Src dependency of the regulation of LTP by alternative splicing of GRIN1 exon 5

Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice)....

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 379; no. 1906; p. 20230236
Main Authors Li, Hongbin, Rajani, Vishaal, Sengar, Ameet S., Salter, Michael W.
Format Journal Article
LanguageEnglish
Published England 29.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N -methyl- d -aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1 . This article is part of a discussion meeting issue ‘Long-term potentiation: 50 years on’.
AbstractList Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N -methyl- d -aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1 . This article is part of a discussion meeting issue ‘Long-term potentiation: 50 years on’.
Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N-methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N-methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Alternative splicing of exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic -methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of . This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Author Li, Hongbin
Salter, Michael W.
Sengar, Ameet S.
Rajani, Vishaal
Author_xml – sequence: 1
  givenname: Hongbin
  surname: Li
  fullname: Li, Hongbin
  organization: Program in Neurosciences & Mental Health, The Hospital for Sick Children , Toronto, ON M5G 1X8, Canada
– sequence: 2
  givenname: Vishaal
  surname: Rajani
  fullname: Rajani, Vishaal
  organization: Program in Neurosciences & Mental Health, The Hospital for Sick Children , Toronto, ON M5G 1X8, Canada
– sequence: 3
  givenname: Ameet S.
  orcidid: 0000-0002-6328-1108
  surname: Sengar
  fullname: Sengar, Ameet S.
  organization: Program in Neurosciences & Mental Health, The Hospital for Sick Children , Toronto, ON M5G 1X8, Canada
– sequence: 4
  givenname: Michael W.
  orcidid: 0000-0001-6897-6585
  surname: Salter
  fullname: Salter, Michael W.
  organization: Program in Neurosciences & Mental Health, The Hospital for Sick Children , Toronto, ON M5G 1X8, Canada, Department of Physiology, University of Toronto , Toronto, ON M5S 1A8, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38853562$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1Lw0AQhhdR7IdePUqOXhJ3M9lN9ihFa6FY0XpeNptJjaRJ3E3E_nsT214ED8PAzPMOzDMhp1VdISFXjAaMyuTWujYNQhpC0Jc4IWMWxcwPZUxPyZhKEfpJBGJEJs59UEolj6NzMoIk4cBFOCarV2u8DBusMqzMzqtzr31Hz-KmK3Vb1NUwWa6fvXTn6bJFW_XTL_RcUxamqDbDev6yeGIefvcwvyBnuS4dXh76lLw93K9nj_5yNV_M7pa-gVi2vuSQiZTHLMl4JGlktEDQkaFcauAmBAjByEjkIAHTRIiEM4YxoxwAZcZhSm72dxtbf3boWrUtnMGy1BXWnVNAhQBIuAx79PqAdukWM9XYYqvtTh0l9EC0B4ytnbOYK1O0v8-3VhelYlQNrtXgWg2u1eC6jwV_YsfL_wR-AGyafmg
CitedBy_id crossref_primary_10_1098_rstb_2023_0218
Cites_doi 10.1093/emboj/cdf292
10.1038/nrn2044
10.1038/297681a0
10.1097/WNR.0b013e3282f3da10
10.1038/361031a0
10.1016/0169-328X(95)00067-3
10.1038/srep34459
10.1016/j.isci.2021.103539
10.1113/jphysiol.1996.sp021320
10.1038/emboj.2011.453
10.1124/pr.110.003053
10.1016/j.neuron.2018.03.034
10.1038/nrn2207
10.1038/ng1159
10.1016/0006-8993(82)90575-3
10.1073/pnas.89.18.8552
10.1113/jphysiol.1995.sp020792
10.1371/journal.pcbi.1000608
10.1186/s13041-020-0563-z
10.1016/j.neuron.2004.09.012
10.1126/science.275.5300.674
10.1523/JNEUROSCI.1615-19.2019
10.1016/j.tips.2006.01.009
10.1038/354031a0
10.1016/S0959-4388(00)00216-6
10.1111/j.1742-4658.2011.08391.x
10.1038/24877
10.1038/s41593-017-0025-9
10.1038/ncomms15220
10.1126/science.1251915
10.7554/eLife.25492
10.1046/j.1471-4159.2001.00409.x
10.1016/0306-4522(94)90510-X
10.1016/0166-2236(95)93920-S
10.1186/1756-6606-6-5
10.1038/nature01497
10.1038/nature19057
10.1371/journal.pgen.1006536
10.1038/s41594-017-0011-7
10.1007/s11064-019-02886-2
10.1523/JNEUROSCI.14-05-03180.1994
10.1016/S0896-6273(02)00633-5
10.1016/j.celrep.2019.11.087
10.1016/j.celrep.2016.11.024
10.1126/science.279.5355.1363
10.1074/jbc.M800917200
10.1186/s13041-019-0485-9
10.1074/jbc.272.8.5157
10.1111/j.1742-4658.2011.08390.x
10.1038/nrn3504
10.1038/nrn1368
10.3390/proteomes6030031
10.1038/nm.2315
10.1038/srep23837
10.1016/S0896-6273(00)81176-9
10.1038/s41467-019-08291-1
10.1073/pnas.96.14.7697
10.1002/hipo.20818
10.1111/j.1471-4159.2003.02330.x
10.1523/JNEUROSCI.21-09-03063.2001
10.1038/s41598-017-03909-0
10.1124/pharmrev.120.000131
10.1016/j.neuropharm.2022.109019
10.1016/S0896-6273(01)00220-3
10.1016/j.tins.2023.05.002
10.1038/76615
10.1073/pnas.0401413101
10.1080/14734220510007996
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1098/rstb.2023.0236
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Sciences (General)
Biology
EISSN 1471-2970
ExternalDocumentID 38853562
10_1098_rstb_2023_0236
Genre Journal Article
GrantInformation_xml – fundername: Krembil Foundation
– fundername: CIHR
GroupedDBID ---
-~X
0R~
2WC
4.4
53G
AACGO
AANCE
AAYXX
ABPLY
ABTLG
ACPRK
ADBBV
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
E3Z
EBS
F5P
GX1
H13
HZ~
JSG
JST
KQ8
MRS
MV1
NSAHA
O9-
OK1
RPM
RRY
TN5
V1E
YNT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c379t-953d6b5718d54904ca6e3a4c059a35c23323c946f393eb8668511e710533e9d53
ISSN 0962-8436
1471-2970
IngestDate Thu Jul 10 23:45:04 EDT 2025
Mon Jul 21 06:05:08 EDT 2025
Tue Jul 01 03:25:41 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1906
Keywords AMPA receptors
synaptic plasticity
hippocampus
NMDA receptors
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c379t-953d6b5718d54904ca6e3a4c059a35c23323c946f393eb8668511e710533e9d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6897-6585
0000-0002-6328-1108
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2023.0236
PMID 38853562
PQID 3066338592
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3066338592
pubmed_primary_38853562
crossref_citationtrail_10_1098_rstb_2023_0236
crossref_primary_10_1098_rstb_2023_0236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Jul-29
PublicationDateYYYYMMDD 2024-07-29
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series B. Biological sciences
PublicationTitleAlternate Philos Trans R Soc Lond B Biol Sci
PublicationYear 2024
References e_1_3_8_28_2
e_1_3_8_26_2
e_1_3_8_24_2
e_1_3_8_49_2
e_1_3_8_47_2
e_1_3_8_68_2
Li H (e_1_3_8_21_2) 2021; 118
e_1_3_8_20_2
e_1_3_8_45_2
e_1_3_8_66_2
e_1_3_8_22_2
e_1_3_8_43_2
e_1_3_8_64_2
e_1_3_8_41_2
e_1_3_8_62_2
e_1_3_8_60_2
e_1_3_8_18_2
e_1_3_8_39_2
Liu X (e_1_3_8_46_2) 1993; 8
e_1_3_8_14_2
e_1_3_8_37_2
e_1_3_8_16_2
e_1_3_8_35_2
e_1_3_8_58_2
Li H (e_1_3_8_74_2) 2024
e_1_3_8_8_2
e_1_3_8_71_2
e_1_3_8_6_2
e_1_3_8_73_2
e_1_3_8_4_2
e_1_3_8_2_2
e_1_3_8_10_2
e_1_3_8_33_2
e_1_3_8_56_2
e_1_3_8_12_2
e_1_3_8_31_2
e_1_3_8_52_2
Chen Z (e_1_3_8_69_2) 2020; 12
e_1_3_8_50_2
e_1_3_8_29_2
e_1_3_8_48_2
e_1_3_8_27_2
e_1_3_8_25_2
Alberts BJ A (e_1_3_8_54_2) 2002
e_1_3_8_44_2
e_1_3_8_67_2
e_1_3_8_23_2
e_1_3_8_42_2
e_1_3_8_65_2
e_1_3_8_40_2
e_1_3_8_63_2
e_1_3_8_61_2
e_1_3_8_17_2
e_1_3_8_19_2
e_1_3_8_13_2
e_1_3_8_38_2
e_1_3_8_59_2
e_1_3_8_15_2
e_1_3_8_36_2
e_1_3_8_57_2
e_1_3_8_9_2
e_1_3_8_7_2
e_1_3_8_72_2
e_1_3_8_5_2
e_1_3_8_3_2
e_1_3_8_34_2
e_1_3_8_55_2
e_1_3_8_11_2
e_1_3_8_32_2
e_1_3_8_53_2
e_1_3_8_30_2
e_1_3_8_51_2
e_1_3_8_70_2
References_xml – ident: e_1_3_8_38_2
  doi: 10.1093/emboj/cdf292
– ident: e_1_3_8_62_2
  doi: 10.1038/nrn2044
– ident: e_1_3_8_29_2
  doi: 10.1038/297681a0
– ident: e_1_3_8_59_2
  doi: 10.1097/WNR.0b013e3282f3da10
– ident: e_1_3_8_9_2
  doi: 10.1038/361031a0
– ident: e_1_3_8_63_2
  doi: 10.1016/0169-328X(95)00067-3
– ident: e_1_3_8_67_2
  doi: 10.1038/srep34459
– ident: e_1_3_8_68_2
  doi: 10.1016/j.isci.2021.103539
– ident: e_1_3_8_47_2
  doi: 10.1113/jphysiol.1996.sp021320
– ident: e_1_3_8_51_2
  doi: 10.1038/emboj.2011.453
– ident: e_1_3_8_41_2
  doi: 10.1124/pr.110.003053
– ident: e_1_3_8_55_2
  doi: 10.1016/j.neuron.2018.03.034
– ident: e_1_3_8_61_2
  doi: 10.1038/nrn2207
– ident: e_1_3_8_64_2
  doi: 10.1038/ng1159
– ident: e_1_3_8_7_2
  doi: 10.1016/0006-8993(82)90575-3
– volume-title: Molecular biology of the cell
  year: 2002
  ident: e_1_3_8_54_2
– volume: 12
  start-page: 6895
  year: 2020
  ident: e_1_3_8_69_2
  article-title: Glycine attenuates cerebrovascular remodeling via glycine receptor alpha 2 and vascular endothelial growth factor receptor 2 after stroke
  publication-title: Am. J. Transl. Res.
– ident: e_1_3_8_16_2
  doi: 10.1073/pnas.89.18.8552
– ident: e_1_3_8_19_2
  doi: 10.1113/jphysiol.1995.sp020792
– ident: e_1_3_8_65_2
  doi: 10.1371/journal.pcbi.1000608
– ident: e_1_3_8_4_2
  doi: 10.1186/s13041-020-0563-z
– ident: e_1_3_8_8_2
  doi: 10.1016/j.neuron.2004.09.012
– ident: e_1_3_8_30_2
  doi: 10.1126/science.275.5300.674
– ident: e_1_3_8_27_2
  doi: 10.1523/JNEUROSCI.1615-19.2019
– ident: e_1_3_8_28_2
  doi: 10.1016/j.tips.2006.01.009
– ident: e_1_3_8_18_2
  doi: 10.1038/354031a0
– ident: e_1_3_8_33_2
  doi: 10.1016/S0959-4388(00)00216-6
– volume: 8
  start-page: 1119
  year: 1993
  ident: e_1_3_8_46_2
  article-title: Regulation of c-Src tyrosine kinase activity by the Src SH2 domain
  publication-title: Oncogene
– ident: e_1_3_8_50_2
  doi: 10.1111/j.1742-4658.2011.08391.x
– ident: e_1_3_8_40_2
  doi: 10.1038/24877
– ident: e_1_3_8_52_2
  doi: 10.1038/s41593-017-0025-9
– ident: e_1_3_8_44_2
  doi: 10.1038/ncomms15220
– ident: e_1_3_8_56_2
  doi: 10.1126/science.1251915
– ident: e_1_3_8_57_2
  doi: 10.7554/eLife.25492
– ident: e_1_3_8_73_2
  doi: 10.1046/j.1471-4159.2001.00409.x
– ident: e_1_3_8_14_2
  doi: 10.1016/0306-4522(94)90510-X
– ident: e_1_3_8_17_2
  doi: 10.1016/0166-2236(95)93920-S
– ident: e_1_3_8_10_2
  doi: 10.1186/1756-6606-6-5
– ident: e_1_3_8_66_2
  doi: 10.1038/nature01497
– ident: e_1_3_8_25_2
  doi: 10.1038/nature19057
– ident: e_1_3_8_26_2
  doi: 10.1371/journal.pgen.1006536
– ident: e_1_3_8_58_2
  doi: 10.1038/s41594-017-0011-7
– volume: 118
  year: 2021
  ident: e_1_3_8_21_2
  article-title: Alternative splicing of GluN1 gates glycine site–dependent nonionotropic signaling by NMDAR receptors
  publication-title: Proc. Natl Acad. Sci. USA.
– ident: e_1_3_8_70_2
  doi: 10.1007/s11064-019-02886-2
– ident: e_1_3_8_13_2
  doi: 10.1523/JNEUROSCI.14-05-03180.1994
– ident: e_1_3_8_42_2
  doi: 10.1016/S0896-6273(02)00633-5
– ident: e_1_3_8_12_2
  doi: 10.1016/j.celrep.2019.11.087
– ident: e_1_3_8_49_2
  doi: 10.1016/j.celrep.2016.11.024
– ident: e_1_3_8_31_2
  doi: 10.1126/science.279.5355.1363
– ident: e_1_3_8_37_2
  doi: 10.1074/jbc.M800917200
– ident: e_1_3_8_15_2
  doi: 10.1186/s13041-019-0485-9
– ident: e_1_3_8_24_2
  doi: 10.1074/jbc.272.8.5157
– ident: e_1_3_8_35_2
  doi: 10.1111/j.1742-4658.2011.08390.x
– ident: e_1_3_8_11_2
  doi: 10.1038/nrn3504
– ident: e_1_3_8_36_2
  doi: 10.1038/nrn1368
– ident: e_1_3_8_53_2
  doi: 10.3390/proteomes6030031
– ident: e_1_3_8_45_2
  doi: 10.1038/nm.2315
– ident: e_1_3_8_48_2
  doi: 10.1038/srep23837
– ident: e_1_3_8_60_2
  doi: 10.1016/S0896-6273(00)81176-9
– year: 2024
  ident: e_1_3_8_74_2
  article-title: Supplementary Material from: Src Dependency of the Regulation of LTP by Alternative Splicing of GRIN1 Exon 5
  publication-title: FigShare
– ident: e_1_3_8_20_2
  doi: 10.1038/s41467-019-08291-1
– ident: e_1_3_8_32_2
  doi: 10.1073/pnas.96.14.7697
– ident: e_1_3_8_34_2
  doi: 10.1002/hipo.20818
– ident: e_1_3_8_72_2
  doi: 10.1111/j.1471-4159.2003.02330.x
– ident: e_1_3_8_22_2
  doi: 10.1523/JNEUROSCI.21-09-03063.2001
– ident: e_1_3_8_71_2
  doi: 10.1038/s41598-017-03909-0
– ident: e_1_3_8_2_2
  doi: 10.1124/pharmrev.120.000131
– ident: e_1_3_8_3_2
  doi: 10.1016/j.neuropharm.2022.109019
– ident: e_1_3_8_39_2
  doi: 10.1016/S0896-6273(01)00220-3
– ident: e_1_3_8_6_2
  doi: 10.1016/j.tins.2023.05.002
– ident: e_1_3_8_5_2
  doi: 10.1038/76615
– ident: e_1_3_8_43_2
  doi: 10.1073/pnas.0401413101
– ident: e_1_3_8_23_2
  doi: 10.1080/14734220510007996
SSID ssj0009574
Score 2.458663
Snippet Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1...
Alternative splicing of exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon...
Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 20230236
SubjectTerms Alternative Splicing
Animals
Exons
Long-Term Potentiation
Male
Mice
Mice, Inbred C57BL
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Receptors, N-Methyl-D-Aspartate - genetics
Receptors, N-Methyl-D-Aspartate - metabolism
src-Family Kinases - genetics
src-Family Kinases - metabolism
Synapses - metabolism
Synapses - physiology
Title Src dependency of the regulation of LTP by alternative splicing of GRIN1 exon 5
URI https://www.ncbi.nlm.nih.gov/pubmed/38853562
https://www.proquest.com/docview/3066338592
Volume 379
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKEGgvEytfHR8yEhKgKCGL4zR5HAgYsI1Bu7G3yHbcaYilU5tKlF_Ez-Te2E4y2KTBS1Qldqz2ntrn-l7fQ8hTWOEmjMnEj1Qs_VinzJdFVPhMgYMrdAacAvchd_eS7YP4wxE_6vV-dbKWFpUM1M8Lz5X8j1XhHtgVT8n-g2Wbl8IN-Az2hStYGK5XsvFopjynYquWLtw_M_LylgnujPeRYtZR8dJU-Z5jzNpmO7_78n5v09M_oDHvEtV9J3FQG7FqVcXnbhiz8eCyPnGkWhkkwOkH3G_vVWCFLtuDl6pNWNwxatnT8lietIfRxDcjMeUdoii0aLI_Rro8NpngW6cYRB8FzRMT7m8PAHhfg-5ORhTjFqnd7rBbkgnMzjGzpbHNhAyLJzQy4iJuxmbDrAvNrK5Z8PdiEGZ4wAFItAxQJD7AYvntsudC_X-shk2OoonOpzn2z7F_jv2vkesROCSolfHxc9op72zqfbtv0JQHTV-eH_88_bnEp6m5zfgWWbNOCd0yCFsnPV32yQ1jvWWf3Ny1CRh9sm7Xgjl9bguWv7hNPgEOaYtDOp1QAAhtcYh3AIdULmkHh9ThEB_XOKSIQ8rvkIO3b8avt30r1OErMEWFKQBFIjnQnILHWRgrkWgmYgXUXTCuIsYi-O_HMCtkTMs0SZDma-C24GvorODsLlkpp6W-T2g01JESoeJDjcUiuSzCRIQTWRRiWPBNPSC--_1yZavYo5jK9_xiew3Is6b9manfcmnLJ84cOUyxGDcTpZ4u5jlDWs5SnkUDcs_YqXkXS4Hvgg-xceVxHpDVFvwPyUo1W-hHQGwr-bjG1G9-ZKBN
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Src+dependency+of+the+regulation+of+LTP+by+alternative+splicing+of+GRIN1+exon+5&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Li%2C+Hongbin&rft.au=Rajani%2C+Vishaal&rft.au=Sengar%2C+Ameet+S.&rft.au=Salter%2C+Michael+W.&rft.date=2024-07-29&rft.issn=0962-8436&rft.eissn=1471-2970&rft.volume=379&rft.issue=1906&rft_id=info:doi/10.1098%2Frstb.2023.0236&rft.externalDBID=n%2Fa&rft.externalDocID=10_1098_rstb_2023_0236
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon