Extracellular adenosine enhances pulmonary artery vasa vasorum endothelial cell barrier function via Gi/ELMO1/Rac1/PKA-dependent signaling mechanisms
The vasa vasorum (VV), the microvascular network around large vessels, has been recognized as an important contributor to the pathological vascular remodeling in cardiovascular diseases. In bovine and rat models of hypoxic pulmonary hypertension (PH), we have previously shown that chronic hypoxia pr...
Saved in:
Published in | American Journal of Physiology: Cell Physiology Vol. 319; no. 1; pp. C183 - C193 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
American Physiological Society
01.07.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | The vasa vasorum (VV), the microvascular network around large vessels, has been recognized as an important contributor to the pathological vascular remodeling in cardiovascular diseases. In bovine and rat models of hypoxic pulmonary hypertension (PH), we have previously shown that chronic hypoxia profoundly increased pulmonary artery (PA) VV permeability, associated with infiltration of inflammatory and progenitor cells in the arterial wall, perivascular inflammation, and structural vascular remodeling. Extracellular adenosine was shown to exhibit a barrier-protective effect on VV endothelial cells (VVEC) via cAMP-independent mechanisms, which involved adenosine A1 receptor-mediated activation of Gi-phosphoinositide 3-kinase-Akt pathway and actin cytoskeleton remodeling. Using VVEC isolated from the adventitia of calf PA, in this study we investigated in more detail the mechanisms linking Gi activation to downstream barrier protection pathways. Using a small-interference RNA (siRNA) technique and transendothelial electrical resistance assay, we found that the adaptor protein, engulfment and cell motility 1 (ELMO1), the tyrosine phosphatase Src homology region 2 domain-containing phosphatase-2, and atypical Gi- and Rac1-mediated protein kinase A activation are implicated in VVEC barrier enhancement. In contrast, the actin-interacting GTP-binding protein, girdin, and the p21-activated kinase 1 downstream target, LIM kinase, are not involved in this response. In addition, adenosine-dependent cytoskeletal rearrangement involves activation of cofilin and inactivation of ezrin-radixin-moesin regulatory cytoskeletal proteins, consistent with a barrier-protective mechanism. Collectively, our data indicate that targeting adenosine receptors and downstream barrier-protective pathways in VVEC may have a potential translational significance in developing pharmacological approach for the VV barrier protection in PH. |
---|---|
AbstractList | The vasa vasorum (VV), the microvascular network around large vessels, has been recognized as an important contributor to the pathological vascular remodeling in cardiovascular diseases. In bovine and rat models of hypoxic pulmonary hypertension (PH), we have previously shown that chronic hypoxia profoundly increased pulmonary artery (PA) VV permeability, associated with infiltration of inflammatory and progenitor cells in the arterial wall, perivascular inflammation, and structural vascular remodeling. Extracellular adenosine was shown to exhibit a barrier-protective effect on VV endothelial cells (VVEC) via cAMP-independent mechanisms, which involved adenosine A1 receptor-mediated activation of Gi-phosphoinositide 3-kinase-Akt pathway and actin cytoskeleton remodeling. Using VVEC isolated from the adventitia of calf PA, in this study we investigated in more detail the mechanisms linking Gi activation to downstream barrier protection pathways. Using a small-interference RNA (siRNA) technique and transendothelial electrical resistance assay, we found that the adaptor protein, engulfment and cell motility 1 (ELMO1), the tyrosine phosphatase Src homology region 2 domain-containing phosphatase-2, and atypical Gi- and Rac1-mediated protein kinase A activation are implicated in VVEC barrier enhancement. In contrast, the actin-interacting GTP-binding protein, girdin, and the p21-activated kinase 1 downstream target, LIM kinase, are not involved in this response. In addition, adenosine-dependent cytoskeletal rearrangement involves activation of cofilin and inactivation of ezrin-radixin-moesin regulatory cytoskeletal proteins, consistent with a barrier-protective mechanism. Collectively, our data indicate that targeting adenosine receptors and downstream barrier-protective pathways in VVEC may have a potential translational significance in developing pharmacological approach for the VV barrier protection in PH. |
Author | Strassheim, Derek Czikora, Istvan Batori, Robert Kovacs-Kasa, Anita Verin, Alexander D. Kumar, Sanjiv Karoor, Vijaya Cherian-Shaw, Mary Gerasimovskaya, Evgenia V. Stenmark, Kurt R. |
Author_xml | – sequence: 1 givenname: Alexander D. surname: Verin fullname: Verin, Alexander D. organization: Augusta University Vascular Biology Center, Augusta, Georgia – sequence: 2 givenname: Robert surname: Batori fullname: Batori, Robert organization: Augusta University Vascular Biology Center, Augusta, Georgia – sequence: 3 givenname: Anita surname: Kovacs-Kasa fullname: Kovacs-Kasa, Anita organization: Augusta University Vascular Biology Center, Augusta, Georgia – sequence: 4 givenname: Mary surname: Cherian-Shaw fullname: Cherian-Shaw, Mary organization: Augusta University Vascular Biology Center, Augusta, Georgia – sequence: 5 givenname: Sanjiv surname: Kumar fullname: Kumar, Sanjiv organization: Augusta University Vascular Biology Center, Augusta, Georgia – sequence: 6 givenname: Istvan surname: Czikora fullname: Czikora, Istvan organization: Augusta University Vascular Biology Center, Augusta, Georgia – sequence: 7 givenname: Vijaya surname: Karoor fullname: Karoor, Vijaya organization: Department of Medicine, University of Colorado Denver, Aurora, Colorado – sequence: 8 givenname: Derek surname: Strassheim fullname: Strassheim, Derek organization: Department of Medicine, University of Colorado Denver, Aurora, Colorado – sequence: 9 givenname: Kurt R. surname: Stenmark fullname: Stenmark, Kurt R. organization: Department of Pediatrics, University of Colorado Denver, Aurora, Colorado – sequence: 10 givenname: Evgenia V. surname: Gerasimovskaya fullname: Gerasimovskaya, Evgenia V. organization: Department of Pediatrics, University of Colorado Denver, Aurora, Colorado |
BookMark | eNpVkU1v1DAQhi1URLeFP8DJRy7Z9XeSC1JVbT_EoiIEZ2viTHZdJfZiJyv4IfxfErpC4jJzmHee-XivyEWIAQl5z9macy028Hx02PdrxjTTa8F4_Yqs5oIouDbygqyYNLIwXMlLcpXzM2NMCVO_IZdSKClqoVfk9_bnmGDBTD0kCi2GmH1AiuEAwWGmx6kfYoD0i0IacU4nyLCEmKZhlrVxPGDvoacLhTaQksdEuym40cdATx7ovd9sd5-f-OYrOL758ummaPE4t2IYafb7AL0Pezqgm2f6POS35HUHfcZ353xNvt9tv90-FLun-8fbm13hZFmPRVVhK1gNZdmUxhlwsjFad01dGdehKQUIpSQ6zTqUlVbcdaLmteJYVrxjIK_JxxfucWoGbN28T4LeHpMf5oNtBG__rwR_sPt4sqUyVVXVM-DDGZDijwnzaAeflz9AwDhlKxTTUvJKsVkqXqQuxZwTdv_GcGYXP-3ZT_vXT7v4Kf8ARziZvw |
CitedBy_id | crossref_primary_10_1016_j_jtct_2023_03_020 crossref_primary_10_1152_ajplung_00346_2023 crossref_primary_10_3390_ijms21186855 crossref_primary_10_3390_antiox10060904 crossref_primary_10_1152_physrev_00030_2021 crossref_primary_10_1016_j_mvr_2023_104479 crossref_primary_10_1126_sciadv_abl6364 |
Cites_doi | 10.1042/BST0330646 10.1002/jcp.26419 10.1038/srep39018 10.1002/jcp.1041630311 10.1161/CIRCULATIONAHA.116.021311 10.4161/21688370.2014.974448 10.1007/s10456-007-9087-8 10.1038/ncomms2680 10.1038/ncb1101-1009 10.1074/jbc.M600987200 10.1016/j.vph.2017.08.003 10.1016/j.it.2003.11.003 10.1074/jbc.M405957200 10.1146/annurev-physiol-021909-135833 10.1016/j.cellsig.2004.08.006 10.1091/mbc.e17-03-0136 10.1161/01.ATV.21.2.249 10.1016/j.pharmthera.2013.06.002 10.1016/S0021-9258(17)36652-8 10.1002/cphy.c100006 10.1002/jcb.20829 10.1016/j.ajpath.2012.06.018 10.2353/ajpath.2006.050754 10.1097/00001721-199402000-00010 10.1146/annurev.pharmtox.41.1.775 10.1007/s10456-011-9234-0 10.1152/ajpheart.1992.262.3.H771 10.1074/jbc.M114.576827 10.1016/S0163-7258(03)00084-6 10.3389/fcvm.2018.00124 10.1164/rccm.201808-1518OC 10.1152/ajplung.90591.2008 10.1073/pnas.1215902110 10.4049/jimmunol.1100479 10.1016/j.redox.2017.02.023 10.1152/ajplung.00330.2009 10.1080/21688370.2017.1414015 10.1016/j.ejphar.2014.07.012 10.1016/j.mvr.2013.05.003 10.1097/FJC.0000000000000305 10.1016/S0898-6568(01)00235-2 10.1152/ajplung.00244.2013 10.3389/fimmu.2018.00706 10.4049/jimmunol.1000433 10.1152/ajpregu.00253.2007 10.1124/jpet.110.166884 10.1371/journal.pone.0059733 10.1159/000316935 10.1016/j.mvr.2009.11.006 10.1016/j.vph.2009.12.008 10.1074/jbc.M114.633701 10.1146/annurev-physiol-030212-183802 10.1161/ATVBAHA.114.303890 10.1016/j.bbrc.2015.04.012 10.1016/S1537-1891(03)00008-9 10.1073/pnas.1503779112 10.1161/01.RES.0000175561.55761.69 10.1152/ajplung.00355.2012 10.1002/jcp.21913 10.1073/pnas.1009395108 10.1161/01.RES.0000245189.21703.c0 10.1038/onc.2013.320 10.1038/onc.2013.198 10.1016/j.devcel.2011.10.023 10.1161/01.RES.0000195611.59811.ab 10.1016/j.pharmthera.2005.04.013 10.1002/jcp.22894 10.1161/CIRCRESAHA.108.193367 10.1158/0008-5472.CAN-05-2700 10.1084/jem.20040915 10.1074/jbc.M117.780304 10.1182/blood-2007-10-117044 10.1002/jcp.21354 10.1016/S0962-8924(99)01558-5 10.1002/mc.22450 10.1152/ajplung.00343.2005 10.1517/13543784.2011.627853 10.1016/j.mvr.2009.11.007 10.1182/blood-2004-05-1987 10.4161/sgtp.27281 10.1002/jcp.26281 10.1002/jcp.22029 10.1038/onc.2015.240 10.1152/physrev.00012.2005 10.1152/ajplung.00433.2010 10.1016/j.ejphar.2006.11.008 10.1016/j.mvr.2011.05.004 10.14814/phy2.12175 10.1152/ajplung.1997.272.2.L353 10.1016/j.cellsig.2012.11.001 10.1172/JCI12450 10.1074/jbc.M005066200 10.1161/CIRCULATIONAHA.113.007189 10.1096/fj.06-7660com 10.1074/jbc.M306896200 10.3109/10623320009072215 10.1196/annals.1420.016 10.1074/jbc.M706815200 10.1165/rcmb.2013-0489OC |
ContentType | Journal Article |
Copyright | Copyright © 2020 the American Physiological Society 2020 American Physiological Society |
Copyright_xml | – notice: Copyright © 2020 the American Physiological Society 2020 American Physiological Society |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1152/ajpcell.00505.2019 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
DocumentTitleAlternate | VVEC BARRIER REGULATION |
EISSN | 1522-1563 |
EndPage | C193 |
ExternalDocumentID | 10_1152_ajpcell_00505_2019 |
GrantInformation_xml | – fundername: ; ; grantid: 00161; 35210753 – fundername: ; grantid: HL101902; HL101902 |
GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 85S AAFWJ AAYXX ABJNI ACGFS ACPRK ADBBV AENEX AIZTS ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP BTFSW CITATION DIK E3Z EBS EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHF RHI RPL RPRKH TR2 W8F WH7 WOQ XSW YSK ~02 7X8 5PM |
ID | FETCH-LOGICAL-c379t-88ed209a77b76c6ac3b655fb986cfe672a2443ec50fe38541cf291941e781f0a3 |
ISSN | 0363-6143 |
IngestDate | Tue Sep 17 21:21:51 EDT 2024 Fri Oct 25 08:36:01 EDT 2024 Thu Sep 12 19:34:03 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c379t-88ed209a77b76c6ac3b655fb986cfe672a2443ec50fe38541cf291941e781f0a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468889 |
PMID | 32432925 |
PQID | 2405331840 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7468889 proquest_miscellaneous_2405331840 crossref_primary_10_1152_ajpcell_00505_2019 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD |
PublicationTitle | American Journal of Physiology: Cell Physiology |
PublicationYear | 2020 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B21 B22 B23 B24 B25 B26 B28 B29 Fredholm BB (B27) 2001; 53 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B100 B60 B61 B62 B63 B64 B65 B66 B67 B68 B69 B70 B71 B72 B73 B74 B75 B76 B77 B78 B79 Butt E (B15) 1994; 269 B80 B81 B82 B83 B84 B85 B86 B87 B88 B89 B90 B91 B92 B93 B94 B95 B96 B97 B10 B98 B11 B99 B12 B13 B14 B16 B17 B18 B19 |
References_xml | – ident: B66 doi: 10.1042/BST0330646 – ident: B5 doi: 10.1002/jcp.26419 – ident: B48 doi: 10.1038/srep39018 – ident: B28 doi: 10.1002/jcp.1041630311 – ident: B54 doi: 10.1161/CIRCULATIONAHA.116.021311 – ident: B40 doi: 10.4161/21688370.2014.974448 – ident: B30 doi: 10.1007/s10456-007-9087-8 – ident: B50 doi: 10.1038/ncomms2680 – ident: B73 doi: 10.1038/ncb1101-1009 – ident: B20 doi: 10.1074/jbc.M600987200 – ident: B13 doi: 10.1016/j.vph.2017.08.003 – ident: B35 doi: 10.1016/j.it.2003.11.003 – ident: B96 doi: 10.1074/jbc.M405957200 – ident: B46 doi: 10.1146/annurev-physiol-021909-135833 – ident: B57 doi: 10.1016/j.cellsig.2004.08.006 – ident: B71 doi: 10.1091/mbc.e17-03-0136 – ident: B24 doi: 10.1161/01.ATV.21.2.249 – ident: B36 doi: 10.1016/j.pharmthera.2013.06.002 – volume: 269 start-page: 14509 year: 1994 ident: B15 publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)36652-8 contributor: fullname: Butt E – ident: B93 doi: 10.1002/cphy.c100006 – ident: B86 doi: 10.1002/jcb.20829 – ident: B72 doi: 10.1016/j.ajpath.2012.06.018 – ident: B21 doi: 10.2353/ajpath.2006.050754 – ident: B67 doi: 10.1097/00001721-199402000-00010 – ident: B53 doi: 10.1146/annurev.pharmtox.41.1.775 – ident: B99 doi: 10.1007/s10456-011-9234-0 – ident: B69 doi: 10.1152/ajpheart.1992.262.3.H771 – ident: B83 doi: 10.1074/jbc.M114.576827 – volume: 53 start-page: 527 year: 2001 ident: B27 publication-title: Pharmacol Rev contributor: fullname: Fredholm BB – ident: B59 doi: 10.1016/S0163-7258(03)00084-6 – ident: B6 doi: 10.3389/fcvm.2018.00124 – ident: B23 doi: 10.1164/rccm.201808-1518OC – ident: B14 doi: 10.1152/ajplung.90591.2008 – ident: B4 doi: 10.1073/pnas.1215902110 – ident: B51 doi: 10.4049/jimmunol.1100479 – ident: B16 doi: 10.1016/j.redox.2017.02.023 – ident: B55 doi: 10.1152/ajplung.00330.2009 – ident: B32 doi: 10.1080/21688370.2017.1414015 – ident: B94 doi: 10.1016/j.ejphar.2014.07.012 – ident: B41 doi: 10.1016/j.mvr.2013.05.003 – ident: B78 doi: 10.1097/FJC.0000000000000305 – ident: B43 doi: 10.1016/S0898-6568(01)00235-2 – ident: B64 doi: 10.1152/ajplung.00244.2013 – ident: B77 doi: 10.3389/fimmu.2018.00706 – ident: B63 doi: 10.4049/jimmunol.1000433 – ident: B79 doi: 10.1152/ajpregu.00253.2007 – ident: B65 doi: 10.1124/jpet.110.166884 – ident: B91 doi: 10.1371/journal.pone.0059733 – ident: B98 doi: 10.1159/000316935 – ident: B97 doi: 10.1016/j.mvr.2009.11.006 – ident: B89 doi: 10.1016/j.vph.2009.12.008 – ident: B76 doi: 10.1074/jbc.M114.633701 – ident: B82 doi: 10.1146/annurev-physiol-030212-183802 – ident: B44 doi: 10.1161/ATVBAHA.114.303890 – ident: B38 doi: 10.1016/j.bbrc.2015.04.012 – ident: B95 doi: 10.1016/S1537-1891(03)00008-9 – ident: B52 doi: 10.1073/pnas.1503779112 – ident: B45 doi: 10.1161/01.RES.0000175561.55761.69 – ident: B1 doi: 10.1152/ajplung.00355.2012 – ident: B10 doi: 10.1002/jcp.21913 – ident: B56 doi: 10.1073/pnas.1009395108 – ident: B33 doi: 10.1161/01.RES.0000245189.21703.c0 – ident: B70 doi: 10.1038/onc.2013.320 – ident: B26 doi: 10.1038/onc.2013.198 – ident: B85 doi: 10.1016/j.devcel.2011.10.023 – ident: B22 doi: 10.1161/01.RES.0000195611.59811.ab – ident: B11 doi: 10.1016/j.pharmthera.2005.04.013 – ident: B42 doi: 10.1002/jcp.22894 – ident: B81 doi: 10.1161/CIRCRESAHA.108.193367 – ident: B84 doi: 10.1158/0008-5472.CAN-05-2700 – ident: B88 doi: 10.1084/jem.20040915 – ident: B37 doi: 10.1074/jbc.M117.780304 – ident: B25 doi: 10.1182/blood-2007-10-117044 – ident: B9 doi: 10.1002/jcp.21354 – ident: B18 doi: 10.1016/S0962-8924(99)01558-5 – ident: B80 doi: 10.1002/mc.22450 – ident: B39 doi: 10.1152/ajplung.00343.2005 – ident: B31 doi: 10.1517/13543784.2011.627853 – ident: B8 doi: 10.1016/j.mvr.2009.11.007 – ident: B19 doi: 10.1182/blood-2004-05-1987 – ident: B3 doi: 10.4161/sgtp.27281 – ident: B49 doi: 10.1002/jcp.26281 – ident: B90 doi: 10.1002/jcp.22029 – ident: B12 doi: 10.1038/onc.2015.240 – ident: B58 doi: 10.1152/physrev.00012.2005 – ident: B75 doi: 10.1152/ajplung.00433.2010 – ident: B100 doi: 10.1016/j.ejphar.2006.11.008 – ident: B87 doi: 10.1016/j.mvr.2011.05.004 – ident: B2 doi: 10.14814/phy2.12175 – ident: B62 doi: 10.1152/ajplung.1997.272.2.L353 – ident: B60 doi: 10.1016/j.cellsig.2012.11.001 – ident: B29 doi: 10.1172/JCI12450 – ident: B34 doi: 10.1074/jbc.M005066200 – ident: B61 doi: 10.1161/CIRCULATIONAHA.113.007189 – ident: B7 doi: 10.1096/fj.06-7660com – ident: B74 doi: 10.1074/jbc.M306896200 – ident: B68 doi: 10.3109/10623320009072215 – ident: B92 doi: 10.1196/annals.1420.016 – ident: B47 doi: 10.1074/jbc.M706815200 – ident: B17 doi: 10.1165/rcmb.2013-0489OC |
SSID | ssj0004269 |
Score | 2.4187162 |
Snippet | The vasa vasorum (VV), the microvascular network around large vessels, has been recognized as an important contributor to the pathological vascular remodeling... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database |
StartPage | C183 |
Title | Extracellular adenosine enhances pulmonary artery vasa vasorum endothelial cell barrier function via Gi/ELMO1/Rac1/PKA-dependent signaling mechanisms |
URI | https://search.proquest.com/docview/2405331840 https://pubmed.ncbi.nlm.nih.gov/PMC7468889 |
Volume | 319 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2FIiReELQgwk2LhHix3Pi2vjyGKG1F0hZQgvJmrddr1VXrRIkTEf6D7-HXmFnfVR4KL5vIjla2z8nszvjMDCEfXM5iO2CWLlnCdEeYXOex48EgmRElsANRJYXOL9yzufN5wRa93u-WammbR8fi51_zSv4HVTgGuGKW7D8gW08KB-A74AsjIAzjvTAe_8jXHEPvSksKN54tUcauyewKwdxoq-0NXAwK45R0c6_t-IbjgCUY4Gcx5l_dYNAcZ9EivlYN7HCxU7zYpVw7xQscT88v0eZ94wI_vkyGetU-N9dQA8JVWvutxETidFOWQK-q21ZvhVq7X6U8LTJl7KE2UhHE-lDFgu-Ym9hJw2kEyp8wWpA24vB65VjuuNjoE7jRQrCZ5o0YCZMdeaZjv_gyUWnfDnuAj1tJZGHVKk01uNHgfdptW26X9rdN2sIyj8yiYU65yo_MojHj3RWEYUVafr3C536sGv2hADBo1stKI3BxGZ7Mp9NwNl7MHpCHFlg6NLGTr61y9ZYbVJlazBrcnbW7G2pcnK5At7XjmT0lT0qw6LDg3TPSk9khORpm8OBv9_QjbfA6JI-Knqb7I_KrQ0pak5JWpKQ1KWlBSoqkpCUpaYuUFGehJSlpRUoKpKSn6UBRcoCEHHToSGs60oaOz8n8ZDwbnell7w9d2F6Q674vY8sIuOdFnitcLuzIZSyJAt8ViXQ9i8O-1JaCGYm0feaYIrECM3BM6flmYnD7BTnIlpl8SWjCPcvBsJ1hCHAOTD9OTO5akeCMR4ll9olWYRCuihIvoXKNmRWWiIUKsRAR65P3FUwhWGI8yzO53G5C2BuD74QRkz7xOvjV02It9-6ZLL1SNd09x_V9P3h1j9lfk8fNH-INOcjXW_kWdsZ59E6x7w_IJ8bU |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+adenosine+enhances+pulmonary+artery+vasa+vasorum+endothelial+cell+barrier+function+via+Gi%2FELMO1%2FRac1%2FPKA-dependent+signaling+mechanisms&rft.jtitle=American+Journal+of+Physiology%3A+Cell+Physiology&rft.au=Verin%2C+Alexander+D&rft.au=Batori%2C+Robert&rft.au=Kovacs-Kasa%2C+Anita&rft.au=Cherian-Shaw%2C+Mary&rft.date=2020-07-01&rft.eissn=1522-1563&rft.volume=319&rft.issue=1&rft.spage=C183&rft.epage=C193&rft_id=info:doi/10.1152%2Fajpcell.00505.2019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6143&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6143&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6143&client=summon |