CME Arrival Time Prediction Using Convolutional Neural Network
Fast and accurate prediction of the arrival time of coronal mass ejections (CMEs) at Earth is vital to minimize hazards caused by CMEs. In this paper, we use a deep-learning framework, i.e., a convolutional neural network (CNN) regression model, to analyze transit times from the Sun to Earth of 223...
Saved in:
Published in | The Astrophysical journal Vol. 881; no. 1; pp. 15 - 24 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
10.08.2019
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fast and accurate prediction of the arrival time of coronal mass ejections (CMEs) at Earth is vital to minimize hazards caused by CMEs. In this paper, we use a deep-learning framework, i.e., a convolutional neural network (CNN) regression model, to analyze transit times from the Sun to Earth of 223 geoeffective CME events observed in the past 30 yr. 90% of them were used to build the prediction model, and the rest 10% have been used for test purpose. Unlike previous studies on this topic, our proposed CNN regression model does not require manually selected features for model training, it does not need time spent on feature collection, and it can deliver predictions without deeper expert knowledge. The only input to our CNN regression model is the instances of the white-light observations of CMEs. The mean absolute error of the constructed CNN regression model is about 12.4 hr, which is comparable to the average performance of the previous studies on this subject. As more CME data become available, we expect the CNN regression model will reveal better results. |
---|---|
AbstractList | Fast and accurate prediction of the arrival time of coronal mass ejections (CMEs) at Earth is vital to minimize hazards caused by CMEs. In this paper, we use a deep-learning framework, i.e., a convolutional neural network (CNN) regression model, to analyze transit times from the Sun to Earth of 223 geoeffective CME events observed in the past 30 yr. 90% of them were used to build the prediction model, and the rest 10% have been used for test purpose. Unlike previous studies on this topic, our proposed CNN regression model does not require manually selected features for model training, it does not need time spent on feature collection, and it can deliver predictions without deeper expert knowledge. The only input to our CNN regression model is the instances of the white-light observations of CMEs. The mean absolute error of the constructed CNN regression model is about 12.4 hr, which is comparable to the average performance of the previous studies on this subject. As more CME data become available, we expect the CNN regression model will reveal better results. |
Author | Wang, Yimin Erdélyi, Robert Liu, Jiajia Jiang, Ye |
Author_xml | – sequence: 1 givenname: Yimin orcidid: 0000-0002-8835-3825 surname: Wang fullname: Wang, Yimin organization: University of Jinan School of Electrical Engineering, Jinan 250022, People's Republic of China – sequence: 2 givenname: Jiajia orcidid: 0000-0003-2569-1840 surname: Liu fullname: Liu, Jiajia email: jj.liu@sheffield.ac.uk organization: The University of Sheffield Solar Physics and Space Plasma Research Center (SP2RC), School of Mathematics and Statistics , Sheffield S3 7RH, UK – sequence: 3 givenname: Ye orcidid: 0000-0002-6683-0205 surname: Jiang fullname: Jiang, Ye organization: The University of Sheffield Department of Computer Science, Sheffield S1 4DP, UK – sequence: 4 givenname: Robert orcidid: 0000-0003-3439-4127 surname: Erdélyi fullname: Erdélyi, Robert organization: Eötvös Loránd University Department of Astronomy, Budapest, Pázmány P. sétány 1/A, H-1117, Hungary |
BookMark | eNp9kN1LwzAUxYNMcJu--1jQR-uapvnoizDK_ID58bCBbyFpE8nsmpq0E_97WysKIuM-XO7hdy6HMwGjylYKgFMYXSKW0BnEiIUJwnQmZCyROgDjH2kExlEUJSFB9PkITLzf9GecpmNwld0vgrlzZifKYGW2KnhyqjB5Y2wVrL2pXoLMVjtbtr3SMQ-qdV-rebfu9RgcalF6dfK9p2B9vVhlt-Hy8eYumy_DHNG0CRmVFBc6ZppJhHUCNYsh0ypOsYRSRLhQkSAyJRCLJKaUaYpzTQqpBCUSKjQFZ8Pf2tm3VvmGb2zrujyex4hgShElSUeRgcqd9d4pzXPTiD5444QpOYx43xXvi-F9MXzoqjNGf4y1M1vhPvZZLgaLsfVvmD34-T-4qDecMci7wbwuNPoEwZWIvQ |
CitedBy_id | crossref_primary_10_3847_1538_4357_ace62d crossref_primary_10_1016_j_chinastron_2020_11_006 crossref_primary_10_1029_2022SW003160 crossref_primary_10_1007_s10489_021_02663_1 crossref_primary_10_1051_swsc_2021025 crossref_primary_10_3847_1538_4357_ad82e5 crossref_primary_10_3847_1538_4365_ad1f5d crossref_primary_10_3847_1538_4357_ad1cee crossref_primary_10_3847_1538_4365_ad7eb9 crossref_primary_10_1007_s13042_022_01734_0 crossref_primary_10_1007_s11207_024_02385_w crossref_primary_10_34133_2022_9852185 crossref_primary_10_3847_1538_4357_ab8fa2 crossref_primary_10_3847_1538_4357_adafa0 crossref_primary_10_3847_2041_8213_ab9d7a crossref_primary_10_3390_universe10080321 crossref_primary_10_1038_s41550_021_01310_6 crossref_primary_10_3847_2041_8213_ad0c4a crossref_primary_10_3847_1538_4357_ac7962 crossref_primary_10_3847_1538_4365_acf218 crossref_primary_10_1007_s11430_023_1375_2 crossref_primary_10_3389_fspas_2022_1013345 crossref_primary_10_1088_1674_4527_21_8_190 crossref_primary_10_1360_N072023_0208 crossref_primary_10_3847_1538_4365_ad6f98 crossref_primary_10_1016_j_buildenv_2024_112246 crossref_primary_10_1029_2022SW003165 crossref_primary_10_1051_swsc_2023032 crossref_primary_10_3847_1538_4365_ad2dea crossref_primary_10_3390_rs13091738 |
Cites_doi | 10.1029/2001JA000177 10.1111/j.2517-6161.1974.tb00994.x 10.1007/s11207-017-1099-y 10.1029/2003JA010300 10.1002/2014SW001060 10.1029/2002JA009244 10.1088/1674-4527/13/9/010 10.1029/2012GL053625 10.1023/A:1011833114104 10.1029/2009JA014332 10.1023/A:1022627411411 10.1029/2008JA013499 10.1007/s11207-010-9568-6 10.1029/2007JA012321 10.1029/2002GL014865 10.1093/mnras/stv2782 10.1029/1999GL003639 10.1029/96JA00511 10.1007/s11207-016-0971-5 10.1029/2006JA011904 10.1029/2018SW001955 10.1162/neco.2006.18.7.1527 10.1007/s11207-008-9126-7 10.1029/98GL00704 10.1007/BF00733434 10.1029/1999JA900477 10.1016/j.jeconom.2015.02.006 10.3847/0004-637X/821/2/127 10.1029/1999JA000275 10.1029/2011JA017220 10.3847/1538-4357/aaae00 10.1007/s11038-008-9282-7 10.1029/91JA00316 10.1002/jgra.50156 10.1016/j.jcp.2011.02.006 10.5194/angeo-23-1033-2005 10.1086/344611 10.1007/s11207-009-9486-7 10.3847/1538-4357/aaae69 10.1109/5.726791 10.1007/s11207-012-0035-4 10.1007/s11207-012-0161-z |
ContentType | Journal Article |
Copyright | 2019. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Aug 10, 2019 |
Copyright_xml | – notice: 2019. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Aug 10, 2019 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/ab2b3e |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | CME Arrival Time Prediction Using Convolutional Neural Network |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_ab2b3e apjab2b3e |
GrantInformation_xml | – fundername: STFC grantid: ST/M000826/1 – fundername: MSRC Visiting Research Fellow Peogram grantid: N/A |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c379t-87b75df28f8b35f41f8218fe295b1ba05de0a6b9615a42778f75cf6dbea76b1e3 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Wed Aug 13 09:38:50 EDT 2025 Thu Apr 24 23:13:49 EDT 2025 Tue Jul 01 03:24:07 EDT 2025 Wed Aug 21 03:33:08 EDT 2024 Thu Jan 07 13:53:42 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-87b75df28f8b35f41f8218fe295b1ba05de0a6b9615a42778f75cf6dbea76b1e3 |
Notes | AAS15336 The Sun and the Heliosphere ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2569-1840 0000-0002-6683-0205 0000-0003-3439-4127 0000-0002-8835-3825 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/ab2b3e/pdf |
PQID | 2365773764 |
PQPubID | 4562441 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_3847_1538_4357_ab2b3e crossref_primary_10_3847_1538_4357_ab2b3e iop_journals_10_3847_1538_4357_ab2b3e proquest_journals_2365773764 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-10 |
PublicationDateYYYYMMDD | 2019-08-10 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2019 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Bengio (apjab2b3ebib2) 2012 Michalek (apjab2b3ebib30) 2008; 248 Vršnak (apjab2b3ebib45) 2001; 202 Zhao (apjab2b3ebib54) 2014; 12 Boureau (apjab2b3ebib4) 2010 Subramanian (apjab2b3ebib40) 2012; 39 Gopalswamy (apjab2b3ebib12) 2001; 106 Sudar (apjab2b3ebib41) 2016; 456 Huang (apjab2b3ebib17) 2018; 856 Vandas (apjab2b3ebib44) 1996; 101 Feng (apjab2b3ebib10) 2009; 114 Liu (apjab2b3ebib26) 2012; 117 Chollet (apjab2b3ebib8) 2015 Richardson (apjab2b3ebib35) 2010; 264 Gosling (apjab2b3ebib14) 1991; 96 Schwenn (apjab2b3ebib37) 2005; 23 Brueckner (apjab2b3ebib6) 1995; 162 Lecun (apjab2b3ebib22) 1998; 86 Li (apjab2b3ebib23) 2018 McGregor (apjab2b3ebib29) 2017 Brueckner (apjab2b3ebib5) 1998; 25 Kohavi (apjab2b3ebib21) 1995 Tóth (apjab2b3ebib43) 2012; 231 Zhang (apjab2b3ebib51) 2003; 582 Kim (apjab2b3ebib19) 2007; 112 Zhang (apjab2b3ebib52) 2007; 112 Chi (apjab2b3ebib7) 2016; 291 Manoharan (apjab2b3ebib28) 2004; 109 Wang (apjab2b3ebib47) 2012 Liu (apjab2b3ebib27) 2018; 855 Szegedy (apjab2b3ebib42) 2016 Li (apjab2b3ebib24) 2013; 13 Shen (apjab2b3ebib38) 2013; 282 Vršnak (apjab2b3ebib46) 2013; 285 Stone (apjab2b3ebib55) 1974; 36 Riley (apjab2b3ebib36) 2013; 118 Cortes (apjab2b3ebib9) 1995; 20 Webb (apjab2b3ebib49) 2000; 105 Song (apjab2b3ebib39) 2010; 261 Nair (apjab2b3ebib33) 2010 Kingma (apjab2b3ebib20) 2017 Wang (apjab2b3ebib48) 2002; 107 Bobra (apjab2b3ebib3) 2016; 821 Hinton (apjab2b3ebib16) 2006; 18 Ioffe (apjab2b3ebib18) 2015 Qin (apjab2b3ebib34) 2009; 114 Yang (apjab2b3ebib50) 2018; 16 Lin (apjab2b3ebib25) 2000; 105 Gopalswamy (apjab2b3ebib13) 2009; 104 Gopalswamy (apjab2b3ebib11) 2000; 27 Zhang (apjab2b3ebib53) 2015; 187 Hess (apjab2b3ebib15) 2017; 292 Moon (apjab2b3ebib31) 2002; 29 |
References_xml | – volume: 106 start-page: 29207 year: 2001 ident: apjab2b3ebib12 publication-title: JGRA doi: 10.1029/2001JA000177 – volume: 36 start-page: 111 year: 1974 ident: apjab2b3ebib55 publication-title: StMet doi: 10.1111/j.2517-6161.1974.tb00994.x – volume: 292 start-page: 80 year: 2017 ident: apjab2b3ebib15 publication-title: SoPh doi: 10.1007/s11207-017-1099-y – volume: 109 year: 2004 ident: apjab2b3ebib28 publication-title: JGRA doi: 10.1029/2003JA010300 – volume: 12 start-page: 448 year: 2014 ident: apjab2b3ebib54 publication-title: SpWea doi: 10.1002/2014SW001060 – volume: 107 start-page: 1340 year: 2002 ident: apjab2b3ebib48 publication-title: JGRA doi: 10.1029/2002JA009244 – volume: 13 start-page: 1118 year: 2013 ident: apjab2b3ebib24 publication-title: RAA doi: 10.1088/1674-4527/13/9/010 – volume: 39 start-page: 19 year: 2012 ident: apjab2b3ebib40 publication-title: GeoRL doi: 10.1029/2012GL053625 – volume: 202 start-page: 173 year: 2001 ident: apjab2b3ebib45 publication-title: SoPh doi: 10.1023/A:1011833114104 – start-page: 5 year: 2017 ident: apjab2b3ebib29 – volume: 114 year: 2009 ident: apjab2b3ebib34 publication-title: JGRA doi: 10.1029/2009JA014332 – year: 2015 ident: apjab2b3ebib18 – year: 2017 ident: apjab2b3ebib20 – volume: 20 start-page: 273 year: 1995 ident: apjab2b3ebib9 publication-title: Machine Learning doi: 10.1023/A:1022627411411 – volume: 114 start-page: A1 year: 2009 ident: apjab2b3ebib10 publication-title: JGRA doi: 10.1029/2008JA013499 – volume: 264 start-page: 189 year: 2010 ident: apjab2b3ebib35 publication-title: SoPh doi: 10.1007/s11207-010-9568-6 – volume: 112 start-page: A10 year: 2007 ident: apjab2b3ebib52 publication-title: JGRA doi: 10.1029/2007JA012321 – volume: 29 start-page: 28 year: 2002 ident: apjab2b3ebib31 publication-title: GeoRL doi: 10.1029/2002GL014865 – start-page: 111 year: 2010 ident: apjab2b3ebib4 – volume: 456 start-page: 1542 year: 2016 ident: apjab2b3ebib41 publication-title: MNRAS doi: 10.1093/mnras/stv2782 – volume: 27 start-page: 145 year: 2000 ident: apjab2b3ebib11 publication-title: GeoRL doi: 10.1029/1999GL003639 – volume: 101 start-page: 15645 year: 1996 ident: apjab2b3ebib44 publication-title: JGRA doi: 10.1029/96JA00511 – start-page: 807 year: 2010 ident: apjab2b3ebib33 – volume: 291 start-page: 2419 year: 2016 ident: apjab2b3ebib7 publication-title: SoPh doi: 10.1007/s11207-016-0971-5 – volume: 112 start-page: A5 year: 2007 ident: apjab2b3ebib19 publication-title: JGRA doi: 10.1029/2006JA011904 – start-page: 1137 year: 1995 ident: apjab2b3ebib21 – volume: 16 start-page: 1227 year: 2018 ident: apjab2b3ebib50 publication-title: SpWea doi: 10.1029/2018SW001955 – volume: 18 start-page: 1527 year: 2006 ident: apjab2b3ebib16 publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 248 start-page: 113 year: 2008 ident: apjab2b3ebib30 publication-title: SoPh doi: 10.1007/s11207-008-9126-7 – volume: 25 start-page: 3019 year: 1998 ident: apjab2b3ebib5 publication-title: GeoRL doi: 10.1029/98GL00704 – volume: 162 start-page: 357 year: 1995 ident: apjab2b3ebib6 publication-title: SoPh doi: 10.1007/BF00733434 – volume: 105 start-page: 2375 year: 2000 ident: apjab2b3ebib25 publication-title: JGR doi: 10.1029/1999JA900477 – volume: 187 start-page: 95 year: 2015 ident: apjab2b3ebib53 publication-title: J. Econometrics doi: 10.1016/j.jeconom.2015.02.006 – volume: 821 start-page: 127 year: 2016 ident: apjab2b3ebib3 publication-title: ApJ doi: 10.3847/0004-637X/821/2/127 – volume: 105 start-page: 7491 year: 2000 ident: apjab2b3ebib49 publication-title: JGR doi: 10.1029/1999JA000275 – volume: 117 year: 2012 ident: apjab2b3ebib26 publication-title: JGRA doi: 10.1029/2011JA017220 – volume: 856 start-page: 7 year: 2018 ident: apjab2b3ebib17 publication-title: ApJ doi: 10.3847/1538-4357/aaae00 – year: 2012 ident: apjab2b3ebib2 – volume: 104 start-page: 295 year: 2009 ident: apjab2b3ebib13 publication-title: EM&P doi: 10.1007/s11038-008-9282-7 – year: 2016 ident: apjab2b3ebib42 – year: 2018 ident: apjab2b3ebib23 publication-title: Optimization: Stochastic gradient descent – year: 2015 ident: apjab2b3ebib8 publication-title: Keras – volume: 96 start-page: 7831 year: 1991 ident: apjab2b3ebib14 publication-title: JGRA doi: 10.1029/91JA00316 – start-page: 3304 year: 2012 ident: apjab2b3ebib47 – volume: 118 start-page: 600 year: 2013 ident: apjab2b3ebib36 publication-title: JGRA doi: 10.1002/jgra.50156 – volume: 231 start-page: 870 year: 2012 ident: apjab2b3ebib43 publication-title: JCoPh doi: 10.1016/j.jcp.2011.02.006 – volume: 23 start-page: 1033 year: 2005 ident: apjab2b3ebib37 publication-title: AnGeo doi: 10.5194/angeo-23-1033-2005 – volume: 582 start-page: 520 year: 2003 ident: apjab2b3ebib51 publication-title: ApJ doi: 10.1086/344611 – volume: 261 start-page: 311 year: 2010 ident: apjab2b3ebib39 publication-title: SoPh doi: 10.1007/s11207-009-9486-7 – volume: 855 start-page: 109 year: 2018 ident: apjab2b3ebib27 publication-title: ApJ doi: 10.3847/1538-4357/aaae69 – volume: 86 start-page: 2278 year: 1998 ident: apjab2b3ebib22 publication-title: IEEEP doi: 10.1109/5.726791 – volume: 285 start-page: 295 year: 2013 ident: apjab2b3ebib46 publication-title: SoPh doi: 10.1007/s11207-012-0035-4 – volume: 282 start-page: 543 year: 2013 ident: apjab2b3ebib38 publication-title: SoPh doi: 10.1007/s11207-012-0161-z |
SSID | ssj0004299 |
Score | 2.4528809 |
Snippet | Fast and accurate prediction of the arrival time of coronal mass ejections (CMEs) at Earth is vital to minimize hazards caused by CMEs. In this paper, we use a... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15 |
SubjectTerms | Artificial neural networks Astrophysics Coronal mass ejection Neural networks Prediction models Regression analysis Regression models solar-terrestrial relations Sun: coronal mass ejections (CMEs) techniques: image processing Transit time White light |
Title | CME Arrival Time Prediction Using Convolutional Neural Network |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ab2b3e https://www.proquest.com/docview/2365773764 |
Volume | 881 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_8oOCLrVa5s1r2QYU-7N3eJtlkEQQ5FBHUe1B6D0LI7CWgtnfH3Vlo__pOkj1FW0RkIZuH2U12Mpn5bTIzAdjlyjvjZphWPn6LU19T5MpR4e1jjpnB4CB7UZxe87O-6C_AwWMszGhcq_4WVWOi4MhCP78Z6dJ2mKNk5WXbYI7MLsIyU2Q4ffTeZe8pKDIva-zL04LJftyj_O8bntmkRWr3H8UcrM3JR7iZ9zM6mdy3HmbYqv68SOH4zg_5BKs1Ck2OIukaLNjhOjSOpn5dfPTzd7KfhHpc9piuw4derH2Gw-75MT03uSUJTXz8SNKb-L0eP75J8D9IuqPhr1qgicZn_wi34G6-Adcnx1fd07Q-gyGtmCxnpCxRioHLlVPIhOMdpwgUOJuXAjtoMjGwmSmwJGBkeC6lclJUrhigNbLAjmWbsDQcDW0DEukqixVmVpWWYJAyhMScdFyYSjlTlE1oz0dBV3WCcn9Oxg9NPyqeYdozTHuG6ciwJnx7fGIck3O8QrtH46DrGTp9hW7nGZ0Z32mlOpouoccD14TtuWg8EeWsEFKSruZbb2zmC6wQ9CrTkFx3G5Zmkwe7Q_Bmhl-DGFN5yb7_BVZo9C0 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90ovgifrLppn1QwYe6rkma9EUY0zG_96C4t5B0CSi6jW0K_vde0k4RRaTQ5uHShMvl7pfk7gKwT4Vzxo10mLn4LYp9DTUVFl_OPsY6Uto7yN4knXt60WO94p5THwszHBWq_xiLeaLgnIVufhPUpXU_R9HK87rSsSamPurbeVhgBE0NCvQtefgKjIzTAv_SMCG8l59T_vqXb3ZpHtv-oZy9xWmvwkoBFYNm3rE1mDODdSg3J27zevjyHhwGvpzvTUzWYbGblzbgpHV9hvXGjyhGgQvyCLpjdyDjBiHwTgJBazh4K6QOaVyKDv_xPuGbcN8-u2t1wuKihDAjPJ2iRtOc9W0srNCEWdqwAi23NXHKdEOriPVNpBKdInpRNOZcWM4ym_S1UTzRDUO2oDQYDkwZAm4zozMdGZEaxCpCIVyy3FKmMmFVklagPmOTzIos4u4yi2eJqwnHWOkYKx1jZc7YChx91hjlGTT-oD1AzstiGk3-oKt9o1OjJylEQ-LDJIpDBaqzsfsiiknCOEeFSrf_2cweLHVP2_Lq_OZyB5YRKqWhT4ZbhdJ0_GpqCEemeteL3Ae7ddfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CME+Arrival+Time+Prediction+Using+Convolutional+Neural+Network&rft.jtitle=The+Astrophysical+journal&rft.au=Wang%2C+Yimin&rft.au=Liu%2C+Jiajia&rft.au=Jiang%2C+Ye&rft.au=Erd%C3%A9lyi%2C+Robert&rft.date=2019-08-10&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=881&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fab2b3e&rft.externalDocID=apjab2b3e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |