A Hadamard Fractional Boundary Value Problem on an Infinite Interval at Resonance

This paper addresses the existence of solutions to a Hadamard fractional differential equation of arbitrary order on an infinite interval, subject to integral boundary conditions that incorporate both Riemann–Stieltjes integrals and Hadamard fractional derivatives. Due to the presence of nontrivial...

Full description

Saved in:
Bibliographic Details
Published inFractal and fractional Vol. 9; no. 6; p. 378
Main Authors Tudorache, Alexandru, Luca, Rodica
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper addresses the existence of solutions to a Hadamard fractional differential equation of arbitrary order on an infinite interval, subject to integral boundary conditions that incorporate both Riemann–Stieltjes integrals and Hadamard fractional derivatives. Due to the presence of nontrivial solutions in the associated homogeneous boundary value problem, the problem is classified as resonant. The Mawhin continuation theorem is utilized to derive the main findings.
AbstractList This paper addresses the existence of solutions to a Hadamard fractional differential equation of arbitrary order on an infinite interval, subject to integral boundary conditions that incorporate both Riemann–Stieltjes integrals and Hadamard fractional derivatives. Due to the presence of nontrivial solutions in the associated homogeneous boundary value problem, the problem is classified as resonant. The Mawhin continuation theorem is utilized to derive the main findings.
Audience Academic
Author Luca, Rodica
Tudorache, Alexandru
Author_xml – sequence: 1
  givenname: Alexandru
  orcidid: 0000-0003-0151-505X
  surname: Tudorache
  fullname: Tudorache, Alexandru
– sequence: 2
  givenname: Rodica
  orcidid: 0000-0003-3901-5747
  surname: Luca
  fullname: Luca, Rodica
BookMark eNptUctKLDEUDKLg8wvcBFyPJp1XZzmKjwHh3ivqNpy8JENPoukewb8348jFhWRxDkVVcVJ1iHZzyQGhU0rOGdPkIlZwEwxfQxNJmOp30EEnCJ8xSsnuj30fnYzjkhDSKc0EUQfo3xzfgYcVVI9vNg6pZBjwZVlnD_UDP8OwDvhvLXYIK1wyhowXOaacptCWKdT3RocJP4SxKbMLx2gvwjCGk-95hJ5urh-v7mb3f24XV_P7mWNKTzPbKeokdUpaDmBD76jgylIXZbDUCglUKqa6zpGGUi-0s5J7z73VVEBgR2ix9fUFlua1pvaHD1MgmS-g1BcDdUpuCMYpEan0gnHmuPDO6h6CAw2W9D0nsXmdbb1ea3lbh3Eyy7KuLYjRsK5rIUvaq8Y637JeoJmmHMvUEmvPh1VyrZSYGj7vuZBaCLERsK3A1TKONcT_Z1JiNt2ZX7pjn9sHkNU
Cites_doi 10.1002/mma.9005
10.1090/cbms/040
10.1515/dema-2022-0026
10.3390/axioms12080793
10.1007/978-94-010-0718-4
10.1016/j.chaos.2017.03.032
10.1186/s13662-021-03406-9
10.1186/s13662-016-0924-1
10.55730/1300-0098.3507
10.3390/fractalfract7060458
10.1007/978-3-319-52141-1
10.3390/fractalfract9020119
10.1155/2018/5438592
10.1016/j.aml.2019.05.007
10.3390/fractalfract8090543
10.3390/math8010126
10.3390/math6010004
10.1007/s12591-015-0270-x
10.1186/s13662-016-0878-3
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/fractalfract9060378
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2504-3110
ExternalDocumentID oai_doaj_org_article_c75f16d5343c45dcb98aeca9ab08840f
A845695557
10_3390_fractalfract9060378
GroupedDBID 8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c379t-b271c61c76b4aabe8c1547b1cf6eb1b56a1673722c07b11d59cb64dd4db915ae3
IEDL.DBID DOA
ISSN 2504-3110
IngestDate Wed Aug 27 01:30:14 EDT 2025
Fri Jul 25 09:13:45 EDT 2025
Tue Jul 01 05:41:50 EDT 2025
Sun Aug 03 02:36:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-b271c61c76b4aabe8c1547b1cf6eb1b56a1673722c07b11d59cb64dd4db915ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0151-505X
0000-0003-3901-5747
OpenAccessLink https://doaj.org/article/c75f16d5343c45dcb98aeca9ab08840f
PQID 3223906187
PQPubID 2055410
ParticipantIDs doaj_primary_oai_doaj_org_article_c75f16d5343c45dcb98aeca9ab08840f
proquest_journals_3223906187
gale_infotracacademiconefile_A845695557
crossref_primary_10_3390_fractalfract9060378
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Fractal and fractional
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Cheng (ref_15) 2014; 2014
Hu (ref_16) 2016; 2016
Imaga (ref_7) 2021; 2021
Zhang (ref_8) 2016; 2016
Wang (ref_13) 2020; 10
ref_19
Djebali (ref_6) 2019; 2019
Ge (ref_9) 2019; 27
Baitiche (ref_14) 2020; 26
ref_25
Ma (ref_17) 2018; 2018
ref_24
ref_23
Wang (ref_12) 2022; 55
ref_22
ref_21
ref_20
ref_1
ref_3
Wang (ref_11) 2019; 97
Bohner (ref_4) 2024; 48
Garra (ref_18) 2017; 102
Mawhin (ref_2) 1993; Volume 1537
ref_5
Domoshnitsky (ref_10) 2023; 46
References_xml – volume: 46
  start-page: 12018
  year: 2023
  ident: ref_10
  article-title: Existence of solutions for a higher order Riemann-Liouville fractional differential equation by Mawhin’s coincidence degree theory
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.9005
– ident: ref_1
  doi: 10.1090/cbms/040
– volume: 55
  start-page: 238
  year: 2022
  ident: ref_12
  article-title: Positive solutions for fractional differential equation at resonance under integral boundary conditions
  publication-title: Demonstr. Math.
  doi: 10.1515/dema-2022-0026
– volume: 10
  start-page: 2459
  year: 2020
  ident: ref_13
  article-title: Positive solutions of fractional differential equation boundary value problems at resonance
  publication-title: J. Appl. Anal. Comput.
– ident: ref_22
  doi: 10.3390/axioms12080793
– ident: ref_24
  doi: 10.1007/978-94-010-0718-4
– volume: 102
  start-page: 333
  year: 2017
  ident: ref_18
  article-title: A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2017.03.032
– volume: 2021
  start-page: 13
  year: 2021
  ident: ref_7
  article-title: On a fractional-order p-Laplacian boundary value problem at resonance on the half-line with two dimensional kernel
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-021-03406-9
– volume: 26
  start-page: 167
  year: 2020
  ident: ref_14
  article-title: Sequential fractional differential equations at resonance
  publication-title: Funct. Differ. Equ.
– volume: 2016
  start-page: 200
  year: 2016
  ident: ref_16
  article-title: Existence of solutions to a coupled system of fractional differential equations with infinite-point boundary value conditions at resonance
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-016-0924-1
– volume: 48
  start-page: 296
  year: 2024
  ident: ref_4
  article-title: Existence of solutions by coincidence degree theory for Hadamard fractional differential equations at resonance
  publication-title: Turk. J. Math.
  doi: 10.55730/1300-0098.3507
– ident: ref_21
  doi: 10.3390/fractalfract7060458
– volume: Volume 1537
  start-page: 74
  year: 1993
  ident: ref_2
  article-title: Topological Degree and Boundary Value Problems for Nonlinear Differential Equations
  publication-title: Topological Methods for Ordinary Differential Equations
– ident: ref_20
  doi: 10.1007/978-3-319-52141-1
– ident: ref_3
  doi: 10.3390/fractalfract9020119
– ident: ref_25
– volume: 2018
  start-page: 5438592
  year: 2018
  ident: ref_17
  article-title: Resonant integral boundary value problems for Caputo fractional differential equations
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2018/5438592
– volume: 97
  start-page: 34
  year: 2019
  ident: ref_11
  article-title: Necessary conditions for the existence of positive solutions to fractional boundary value problems at resonance
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.05.007
– ident: ref_23
  doi: 10.3390/fractalfract8090543
– ident: ref_5
  doi: 10.3390/math8010126
– ident: ref_19
  doi: 10.3390/math6010004
– volume: 27
  start-page: 395
  year: 2019
  ident: ref_9
  article-title: Existence of solutions for a coupled fractional differential equations with infinitely many points boundary conditions at resonance on an unbounded domain
  publication-title: Differ. Equ. Dyn. Syst.
  doi: 10.1007/s12591-015-0270-x
– volume: 2014
  start-page: 1
  year: 2014
  ident: ref_15
  article-title: Boundary value problem for a coupled system of fractional differential equations with p-Laplacian operator at resonance
  publication-title: Electr. J. Differ. Equ.
– volume: 2019
  start-page: 21
  year: 2019
  ident: ref_6
  article-title: Resonant fractional differential equations with multi-point boundary conditions on (0,+∞)
  publication-title: J. Nonlinear Funct. Anal.
– volume: 2016
  start-page: 183
  year: 2016
  ident: ref_8
  article-title: Solvability for a fractional p-Laplacian multipoint boundary value problem at resonance on infinite interval
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-016-0878-3
SSID ssj0002793507
Score 2.2934163
Snippet This paper addresses the existence of solutions to a Hadamard fractional differential equation of arbitrary order on an infinite interval, subject to integral...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 378
SubjectTerms Banach spaces
Boundary conditions
Boundary value problems
Differential equations
existence of solutions
Fractional calculus
Hadamard fractional differential equation
integral boundary conditions
Integrals
resonant problem
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe4FDBS2IhYJ8QOJC1CR-JSe0i7pqkVoV1Fa9WeNHEFLJlt300H_PjOPdcoCeIjmJZc2Mx99MMvMx9sGVOF46X0TXxULqDgoIThcimEY6YUIbqVD49EwfX8qv1-o6J9xW-bfKtU9MjjosPOXID9HwMDzXVWM-3_4uiDWKvq5mCo0nbAddcIPB187s6Oz8-ybLUqP5IeIZ2w0JnOCwo-IjuEkXnK8URLD215GUOvf_zz-nQ2f-nO1mtMino3pfsK3Y77Fnp5tWq6t99m3K0XvAL9Q0ny_HMgV8ZZbokpb3_Apu7iI_H3lj-KLn0POTvvtJWJOnfCDaGoeBUyKfum_El-xyfnTx5bjIPAmFF6YdClebyuvKG-0kgIuNR1xkXOU7jZ7YKQ1VYqOpfYmjVVCtd1qGIINrKwVRvGLb_aKPrxkXom4w5MNjq_SyiV1be6BS1FBCCQg9JuzTWlT2dmyHYTGMIMnaf0h2wmYkzs2j1Ms6DSyWP2zeGtYb1VU6KCGFlyp41zYQPbTgSlpLN2EfSRmWdtyAk0MuHMAVU-8qO20QBLZKKTNhB2t92bwVV_bBcN48fvste1oTuW9KsRyw7WF5F98h4hjc-2xWfwAJxNiu
  priority: 102
  providerName: ProQuest
Title A Hadamard Fractional Boundary Value Problem on an Infinite Interval at Resonance
URI https://www.proquest.com/docview/3223906187
https://doaj.org/article/c75f16d5343c45dcb98aeca9ab08840f
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BucAB0QJioax8qMSFqE78FR93UbcFqVVBFPVmjT8iUZUUbdND_33HTlrtAcSFUyQriUYz9syzk3kPYM9zGuc-VMl3qZK6wwqj15WIppVemGhTbhQ-PtFHZ_LLuTrfkPrK_4SN9MCj4_aDUV2toxJSBKli8LbFFNCip_UheZezL9W8jc3URfmcZgUhnZFmSNC-fr_LTUd4WS6Way6ysNpGKSqM_X_Ly6XYrF7A8wklssVo3TY8Sv0OPDt-oFi9fglfF4yyBv6iCLPVemxPoEeWRSZpfct-4OVNYqejXgy76hn27HPf_cwYk5VzQJpjDAeWD_Az60Z6BWerg--fjqpJH6EKwtih8o2pg66D0V4i-tQGwkPG16HTlIG90lgXFZomcBqto7LBaxmjjN7WCpN4DVv9VZ_eABOiyd6kcsWDbFNnm4C5BTVy5EiQYwYf713lfo80GI62D9mz7g-encEyu_Ph1sxhXQYosm6KrPtXZGfwIQfD5ZU20MtxahggizNnlVu0BP6sUsrMYPc-Xm5agteOMhVZp-vWvP0f1ryDp02W_i0HMLuwNaxv0nvCI4Ofw-N2dTiHJ8uDk9Nv8zIR7wBLv-Mp
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYUsAHEBeiJvEjyQGhLbDs0m4FUot6c_0KQmqzZTcV6p_iNzLjJAsH4NZTJDuxrPE34_E4Mx_Ac5tie2pdEmwdEqFqkxhvVcJ9UQrLC18FShSeH6jpkfh4LI834OeQC0O_VQ42MRpqv3AUI99B4OHxXGVl8eb8e0KsUXS7OlBodLDYC5c_8Mi2ej17h-v7Is8n7w_fTpOeVSBxvKjaxOZF5lTmCmWFMTaUDr2IwmauVmi3rFQmi9wtuUuxNfOyclYJ74W3VSZN4DjuNbguOK9Io8rJh3VMJ0ewo3_VFTfC_nSnplQncxofOPuUE53bHxtg5An4124Qt7jJHbjd-6Zs3IHpLmyE5h7cmq8Lu67uw-cxQ1tlzhBXbLLskiLwk91IzrS8ZF_M6UVgnzqWGrZomGnYrKm_kWfLYvQRkc1My-jagGp9hAdwdCXyewibzaIJj4Bxnpd4wMRNMnWiDHWVO0OJrz41qUFHZwSvBlHp8674hsZDC0lW_0WyI9glca5fpcrZsWGx_Kp7RdSukHWmvOSCOyG9s1VpgjOVsSnNpR7BS1oMTfrd4uCmT1PAGVOlLD0u0eWspJTFCLaH9dK94q_0b5hu_b_7GdyYHs739f7sYO8x3MyJVjgGd7Zhs11ehCfo67T2aQQYg5OrRvQvJqoU_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKLQV8AHEh2iSO7eSA0C7tqkvpakEU9eb6FYTUZstuKtS_xq9jJo-FA3DrKZLzkDP-PJ4Ze-YDeGFjbI-ti4ItQ5TJ0kTGWxlxr_LMcuWLQInCR3N5cJy9PxEnW_Czz4WhY5W9TmwUtV86ipGPEHjonsskV6OyOxax2Ju-vfgeEYMU7bT2dBotRA7D1Q9039ZvZns41i_TdLr_-d1B1DEMRI6roo5sqhInE6ekzYyxIXdoUSibuFKiDrNCmqThcUldjK2JF4WzMvM-87ZIhAkcv3sDthV6RfEAtif788WnTYQnReijtdWWOuLY-VFJiU_mrLngv8ScyN3-WA4b1oB_rQ3Ngje9C3c6S5WNW2jdg61Q3YfbR5syr-sH8HHMUHOZc0QZm67aFAl8ZdJQNa2u2BdzdhnYouWsYcuKmYrNqvIb2bmsiUUizpmpGW0iUOWP8BCOr0WCj2BQLavwGBjnaY7uJi6ZscvyUBapM5QG62MTGzR7hvC6F5W-aEtxaHRhSLL6L5IdwoTEuXmU6mg3DcvVV91NS-2UKBPpBc-4y4R3tshNcKYwNqa-lEN4RYOhabbX-HHTJS1gj6lulh7naIAWQgg1hN1-vHSnBtb6N2h3_n_7OdxENOsPs_nhE7iVEsdwE-nZhUG9ugxP0fCp7bMOYQxOrxvUvwBkWxqP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hadamard+Fractional+Boundary+Value+Problem+on+an+Infinite+Interval+at+Resonance&rft.jtitle=Fractal+and+fractional&rft.au=Tudorache%2C+Alexandru&rft.au=Luca%2C+Rodica&rft.date=2025-06-01&rft.issn=2504-3110&rft.eissn=2504-3110&rft.volume=9&rft.issue=6&rft.spage=378&rft_id=info:doi/10.3390%2Ffractalfract9060378&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fractalfract9060378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon