Src dependency of the regulation of LTP by alternative splicing of GRIN1 exon 5
Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice)....
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 379; no. 1906; p. 20230236 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
29.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alternative splicing of
Grin1
exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic
N
-methyl-
d
-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of
Grin1
.
This article is part of a discussion meeting issue ‘Long-term potentiation: 50 years on’. |
---|---|
AbstractList | Alternative splicing of
Grin1
exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic
N
-methyl-
d
-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of
Grin1
.
This article is part of a discussion meeting issue ‘Long-term potentiation: 50 years on’. Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N-methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N-methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'. Alternative splicing of exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic -methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of . This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'. |
Author | Li, Hongbin Salter, Michael W. Sengar, Ameet S. Rajani, Vishaal |
Author_xml | – sequence: 1 givenname: Hongbin surname: Li fullname: Li, Hongbin organization: Program in Neurosciences & Mental Health, The Hospital for Sick Children , Toronto, ON M5G 1X8, Canada – sequence: 2 givenname: Vishaal surname: Rajani fullname: Rajani, Vishaal organization: Program in Neurosciences & Mental Health, The Hospital for Sick Children , Toronto, ON M5G 1X8, Canada – sequence: 3 givenname: Ameet S. orcidid: 0000-0002-6328-1108 surname: Sengar fullname: Sengar, Ameet S. organization: Program in Neurosciences & Mental Health, The Hospital for Sick Children , Toronto, ON M5G 1X8, Canada – sequence: 4 givenname: Michael W. orcidid: 0000-0001-6897-6585 surname: Salter fullname: Salter, Michael W. organization: Program in Neurosciences & Mental Health, The Hospital for Sick Children , Toronto, ON M5G 1X8, Canada, Department of Physiology, University of Toronto , Toronto, ON M5S 1A8, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38853562$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1Lw0AQhhdR7IdePUqOXhJ3M9lN9ihFa6FY0XpeNptJjaRJ3E3E_nsT214ED8PAzPMOzDMhp1VdISFXjAaMyuTWujYNQhpC0Jc4IWMWxcwPZUxPyZhKEfpJBGJEJs59UEolj6NzMoIk4cBFOCarV2u8DBusMqzMzqtzr31Hz-KmK3Vb1NUwWa6fvXTn6bJFW_XTL_RcUxamqDbDev6yeGIefvcwvyBnuS4dXh76lLw93K9nj_5yNV_M7pa-gVi2vuSQiZTHLMl4JGlktEDQkaFcauAmBAjByEjkIAHTRIiEM4YxoxwAZcZhSm72dxtbf3boWrUtnMGy1BXWnVNAhQBIuAx79PqAdukWM9XYYqvtTh0l9EC0B4ytnbOYK1O0v8-3VhelYlQNrtXgWg2u1eC6jwV_YsfL_wR-AGyafmg |
CitedBy_id | crossref_primary_10_1098_rstb_2023_0218 |
Cites_doi | 10.1093/emboj/cdf292 10.1038/nrn2044 10.1038/297681a0 10.1097/WNR.0b013e3282f3da10 10.1038/361031a0 10.1016/0169-328X(95)00067-3 10.1038/srep34459 10.1016/j.isci.2021.103539 10.1113/jphysiol.1996.sp021320 10.1038/emboj.2011.453 10.1124/pr.110.003053 10.1016/j.neuron.2018.03.034 10.1038/nrn2207 10.1038/ng1159 10.1016/0006-8993(82)90575-3 10.1073/pnas.89.18.8552 10.1113/jphysiol.1995.sp020792 10.1371/journal.pcbi.1000608 10.1186/s13041-020-0563-z 10.1016/j.neuron.2004.09.012 10.1126/science.275.5300.674 10.1523/JNEUROSCI.1615-19.2019 10.1016/j.tips.2006.01.009 10.1038/354031a0 10.1016/S0959-4388(00)00216-6 10.1111/j.1742-4658.2011.08391.x 10.1038/24877 10.1038/s41593-017-0025-9 10.1038/ncomms15220 10.1126/science.1251915 10.7554/eLife.25492 10.1046/j.1471-4159.2001.00409.x 10.1016/0306-4522(94)90510-X 10.1016/0166-2236(95)93920-S 10.1186/1756-6606-6-5 10.1038/nature01497 10.1038/nature19057 10.1371/journal.pgen.1006536 10.1038/s41594-017-0011-7 10.1007/s11064-019-02886-2 10.1523/JNEUROSCI.14-05-03180.1994 10.1016/S0896-6273(02)00633-5 10.1016/j.celrep.2019.11.087 10.1016/j.celrep.2016.11.024 10.1126/science.279.5355.1363 10.1074/jbc.M800917200 10.1186/s13041-019-0485-9 10.1074/jbc.272.8.5157 10.1111/j.1742-4658.2011.08390.x 10.1038/nrn3504 10.1038/nrn1368 10.3390/proteomes6030031 10.1038/nm.2315 10.1038/srep23837 10.1016/S0896-6273(00)81176-9 10.1038/s41467-019-08291-1 10.1073/pnas.96.14.7697 10.1002/hipo.20818 10.1111/j.1471-4159.2003.02330.x 10.1523/JNEUROSCI.21-09-03063.2001 10.1038/s41598-017-03909-0 10.1124/pharmrev.120.000131 10.1016/j.neuropharm.2022.109019 10.1016/S0896-6273(01)00220-3 10.1016/j.tins.2023.05.002 10.1038/76615 10.1073/pnas.0401413101 10.1080/14734220510007996 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1098/rstb.2023.0236 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Sciences (General) Biology |
EISSN | 1471-2970 |
ExternalDocumentID | 38853562 10_1098_rstb_2023_0236 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Krembil Foundation – fundername: CIHR |
GroupedDBID | --- -~X 0R~ 2WC 4.4 53G AACGO AANCE AAYXX ABPLY ABTLG ACPRK ADBBV AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION E3Z EBS F5P GX1 H13 HZ~ JSG JST KQ8 MRS MV1 NSAHA O9- OK1 RPM RRY TN5 V1E YNT ~02 CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c379t-953d6b5718d54904ca6e3a4c059a35c23323c946f393eb8668511e710533e9d53 |
ISSN | 0962-8436 1471-2970 |
IngestDate | Thu Jul 10 23:45:04 EDT 2025 Mon Jul 21 06:05:08 EDT 2025 Tue Jul 01 03:25:41 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1906 |
Keywords | AMPA receptors synaptic plasticity hippocampus NMDA receptors |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c379t-953d6b5718d54904ca6e3a4c059a35c23323c946f393eb8668511e710533e9d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6897-6585 0000-0002-6328-1108 |
OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2023.0236 |
PMID | 38853562 |
PQID | 3066338592 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3066338592 pubmed_primary_38853562 crossref_citationtrail_10_1098_rstb_2023_0236 crossref_primary_10_1098_rstb_2023_0236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Jul-29 |
PublicationDateYYYYMMDD | 2024-07-29 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-Jul-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
PublicationTitleAlternate | Philos Trans R Soc Lond B Biol Sci |
PublicationYear | 2024 |
References | e_1_3_8_28_2 e_1_3_8_26_2 e_1_3_8_24_2 e_1_3_8_49_2 e_1_3_8_47_2 e_1_3_8_68_2 Li H (e_1_3_8_21_2) 2021; 118 e_1_3_8_20_2 e_1_3_8_45_2 e_1_3_8_66_2 e_1_3_8_22_2 e_1_3_8_43_2 e_1_3_8_64_2 e_1_3_8_41_2 e_1_3_8_62_2 e_1_3_8_60_2 e_1_3_8_18_2 e_1_3_8_39_2 Liu X (e_1_3_8_46_2) 1993; 8 e_1_3_8_14_2 e_1_3_8_37_2 e_1_3_8_16_2 e_1_3_8_35_2 e_1_3_8_58_2 Li H (e_1_3_8_74_2) 2024 e_1_3_8_8_2 e_1_3_8_71_2 e_1_3_8_6_2 e_1_3_8_73_2 e_1_3_8_4_2 e_1_3_8_2_2 e_1_3_8_10_2 e_1_3_8_33_2 e_1_3_8_56_2 e_1_3_8_12_2 e_1_3_8_31_2 e_1_3_8_52_2 Chen Z (e_1_3_8_69_2) 2020; 12 e_1_3_8_50_2 e_1_3_8_29_2 e_1_3_8_48_2 e_1_3_8_27_2 e_1_3_8_25_2 Alberts BJ A (e_1_3_8_54_2) 2002 e_1_3_8_44_2 e_1_3_8_67_2 e_1_3_8_23_2 e_1_3_8_42_2 e_1_3_8_65_2 e_1_3_8_40_2 e_1_3_8_63_2 e_1_3_8_61_2 e_1_3_8_17_2 e_1_3_8_19_2 e_1_3_8_13_2 e_1_3_8_38_2 e_1_3_8_59_2 e_1_3_8_15_2 e_1_3_8_36_2 e_1_3_8_57_2 e_1_3_8_9_2 e_1_3_8_7_2 e_1_3_8_72_2 e_1_3_8_5_2 e_1_3_8_3_2 e_1_3_8_34_2 e_1_3_8_55_2 e_1_3_8_11_2 e_1_3_8_32_2 e_1_3_8_53_2 e_1_3_8_30_2 e_1_3_8_51_2 e_1_3_8_70_2 |
References_xml | – ident: e_1_3_8_38_2 doi: 10.1093/emboj/cdf292 – ident: e_1_3_8_62_2 doi: 10.1038/nrn2044 – ident: e_1_3_8_29_2 doi: 10.1038/297681a0 – ident: e_1_3_8_59_2 doi: 10.1097/WNR.0b013e3282f3da10 – ident: e_1_3_8_9_2 doi: 10.1038/361031a0 – ident: e_1_3_8_63_2 doi: 10.1016/0169-328X(95)00067-3 – ident: e_1_3_8_67_2 doi: 10.1038/srep34459 – ident: e_1_3_8_68_2 doi: 10.1016/j.isci.2021.103539 – ident: e_1_3_8_47_2 doi: 10.1113/jphysiol.1996.sp021320 – ident: e_1_3_8_51_2 doi: 10.1038/emboj.2011.453 – ident: e_1_3_8_41_2 doi: 10.1124/pr.110.003053 – ident: e_1_3_8_55_2 doi: 10.1016/j.neuron.2018.03.034 – ident: e_1_3_8_61_2 doi: 10.1038/nrn2207 – ident: e_1_3_8_64_2 doi: 10.1038/ng1159 – ident: e_1_3_8_7_2 doi: 10.1016/0006-8993(82)90575-3 – volume-title: Molecular biology of the cell year: 2002 ident: e_1_3_8_54_2 – volume: 12 start-page: 6895 year: 2020 ident: e_1_3_8_69_2 article-title: Glycine attenuates cerebrovascular remodeling via glycine receptor alpha 2 and vascular endothelial growth factor receptor 2 after stroke publication-title: Am. J. Transl. Res. – ident: e_1_3_8_16_2 doi: 10.1073/pnas.89.18.8552 – ident: e_1_3_8_19_2 doi: 10.1113/jphysiol.1995.sp020792 – ident: e_1_3_8_65_2 doi: 10.1371/journal.pcbi.1000608 – ident: e_1_3_8_4_2 doi: 10.1186/s13041-020-0563-z – ident: e_1_3_8_8_2 doi: 10.1016/j.neuron.2004.09.012 – ident: e_1_3_8_30_2 doi: 10.1126/science.275.5300.674 – ident: e_1_3_8_27_2 doi: 10.1523/JNEUROSCI.1615-19.2019 – ident: e_1_3_8_28_2 doi: 10.1016/j.tips.2006.01.009 – ident: e_1_3_8_18_2 doi: 10.1038/354031a0 – ident: e_1_3_8_33_2 doi: 10.1016/S0959-4388(00)00216-6 – volume: 8 start-page: 1119 year: 1993 ident: e_1_3_8_46_2 article-title: Regulation of c-Src tyrosine kinase activity by the Src SH2 domain publication-title: Oncogene – ident: e_1_3_8_50_2 doi: 10.1111/j.1742-4658.2011.08391.x – ident: e_1_3_8_40_2 doi: 10.1038/24877 – ident: e_1_3_8_52_2 doi: 10.1038/s41593-017-0025-9 – ident: e_1_3_8_44_2 doi: 10.1038/ncomms15220 – ident: e_1_3_8_56_2 doi: 10.1126/science.1251915 – ident: e_1_3_8_57_2 doi: 10.7554/eLife.25492 – ident: e_1_3_8_73_2 doi: 10.1046/j.1471-4159.2001.00409.x – ident: e_1_3_8_14_2 doi: 10.1016/0306-4522(94)90510-X – ident: e_1_3_8_17_2 doi: 10.1016/0166-2236(95)93920-S – ident: e_1_3_8_10_2 doi: 10.1186/1756-6606-6-5 – ident: e_1_3_8_66_2 doi: 10.1038/nature01497 – ident: e_1_3_8_25_2 doi: 10.1038/nature19057 – ident: e_1_3_8_26_2 doi: 10.1371/journal.pgen.1006536 – ident: e_1_3_8_58_2 doi: 10.1038/s41594-017-0011-7 – volume: 118 year: 2021 ident: e_1_3_8_21_2 article-title: Alternative splicing of GluN1 gates glycine site–dependent nonionotropic signaling by NMDAR receptors publication-title: Proc. Natl Acad. Sci. USA. – ident: e_1_3_8_70_2 doi: 10.1007/s11064-019-02886-2 – ident: e_1_3_8_13_2 doi: 10.1523/JNEUROSCI.14-05-03180.1994 – ident: e_1_3_8_42_2 doi: 10.1016/S0896-6273(02)00633-5 – ident: e_1_3_8_12_2 doi: 10.1016/j.celrep.2019.11.087 – ident: e_1_3_8_49_2 doi: 10.1016/j.celrep.2016.11.024 – ident: e_1_3_8_31_2 doi: 10.1126/science.279.5355.1363 – ident: e_1_3_8_37_2 doi: 10.1074/jbc.M800917200 – ident: e_1_3_8_15_2 doi: 10.1186/s13041-019-0485-9 – ident: e_1_3_8_24_2 doi: 10.1074/jbc.272.8.5157 – ident: e_1_3_8_35_2 doi: 10.1111/j.1742-4658.2011.08390.x – ident: e_1_3_8_11_2 doi: 10.1038/nrn3504 – ident: e_1_3_8_36_2 doi: 10.1038/nrn1368 – ident: e_1_3_8_53_2 doi: 10.3390/proteomes6030031 – ident: e_1_3_8_45_2 doi: 10.1038/nm.2315 – ident: e_1_3_8_48_2 doi: 10.1038/srep23837 – ident: e_1_3_8_60_2 doi: 10.1016/S0896-6273(00)81176-9 – year: 2024 ident: e_1_3_8_74_2 article-title: Supplementary Material from: Src Dependency of the Regulation of LTP by Alternative Splicing of GRIN1 Exon 5 publication-title: FigShare – ident: e_1_3_8_20_2 doi: 10.1038/s41467-019-08291-1 – ident: e_1_3_8_32_2 doi: 10.1073/pnas.96.14.7697 – ident: e_1_3_8_34_2 doi: 10.1002/hipo.20818 – ident: e_1_3_8_72_2 doi: 10.1111/j.1471-4159.2003.02330.x – ident: e_1_3_8_22_2 doi: 10.1523/JNEUROSCI.21-09-03063.2001 – ident: e_1_3_8_71_2 doi: 10.1038/s41598-017-03909-0 – ident: e_1_3_8_2_2 doi: 10.1124/pharmrev.120.000131 – ident: e_1_3_8_3_2 doi: 10.1016/j.neuropharm.2022.109019 – ident: e_1_3_8_39_2 doi: 10.1016/S0896-6273(01)00220-3 – ident: e_1_3_8_6_2 doi: 10.1016/j.tins.2023.05.002 – ident: e_1_3_8_5_2 doi: 10.1038/76615 – ident: e_1_3_8_43_2 doi: 10.1073/pnas.0401413101 – ident: e_1_3_8_23_2 doi: 10.1080/14734220510007996 |
SSID | ssj0009574 |
Score | 2.458663 |
Snippet | Alternative splicing of
Grin1
exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1... Alternative splicing of exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon... Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 20230236 |
SubjectTerms | Alternative Splicing Animals Exons Long-Term Potentiation Male Mice Mice, Inbred C57BL Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Receptors, N-Methyl-D-Aspartate - genetics Receptors, N-Methyl-D-Aspartate - metabolism src-Family Kinases - genetics src-Family Kinases - metabolism Synapses - metabolism Synapses - physiology |
Title | Src dependency of the regulation of LTP by alternative splicing of GRIN1 exon 5 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38853562 https://www.proquest.com/docview/3066338592 |
Volume | 379 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKEGgvEytfHR8yEhKgKCGL4zR5HAgYsI1Bu7G3yHbcaYilU5tKlF_Ez-Te2E4y2KTBS1Qldqz2ntrn-l7fQ8hTWOEmjMnEj1Qs_VinzJdFVPhMgYMrdAacAvchd_eS7YP4wxE_6vV-dbKWFpUM1M8Lz5X8j1XhHtgVT8n-g2Wbl8IN-Az2hStYGK5XsvFopjynYquWLtw_M_LylgnujPeRYtZR8dJU-Z5jzNpmO7_78n5v09M_oDHvEtV9J3FQG7FqVcXnbhiz8eCyPnGkWhkkwOkH3G_vVWCFLtuDl6pNWNwxatnT8lietIfRxDcjMeUdoii0aLI_Rro8NpngW6cYRB8FzRMT7m8PAHhfg-5ORhTjFqnd7rBbkgnMzjGzpbHNhAyLJzQy4iJuxmbDrAvNrK5Z8PdiEGZ4wAFItAxQJD7AYvntsudC_X-shk2OoonOpzn2z7F_jv2vkesROCSolfHxc9op72zqfbtv0JQHTV-eH_88_bnEp6m5zfgWWbNOCd0yCFsnPV32yQ1jvWWf3Ny1CRh9sm7Xgjl9bguWv7hNPgEOaYtDOp1QAAhtcYh3AIdULmkHh9ThEB_XOKSIQ8rvkIO3b8avt30r1OErMEWFKQBFIjnQnILHWRgrkWgmYgXUXTCuIsYi-O_HMCtkTMs0SZDma-C24GvorODsLlkpp6W-T2g01JESoeJDjcUiuSzCRIQTWRRiWPBNPSC--_1yZavYo5jK9_xiew3Is6b9manfcmnLJ84cOUyxGDcTpZ4u5jlDWs5SnkUDcs_YqXkXS4Hvgg-xceVxHpDVFvwPyUo1W-hHQGwr-bjG1G9-ZKBN |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Src+dependency+of+the+regulation+of+LTP+by+alternative+splicing+of+GRIN1+exon+5&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Li%2C+Hongbin&rft.au=Rajani%2C+Vishaal&rft.au=Sengar%2C+Ameet+S.&rft.au=Salter%2C+Michael+W.&rft.date=2024-07-29&rft.issn=0962-8436&rft.eissn=1471-2970&rft.volume=379&rft.issue=1906&rft_id=info:doi/10.1098%2Frstb.2023.0236&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rstb_2023_0236 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon |