 2000
  ident: boe-15-8-4498-R41
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.17.000356
– volume: 15
  start-page: 2755
  year: 2024
  ident: boe-15-8-4498-R43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46693-y
– volume: 11
  start-page: 116
  year: 2017
  ident: boe-15-8-4498-R9
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.252
– volume: 2
  start-page: 3135
  year: 2011
  ident: boe-15-8-4498-R45
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.2.003135
– volume: 5
  start-page: 100801
  year: 2020
  ident: boe-15-8-4498-R35
  publication-title: APL Photonics
  doi: 10.1063/5.0022523
– volume: 18
  start-page: 829
  year: 2021
  ident: boe-15-8-4498-R26
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01175-7
– volume: 20
  start-page: 4957
  year: 2012
  ident: boe-15-8-4498-R20
  publication-title: Opt. Express
  doi: 10.1364/OE.20.004957
– volume: 6
  start-page: 657
  year: 2012
  ident: boe-15-8-4498-R47
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.205
– volume: 365
  start-page: 2829
  year: 2007
  ident: boe-15-8-4498-R3
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rsta.2007.0013
– reference: 38562744 - bioRxiv. 2024 Mar 22:2024.03.21.586191. doi: 10.1101/2024.03.21.586191.
SSID ssj0000447038
Score 2.3768396
Snippet Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers in vivo and in vitro , and as such, is of interest...
Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers and , and as such, is of interest for advanced 3D...
Adaptive optics (AO) can restore diffraction-limited performance when imaging beyond superficial cell layers in vivo and in vitro, and as such, is of interest...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4498
Title Adaptive optics in an oblique plane microscope
URI https://www.ncbi.nlm.nih.gov/pubmed/39346993
https://www.proquest.com/docview/3111204744
https://pubmed.ncbi.nlm.nih.gov/PMC11427218
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBa9QOkextrdskvx2F5KcWbZsiI_diFdGU37kkDYi9HNLNDZZnPZul-_I1mWkzUPXV9MUBQlOedw9J07Qh8UlTxOVBZKwnhoWrqFQvMiLHSiKFUAlKRxDUwv6fmcfFmki35woq0uacRQ_tlYV_IQrsIa8NVUyf4HZ_2hsACvgb_wBA7D8148PlW8tqk_VW27LS9NZvFJJa5tU9ba5LGefDcZd7b2ZC1-a6vuLYPcZ_Xv2mdjWD9d4XXSuCorn8M7BeParn7l0ruSx67G4xNchLfdZWj937r5deuKDW1CmRNG52eIic9yc-oIsAENR1E7YGeoN6x1-jRdkRu2ohwJaQdO39HaCSUmF_1qMkxjY-_1d1MXj7-8ys_mFxf5bLKYbaPdGGwCo4U_L7B3qEWEgPayEwi7X-Xa0cLxH_vD1wHIHavi3-TYFbQxe4IeOzMhOG15foC2dHmIHq00jzxEe1OXFvEUDTtBCFpmBssy4GXgBCGwghD0gvAMzc8ms_F56AZhhDIZZU2oOBjJmZIUFxHARywzrRgF5E4VLrBkTHKsAXmLzPQaoowqgZkkaaK5oCZO-xztlFWpX6IgoymWERGEA1bHVHCBizTiQD4JyFjJATruqJNL1yXeDCu5zm3ok5IcKJm3lByg935v3fZG2bjrXUfkHFSXiUfBn65ufuYJ3LNxREaEDNCLluj-nCRLCAXsPEBsjR1-g2mLvv5Oufxm26Ob6nAQD_bqHl_8Gu33sv4G7TQ_bvRbQJmNOLLemSMrY38BQ5p9-g
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+optics+in+an+oblique+plane+microscope&rft.jtitle=Biomedical+optics+express&rft.au=Mcfadden%2C+Conor&rft.au=Marin%2C+Zach&rft.au=Chen%2C+Bingying&rft.au=Daetwyler%2C+Stephan&rft.date=2024-08-01&rft.issn=2156-7085&rft.eissn=2156-7085&rft.volume=15&rft.issue=8&rft.spage=4498&rft_id=info:doi/10.1364%2FBOE.524013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-7085&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-7085&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-7085&client=summon