Dynamic Equilibrium Sets of the Atomic Content of Galaxies across Cosmic Time
We analyze 88 independent, high-resolution, cosmological zoomed-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum (AM) of baryons throughout cosmic time. The study is motivated by the analytical model of Obre...
Saved in:
Published in | The Astrophysical journal Vol. 868; no. 2; pp. 93 - 101 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.12.2018
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We analyze 88 independent, high-resolution, cosmological zoomed-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum (AM) of baryons throughout cosmic time. The study is motivated by the analytical model of Obreschkow et al., which predicts a relation between the atomic gas fraction fatm and the integrated atomic stability parameter , where M and j are the mass and specific AM of the galaxy (stars+cold gas) and is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation (z 4) to the present within ∼0.5 dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that 90%-100% of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of fatm depends on the complex hierarchical growth history primarily via the evolution of q. An exception is galaxies subject to strong environmental effects. |
---|---|
AbstractList | We analyze 88 independent, high-resolution, cosmological zoomed-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum (AM) of baryons throughout cosmic time. The study is motivated by the analytical model of Obreschkow et al., which predicts a relation between the atomic gas fraction f atm and the integrated atomic stability parameter \(q\equiv j\sigma /({GM})\), where M and j are the mass and specific AM of the galaxy (stars+cold gas) and σ is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation (z ≃ 4) to the present within ∼0.5 dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that 90%–100% of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of f atm depends on the complex hierarchical growth history primarily via the evolution of q. An exception is galaxies subject to strong environmental effects. We analyze 88 independent, high-resolution, cosmological zoomed-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum (AM) of baryons throughout cosmic time. The study is motivated by the analytical model of Obreschkow et al., which predicts a relation between the atomic gas fraction f atm and the integrated atomic stability parameter , where M and j are the mass and specific AM of the galaxy (stars+cold gas) and σ is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation ( z ≃ 4) to the present within ∼0.5 dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that 90%–100% of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of f atm depends on the complex hierarchical growth history primarily via the evolution of q . An exception is galaxies subject to strong environmental effects. We analyze 88 independent, high-resolution, cosmological zoomed-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum (AM) of baryons throughout cosmic time. The study is motivated by the analytical model of Obreschkow et al., which predicts a relation between the atomic gas fraction fatm and the integrated atomic stability parameter , where M and j are the mass and specific AM of the galaxy (stars+cold gas) and is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation (z 4) to the present within ∼0.5 dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that 90%-100% of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of fatm depends on the complex hierarchical growth history primarily via the evolution of q. An exception is galaxies subject to strong environmental effects. |
Author | Fisher, Deanne B. Glazebrook, Karl Sweet, Sarah M. Lagos, Claudia D. P. Macciò, Andrea V. Wang, Liang Dutton, Aaron A. Kang, Xi Obreschkow, Danail |
Author_xml | – sequence: 1 givenname: Liang surname: Wang fullname: Wang, Liang email: liang.wang@uwa.edu.au organization: University of Western Australia International Centre for Radio Astronomy Research (ICRAR), M468, 35 Stirling Hwy, Crawley, WA 6009, Australia – sequence: 2 givenname: Danail surname: Obreschkow fullname: Obreschkow, Danail organization: University of Western Australia International Centre for Radio Astronomy Research (ICRAR), M468, 35 Stirling Hwy, Crawley, WA 6009, Australia – sequence: 3 givenname: Claudia D. P. surname: Lagos fullname: Lagos, Claudia D. P. organization: ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D) – sequence: 4 givenname: Sarah M. orcidid: 0000-0002-1576-2505 surname: Sweet fullname: Sweet, Sarah M. organization: Swinburne University of Technology Centre for Astrophysics and Supercomputing, P.O. Box 218, Hawthorn, VIC 3122, Australia – sequence: 5 givenname: Deanne B. surname: Fisher fullname: Fisher, Deanne B. organization: Swinburne University of Technology Centre for Astrophysics and Supercomputing, P.O. Box 218, Hawthorn, VIC 3122, Australia – sequence: 6 givenname: Karl orcidid: 0000-0002-3254-9044 surname: Glazebrook fullname: Glazebrook, Karl organization: Swinburne University of Technology Centre for Astrophysics and Supercomputing, P.O. Box 218, Hawthorn, VIC 3122, Australia – sequence: 7 givenname: Andrea V. surname: Macciò fullname: Macciò, Andrea V. organization: Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg, Germany – sequence: 8 givenname: Aaron A. surname: Dutton fullname: Dutton, Aaron A. organization: New York University Abu Dhabi , P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates – sequence: 9 givenname: Xi surname: Kang fullname: Kang, Xi organization: Purple Mountain Observatory , the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008, People's Republic of China |
BookMark | eNp9kMFLwzAUxoMouE3vHgt6tC5N2iY9jjmnMPHgDt7Ca5piRtt0SQruv7e1oiCy0-O97_e9vHxTdNqYRiF0FeE7ymM2jxLKw5gmbA6geKFO0ORndIomGOM4TCl7O0dT53ZDS7Jsgp7vDw3UWgarfacrnVvd1cGr8i4wZeDfVbDwZpCXpvGq8cN0DRV8aOUCkNY410tuILa6VhforITKqcvvOkPbh9V2-RhuXtZPy8UmlJRlPpQsJSmwhBZRCVRCyaHII1UmKU0KxgknjAJhMsNxnvESJCtUJHshzVXf0xm6Hte21uw75bzYmc42_YuC0DThcYI56Sk8Ul9nWlWK1uoa7EFEWAyZiSEgMQQkxsx6S_rHIrUHr_vPW9DVMePtaNSm_T3mCH7zDw7tTvCUCyIyKtqipJ8fdo6u |
CitedBy_id | crossref_primary_10_1093_mnras_stz3367 crossref_primary_10_1093_mnrasl_slae090 crossref_primary_10_1093_mnras_sty3506 crossref_primary_10_1093_mnras_stab2314 crossref_primary_10_1093_mnras_stac2476 crossref_primary_10_1093_mnras_staa445 crossref_primary_10_1093_mnras_sty3451 crossref_primary_10_1093_mnras_staa1050 crossref_primary_10_1093_mnras_staa514 |
Cites_doi | 10.1086/167834 10.1111/j.1365-2966.2009.16180.x 10.3847/2041-8205/824/2/L26 10.1111/j.1365-2966.2011.19120.x 10.1088/0004-637X/784/1/26 10.1093/mnras/sty2650 10.1093/mnras/stt1780 10.1093/mnras/stv1937 10.1093/mnras/sts028 10.1111/j.1365-2966.2009.14497.x 10.1093/mnras/stx458 10.1088/0004-637X/756/2/113 10.1111/j.1365-2966.2010.16872.x 10.1086/155667 10.1111/j.1365-2966.2011.19038.x 10.1093/mnras/179.4.541 10.1093/mnras/stu1406 10.1093/mnras/stv1414 10.1093/mnras/stv2674 10.1111/j.1365-2966.2012.21987.x 10.1111/j.1365-2966.2010.16620.x 10.1093/mnras/stt809 10.1088/0004-637X/792/1/8 10.1093/mnras/stw717 10.1086/527028 10.1016/j.physrep.2014.02.001 10.1093/mnras/stt1274 10.1088/0004-637X/795/1/37 10.1088/0004-6256/136/6/2782 10.1093/mnras/stt066 10.1093/mnras/stu1275 10.1088/0004-637X/734/1/48 10.1088/0004-637X/815/2/97 10.1093/mnras/stx1643 10.1111/j.1365-2966.2009.14742.x 10.1038/168356a0 10.1051/0004-6361/201321591 10.1086/147861 10.1093/mnras/stv1311 10.1146/annurev-astro-081811-125612 10.1093/mnras/stu742 10.1093/mnras/sty2343 10.1093/mnras/stt2380 10.1093/mnras/stw2586 10.1093/mnras/stw2610 10.1093/mnrasl/sly119 10.1093/mnras/stw2539 10.1093/mnras/stu2532 10.1111/j.1365-2966.2008.13260.x 10.1093/mnras/stv1933 10.1111/j.1365-2966.2006.11097.x 10.22323/1.215.0138 10.1093/mnrasl/slw147 10.1093/mnras/stv1488 10.1093/mnras/stw2991 10.1088/0004-637X/728/2/88 10.1111/j.1365-2966.2010.17047.x 10.3847/1538-4365/aae387 10.1093/mnras/stv1985 10.1093/mnras/183.3.341 10.1093/mnras/stt1417 10.1111/j.1365-2966.2005.09451.x |
ContentType | Journal Article |
Copyright | 2018. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Dec 01, 2018 |
Copyright_xml | – notice: 2018. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Dec 01, 2018 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/aae8de |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Dynamic Equilibrium Sets of the Atomic Content of Galaxies across Cosmic Time |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_aae8de apjaae8de |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c379t-c7626a753d1fa3caf8adb1ef5635d7828273a27c904b98fac7de1c7826be98f3 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Wed Aug 13 09:17:50 EDT 2025 Thu Apr 24 22:53:40 EDT 2025 Tue Jul 01 04:09:39 EDT 2025 Thu Jan 07 13:49:50 EST 2021 Wed Aug 21 03:33:01 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-c7626a753d1fa3caf8adb1ef5635d7828273a27c904b98fac7de1c7826be98f3 |
Notes | Galaxies and Cosmology AAS12920 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3254-9044 0000-0002-1576-2505 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/aae8de/pdf |
PQID | 2365845082 |
PQPubID | 4562441 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2365845082 crossref_citationtrail_10_3847_1538_4357_aae8de crossref_primary_10_3847_1538_4357_aae8de iop_journals_10_3847_1538_4357_aae8de |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2018 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Crain (apjaae8debib9) 2017; 464 Krumholz (apjaae8debib34) 2014; 539 Catinella (apjaae8debib7) 2010; 403 Diemer (apjaae8debib12) 2018; 238 Huang (apjaae8debib26) 2012; 756 Cunnama (apjaae8debib10) 2014; 438 Lagos (apjaae8debib37) 2017; 464 Werk (apjaae8debib73) 2014; 792 Dutton (apjaae8debib18) 2010; 405 Kereš (apjaae8debib30) 2005; 363 Obreschkow (apjaae8debib46) 2016; 824L McKee (apjaae8debib42) 1977; 218 Leitner (apjaae8debib38) 2011; 734 Übler (apjaae8debib67) 2014; 443 Gnedin (apjaae8debib23) 2011; 728 Toomre (apjaae8debib66) 1964; 139 Dutton (apjaae8debib17) 2009; 396 Stinson (apjaae8debib64) 2006; 373 Wang (apjaae8debib72a) 2018 Maddox (apjaae8debib41) 2015; 447 Catinella (apjaae8debib6) 2013; 436 Oppenheimer (apjaae8debib49) 2010; 406 Dutton (apjaae8debib14) 2011; 416 Davé (apjaae8debib11) 2013; 434 Leroy (apjaae8debib39) 2008; 136 Macciò (apjaae8debib40) 2016; 463 Romeo (apjaae8debib58) 2018; 480 Gnedin (apjaae8debib22) 2014; 795 Haardt (apjaae8debib25) 2001 Stevens (apjaae8debib61) 2018; 481 Lagos (apjaae8debib36) 2016; 459 Obreschkow (apjaae8debib48) 2009; 394 Bahé (apjaae8debib1) 2016; 456 Brown (apjaae8debib4) 2015; 452 Dutton (apjaae8debib15) 2014; 441 Obreschkow (apjaae8debib45) 2015a; 815 Duffy (apjaae8debib13) 2012; 426 Romeo (apjaae8debib59) 2011; 416 Brook (apjaae8debib3) 2014; 443 Obreschkow (apjaae8debib44) 2014; 784 Rahmati (apjaae8debib54) 2015; 452 Lagos (apjaae8debib35) 2015; 452 Obreschkow (apjaae8debib47) 2015b Zoldan (apjaae8debib75) 2018; 481 Gutcke (apjaae8debib24) 2017; 464 Kalirai (apjaae8debib27) 2008; 676 Dutton (apjaae8debib16) 2017; 467 Stinson (apjaae8debib63) 2015; 454 Wadsley (apjaae8debib68) 2017; 471 Wadsley (apjaae8debib70) 2008; 387 White (apjaae8debib74) 1978; 183 Brown (apjaae8debib5) 2017; 466 Romeo (apjaae8debib57) 2013; 433 Ewen (apjaae8debib19) 1951; 168 Rahmati (apjaae8debib53) 2013; 430 Planck Collaboration (apjaae8debib50) 2014; 571 Kennicutt (apjaae8debib29) 1989; 344 Shen (apjaae8debib60) 2010; 407 Krumholz (apjaae8debib33) 2013; 436 Wang (apjaae8debib72) 2015; 454 Rees (apjaae8debib55) 1977; 179 Stinson (apjaae8debib62) 2013; 428 Putman (apjaae8debib51) 2012; 50 Rafieferantsoa (apjaae8debib52) 2015; 453 |
References_xml | – volume: 344 start-page: 685 year: 1989 ident: apjaae8debib29 publication-title: ApJ doi: 10.1086/167834 – volume: 403 start-page: 683 year: 2010 ident: apjaae8debib7 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.16180.x – volume: 824L start-page: 26 year: 2016 ident: apjaae8debib46 publication-title: ApJ doi: 10.3847/2041-8205/824/2/L26 – volume: 416 start-page: 1191 year: 2011 ident: apjaae8debib59 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19120.x – volume: 784 start-page: 26 year: 2014 ident: apjaae8debib44 publication-title: ApJ doi: 10.1088/0004-637X/784/1/26 – volume: 481 start-page: 5543 year: 2018 ident: apjaae8debib61 doi: 10.1093/mnras/sty2650 – volume: 436 start-page: 2747 year: 2013 ident: apjaae8debib33 publication-title: MNRAS doi: 10.1093/mnras/stt1780 – volume: 454 start-page: 83 year: 2015 ident: apjaae8debib72 publication-title: MNRAS doi: 10.1093/mnras/stv1937 – volume: 428 start-page: 129 year: 2013 ident: apjaae8debib62 publication-title: MNRAS doi: 10.1093/mnras/sts028 – volume: 394 start-page: 1857 year: 2009 ident: apjaae8debib48 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14497.x – volume: 467 start-page: 493 year: 2017 ident: apjaae8debib16 publication-title: MNRAS doi: 10.1093/mnras/stx458 – volume: 756 start-page: 113 year: 2012 ident: apjaae8debib26 publication-title: ApJ doi: 10.1088/0004-637X/756/2/113 – volume: 406 start-page: 2325 year: 2010 ident: apjaae8debib49 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16872.x – volume: 218 start-page: 148 year: 1977 ident: apjaae8debib42 publication-title: ApJ doi: 10.1086/155667 – volume: 416 start-page: 322 year: 2011 ident: apjaae8debib14 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19038.x – volume: 179 start-page: 541 year: 1977 ident: apjaae8debib55 publication-title: MNRAS doi: 10.1093/mnras/179.4.541 – volume: 443 start-page: 3809 year: 2014 ident: apjaae8debib3 publication-title: MNRAS doi: 10.1093/mnras/stu1406 – volume: 452 start-page: 2034 year: 2015 ident: apjaae8debib54 publication-title: MNRAS doi: 10.1093/mnras/stv1414 – volume: 456 start-page: 1115 year: 2016 ident: apjaae8debib1 publication-title: MNRAS doi: 10.1093/mnras/stv2674 – volume: 426 start-page: 3385 year: 2012 ident: apjaae8debib13 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21987.x – volume: 405 start-page: 1690 year: 2010 ident: apjaae8debib18 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16620.x – volume: 433 start-page: 1389 year: 2013 ident: apjaae8debib57 publication-title: MNRAS doi: 10.1093/mnras/stt809 – volume: 792 start-page: 8 year: 2014 ident: apjaae8debib73 publication-title: ApJ doi: 10.1088/0004-637X/792/1/8 – volume: 459 start-page: 2632 year: 2016 ident: apjaae8debib36 publication-title: MNRAS doi: 10.1093/mnras/stw717 – volume: 676 start-page: 594 year: 2008 ident: apjaae8debib27 publication-title: ApJ doi: 10.1086/527028 – volume: 539 start-page: 49 year: 2014 ident: apjaae8debib34 publication-title: PhR doi: 10.1016/j.physrep.2014.02.001 – year: 2018 ident: apjaae8debib72a publication-title: MNRAS – volume: 434 start-page: 2645 year: 2013 ident: apjaae8debib11 publication-title: MNRAS doi: 10.1093/mnras/stt1274 – volume: 795 start-page: 37 year: 2014 ident: apjaae8debib22 publication-title: ApJ doi: 10.1088/0004-637X/795/1/37 – volume: 136 start-page: 2782 year: 2008 ident: apjaae8debib39 publication-title: AJ doi: 10.1088/0004-6256/136/6/2782 – volume: 430 start-page: 2427 year: 2013 ident: apjaae8debib53 publication-title: MNRAS doi: 10.1093/mnras/stt066 – volume: 443 start-page: 2092 year: 2014 ident: apjaae8debib67 publication-title: MNRAS doi: 10.1093/mnras/stu1275 – volume: 734 start-page: 48 year: 2011 ident: apjaae8debib38 publication-title: ApJ doi: 10.1088/0004-637X/734/1/48 – volume: 815 start-page: 97 year: 2015a ident: apjaae8debib45 publication-title: ApJ doi: 10.1088/0004-637X/815/2/97 – volume: 471 start-page: 2357 year: 2017 ident: apjaae8debib68 publication-title: MNRAS doi: 10.1093/mnras/stx1643 – volume: 396 start-page: 141 year: 2009 ident: apjaae8debib17 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14742.x – volume: 168 start-page: 356 year: 1951 ident: apjaae8debib19 publication-title: Natur doi: 10.1038/168356a0 – volume: 571 start-page: AA16 year: 2014 ident: apjaae8debib50 publication-title: A&A doi: 10.1051/0004-6361/201321591 – volume: 139 start-page: 1217 year: 1964 ident: apjaae8debib66 publication-title: ApJ doi: 10.1086/147861 – start-page: 64 year: 2001 ident: apjaae8debib25 – volume: 452 start-page: 2479 year: 2015 ident: apjaae8debib4 publication-title: MNRAS doi: 10.1093/mnras/stv1311 – volume: 50 start-page: 491 year: 2012 ident: apjaae8debib51 publication-title: ARA&A doi: 10.1146/annurev-astro-081811-125612 – volume: 441 start-page: 3359 year: 2014 ident: apjaae8debib15 publication-title: MNRAS doi: 10.1093/mnras/stu742 – volume: 481 start-page: 1376 year: 2018 ident: apjaae8debib75 doi: 10.1093/mnras/sty2343 – volume: 438 start-page: 2530 year: 2014 ident: apjaae8debib10 publication-title: MNRAS doi: 10.1093/mnras/stt2380 – volume: 464 start-page: 4204 year: 2017 ident: apjaae8debib9 publication-title: MNRAS doi: 10.1093/mnras/stw2586 – volume: 464 start-page: 3850 year: 2017 ident: apjaae8debib37 publication-title: MNRAS doi: 10.1093/mnras/stw2610 – volume: 480 start-page: L23 year: 2018 ident: apjaae8debib58 publication-title: MNRAS doi: 10.1093/mnrasl/sly119 – volume: 464 start-page: 2796 year: 2017 ident: apjaae8debib24 publication-title: MNRAS doi: 10.1093/mnras/stw2539 – volume: 447 start-page: 1610 year: 2015 ident: apjaae8debib41 publication-title: MNRAS doi: 10.1093/mnras/stu2532 – volume: 387 start-page: 427 year: 2008 ident: apjaae8debib70 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13260.x – volume: 453 start-page: 3980 year: 2015 ident: apjaae8debib52 publication-title: MNRAS doi: 10.1093/mnras/stv1933 – volume: 373 start-page: 1074 year: 2006 ident: apjaae8debib64 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.11097.x – start-page: 138 year: 2015b ident: apjaae8debib47 doi: 10.22323/1.215.0138 – volume: 463 start-page: L69 year: 2016 ident: apjaae8debib40 publication-title: MNRAS doi: 10.1093/mnrasl/slw147 – volume: 452 start-page: 3815 year: 2015 ident: apjaae8debib35 publication-title: MNRAS doi: 10.1093/mnras/stv1488 – volume: 466 start-page: 1275 year: 2017 ident: apjaae8debib5 publication-title: MNRAS doi: 10.1093/mnras/stw2991 – volume: 728 start-page: 88 year: 2011 ident: apjaae8debib23 publication-title: ApJ doi: 10.1088/0004-637X/728/2/88 – volume: 407 start-page: 1581 year: 2010 ident: apjaae8debib60 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17047.x – volume: 238 start-page: 33 year: 2018 ident: apjaae8debib12 doi: 10.3847/1538-4365/aae387 – volume: 454 start-page: 1105 year: 2015 ident: apjaae8debib63 publication-title: MNRAS doi: 10.1093/mnras/stv1985 – volume: 183 start-page: 341 year: 1978 ident: apjaae8debib74 publication-title: MNRAS doi: 10.1093/mnras/183.3.341 – volume: 436 start-page: 34 year: 2013 ident: apjaae8debib6 publication-title: MNRAS doi: 10.1093/mnras/stt1417 – volume: 363 start-page: 2 year: 2005 ident: apjaae8debib30 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09451.x |
SSID | ssj0004299 |
Score | 2.3737252 |
Snippet | We analyze 88 independent, high-resolution, cosmological zoomed-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 93 |
SubjectTerms | Angular momentum Astrophysics Cold gas Computer simulation Deposition Disk galaxies Environmental effects Equilibrium Evolution Galactic evolution Galaxies galaxies: dwarf galaxies: evolution galaxies: formation galaxies: spiral methods: numerical Stability Star & galaxy formation Star formation Stars & galaxies Static equilibrium Time |
Title | Dynamic Equilibrium Sets of the Atomic Content of Galaxies across Cosmic Time |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/aae8de https://www.proquest.com/docview/2365845082 |
Volume | 868 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8QPDFb3G6SR5U8KGba7o2xaehUxF0AxX3IIQ0H-DXNm0H6l_vpekmfiDiS0mba9JckrvfpbkLwFYojFEmFJ6kkfYC1HBe3Ih9L5R7JlIBM9TYBf2z8_DkKjjtNroTsD_2hekPCtFfxaQLFOxYaOc3RVlay-coavmoJoRmSk_CNGWoOK33Xrvz4RTpxwX2DbyQRl33j_LHEj7ppEms95tgzrXN0TzcjL7TbTK5rw6zpCrfvoRw_GdDFmCuQKGk6UgXYUL3lmCtmdp18f7jK9khedote6RLMNNxqWU4O3RH2JPW0_A29xcYPpILnaWkbwiCSdLMrJ8zyaNe9TL79Fg8iBc0yInIm49ZqaWwzicrcHnUujw48YojGWxfxpknUXaGAk0cVTeCSmGYUEldmwbiFoVggyEaEn4k470giZkRMlK6LjEjTDTe01WY6vV7eg2IDTRfTxKjUIOiSRqwhGmBbBEslhrrKkFt1CdcFuHK7akZDxzNFss-btnHLfu4Y18JdsdvDFyojl9ot7FXeDFf01_oKp_oxOCOs5Bxn8eUD5QpQXk0UD6IfGphHSJff_2P1WzALAIx5rbJlGEqex7qCoKdLNnMBzVe2_T6Hf1I-es |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_8QPFFdCrOzzyo4EPd2nRt-jh083M6UHFvIc0HKLpN24H-916a6hBl-JY21yb8muR-l-buAPYiYYwykfAkjbUXoobzkkYSeJGsm1iFzFBjN_Q719HZfXjRa_TKPKeFL8xgWC79R1h0gYIdhHZ-U1xLa8UcRS0f14TQTOnaUJlpmG1QVDU4oG_ow9gxMkhK_ht6EY177j_ln2_5oZemse1fi3OhcdpLsFhSRdJ0HVuGKd2vwHozs5vXg5cPckCKstubyCow13WlFeicuDzzpPU6eiwO9Y9eyK3OMzIwBBkfaebWGZkUoan6ub17Kp7FO1rNRBT9w6rMSlgPkVW4a7fujs-8Mm-CBTzJPYkLXCTQDlG-EVQKw4RKfW0aSC4UMgKGlEUEsUzqYZowI2SstC-xIko1XtM1mOkP-nodiI0G76epUajm0G4MWcq0QPgES6TGtqpQ-wKNyzKmuE1t8czRtrAwcwsztzBzB3MVDr-fGLp4GhNk9_E78HJSZRPktn_IieETZxHjAU8ox8FRha2vLzkWCqjlXkhPg41_NrML892TNr86v77chAUkTswda9mCmfxtpLeRnOTpTjEAPwEuct1F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Equilibrium+Sets+of+the+Atomic+Content+of+Galaxies+across+Cosmic+Time&rft.jtitle=The+Astrophysical+journal&rft.au=Wang%2C+Liang&rft.au=Obreschkow%2C+Danail&rft.au=Lagos%2C+Claudia+D+P&rft.au=Sweet%2C+Sarah+M&rft.date=2018-12-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=868&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Faae8de&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |