A Hadamard Fractional Boundary Value Problem on an Infinite Interval at Resonance
This paper addresses the existence of solutions to a Hadamard fractional differential equation of arbitrary order on an infinite interval, subject to integral boundary conditions that incorporate both Riemann–Stieltjes integrals and Hadamard fractional derivatives. Due to the presence of nontrivial...
Saved in:
Published in | Fractal and fractional Vol. 9; no. 6; p. 378 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper addresses the existence of solutions to a Hadamard fractional differential equation of arbitrary order on an infinite interval, subject to integral boundary conditions that incorporate both Riemann–Stieltjes integrals and Hadamard fractional derivatives. Due to the presence of nontrivial solutions in the associated homogeneous boundary value problem, the problem is classified as resonant. The Mawhin continuation theorem is utilized to derive the main findings. |
---|---|
AbstractList | This paper addresses the existence of solutions to a Hadamard fractional differential equation of arbitrary order on an infinite interval, subject to integral boundary conditions that incorporate both Riemann–Stieltjes integrals and Hadamard fractional derivatives. Due to the presence of nontrivial solutions in the associated homogeneous boundary value problem, the problem is classified as resonant. The Mawhin continuation theorem is utilized to derive the main findings. |
Audience | Academic |
Author | Luca, Rodica Tudorache, Alexandru |
Author_xml | – sequence: 1 givenname: Alexandru orcidid: 0000-0003-0151-505X surname: Tudorache fullname: Tudorache, Alexandru – sequence: 2 givenname: Rodica orcidid: 0000-0003-3901-5747 surname: Luca fullname: Luca, Rodica |
BookMark | eNptUctKLDEUDKLg8wvcBFyPJp1XZzmKjwHh3ivqNpy8JENPoukewb8348jFhWRxDkVVcVJ1iHZzyQGhU0rOGdPkIlZwEwxfQxNJmOp30EEnCJ8xSsnuj30fnYzjkhDSKc0EUQfo3xzfgYcVVI9vNg6pZBjwZVlnD_UDP8OwDvhvLXYIK1wyhowXOaacptCWKdT3RocJP4SxKbMLx2gvwjCGk-95hJ5urh-v7mb3f24XV_P7mWNKTzPbKeokdUpaDmBD76jgylIXZbDUCglUKqa6zpGGUi-0s5J7z73VVEBgR2ix9fUFlua1pvaHD1MgmS-g1BcDdUpuCMYpEan0gnHmuPDO6h6CAw2W9D0nsXmdbb1ea3lbh3Eyy7KuLYjRsK5rIUvaq8Y637JeoJmmHMvUEmvPh1VyrZSYGj7vuZBaCLERsK3A1TKONcT_Z1JiNt2ZX7pjn9sHkNU |
Cites_doi | 10.1002/mma.9005 10.1090/cbms/040 10.1515/dema-2022-0026 10.3390/axioms12080793 10.1007/978-94-010-0718-4 10.1016/j.chaos.2017.03.032 10.1186/s13662-021-03406-9 10.1186/s13662-016-0924-1 10.55730/1300-0098.3507 10.3390/fractalfract7060458 10.1007/978-3-319-52141-1 10.3390/fractalfract9020119 10.1155/2018/5438592 10.1016/j.aml.2019.05.007 10.3390/fractalfract8090543 10.3390/math8010126 10.3390/math6010004 10.1007/s12591-015-0270-x 10.1186/s13662-016-0878-3 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/fractalfract9060378 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest SciTech Premium Collection ProQuest Engineering Collection Engineering Database (Proquest) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2504-3110 |
ExternalDocumentID | oai_doaj_org_article_c75f16d5343c45dcb98aeca9ab08840f A845695557 10_3390_fractalfract9060378 |
GroupedDBID | 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IGS ITC L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c379t-b271c61c76b4aabe8c1547b1cf6eb1b56a1673722c07b11d59cb64dd4db915ae3 |
IEDL.DBID | DOA |
ISSN | 2504-3110 |
IngestDate | Wed Aug 27 01:30:14 EDT 2025 Fri Jul 25 09:13:45 EDT 2025 Tue Jul 01 05:41:50 EDT 2025 Sun Aug 03 02:36:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-b271c61c76b4aabe8c1547b1cf6eb1b56a1673722c07b11d59cb64dd4db915ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0151-505X 0000-0003-3901-5747 |
OpenAccessLink | https://doaj.org/article/c75f16d5343c45dcb98aeca9ab08840f |
PQID | 3223906187 |
PQPubID | 2055410 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c75f16d5343c45dcb98aeca9ab08840f proquest_journals_3223906187 gale_infotracacademiconefile_A845695557 crossref_primary_10_3390_fractalfract9060378 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Fractal and fractional |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Cheng (ref_15) 2014; 2014 Hu (ref_16) 2016; 2016 Imaga (ref_7) 2021; 2021 Zhang (ref_8) 2016; 2016 Wang (ref_13) 2020; 10 ref_19 Djebali (ref_6) 2019; 2019 Ge (ref_9) 2019; 27 Baitiche (ref_14) 2020; 26 ref_25 Ma (ref_17) 2018; 2018 ref_24 ref_23 Wang (ref_12) 2022; 55 ref_22 ref_21 ref_20 ref_1 ref_3 Wang (ref_11) 2019; 97 Bohner (ref_4) 2024; 48 Garra (ref_18) 2017; 102 Mawhin (ref_2) 1993; Volume 1537 ref_5 Domoshnitsky (ref_10) 2023; 46 |
References_xml | – volume: 46 start-page: 12018 year: 2023 ident: ref_10 article-title: Existence of solutions for a higher order Riemann-Liouville fractional differential equation by Mawhin’s coincidence degree theory publication-title: Math. Meth. Appl. Sci. doi: 10.1002/mma.9005 – ident: ref_1 doi: 10.1090/cbms/040 – volume: 55 start-page: 238 year: 2022 ident: ref_12 article-title: Positive solutions for fractional differential equation at resonance under integral boundary conditions publication-title: Demonstr. Math. doi: 10.1515/dema-2022-0026 – volume: 10 start-page: 2459 year: 2020 ident: ref_13 article-title: Positive solutions of fractional differential equation boundary value problems at resonance publication-title: J. Appl. Anal. Comput. – ident: ref_22 doi: 10.3390/axioms12080793 – ident: ref_24 doi: 10.1007/978-94-010-0718-4 – volume: 102 start-page: 333 year: 2017 ident: ref_18 article-title: A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2017.03.032 – volume: 2021 start-page: 13 year: 2021 ident: ref_7 article-title: On a fractional-order p-Laplacian boundary value problem at resonance on the half-line with two dimensional kernel publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-021-03406-9 – volume: 26 start-page: 167 year: 2020 ident: ref_14 article-title: Sequential fractional differential equations at resonance publication-title: Funct. Differ. Equ. – volume: 2016 start-page: 200 year: 2016 ident: ref_16 article-title: Existence of solutions to a coupled system of fractional differential equations with infinite-point boundary value conditions at resonance publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-016-0924-1 – volume: 48 start-page: 296 year: 2024 ident: ref_4 article-title: Existence of solutions by coincidence degree theory for Hadamard fractional differential equations at resonance publication-title: Turk. J. Math. doi: 10.55730/1300-0098.3507 – ident: ref_21 doi: 10.3390/fractalfract7060458 – volume: Volume 1537 start-page: 74 year: 1993 ident: ref_2 article-title: Topological Degree and Boundary Value Problems for Nonlinear Differential Equations publication-title: Topological Methods for Ordinary Differential Equations – ident: ref_20 doi: 10.1007/978-3-319-52141-1 – ident: ref_3 doi: 10.3390/fractalfract9020119 – ident: ref_25 – volume: 2018 start-page: 5438592 year: 2018 ident: ref_17 article-title: Resonant integral boundary value problems for Caputo fractional differential equations publication-title: Math. Probl. Eng. doi: 10.1155/2018/5438592 – volume: 97 start-page: 34 year: 2019 ident: ref_11 article-title: Necessary conditions for the existence of positive solutions to fractional boundary value problems at resonance publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.05.007 – ident: ref_23 doi: 10.3390/fractalfract8090543 – ident: ref_5 doi: 10.3390/math8010126 – ident: ref_19 doi: 10.3390/math6010004 – volume: 27 start-page: 395 year: 2019 ident: ref_9 article-title: Existence of solutions for a coupled fractional differential equations with infinitely many points boundary conditions at resonance on an unbounded domain publication-title: Differ. Equ. Dyn. Syst. doi: 10.1007/s12591-015-0270-x – volume: 2014 start-page: 1 year: 2014 ident: ref_15 article-title: Boundary value problem for a coupled system of fractional differential equations with p-Laplacian operator at resonance publication-title: Electr. J. Differ. Equ. – volume: 2019 start-page: 21 year: 2019 ident: ref_6 article-title: Resonant fractional differential equations with multi-point boundary conditions on (0,+∞) publication-title: J. Nonlinear Funct. Anal. – volume: 2016 start-page: 183 year: 2016 ident: ref_8 article-title: Solvability for a fractional p-Laplacian multipoint boundary value problem at resonance on infinite interval publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-016-0878-3 |
SSID | ssj0002793507 |
Score | 2.2934163 |
Snippet | This paper addresses the existence of solutions to a Hadamard fractional differential equation of arbitrary order on an infinite interval, subject to integral... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 378 |
SubjectTerms | Banach spaces Boundary conditions Boundary value problems Differential equations existence of solutions Fractional calculus Hadamard fractional differential equation integral boundary conditions Integrals resonant problem |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKe4FDBS2IhYJ8QOJC1CR-JSe0i7pqkVoV1Fa9WeNHEFLJlt300H_PjOPdcoCeIjmJZc2Mx99MMvMx9sGVOF46X0TXxULqDgoIThcimEY6YUIbqVD49EwfX8qv1-o6J9xW-bfKtU9MjjosPOXID9HwMDzXVWM-3_4uiDWKvq5mCo0nbAddcIPB187s6Oz8-ybLUqP5IeIZ2w0JnOCwo-IjuEkXnK8URLD215GUOvf_zz-nQ2f-nO1mtMino3pfsK3Y77Fnp5tWq6t99m3K0XvAL9Q0ny_HMgV8ZZbokpb3_Apu7iI_H3lj-KLn0POTvvtJWJOnfCDaGoeBUyKfum_El-xyfnTx5bjIPAmFF6YdClebyuvKG-0kgIuNR1xkXOU7jZ7YKQ1VYqOpfYmjVVCtd1qGIINrKwVRvGLb_aKPrxkXom4w5MNjq_SyiV1be6BS1FBCCQg9JuzTWlT2dmyHYTGMIMnaf0h2wmYkzs2j1Ms6DSyWP2zeGtYb1VU6KCGFlyp41zYQPbTgSlpLN2EfSRmWdtyAk0MuHMAVU-8qO20QBLZKKTNhB2t92bwVV_bBcN48fvste1oTuW9KsRyw7WF5F98h4hjc-2xWfwAJxNiu priority: 102 providerName: ProQuest |
Title | A Hadamard Fractional Boundary Value Problem on an Infinite Interval at Resonance |
URI | https://www.proquest.com/docview/3223906187 https://doaj.org/article/c75f16d5343c45dcb98aeca9ab08840f |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BucAB0QJioax8qMSFqE78FR93UbcFqVVBFPVmjT8iUZUUbdND_33HTlrtAcSFUyQriUYz9syzk3kPYM9zGuc-VMl3qZK6wwqj15WIppVemGhTbhQ-PtFHZ_LLuTrfkPrK_4SN9MCj4_aDUV2toxJSBKli8LbFFNCip_UheZezL9W8jc3URfmcZgUhnZFmSNC-fr_LTUd4WS6Way6ysNpGKSqM_X_Ly6XYrF7A8wklssVo3TY8Sv0OPDt-oFi9fglfF4yyBv6iCLPVemxPoEeWRSZpfct-4OVNYqejXgy76hn27HPf_cwYk5VzQJpjDAeWD_Az60Z6BWerg--fjqpJH6EKwtih8o2pg66D0V4i-tQGwkPG16HTlIG90lgXFZomcBqto7LBaxmjjN7WCpN4DVv9VZ_eABOiyd6kcsWDbFNnm4C5BTVy5EiQYwYf713lfo80GI62D9mz7g-encEyu_Ph1sxhXQYosm6KrPtXZGfwIQfD5ZU20MtxahggizNnlVu0BP6sUsrMYPc-Xm5agteOMhVZp-vWvP0f1ryDp02W_i0HMLuwNaxv0nvCI4Ofw-N2dTiHJ8uDk9Nv8zIR7wBLv-Mp |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKfYUsAHEBeiJvEjyQGhLbDs0m4FUot6c_0KQmqzZTcV6p_iNzLjJAsH4NZTJDuxrPE34_E4Mx_Ac5tie2pdEmwdEqFqkxhvVcJ9UQrLC18FShSeH6jpkfh4LI834OeQC0O_VQ42MRpqv3AUI99B4OHxXGVl8eb8e0KsUXS7OlBodLDYC5c_8Mi2ej17h-v7Is8n7w_fTpOeVSBxvKjaxOZF5lTmCmWFMTaUDr2IwmauVmi3rFQmi9wtuUuxNfOyclYJ74W3VSZN4DjuNbguOK9Io8rJh3VMJ0ewo3_VFTfC_nSnplQncxofOPuUE53bHxtg5An4124Qt7jJHbjd-6Zs3IHpLmyE5h7cmq8Lu67uw-cxQ1tlzhBXbLLskiLwk91IzrS8ZF_M6UVgnzqWGrZomGnYrKm_kWfLYvQRkc1My-jagGp9hAdwdCXyewibzaIJj4Bxnpd4wMRNMnWiDHWVO0OJrz41qUFHZwSvBlHp8674hsZDC0lW_0WyI9glca5fpcrZsWGx_Kp7RdSukHWmvOSCOyG9s1VpgjOVsSnNpR7BS1oMTfrd4uCmT1PAGVOlLD0u0eWspJTFCLaH9dK94q_0b5hu_b_7GdyYHs739f7sYO8x3MyJVjgGd7Zhs11ehCfo67T2aQQYg5OrRvQvJqoU_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKLQV8AHEh2iSO7eSA0C7tqkvpakEU9eb6FYTUZstuKtS_xq9jJo-FA3DrKZLzkDP-PJ4Ze-YDeGFjbI-ti4ItQ5TJ0kTGWxlxr_LMcuWLQInCR3N5cJy9PxEnW_Czz4WhY5W9TmwUtV86ipGPEHjonsskV6OyOxax2Ju-vfgeEYMU7bT2dBotRA7D1Q9039ZvZns41i_TdLr_-d1B1DEMRI6roo5sqhInE6ekzYyxIXdoUSibuFKiDrNCmqThcUldjK2JF4WzMvM-87ZIhAkcv3sDthV6RfEAtif788WnTYQnReijtdWWOuLY-VFJiU_mrLngv8ScyN3-WA4b1oB_rQ3Ngje9C3c6S5WNW2jdg61Q3YfbR5syr-sH8HHMUHOZc0QZm67aFAl8ZdJQNa2u2BdzdhnYouWsYcuKmYrNqvIb2bmsiUUizpmpGW0iUOWP8BCOr0WCj2BQLavwGBjnaY7uJi6ZscvyUBapM5QG62MTGzR7hvC6F5W-aEtxaHRhSLL6L5IdwoTEuXmU6mg3DcvVV91NS-2UKBPpBc-4y4R3tshNcKYwNqa-lEN4RYOhabbX-HHTJS1gj6lulh7naIAWQgg1hN1-vHSnBtb6N2h3_n_7OdxENOsPs_nhE7iVEsdwE-nZhUG9ugxP0fCp7bMOYQxOrxvUvwBkWxqP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hadamard+Fractional+Boundary+Value+Problem+on+an+Infinite+Interval+at+Resonance&rft.jtitle=Fractal+and+fractional&rft.au=Tudorache%2C+Alexandru&rft.au=Luca%2C+Rodica&rft.date=2025-06-01&rft.issn=2504-3110&rft.eissn=2504-3110&rft.volume=9&rft.issue=6&rft.spage=378&rft_id=info:doi/10.3390%2Ffractalfract9060378&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_fractalfract9060378 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-3110&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-3110&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-3110&client=summon |