Extended-Window Algorithms for Model Prediction Applied to Hybrid Power Systems
This paper proposes extended-window algorithms for model prediction and applies them to optimize hybrid power systems. We consider a hybrid power system comprising solar panels, batteries, a fuel cell, and a chemical hydrogen generation system. The proposed algorithms enable the periodic updating of...
Saved in:
Published in | Technologies (Basel) Vol. 12; no. 1; p. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper proposes extended-window algorithms for model prediction and applies them to optimize hybrid power systems. We consider a hybrid power system comprising solar panels, batteries, a fuel cell, and a chemical hydrogen generation system. The proposed algorithms enable the periodic updating of prediction models and corresponding changes in system parts and power management based on the accumulated data. We first develop a hybrid power model to evaluate system responses under different conditions. We then build prediction models using five artificial intelligence algorithms. Among them, the light gradient boosting machine and extreme gradient boosting methods achieve the highest accuracies for predicting solar radiation and load responses, respectively. Therefore, we apply these two models to forecast solar and load responses. Third, we introduce extended-window algorithms and investigate the effects of window sizes and replacement costs on system performance. The results show that the optimal window size is one week, and the system cost is 13.57% lower than the cost of the system that does not use the extended-window algorithms. The proposed method also tends to make fewer component replacements when the replacement cost increases. Finally, we design experiments to demonstrate the feasibility and effectiveness of systems using extended-window model prediction. |
---|---|
AbstractList | This paper proposes extended-window algorithms for model prediction and applies them to optimize hybrid power systems. We consider a hybrid power system comprising solar panels, batteries, a fuel cell, and a chemical hydrogen generation system. The proposed algorithms enable the periodic updating of prediction models and corresponding changes in system parts and power management based on the accumulated data. We first develop a hybrid power model to evaluate system responses under different conditions. We then build prediction models using five artificial intelligence algorithms. Among them, the light gradient boosting machine and extreme gradient boosting methods achieve the highest accuracies for predicting solar radiation and load responses, respectively. Therefore, we apply these two models to forecast solar and load responses. Third, we introduce extended-window algorithms and investigate the effects of window sizes and replacement costs on system performance. The results show that the optimal window size is one week, and the system cost is 13.57% lower than the cost of the system that does not use the extended-window algorithms. The proposed method also tends to make fewer component replacements when the replacement cost increases. Finally, we design experiments to demonstrate the feasibility and effectiveness of systems using extended-window model prediction. |
Audience | Academic |
Author | Huang, Hsiao-Tzu Wang, Fu-Cheng |
Author_xml | – sequence: 1 givenname: Fu-Cheng orcidid: 0000-0001-5011-7934 surname: Wang fullname: Wang, Fu-Cheng – sequence: 2 givenname: Hsiao-Tzu orcidid: 0009-0009-1084-8658 surname: Huang fullname: Huang, Hsiao-Tzu |
BookMark | eNptkVFrVDEQhS9SwVr7D3wI-HzrJLn3JnlcSrWFlhZUfAzZzGSb5e7NmqTU_fdGt4gPMg8zHM58HDhvu5MlLdR17zlcSGngYyX_uKQ5bSIVLoADwPSqOxVCqF6BhpN_7jfdeSnb5gDDpZ7G0-7-6melBQn773HB9MxW8yblWB93hYWU2V1CmtlDJoy-xrSw1X4_R0JWE7s-rHNE9pCeKbMvh1JpV951r4ObC52_7LPu26err5fX_e3955vL1W3vpTK1NxKNXjvU4CZEGgRHLWBaKzWOWkwUQI9KSIDAlRrESI54IBiEJ83RGXnW3Ry5mNzW7nPcuXywyUX7R0h5Y12u0c9kNa4duVF5P_rBu-CUJkThPSruJuca68ORtc_pxxOVarfpKS8tvhWGa2WkMdBcF0fXxjVoXEKq2fk2SLvoWychNn2lNBihzCjbw3B88DmVkin8jcnB_q7O_q86-QvHTJHI |
Cites_doi | 10.17485/ijst/2013/v6i6.3 10.1145/2939672.2939785 10.1016/j.ijhydene.2017.12.020 10.1109/IAS.2014.6978380 10.1007/978-3-540-39964-3_62 10.1007/s40095-022-00503-7 10.1016/j.ijhydene.2015.06.081 10.1016/j.ijhydene.2015.12.019 10.1016/j.ijhydene.2016.03.085 10.1016/j.enconman.2017.08.041 10.1126/science.aaa8415 10.1016/j.egyr.2020.11.249 10.1016/j.enconman.2023.117314 10.1016/j.ijhydene.2019.05.212 10.1016/j.est.2023.109289 10.1016/j.agwat.2019.105758 10.1016/j.energy.2021.122368 10.1016/j.ijhydene.2020.09.254 10.1109/ACCESS.2020.2996434 10.3390/en15010128 10.3390/technologies10020040 10.3390/rs12142271 10.1063/1.4897940 10.1016/j.enconman.2023.117664 10.1155/2023/9984961 10.1016/j.ijhydene.2015.01.169 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 GNUQQ HCIFZ JQ2 K7- KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/technologies12010006 |
DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2227-7080 |
ExternalDocumentID | oai_doaj_org_article_8dbaea57cc5c4cafa78edd2ccd71a6aa A780927953 10_3390_technologies12010006 |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KB. KC. KQ8 L6V M7S MODMG M~E OK1 P62 PDBOC PHGZM PHGZT PIMPY PROAC PTHSS PMFND 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ JQ2 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c379t-93d98bad80a6dde421d8206b7755826ef08572300f177425eae1fe042ce81da93 |
IEDL.DBID | DOA |
ISSN | 2227-7080 |
IngestDate | Wed Aug 27 01:21:47 EDT 2025 Fri Jul 25 12:07:54 EDT 2025 Tue Jun 10 21:01:25 EDT 2025 Tue Jul 01 02:00:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-93d98bad80a6dde421d8206b7755826ef08572300f177425eae1fe042ce81da93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5011-7934 0009-0009-1084-8658 |
OpenAccessLink | https://doaj.org/article/8dbaea57cc5c4cafa78edd2ccd71a6aa |
PQID | 2918793990 |
PQPubID | 2032323 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8dbaea57cc5c4cafa78edd2ccd71a6aa proquest_journals_2918793990 gale_infotracacademiconefile_A780927953 crossref_primary_10_3390_technologies12010006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Technologies (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bornapour (ref_7) 2017; 150 Fan (ref_32) 2019; 225 Liu (ref_30) 2022; 239 Zhao (ref_9) 2023; 297 Wang (ref_14) 2023; 2023 Li (ref_5) 2016; 41 Taghizadeh (ref_6) 2014; 6 ref_34 Rouhani (ref_10) 2013; 6 ref_33 Chen (ref_24) 2018; 43 ref_31 Shayan (ref_22) 2023; 14 (ref_11) 2020; 45 Lei (ref_12) 2020; 6 Shayan (ref_8) 2023; 74 Nair (ref_20) 2020; 8 ref_17 ref_16 ref_15 Guo (ref_25) 2015; 40 Wang (ref_28) 2021; 46 Radica (ref_13) 2023; 291 ref_23 Brka (ref_18) 2015; 40 ref_21 Jordan (ref_35) 2015; 349 ref_1 ref_3 ref_2 Brka (ref_19) 2016; 41 ref_29 ref_27 ref_26 ref_4 |
References_xml | – volume: 6 start-page: 4702 year: 2013 ident: ref_10 article-title: A comprehensive method for optimum sizing of hybrid energy systems using intelligence evolutionary algorithms publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2013/v6i6.3 – ident: ref_31 doi: 10.1145/2939672.2939785 – volume: 43 start-page: 2381 year: 2018 ident: ref_24 article-title: Design optimization for the hybrid power system of a green building publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.12.020 – ident: ref_3 – ident: ref_16 doi: 10.1109/IAS.2014.6978380 – ident: ref_26 – ident: ref_34 doi: 10.1007/978-3-540-39964-3_62 – volume: 14 start-page: 35 year: 2023 ident: ref_22 article-title: A novel approach of synchronization of the sustainable grid with an intelligent local hybrid renewable energy control publication-title: Int. J. Energy Environ. Eng. doi: 10.1007/s40095-022-00503-7 – volume: 40 start-page: 9907 year: 2015 ident: ref_18 article-title: Predictive power management strategies for stand-alone hydrogen systems: Lab-scale validation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.06.081 – volume: 41 start-page: 3038 year: 2016 ident: ref_5 article-title: The development of a sodium borohydride hydrogen generation system for proton exchange membrane fuel cell publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.12.019 – volume: 41 start-page: 6685 year: 2016 ident: ref_19 article-title: Predictive power management strategies for stand-alone hydrogen systems: Operational impact publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.085 – volume: 150 start-page: 725 year: 2017 ident: ref_7 article-title: Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.08.041 – volume: 349 start-page: 255 year: 2015 ident: ref_35 article-title: Machine learning: Trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 6 start-page: 3365 year: 2020 ident: ref_12 article-title: Power generation cost minimization of the grid-connected hybrid renewable energy system through optimal sizing using the modified seagull optimization technique publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.11.249 – ident: ref_1 – ident: ref_23 – volume: 291 start-page: 117314 year: 2023 ident: ref_13 article-title: The effect of components capacity loss on the performance of a hybrid PV/wind/battery/hydrogen stand-alone energy system publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2023.117314 – ident: ref_4 – volume: 45 start-page: 5512 year: 2020 ident: ref_11 article-title: Optimal sizing of a wind, fuel cell, electrolyzer, battery and supercapacitor system for off-grid applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.212 – ident: ref_29 – ident: ref_33 – ident: ref_27 – ident: ref_2 – volume: 74 start-page: 109289 year: 2023 ident: ref_8 article-title: Energy storage concentrates on solar air heaters with artificial S-shaped irregularity on the absorber plate publication-title: J. Energy Storage doi: 10.1016/j.est.2023.109289 – volume: 225 start-page: 105758 year: 2019 ident: ref_32 article-title: Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.105758 – volume: 239 start-page: 122368 year: 2022 ident: ref_30 article-title: Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm publication-title: Energy doi: 10.1016/j.energy.2021.122368 – volume: 46 start-page: 1174 year: 2021 ident: ref_28 article-title: Fuel-cell sharing for a distributed hybrid power system publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.09.254 – volume: 8 start-page: 97809 year: 2020 ident: ref_20 article-title: A model predictive control-based energy management scheme for hybrid storage system in islanded microgrids publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2996434 – ident: ref_17 doi: 10.3390/en15010128 – ident: ref_21 doi: 10.3390/technologies10020040 – ident: ref_15 doi: 10.3390/rs12142271 – volume: 6 start-page: 053121 year: 2014 ident: ref_6 article-title: Frequency control of a new topology in proton exchange membrane fuel cell/wind turbine/photovoltaic/ultra-capacitor/battery energy storage system based isolated networks by a novel intelligent controller publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.4897940 – volume: 297 start-page: 117664 year: 2023 ident: ref_9 article-title: Analysis of a hybrid system combining solar-assisted methanol reforming and fuel cell power generation publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2023.117664 – volume: 2023 start-page: 9984961 year: 2023 ident: ref_14 article-title: Superior Optimization for a Hybrid PEMFC Power System Employing Model Predictions publication-title: Int. J. Energy Res. doi: 10.1155/2023/9984961 – volume: 40 start-page: 4630 year: 2015 ident: ref_25 article-title: The development of a hybrid PEMFC power system publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.01.169 |
SSID | ssj0000913865 |
Score | 2.2430024 |
Snippet | This paper proposes extended-window algorithms for model prediction and applies them to optimize hybrid power systems. We consider a hybrid power system... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 6 |
SubjectTerms | Algorithms Alternative energy sources Artificial intelligence Back up systems Batch processes Costs Electricity distribution Energy consumption Energy resources Energy storage extended window fuel cell Fuel cells Genetic algorithms hybrid power Hybrid systems Hydrogen Hydrogen production Machine learning management Optimization Photovoltaic cells Power management prediction Prediction models Radiation Renewable resources Solar energy Solar radiation System effectiveness Wind power |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXWBAPEWhIA9ITBZJnMTOhApqVSFRKkRFN8uvwAANtEGIf89d6wIDsOahWHe-x3fOfUfIiealhcjiGcRTz1KRWmasAOBqUs6t4VJIbE6-HuT9UXo1zsah4DYLv1UufeLcUbvKYo38LClwLjaE0-j85ZXh1Cg8XQ0jNFZJE1ywlA3SvOgOhrdfVRZkvZR5tuiZ44Dvz-plxRqAaIxHwREOO_oRk-bU_X856HnU6W2SjZAu0s5Cv1tkxU-2yfoPEsEdctMNdWx2D_i6eqedpwdYeP34PKOQkVKcdvZEh1M8kUEt0JB40rqi_Q9s2KJDHJVGA3n5Lhn1uneXfRbGJDDLRVGzgrtCGu1kpHNwVmkSOyRlN0JkGYAHXyKJPSCNqIwh1wOVaB-XHozVekhWdcH3SGNSTfw-ofCyLVNvpDci9Zkr4FFuQM_a5FJy3SJsKSj1smDDUIAiULDqN8G2yAVK8-tZ5LKeX6imDyqYhpLOaK8zYW1mU6tLLaR3LrHWiVjnGj56irpQaHH1VFsdGgdgychdpTpCRkUiioy3SHupLhVMcaa-N87B_7cPyVoCGcuivtImjXr65o8g46jNcdhWn32r2g8 priority: 102 providerName: ProQuest |
Title | Extended-Window Algorithms for Model Prediction Applied to Hybrid Power Systems |
URI | https://www.proquest.com/docview/2918793990 https://doaj.org/article/8dbaea57cc5c4cafa78edd2ccd71a6aa |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFH7ovOhB_InTOXIQPBXbpl2S4yabQ3AOcegtJGmqB91kq4j_ve-1neygePFaUgjva_K-L-n7HsCZ4bnDzOIDzKc-SETiAusEClebcO4sl0JScfLNqDOcJNeP6eNKqy_6J6yyB64CdyEza7xJhXOpS5zJjZA-y2LnMhGZjimpEea8FTFV7sEqomaWVa0cR11_USxPqlGARnQFHFKTo5VcVFr2_7Yxl9lmsAPbNU1k3Wp6u7Dmp3uwtWIeuA-3_fr8OnhAXT37YN2XpxlK_efXBUMmyqjL2Qsbz-kmhqLPasLJihkbflKhFhtTizRWm5YfwGTQv78cBnV7hMBxoYpA8UxJazIZmg5uUkkcZWTGboVIUxQNPifzelQYYR4hx0MojI9yj4vUeSSpRvFDaExnU38EDF92eeKt9FYkPs0UDuUW8TW2IyU3TQiWgdJvlQuGRvVAgdU_BbYJPYrm91jysC4fILK6Rlb_hWwTzgkLTSutmBtn6oIBnDJ5VumukKGKhUp5E1pLuHS9BBc6VtRIHflXePwfszmBzRj5THX60oJGMX_3p8hHCtuGdTm4asNGrz8a37XLD_ELiALm7Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hOFAOVQutWKDFh1acLJI4iZ1DVW0L26U8ygFUbq5fgQPdwG4Q4k_1N3YmD-BAe-MaO0oyM_Z8M858A_DBiNKhZwkc_WngqUwdt05i4GpTIZwVSioqTj48ysen6fez7GwO_vS1MPRbZb8nNhu1rxzlyLeTgvpiozuNPl9dc-oaRaerfQuN1iz2w90thmyzT3s7qN-PSTLaPfk65l1XAe6ELGpeCF8oa7yKTI5rO01iTxzmVsosQ6wdSuJ8R2AelTFCI_wCE-IyoG27gNjOEPkSbvkL-CkFBXtq9O0-p0McmyrP2go9HI-26z4_jmFvTAfPEbVWeuQBm0YB_3IHjY8bvYKXHThlw9aaXsNcmCzD0iPKwhX4sdtlzflPjOarWza8PEcx1Re_ZwzxL6PeapfseErnP6Rz1sFcVldsfEflYeyYGrOxjir9DZw-i_jewvykmoRVYHizK9NgVbAyDZkvcKqwaFXG5koJMwDeC0pftdwbGmMWEqx-SrAD-ELSvJ9LzNnNhWp6rruFqJW3JphMOpe51JnSSBW8T5zzMja5wYdukS40re96apzpyhTwlYkpSw-liopEFpkYwEavLt0t_Jl-MNO1_w9vwuL45PBAH-wd7a_DiwSxUpvZ2YD5enoT3iHWqe37xsAY_Hpui_4LCNAUug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAVEeYqEUH0CcrCZxEjsHhLbtrrYUlhWiojfjV8qhbMpuUNW_xq_rzMYpPQC3XvNQkvFnzzfjzDcAr4yoHXqWwNGfBp7L3HHrJAauNhfCWaGkouLkj7Nyepy_PylONuB3XwtDv1X2a-J6ofaNoxz5blZRX2x0p8luHX-LmB9M3p3_5NRBinZa-3YaHUSOwuUFhm-rt4cHONavs2wy_rI_5bHDAHdCVi2vhK-UNV4lpsR5nmepJz1zK2VRIO8ONem_I0lP6hRpEn6NCWkdEOcuIM8zJMSEy_-mpKhoAJt749n883WGhxQ3VVl09XpC4Iu3fbYcg-CUtqETarR0wx-u2wb8yzmsPd7kAdyPVJWNOmxtwUZYPIR7NwQMH8Gnccyh868Y2zcXbHR2ioZqv_9YMWTDjDqtnbH5knaDCAEskl7WNmx6ScVibE5t2lgUTn8Mx7diwCcwWDSL8BQY3uzqPFgVrMxD4Su8VFjEmLGlUsIMgfeG0uedEofGCIYMq_9m2CHskTWvryUd7fWBZnmq47TUylsTTCGdK1zuTG2kCt5nznmZmtLgQ9_QWGia7e3SOBOLFvCVSTdLj6RKqkxWhRjCdj9cOi4DK_0HtM_-f_ol3EE06w-Hs6PncDdD4tSlebZh0C5_hRdIfFq7ExHG4Nttg_oKMQIaTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extended-Window+Algorithms+for+Model+Prediction+Applied+to+Hybrid+Power+Systems&rft.jtitle=Technologies+%28Basel%29&rft.au=Wang%2C+Fu-Cheng&rft.au=Huang%2C+Hsiao-Tzu&rft.date=2024-01-01&rft.issn=2227-7080&rft.eissn=2227-7080&rft.volume=12&rft.issue=1&rft.spage=6&rft_id=info:doi/10.3390%2Ftechnologies12010006&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_technologies12010006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7080&client=summon |