Dynamic Equilibrium Sets of the Atomic Content of Galaxies across Cosmic Time

We analyze 88 independent, high-resolution, cosmological zoomed-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum (AM) of baryons throughout cosmic time. The study is motivated by the analytical model of Obre...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 868; no. 2; pp. 93 - 101
Main Authors Wang, Liang, Obreschkow, Danail, Lagos, Claudia D. P., Sweet, Sarah M., Fisher, Deanne B., Glazebrook, Karl, Macciò, Andrea V., Dutton, Aaron A., Kang, Xi
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.12.2018
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We analyze 88 independent, high-resolution, cosmological zoomed-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum (AM) of baryons throughout cosmic time. The study is motivated by the analytical model of Obreschkow et al., which predicts a relation between the atomic gas fraction fatm and the integrated atomic stability parameter , where M and j are the mass and specific AM of the galaxy (stars+cold gas) and is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation (z 4) to the present within ∼0.5 dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that 90%-100% of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of fatm depends on the complex hierarchical growth history primarily via the evolution of q. An exception is galaxies subject to strong environmental effects.
AbstractList We analyze 88 independent, high-resolution, cosmological zoomed-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum (AM) of baryons throughout cosmic time. The study is motivated by the analytical model of Obreschkow et al., which predicts a relation between the atomic gas fraction f atm and the integrated atomic stability parameter \(q\equiv j\sigma /({GM})\), where M and j are the mass and specific AM of the galaxy (stars+cold gas) and σ is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation (z ≃ 4) to the present within ∼0.5 dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that 90%–100% of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of f atm depends on the complex hierarchical growth history primarily via the evolution of q. An exception is galaxies subject to strong environmental effects.
We analyze 88 independent, high-resolution, cosmological zoomed-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum (AM) of baryons throughout cosmic time. The study is motivated by the analytical model of Obreschkow et al., which predicts a relation between the atomic gas fraction f atm and the integrated atomic stability parameter , where M and j are the mass and specific AM of the galaxy (stars+cold gas) and σ is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation ( z  ≃ 4) to the present within ∼0.5 dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that 90%–100% of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of f atm depends on the complex hierarchical growth history primarily via the evolution of q . An exception is galaxies subject to strong environmental effects.
We analyze 88 independent, high-resolution, cosmological zoomed-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum (AM) of baryons throughout cosmic time. The study is motivated by the analytical model of Obreschkow et al., which predicts a relation between the atomic gas fraction fatm and the integrated atomic stability parameter , where M and j are the mass and specific AM of the galaxy (stars+cold gas) and is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation (z 4) to the present within ∼0.5 dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that 90%-100% of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of fatm depends on the complex hierarchical growth history primarily via the evolution of q. An exception is galaxies subject to strong environmental effects.
Author Fisher, Deanne B.
Glazebrook, Karl
Sweet, Sarah M.
Lagos, Claudia D. P.
Macciò, Andrea V.
Wang, Liang
Dutton, Aaron A.
Kang, Xi
Obreschkow, Danail
Author_xml – sequence: 1
  givenname: Liang
  surname: Wang
  fullname: Wang, Liang
  email: liang.wang@uwa.edu.au
  organization: University of Western Australia International Centre for Radio Astronomy Research (ICRAR), M468, 35 Stirling Hwy, Crawley, WA 6009, Australia
– sequence: 2
  givenname: Danail
  surname: Obreschkow
  fullname: Obreschkow, Danail
  organization: University of Western Australia International Centre for Radio Astronomy Research (ICRAR), M468, 35 Stirling Hwy, Crawley, WA 6009, Australia
– sequence: 3
  givenname: Claudia D. P.
  surname: Lagos
  fullname: Lagos, Claudia D. P.
  organization: ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)
– sequence: 4
  givenname: Sarah M.
  orcidid: 0000-0002-1576-2505
  surname: Sweet
  fullname: Sweet, Sarah M.
  organization: Swinburne University of Technology Centre for Astrophysics and Supercomputing, P.O. Box 218, Hawthorn, VIC 3122, Australia
– sequence: 5
  givenname: Deanne B.
  surname: Fisher
  fullname: Fisher, Deanne B.
  organization: Swinburne University of Technology Centre for Astrophysics and Supercomputing, P.O. Box 218, Hawthorn, VIC 3122, Australia
– sequence: 6
  givenname: Karl
  orcidid: 0000-0002-3254-9044
  surname: Glazebrook
  fullname: Glazebrook, Karl
  organization: Swinburne University of Technology Centre for Astrophysics and Supercomputing, P.O. Box 218, Hawthorn, VIC 3122, Australia
– sequence: 7
  givenname: Andrea V.
  surname: Macciò
  fullname: Macciò, Andrea V.
  organization: Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg, Germany
– sequence: 8
  givenname: Aaron A.
  surname: Dutton
  fullname: Dutton, Aaron A.
  organization: New York University Abu Dhabi , P.O. Box 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates
– sequence: 9
  givenname: Xi
  surname: Kang
  fullname: Kang, Xi
  organization: Purple Mountain Observatory , the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008, People's Republic of China
BookMark eNp9kMFLwzAUxoMouE3vHgt6tC5N2iY9jjmnMPHgDt7Ca5piRtt0SQruv7e1oiCy0-O97_e9vHxTdNqYRiF0FeE7ymM2jxLKw5gmbA6geKFO0ORndIomGOM4TCl7O0dT53ZDS7Jsgp7vDw3UWgarfacrnVvd1cGr8i4wZeDfVbDwZpCXpvGq8cN0DRV8aOUCkNY410tuILa6VhforITKqcvvOkPbh9V2-RhuXtZPy8UmlJRlPpQsJSmwhBZRCVRCyaHII1UmKU0KxgknjAJhMsNxnvESJCtUJHshzVXf0xm6Hte21uw75bzYmc42_YuC0DThcYI56Sk8Ul9nWlWK1uoa7EFEWAyZiSEgMQQkxsx6S_rHIrUHr_vPW9DVMePtaNSm_T3mCH7zDw7tTvCUCyIyKtqipJ8fdo6u
CitedBy_id crossref_primary_10_1093_mnras_stz3367
crossref_primary_10_1093_mnrasl_slae090
crossref_primary_10_1093_mnras_sty3506
crossref_primary_10_1093_mnras_stab2314
crossref_primary_10_1093_mnras_stac2476
crossref_primary_10_1093_mnras_staa445
crossref_primary_10_1093_mnras_sty3451
crossref_primary_10_1093_mnras_staa1050
crossref_primary_10_1093_mnras_staa514
Cites_doi 10.1086/167834
10.1111/j.1365-2966.2009.16180.x
10.3847/2041-8205/824/2/L26
10.1111/j.1365-2966.2011.19120.x
10.1088/0004-637X/784/1/26
10.1093/mnras/sty2650
10.1093/mnras/stt1780
10.1093/mnras/stv1937
10.1093/mnras/sts028
10.1111/j.1365-2966.2009.14497.x
10.1093/mnras/stx458
10.1088/0004-637X/756/2/113
10.1111/j.1365-2966.2010.16872.x
10.1086/155667
10.1111/j.1365-2966.2011.19038.x
10.1093/mnras/179.4.541
10.1093/mnras/stu1406
10.1093/mnras/stv1414
10.1093/mnras/stv2674
10.1111/j.1365-2966.2012.21987.x
10.1111/j.1365-2966.2010.16620.x
10.1093/mnras/stt809
10.1088/0004-637X/792/1/8
10.1093/mnras/stw717
10.1086/527028
10.1016/j.physrep.2014.02.001
10.1093/mnras/stt1274
10.1088/0004-637X/795/1/37
10.1088/0004-6256/136/6/2782
10.1093/mnras/stt066
10.1093/mnras/stu1275
10.1088/0004-637X/734/1/48
10.1088/0004-637X/815/2/97
10.1093/mnras/stx1643
10.1111/j.1365-2966.2009.14742.x
10.1038/168356a0
10.1051/0004-6361/201321591
10.1086/147861
10.1093/mnras/stv1311
10.1146/annurev-astro-081811-125612
10.1093/mnras/stu742
10.1093/mnras/sty2343
10.1093/mnras/stt2380
10.1093/mnras/stw2586
10.1093/mnras/stw2610
10.1093/mnrasl/sly119
10.1093/mnras/stw2539
10.1093/mnras/stu2532
10.1111/j.1365-2966.2008.13260.x
10.1093/mnras/stv1933
10.1111/j.1365-2966.2006.11097.x
10.22323/1.215.0138
10.1093/mnrasl/slw147
10.1093/mnras/stv1488
10.1093/mnras/stw2991
10.1088/0004-637X/728/2/88
10.1111/j.1365-2966.2010.17047.x
10.3847/1538-4365/aae387
10.1093/mnras/stv1985
10.1093/mnras/183.3.341
10.1093/mnras/stt1417
10.1111/j.1365-2966.2005.09451.x
ContentType Journal Article
Copyright 2018. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Dec 01, 2018
Copyright_xml – notice: 2018. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Dec 01, 2018
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/aae8de
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Dynamic Equilibrium Sets of the Atomic Content of Galaxies across Cosmic Time
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_aae8de
apjaae8de
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c379t-c7626a753d1fa3caf8adb1ef5635d7828273a27c904b98fac7de1c7826be98f3
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 13 09:17:50 EDT 2025
Thu Apr 24 22:53:40 EDT 2025
Tue Jul 01 04:09:39 EDT 2025
Thu Jan 07 13:49:50 EST 2021
Wed Aug 21 03:33:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-c7626a753d1fa3caf8adb1ef5635d7828273a27c904b98fac7de1c7826be98f3
Notes Galaxies and Cosmology
AAS12920
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3254-9044
0000-0002-1576-2505
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/aae8de/pdf
PQID 2365845082
PQPubID 4562441
PageCount 9
ParticipantIDs proquest_journals_2365845082
crossref_citationtrail_10_3847_1538_4357_aae8de
crossref_primary_10_3847_1538_4357_aae8de
iop_journals_10_3847_1538_4357_aae8de
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2018
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Crain (apjaae8debib9) 2017; 464
Krumholz (apjaae8debib34) 2014; 539
Catinella (apjaae8debib7) 2010; 403
Diemer (apjaae8debib12) 2018; 238
Huang (apjaae8debib26) 2012; 756
Cunnama (apjaae8debib10) 2014; 438
Lagos (apjaae8debib37) 2017; 464
Werk (apjaae8debib73) 2014; 792
Dutton (apjaae8debib18) 2010; 405
Kereš (apjaae8debib30) 2005; 363
Obreschkow (apjaae8debib46) 2016; 824L
McKee (apjaae8debib42) 1977; 218
Leitner (apjaae8debib38) 2011; 734
Übler (apjaae8debib67) 2014; 443
Gnedin (apjaae8debib23) 2011; 728
Toomre (apjaae8debib66) 1964; 139
Dutton (apjaae8debib17) 2009; 396
Stinson (apjaae8debib64) 2006; 373
Wang (apjaae8debib72a) 2018
Maddox (apjaae8debib41) 2015; 447
Catinella (apjaae8debib6) 2013; 436
Oppenheimer (apjaae8debib49) 2010; 406
Dutton (apjaae8debib14) 2011; 416
Davé (apjaae8debib11) 2013; 434
Leroy (apjaae8debib39) 2008; 136
Macciò (apjaae8debib40) 2016; 463
Romeo (apjaae8debib58) 2018; 480
Gnedin (apjaae8debib22) 2014; 795
Haardt (apjaae8debib25) 2001
Stevens (apjaae8debib61) 2018; 481
Lagos (apjaae8debib36) 2016; 459
Obreschkow (apjaae8debib48) 2009; 394
Bahé (apjaae8debib1) 2016; 456
Brown (apjaae8debib4) 2015; 452
Dutton (apjaae8debib15) 2014; 441
Obreschkow (apjaae8debib45) 2015a; 815
Duffy (apjaae8debib13) 2012; 426
Romeo (apjaae8debib59) 2011; 416
Brook (apjaae8debib3) 2014; 443
Obreschkow (apjaae8debib44) 2014; 784
Rahmati (apjaae8debib54) 2015; 452
Lagos (apjaae8debib35) 2015; 452
Obreschkow (apjaae8debib47) 2015b
Zoldan (apjaae8debib75) 2018; 481
Gutcke (apjaae8debib24) 2017; 464
Kalirai (apjaae8debib27) 2008; 676
Dutton (apjaae8debib16) 2017; 467
Stinson (apjaae8debib63) 2015; 454
Wadsley (apjaae8debib68) 2017; 471
Wadsley (apjaae8debib70) 2008; 387
White (apjaae8debib74) 1978; 183
Brown (apjaae8debib5) 2017; 466
Romeo (apjaae8debib57) 2013; 433
Ewen (apjaae8debib19) 1951; 168
Rahmati (apjaae8debib53) 2013; 430
Planck Collaboration (apjaae8debib50) 2014; 571
Kennicutt (apjaae8debib29) 1989; 344
Shen (apjaae8debib60) 2010; 407
Krumholz (apjaae8debib33) 2013; 436
Wang (apjaae8debib72) 2015; 454
Rees (apjaae8debib55) 1977; 179
Stinson (apjaae8debib62) 2013; 428
Putman (apjaae8debib51) 2012; 50
Rafieferantsoa (apjaae8debib52) 2015; 453
References_xml – volume: 344
  start-page: 685
  year: 1989
  ident: apjaae8debib29
  publication-title: ApJ
  doi: 10.1086/167834
– volume: 403
  start-page: 683
  year: 2010
  ident: apjaae8debib7
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.16180.x
– volume: 824L
  start-page: 26
  year: 2016
  ident: apjaae8debib46
  publication-title: ApJ
  doi: 10.3847/2041-8205/824/2/L26
– volume: 416
  start-page: 1191
  year: 2011
  ident: apjaae8debib59
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19120.x
– volume: 784
  start-page: 26
  year: 2014
  ident: apjaae8debib44
  publication-title: ApJ
  doi: 10.1088/0004-637X/784/1/26
– volume: 481
  start-page: 5543
  year: 2018
  ident: apjaae8debib61
  doi: 10.1093/mnras/sty2650
– volume: 436
  start-page: 2747
  year: 2013
  ident: apjaae8debib33
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1780
– volume: 454
  start-page: 83
  year: 2015
  ident: apjaae8debib72
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1937
– volume: 428
  start-page: 129
  year: 2013
  ident: apjaae8debib62
  publication-title: MNRAS
  doi: 10.1093/mnras/sts028
– volume: 394
  start-page: 1857
  year: 2009
  ident: apjaae8debib48
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14497.x
– volume: 467
  start-page: 493
  year: 2017
  ident: apjaae8debib16
  publication-title: MNRAS
  doi: 10.1093/mnras/stx458
– volume: 756
  start-page: 113
  year: 2012
  ident: apjaae8debib26
  publication-title: ApJ
  doi: 10.1088/0004-637X/756/2/113
– volume: 406
  start-page: 2325
  year: 2010
  ident: apjaae8debib49
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16872.x
– volume: 218
  start-page: 148
  year: 1977
  ident: apjaae8debib42
  publication-title: ApJ
  doi: 10.1086/155667
– volume: 416
  start-page: 322
  year: 2011
  ident: apjaae8debib14
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19038.x
– volume: 179
  start-page: 541
  year: 1977
  ident: apjaae8debib55
  publication-title: MNRAS
  doi: 10.1093/mnras/179.4.541
– volume: 443
  start-page: 3809
  year: 2014
  ident: apjaae8debib3
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1406
– volume: 452
  start-page: 2034
  year: 2015
  ident: apjaae8debib54
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1414
– volume: 456
  start-page: 1115
  year: 2016
  ident: apjaae8debib1
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2674
– volume: 426
  start-page: 3385
  year: 2012
  ident: apjaae8debib13
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21987.x
– volume: 405
  start-page: 1690
  year: 2010
  ident: apjaae8debib18
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16620.x
– volume: 433
  start-page: 1389
  year: 2013
  ident: apjaae8debib57
  publication-title: MNRAS
  doi: 10.1093/mnras/stt809
– volume: 792
  start-page: 8
  year: 2014
  ident: apjaae8debib73
  publication-title: ApJ
  doi: 10.1088/0004-637X/792/1/8
– volume: 459
  start-page: 2632
  year: 2016
  ident: apjaae8debib36
  publication-title: MNRAS
  doi: 10.1093/mnras/stw717
– volume: 676
  start-page: 594
  year: 2008
  ident: apjaae8debib27
  publication-title: ApJ
  doi: 10.1086/527028
– volume: 539
  start-page: 49
  year: 2014
  ident: apjaae8debib34
  publication-title: PhR
  doi: 10.1016/j.physrep.2014.02.001
– year: 2018
  ident: apjaae8debib72a
  publication-title: MNRAS
– volume: 434
  start-page: 2645
  year: 2013
  ident: apjaae8debib11
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1274
– volume: 795
  start-page: 37
  year: 2014
  ident: apjaae8debib22
  publication-title: ApJ
  doi: 10.1088/0004-637X/795/1/37
– volume: 136
  start-page: 2782
  year: 2008
  ident: apjaae8debib39
  publication-title: AJ
  doi: 10.1088/0004-6256/136/6/2782
– volume: 430
  start-page: 2427
  year: 2013
  ident: apjaae8debib53
  publication-title: MNRAS
  doi: 10.1093/mnras/stt066
– volume: 443
  start-page: 2092
  year: 2014
  ident: apjaae8debib67
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1275
– volume: 734
  start-page: 48
  year: 2011
  ident: apjaae8debib38
  publication-title: ApJ
  doi: 10.1088/0004-637X/734/1/48
– volume: 815
  start-page: 97
  year: 2015a
  ident: apjaae8debib45
  publication-title: ApJ
  doi: 10.1088/0004-637X/815/2/97
– volume: 471
  start-page: 2357
  year: 2017
  ident: apjaae8debib68
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1643
– volume: 396
  start-page: 141
  year: 2009
  ident: apjaae8debib17
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14742.x
– volume: 168
  start-page: 356
  year: 1951
  ident: apjaae8debib19
  publication-title: Natur
  doi: 10.1038/168356a0
– volume: 571
  start-page: AA16
  year: 2014
  ident: apjaae8debib50
  publication-title: A&A
  doi: 10.1051/0004-6361/201321591
– volume: 139
  start-page: 1217
  year: 1964
  ident: apjaae8debib66
  publication-title: ApJ
  doi: 10.1086/147861
– start-page: 64
  year: 2001
  ident: apjaae8debib25
– volume: 452
  start-page: 2479
  year: 2015
  ident: apjaae8debib4
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1311
– volume: 50
  start-page: 491
  year: 2012
  ident: apjaae8debib51
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081811-125612
– volume: 441
  start-page: 3359
  year: 2014
  ident: apjaae8debib15
  publication-title: MNRAS
  doi: 10.1093/mnras/stu742
– volume: 481
  start-page: 1376
  year: 2018
  ident: apjaae8debib75
  doi: 10.1093/mnras/sty2343
– volume: 438
  start-page: 2530
  year: 2014
  ident: apjaae8debib10
  publication-title: MNRAS
  doi: 10.1093/mnras/stt2380
– volume: 464
  start-page: 4204
  year: 2017
  ident: apjaae8debib9
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2586
– volume: 464
  start-page: 3850
  year: 2017
  ident: apjaae8debib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2610
– volume: 480
  start-page: L23
  year: 2018
  ident: apjaae8debib58
  publication-title: MNRAS
  doi: 10.1093/mnrasl/sly119
– volume: 464
  start-page: 2796
  year: 2017
  ident: apjaae8debib24
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2539
– volume: 447
  start-page: 1610
  year: 2015
  ident: apjaae8debib41
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2532
– volume: 387
  start-page: 427
  year: 2008
  ident: apjaae8debib70
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13260.x
– volume: 453
  start-page: 3980
  year: 2015
  ident: apjaae8debib52
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1933
– volume: 373
  start-page: 1074
  year: 2006
  ident: apjaae8debib64
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.11097.x
– start-page: 138
  year: 2015b
  ident: apjaae8debib47
  doi: 10.22323/1.215.0138
– volume: 463
  start-page: L69
  year: 2016
  ident: apjaae8debib40
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slw147
– volume: 452
  start-page: 3815
  year: 2015
  ident: apjaae8debib35
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1488
– volume: 466
  start-page: 1275
  year: 2017
  ident: apjaae8debib5
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2991
– volume: 728
  start-page: 88
  year: 2011
  ident: apjaae8debib23
  publication-title: ApJ
  doi: 10.1088/0004-637X/728/2/88
– volume: 407
  start-page: 1581
  year: 2010
  ident: apjaae8debib60
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17047.x
– volume: 238
  start-page: 33
  year: 2018
  ident: apjaae8debib12
  doi: 10.3847/1538-4365/aae387
– volume: 454
  start-page: 1105
  year: 2015
  ident: apjaae8debib63
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1985
– volume: 183
  start-page: 341
  year: 1978
  ident: apjaae8debib74
  publication-title: MNRAS
  doi: 10.1093/mnras/183.3.341
– volume: 436
  start-page: 34
  year: 2013
  ident: apjaae8debib6
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1417
– volume: 363
  start-page: 2
  year: 2005
  ident: apjaae8debib30
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09451.x
SSID ssj0004299
Score 2.3737252
Snippet We analyze 88 independent, high-resolution, cosmological zoomed-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 93
SubjectTerms Angular momentum
Astrophysics
Cold gas
Computer simulation
Deposition
Disk galaxies
Environmental effects
Equilibrium
Evolution
Galactic evolution
Galaxies
galaxies: dwarf
galaxies: evolution
galaxies: formation
galaxies: spiral
methods: numerical
Stability
Star & galaxy formation
Star formation
Stars & galaxies
Static equilibrium
Time
Title Dynamic Equilibrium Sets of the Atomic Content of Galaxies across Cosmic Time
URI https://iopscience.iop.org/article/10.3847/1538-4357/aae8de
https://www.proquest.com/docview/2365845082
Volume 868
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8QPDFb3G6SR5U8KGba7o2xaehUxF0AxX3IIQ0H-DXNm0H6l_vpekmfiDiS0mba9JckrvfpbkLwFYojFEmFJ6kkfYC1HBe3Ih9L5R7JlIBM9TYBf2z8_DkKjjtNroTsD_2hekPCtFfxaQLFOxYaOc3RVlay-coavmoJoRmSk_CNGWoOK33Xrvz4RTpxwX2DbyQRl33j_LHEj7ppEms95tgzrXN0TzcjL7TbTK5rw6zpCrfvoRw_GdDFmCuQKGk6UgXYUL3lmCtmdp18f7jK9khedote6RLMNNxqWU4O3RH2JPW0_A29xcYPpILnaWkbwiCSdLMrJ8zyaNe9TL79Fg8iBc0yInIm49ZqaWwzicrcHnUujw48YojGWxfxpknUXaGAk0cVTeCSmGYUEldmwbiFoVggyEaEn4k470giZkRMlK6LjEjTDTe01WY6vV7eg2IDTRfTxKjUIOiSRqwhGmBbBEslhrrKkFt1CdcFuHK7akZDxzNFss-btnHLfu4Y18JdsdvDFyojl9ot7FXeDFf01_oKp_oxOCOs5Bxn8eUD5QpQXk0UD6IfGphHSJff_2P1WzALAIx5rbJlGEqex7qCoKdLNnMBzVe2_T6Hf1I-es
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_8QPFFdCrOzzyo4EPd2nRt-jh083M6UHFvIc0HKLpN24H-916a6hBl-JY21yb8muR-l-buAPYiYYwykfAkjbUXoobzkkYSeJGsm1iFzFBjN_Q719HZfXjRa_TKPKeFL8xgWC79R1h0gYIdhHZ-U1xLa8UcRS0f14TQTOnaUJlpmG1QVDU4oG_ow9gxMkhK_ht6EY177j_ln2_5oZemse1fi3OhcdpLsFhSRdJ0HVuGKd2vwHozs5vXg5cPckCKstubyCow13WlFeicuDzzpPU6eiwO9Y9eyK3OMzIwBBkfaebWGZkUoan6ub17Kp7FO1rNRBT9w6rMSlgPkVW4a7fujs-8Mm-CBTzJPYkLXCTQDlG-EVQKw4RKfW0aSC4UMgKGlEUEsUzqYZowI2SstC-xIko1XtM1mOkP-nodiI0G76epUajm0G4MWcq0QPgES6TGtqpQ-wKNyzKmuE1t8czRtrAwcwsztzBzB3MVDr-fGLp4GhNk9_E78HJSZRPktn_IieETZxHjAU8ox8FRha2vLzkWCqjlXkhPg41_NrML892TNr86v77chAUkTswda9mCmfxtpLeRnOTpTjEAPwEuct1F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Equilibrium+Sets+of+the+Atomic+Content+of+Galaxies+across+Cosmic+Time&rft.jtitle=The+Astrophysical+journal&rft.au=Wang%2C+Liang&rft.au=Obreschkow%2C+Danail&rft.au=Lagos%2C+Claudia+D+P&rft.au=Sweet%2C+Sarah+M&rft.date=2018-12-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=868&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Faae8de&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon