Extended-Window Algorithms for Model Prediction Applied to Hybrid Power Systems

This paper proposes extended-window algorithms for model prediction and applies them to optimize hybrid power systems. We consider a hybrid power system comprising solar panels, batteries, a fuel cell, and a chemical hydrogen generation system. The proposed algorithms enable the periodic updating of...

Full description

Saved in:
Bibliographic Details
Published inTechnologies (Basel) Vol. 12; no. 1; p. 6
Main Authors Wang, Fu-Cheng, Huang, Hsiao-Tzu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes extended-window algorithms for model prediction and applies them to optimize hybrid power systems. We consider a hybrid power system comprising solar panels, batteries, a fuel cell, and a chemical hydrogen generation system. The proposed algorithms enable the periodic updating of prediction models and corresponding changes in system parts and power management based on the accumulated data. We first develop a hybrid power model to evaluate system responses under different conditions. We then build prediction models using five artificial intelligence algorithms. Among them, the light gradient boosting machine and extreme gradient boosting methods achieve the highest accuracies for predicting solar radiation and load responses, respectively. Therefore, we apply these two models to forecast solar and load responses. Third, we introduce extended-window algorithms and investigate the effects of window sizes and replacement costs on system performance. The results show that the optimal window size is one week, and the system cost is 13.57% lower than the cost of the system that does not use the extended-window algorithms. The proposed method also tends to make fewer component replacements when the replacement cost increases. Finally, we design experiments to demonstrate the feasibility and effectiveness of systems using extended-window model prediction.
AbstractList This paper proposes extended-window algorithms for model prediction and applies them to optimize hybrid power systems. We consider a hybrid power system comprising solar panels, batteries, a fuel cell, and a chemical hydrogen generation system. The proposed algorithms enable the periodic updating of prediction models and corresponding changes in system parts and power management based on the accumulated data. We first develop a hybrid power model to evaluate system responses under different conditions. We then build prediction models using five artificial intelligence algorithms. Among them, the light gradient boosting machine and extreme gradient boosting methods achieve the highest accuracies for predicting solar radiation and load responses, respectively. Therefore, we apply these two models to forecast solar and load responses. Third, we introduce extended-window algorithms and investigate the effects of window sizes and replacement costs on system performance. The results show that the optimal window size is one week, and the system cost is 13.57% lower than the cost of the system that does not use the extended-window algorithms. The proposed method also tends to make fewer component replacements when the replacement cost increases. Finally, we design experiments to demonstrate the feasibility and effectiveness of systems using extended-window model prediction.
Audience Academic
Author Huang, Hsiao-Tzu
Wang, Fu-Cheng
Author_xml – sequence: 1
  givenname: Fu-Cheng
  orcidid: 0000-0001-5011-7934
  surname: Wang
  fullname: Wang, Fu-Cheng
– sequence: 2
  givenname: Hsiao-Tzu
  orcidid: 0009-0009-1084-8658
  surname: Huang
  fullname: Huang, Hsiao-Tzu
BookMark eNptkVFrVDEQhS9SwVr7D3wI-HzrJLn3JnlcSrWFlhZUfAzZzGSb5e7NmqTU_fdGt4gPMg8zHM58HDhvu5MlLdR17zlcSGngYyX_uKQ5bSIVLoADwPSqOxVCqF6BhpN_7jfdeSnb5gDDpZ7G0-7-6melBQn773HB9MxW8yblWB93hYWU2V1CmtlDJoy-xrSw1X4_R0JWE7s-rHNE9pCeKbMvh1JpV951r4ObC52_7LPu26err5fX_e3955vL1W3vpTK1NxKNXjvU4CZEGgRHLWBaKzWOWkwUQI9KSIDAlRrESI54IBiEJ83RGXnW3Ry5mNzW7nPcuXywyUX7R0h5Y12u0c9kNa4duVF5P_rBu-CUJkThPSruJuca68ORtc_pxxOVarfpKS8tvhWGa2WkMdBcF0fXxjVoXEKq2fk2SLvoWychNn2lNBihzCjbw3B88DmVkin8jcnB_q7O_q86-QvHTJHI
Cites_doi 10.17485/ijst/2013/v6i6.3
10.1145/2939672.2939785
10.1016/j.ijhydene.2017.12.020
10.1109/IAS.2014.6978380
10.1007/978-3-540-39964-3_62
10.1007/s40095-022-00503-7
10.1016/j.ijhydene.2015.06.081
10.1016/j.ijhydene.2015.12.019
10.1016/j.ijhydene.2016.03.085
10.1016/j.enconman.2017.08.041
10.1126/science.aaa8415
10.1016/j.egyr.2020.11.249
10.1016/j.enconman.2023.117314
10.1016/j.ijhydene.2019.05.212
10.1016/j.est.2023.109289
10.1016/j.agwat.2019.105758
10.1016/j.energy.2021.122368
10.1016/j.ijhydene.2020.09.254
10.1109/ACCESS.2020.2996434
10.3390/en15010128
10.3390/technologies10020040
10.3390/rs12142271
10.1063/1.4897940
10.1016/j.enconman.2023.117664
10.1155/2023/9984961
10.1016/j.ijhydene.2015.01.169
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
HCIFZ
JQ2
K7-
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/technologies12010006
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2227-7080
ExternalDocumentID oai_doaj_org_article_8dbaea57cc5c4cafa78edd2ccd71a6aa
A780927953
10_3390_technologies12010006
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KB.
KC.
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PMFND
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
JQ2
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c379t-93d98bad80a6dde421d8206b7755826ef08572300f177425eae1fe042ce81da93
IEDL.DBID DOA
ISSN 2227-7080
IngestDate Wed Aug 27 01:21:47 EDT 2025
Fri Jul 25 12:07:54 EDT 2025
Tue Jun 10 21:01:25 EDT 2025
Tue Jul 01 02:00:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-93d98bad80a6dde421d8206b7755826ef08572300f177425eae1fe042ce81da93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5011-7934
0009-0009-1084-8658
OpenAccessLink https://doaj.org/article/8dbaea57cc5c4cafa78edd2ccd71a6aa
PQID 2918793990
PQPubID 2032323
ParticipantIDs doaj_primary_oai_doaj_org_article_8dbaea57cc5c4cafa78edd2ccd71a6aa
proquest_journals_2918793990
gale_infotracacademiconefile_A780927953
crossref_primary_10_3390_technologies12010006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Technologies (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bornapour (ref_7) 2017; 150
Fan (ref_32) 2019; 225
Liu (ref_30) 2022; 239
Zhao (ref_9) 2023; 297
Wang (ref_14) 2023; 2023
Li (ref_5) 2016; 41
Taghizadeh (ref_6) 2014; 6
ref_34
Rouhani (ref_10) 2013; 6
ref_33
Chen (ref_24) 2018; 43
ref_31
Shayan (ref_22) 2023; 14
(ref_11) 2020; 45
Lei (ref_12) 2020; 6
Shayan (ref_8) 2023; 74
Nair (ref_20) 2020; 8
ref_17
ref_16
ref_15
Guo (ref_25) 2015; 40
Wang (ref_28) 2021; 46
Radica (ref_13) 2023; 291
ref_23
Brka (ref_18) 2015; 40
ref_21
Jordan (ref_35) 2015; 349
ref_1
ref_3
ref_2
Brka (ref_19) 2016; 41
ref_29
ref_27
ref_26
ref_4
References_xml – volume: 6
  start-page: 4702
  year: 2013
  ident: ref_10
  article-title: A comprehensive method for optimum sizing of hybrid energy systems using intelligence evolutionary algorithms
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/ijst/2013/v6i6.3
– ident: ref_31
  doi: 10.1145/2939672.2939785
– volume: 43
  start-page: 2381
  year: 2018
  ident: ref_24
  article-title: Design optimization for the hybrid power system of a green building
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.12.020
– ident: ref_3
– ident: ref_16
  doi: 10.1109/IAS.2014.6978380
– ident: ref_26
– ident: ref_34
  doi: 10.1007/978-3-540-39964-3_62
– volume: 14
  start-page: 35
  year: 2023
  ident: ref_22
  article-title: A novel approach of synchronization of the sustainable grid with an intelligent local hybrid renewable energy control
  publication-title: Int. J. Energy Environ. Eng.
  doi: 10.1007/s40095-022-00503-7
– volume: 40
  start-page: 9907
  year: 2015
  ident: ref_18
  article-title: Predictive power management strategies for stand-alone hydrogen systems: Lab-scale validation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.06.081
– volume: 41
  start-page: 3038
  year: 2016
  ident: ref_5
  article-title: The development of a sodium borohydride hydrogen generation system for proton exchange membrane fuel cell
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.12.019
– volume: 41
  start-page: 6685
  year: 2016
  ident: ref_19
  article-title: Predictive power management strategies for stand-alone hydrogen systems: Operational impact
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.085
– volume: 150
  start-page: 725
  year: 2017
  ident: ref_7
  article-title: Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.08.041
– volume: 349
  start-page: 255
  year: 2015
  ident: ref_35
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 6
  start-page: 3365
  year: 2020
  ident: ref_12
  article-title: Power generation cost minimization of the grid-connected hybrid renewable energy system through optimal sizing using the modified seagull optimization technique
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.11.249
– ident: ref_1
– ident: ref_23
– volume: 291
  start-page: 117314
  year: 2023
  ident: ref_13
  article-title: The effect of components capacity loss on the performance of a hybrid PV/wind/battery/hydrogen stand-alone energy system
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2023.117314
– ident: ref_4
– volume: 45
  start-page: 5512
  year: 2020
  ident: ref_11
  article-title: Optimal sizing of a wind, fuel cell, electrolyzer, battery and supercapacitor system for off-grid applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.05.212
– ident: ref_29
– ident: ref_33
– ident: ref_27
– ident: ref_2
– volume: 74
  start-page: 109289
  year: 2023
  ident: ref_8
  article-title: Energy storage concentrates on solar air heaters with artificial S-shaped irregularity on the absorber plate
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.109289
– volume: 225
  start-page: 105758
  year: 2019
  ident: ref_32
  article-title: Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.105758
– volume: 239
  start-page: 122368
  year: 2022
  ident: ref_30
  article-title: Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122368
– volume: 46
  start-page: 1174
  year: 2021
  ident: ref_28
  article-title: Fuel-cell sharing for a distributed hybrid power system
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.09.254
– volume: 8
  start-page: 97809
  year: 2020
  ident: ref_20
  article-title: A model predictive control-based energy management scheme for hybrid storage system in islanded microgrids
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2996434
– ident: ref_17
  doi: 10.3390/en15010128
– ident: ref_21
  doi: 10.3390/technologies10020040
– ident: ref_15
  doi: 10.3390/rs12142271
– volume: 6
  start-page: 053121
  year: 2014
  ident: ref_6
  article-title: Frequency control of a new topology in proton exchange membrane fuel cell/wind turbine/photovoltaic/ultra-capacitor/battery energy storage system based isolated networks by a novel intelligent controller
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4897940
– volume: 297
  start-page: 117664
  year: 2023
  ident: ref_9
  article-title: Analysis of a hybrid system combining solar-assisted methanol reforming and fuel cell power generation
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2023.117664
– volume: 2023
  start-page: 9984961
  year: 2023
  ident: ref_14
  article-title: Superior Optimization for a Hybrid PEMFC Power System Employing Model Predictions
  publication-title: Int. J. Energy Res.
  doi: 10.1155/2023/9984961
– volume: 40
  start-page: 4630
  year: 2015
  ident: ref_25
  article-title: The development of a hybrid PEMFC power system
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.01.169
SSID ssj0000913865
Score 2.2430024
Snippet This paper proposes extended-window algorithms for model prediction and applies them to optimize hybrid power systems. We consider a hybrid power system...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 6
SubjectTerms Algorithms
Alternative energy sources
Artificial intelligence
Back up systems
Batch processes
Costs
Electricity distribution
Energy consumption
Energy resources
Energy storage
extended window
fuel cell
Fuel cells
Genetic algorithms
hybrid power
Hybrid systems
Hydrogen
Hydrogen production
Machine learning
management
Optimization
Photovoltaic cells
Power management
prediction
Prediction models
Radiation
Renewable resources
Solar energy
Solar radiation
System effectiveness
Wind power
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXWBAPEWhIA9ITBZJnMTOhApqVSFRKkRFN8uvwAANtEGIf89d6wIDsOahWHe-x3fOfUfIiealhcjiGcRTz1KRWmasAOBqUs6t4VJIbE6-HuT9UXo1zsah4DYLv1UufeLcUbvKYo38LClwLjaE0-j85ZXh1Cg8XQ0jNFZJE1ywlA3SvOgOhrdfVRZkvZR5tuiZ44Dvz-plxRqAaIxHwREOO_oRk-bU_X856HnU6W2SjZAu0s5Cv1tkxU-2yfoPEsEdctMNdWx2D_i6eqedpwdYeP34PKOQkVKcdvZEh1M8kUEt0JB40rqi_Q9s2KJDHJVGA3n5Lhn1uneXfRbGJDDLRVGzgrtCGu1kpHNwVmkSOyRlN0JkGYAHXyKJPSCNqIwh1wOVaB-XHozVekhWdcH3SGNSTfw-ofCyLVNvpDci9Zkr4FFuQM_a5FJy3SJsKSj1smDDUIAiULDqN8G2yAVK8-tZ5LKeX6imDyqYhpLOaK8zYW1mU6tLLaR3LrHWiVjnGj56irpQaHH1VFsdGgdgychdpTpCRkUiioy3SHupLhVMcaa-N87B_7cPyVoCGcuivtImjXr65o8g46jNcdhWn32r2g8
  priority: 102
  providerName: ProQuest
Title Extended-Window Algorithms for Model Prediction Applied to Hybrid Power Systems
URI https://www.proquest.com/docview/2918793990
https://doaj.org/article/8dbaea57cc5c4cafa78edd2ccd71a6aa
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFH7ovOhB_InTOXIQPBXbpl2S4yabQ3AOcegtJGmqB91kq4j_ve-1neygePFaUgjva_K-L-n7HsCZ4bnDzOIDzKc-SETiAusEClebcO4sl0JScfLNqDOcJNeP6eNKqy_6J6yyB64CdyEza7xJhXOpS5zJjZA-y2LnMhGZjimpEea8FTFV7sEqomaWVa0cR11_USxPqlGARnQFHFKTo5VcVFr2_7Yxl9lmsAPbNU1k3Wp6u7Dmp3uwtWIeuA-3_fr8OnhAXT37YN2XpxlK_efXBUMmyqjL2Qsbz-kmhqLPasLJihkbflKhFhtTizRWm5YfwGTQv78cBnV7hMBxoYpA8UxJazIZmg5uUkkcZWTGboVIUxQNPifzelQYYR4hx0MojI9yj4vUeSSpRvFDaExnU38EDF92eeKt9FYkPs0UDuUW8TW2IyU3TQiWgdJvlQuGRvVAgdU_BbYJPYrm91jysC4fILK6Rlb_hWwTzgkLTSutmBtn6oIBnDJ5VumukKGKhUp5E1pLuHS9BBc6VtRIHflXePwfszmBzRj5THX60oJGMX_3p8hHCtuGdTm4asNGrz8a37XLD_ELiALm7Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOFAOVQutWKDFh1acLJI4iZ1DVW0L26U8ygFUbq5fgQPdwG4Q4k_1N3YmD-BAe-MaO0oyM_Z8M858A_DBiNKhZwkc_WngqUwdt05i4GpTIZwVSioqTj48ysen6fez7GwO_vS1MPRbZb8nNhu1rxzlyLeTgvpiozuNPl9dc-oaRaerfQuN1iz2w90thmyzT3s7qN-PSTLaPfk65l1XAe6ELGpeCF8oa7yKTI5rO01iTxzmVsosQ6wdSuJ8R2AelTFCI_wCE-IyoG27gNjOEPkSbvkL-CkFBXtq9O0-p0McmyrP2go9HI-26z4_jmFvTAfPEbVWeuQBm0YB_3IHjY8bvYKXHThlw9aaXsNcmCzD0iPKwhX4sdtlzflPjOarWza8PEcx1Re_ZwzxL6PeapfseErnP6Rz1sFcVldsfEflYeyYGrOxjir9DZw-i_jewvykmoRVYHizK9NgVbAyDZkvcKqwaFXG5koJMwDeC0pftdwbGmMWEqx-SrAD-ELSvJ9LzNnNhWp6rruFqJW3JphMOpe51JnSSBW8T5zzMja5wYdukS40re96apzpyhTwlYkpSw-liopEFpkYwEavLt0t_Jl-MNO1_w9vwuL45PBAH-wd7a_DiwSxUpvZ2YD5enoT3iHWqe37xsAY_Hpui_4LCNAUug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAVEeYqEUH0CcrCZxEjsHhLbtrrYUlhWiojfjV8qhbMpuUNW_xq_rzMYpPQC3XvNQkvFnzzfjzDcAr4yoHXqWwNGfBp7L3HHrJAauNhfCWaGkouLkj7Nyepy_PylONuB3XwtDv1X2a-J6ofaNoxz5blZRX2x0p8luHX-LmB9M3p3_5NRBinZa-3YaHUSOwuUFhm-rt4cHONavs2wy_rI_5bHDAHdCVi2vhK-UNV4lpsR5nmepJz1zK2VRIO8ONem_I0lP6hRpEn6NCWkdEOcuIM8zJMSEy_-mpKhoAJt749n883WGhxQ3VVl09XpC4Iu3fbYcg-CUtqETarR0wx-u2wb8yzmsPd7kAdyPVJWNOmxtwUZYPIR7NwQMH8Gnccyh868Y2zcXbHR2ioZqv_9YMWTDjDqtnbH5knaDCAEskl7WNmx6ScVibE5t2lgUTn8Mx7diwCcwWDSL8BQY3uzqPFgVrMxD4Su8VFjEmLGlUsIMgfeG0uedEofGCIYMq_9m2CHskTWvryUd7fWBZnmq47TUylsTTCGdK1zuTG2kCt5nznmZmtLgQ9_QWGia7e3SOBOLFvCVSTdLj6RKqkxWhRjCdj9cOi4DK_0HtM_-f_ol3EE06w-Hs6PncDdD4tSlebZh0C5_hRdIfFq7ExHG4Nttg_oKMQIaTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended-Window+Algorithms+for+Model+Prediction+Applied+to+Hybrid+Power+Systems&rft.jtitle=Technologies+%28Basel%29&rft.au=Wang%2C+Fu-Cheng&rft.au=Huang%2C+Hsiao-Tzu&rft.date=2024-01-01&rft.issn=2227-7080&rft.eissn=2227-7080&rft.volume=12&rft.issue=1&rft.spage=6&rft_id=info:doi/10.3390%2Ftechnologies12010006&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_technologies12010006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7080&client=summon