CME Arrival Time Prediction Using Convolutional Neural Network

Fast and accurate prediction of the arrival time of coronal mass ejections (CMEs) at Earth is vital to minimize hazards caused by CMEs. In this paper, we use a deep-learning framework, i.e., a convolutional neural network (CNN) regression model, to analyze transit times from the Sun to Earth of 223...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 881; no. 1; pp. 15 - 24
Main Authors Wang, Yimin, Liu, Jiajia, Jiang, Ye, Erdélyi, Robert
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 10.08.2019
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fast and accurate prediction of the arrival time of coronal mass ejections (CMEs) at Earth is vital to minimize hazards caused by CMEs. In this paper, we use a deep-learning framework, i.e., a convolutional neural network (CNN) regression model, to analyze transit times from the Sun to Earth of 223 geoeffective CME events observed in the past 30 yr. 90% of them were used to build the prediction model, and the rest 10% have been used for test purpose. Unlike previous studies on this topic, our proposed CNN regression model does not require manually selected features for model training, it does not need time spent on feature collection, and it can deliver predictions without deeper expert knowledge. The only input to our CNN regression model is the instances of the white-light observations of CMEs. The mean absolute error of the constructed CNN regression model is about 12.4 hr, which is comparable to the average performance of the previous studies on this subject. As more CME data become available, we expect the CNN regression model will reveal better results.
AbstractList Fast and accurate prediction of the arrival time of coronal mass ejections (CMEs) at Earth is vital to minimize hazards caused by CMEs. In this paper, we use a deep-learning framework, i.e., a convolutional neural network (CNN) regression model, to analyze transit times from the Sun to Earth of 223 geoeffective CME events observed in the past 30 yr. 90% of them were used to build the prediction model, and the rest 10% have been used for test purpose. Unlike previous studies on this topic, our proposed CNN regression model does not require manually selected features for model training, it does not need time spent on feature collection, and it can deliver predictions without deeper expert knowledge. The only input to our CNN regression model is the instances of the white-light observations of CMEs. The mean absolute error of the constructed CNN regression model is about 12.4 hr, which is comparable to the average performance of the previous studies on this subject. As more CME data become available, we expect the CNN regression model will reveal better results.
Author Wang, Yimin
Erdélyi, Robert
Liu, Jiajia
Jiang, Ye
Author_xml – sequence: 1
  givenname: Yimin
  orcidid: 0000-0002-8835-3825
  surname: Wang
  fullname: Wang, Yimin
  organization: University of Jinan School of Electrical Engineering, Jinan 250022, People's Republic of China
– sequence: 2
  givenname: Jiajia
  orcidid: 0000-0003-2569-1840
  surname: Liu
  fullname: Liu, Jiajia
  email: jj.liu@sheffield.ac.uk
  organization: The University of Sheffield Solar Physics and Space Plasma Research Center (SP2RC), School of Mathematics and Statistics , Sheffield S3 7RH, UK
– sequence: 3
  givenname: Ye
  orcidid: 0000-0002-6683-0205
  surname: Jiang
  fullname: Jiang, Ye
  organization: The University of Sheffield Department of Computer Science, Sheffield S1 4DP, UK
– sequence: 4
  givenname: Robert
  orcidid: 0000-0003-3439-4127
  surname: Erdélyi
  fullname: Erdélyi, Robert
  organization: Eötvös Loránd University Department of Astronomy, Budapest, Pázmány P. sétány 1/A, H-1117, Hungary
BookMark eNp9kN1LwzAUxYNMcJu--1jQR-uapvnoizDK_ID58bCBbyFpE8nsmpq0E_97WysKIuM-XO7hdy6HMwGjylYKgFMYXSKW0BnEiIUJwnQmZCyROgDjH2kExlEUJSFB9PkITLzf9GecpmNwld0vgrlzZifKYGW2KnhyqjB5Y2wVrL2pXoLMVjtbtr3SMQ-qdV-rebfu9RgcalF6dfK9p2B9vVhlt-Hy8eYumy_DHNG0CRmVFBc6ZppJhHUCNYsh0ypOsYRSRLhQkSAyJRCLJKaUaYpzTQqpBCUSKjQFZ8Pf2tm3VvmGb2zrujyex4hgShElSUeRgcqd9d4pzXPTiD5444QpOYx43xXvi-F9MXzoqjNGf4y1M1vhPvZZLgaLsfVvmD34-T-4qDecMci7wbwuNPoEwZWIvQ
CitedBy_id crossref_primary_10_3847_1538_4357_ace62d
crossref_primary_10_1016_j_chinastron_2020_11_006
crossref_primary_10_1029_2022SW003160
crossref_primary_10_1007_s10489_021_02663_1
crossref_primary_10_1051_swsc_2021025
crossref_primary_10_3847_1538_4357_ad82e5
crossref_primary_10_3847_1538_4365_ad1f5d
crossref_primary_10_3847_1538_4357_ad1cee
crossref_primary_10_3847_1538_4365_ad7eb9
crossref_primary_10_1007_s13042_022_01734_0
crossref_primary_10_1007_s11207_024_02385_w
crossref_primary_10_34133_2022_9852185
crossref_primary_10_3847_1538_4357_ab8fa2
crossref_primary_10_3847_1538_4357_adafa0
crossref_primary_10_3847_2041_8213_ab9d7a
crossref_primary_10_3390_universe10080321
crossref_primary_10_1038_s41550_021_01310_6
crossref_primary_10_3847_2041_8213_ad0c4a
crossref_primary_10_3847_1538_4357_ac7962
crossref_primary_10_3847_1538_4365_acf218
crossref_primary_10_1007_s11430_023_1375_2
crossref_primary_10_3389_fspas_2022_1013345
crossref_primary_10_1088_1674_4527_21_8_190
crossref_primary_10_1360_N072023_0208
crossref_primary_10_3847_1538_4365_ad6f98
crossref_primary_10_1016_j_buildenv_2024_112246
crossref_primary_10_1029_2022SW003165
crossref_primary_10_1051_swsc_2023032
crossref_primary_10_3847_1538_4365_ad2dea
crossref_primary_10_3390_rs13091738
Cites_doi 10.1029/2001JA000177
10.1111/j.2517-6161.1974.tb00994.x
10.1007/s11207-017-1099-y
10.1029/2003JA010300
10.1002/2014SW001060
10.1029/2002JA009244
10.1088/1674-4527/13/9/010
10.1029/2012GL053625
10.1023/A:1011833114104
10.1029/2009JA014332
10.1023/A:1022627411411
10.1029/2008JA013499
10.1007/s11207-010-9568-6
10.1029/2007JA012321
10.1029/2002GL014865
10.1093/mnras/stv2782
10.1029/1999GL003639
10.1029/96JA00511
10.1007/s11207-016-0971-5
10.1029/2006JA011904
10.1029/2018SW001955
10.1162/neco.2006.18.7.1527
10.1007/s11207-008-9126-7
10.1029/98GL00704
10.1007/BF00733434
10.1029/1999JA900477
10.1016/j.jeconom.2015.02.006
10.3847/0004-637X/821/2/127
10.1029/1999JA000275
10.1029/2011JA017220
10.3847/1538-4357/aaae00
10.1007/s11038-008-9282-7
10.1029/91JA00316
10.1002/jgra.50156
10.1016/j.jcp.2011.02.006
10.5194/angeo-23-1033-2005
10.1086/344611
10.1007/s11207-009-9486-7
10.3847/1538-4357/aaae69
10.1109/5.726791
10.1007/s11207-012-0035-4
10.1007/s11207-012-0161-z
ContentType Journal Article
Copyright 2019. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Aug 10, 2019
Copyright_xml – notice: 2019. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Aug 10, 2019
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ab2b3e
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate CME Arrival Time Prediction Using Convolutional Neural Network
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ab2b3e
apjab2b3e
GrantInformation_xml – fundername: STFC
  grantid: ST/M000826/1
– fundername: MSRC Visiting Research Fellow Peogram
  grantid: N/A
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c379t-87b75df28f8b35f41f8218fe295b1ba05de0a6b9615a42778f75cf6dbea76b1e3
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 13 09:38:50 EDT 2025
Thu Apr 24 23:13:49 EDT 2025
Tue Jul 01 03:24:07 EDT 2025
Wed Aug 21 03:33:08 EDT 2024
Thu Jan 07 13:53:42 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-87b75df28f8b35f41f8218fe295b1ba05de0a6b9615a42778f75cf6dbea76b1e3
Notes AAS15336
The Sun and the Heliosphere
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2569-1840
0000-0002-6683-0205
0000-0003-3439-4127
0000-0002-8835-3825
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ab2b3e/pdf
PQID 2365773764
PQPubID 4562441
PageCount 10
ParticipantIDs crossref_citationtrail_10_3847_1538_4357_ab2b3e
crossref_primary_10_3847_1538_4357_ab2b3e
iop_journals_10_3847_1538_4357_ab2b3e
proquest_journals_2365773764
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-10
PublicationDateYYYYMMDD 2019-08-10
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-10
  day: 10
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2019
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Bengio (apjab2b3ebib2) 2012
Michalek (apjab2b3ebib30) 2008; 248
Vršnak (apjab2b3ebib45) 2001; 202
Zhao (apjab2b3ebib54) 2014; 12
Boureau (apjab2b3ebib4) 2010
Subramanian (apjab2b3ebib40) 2012; 39
Gopalswamy (apjab2b3ebib12) 2001; 106
Sudar (apjab2b3ebib41) 2016; 456
Huang (apjab2b3ebib17) 2018; 856
Vandas (apjab2b3ebib44) 1996; 101
Feng (apjab2b3ebib10) 2009; 114
Liu (apjab2b3ebib26) 2012; 117
Chollet (apjab2b3ebib8) 2015
Richardson (apjab2b3ebib35) 2010; 264
Gosling (apjab2b3ebib14) 1991; 96
Schwenn (apjab2b3ebib37) 2005; 23
Brueckner (apjab2b3ebib6) 1995; 162
Lecun (apjab2b3ebib22) 1998; 86
Li (apjab2b3ebib23) 2018
McGregor (apjab2b3ebib29) 2017
Brueckner (apjab2b3ebib5) 1998; 25
Kohavi (apjab2b3ebib21) 1995
Tóth (apjab2b3ebib43) 2012; 231
Zhang (apjab2b3ebib51) 2003; 582
Kim (apjab2b3ebib19) 2007; 112
Zhang (apjab2b3ebib52) 2007; 112
Chi (apjab2b3ebib7) 2016; 291
Manoharan (apjab2b3ebib28) 2004; 109
Wang (apjab2b3ebib47) 2012
Liu (apjab2b3ebib27) 2018; 855
Szegedy (apjab2b3ebib42) 2016
Li (apjab2b3ebib24) 2013; 13
Shen (apjab2b3ebib38) 2013; 282
Vršnak (apjab2b3ebib46) 2013; 285
Stone (apjab2b3ebib55) 1974; 36
Riley (apjab2b3ebib36) 2013; 118
Cortes (apjab2b3ebib9) 1995; 20
Webb (apjab2b3ebib49) 2000; 105
Song (apjab2b3ebib39) 2010; 261
Nair (apjab2b3ebib33) 2010
Kingma (apjab2b3ebib20) 2017
Wang (apjab2b3ebib48) 2002; 107
Bobra (apjab2b3ebib3) 2016; 821
Hinton (apjab2b3ebib16) 2006; 18
Ioffe (apjab2b3ebib18) 2015
Qin (apjab2b3ebib34) 2009; 114
Yang (apjab2b3ebib50) 2018; 16
Lin (apjab2b3ebib25) 2000; 105
Gopalswamy (apjab2b3ebib13) 2009; 104
Gopalswamy (apjab2b3ebib11) 2000; 27
Zhang (apjab2b3ebib53) 2015; 187
Hess (apjab2b3ebib15) 2017; 292
Moon (apjab2b3ebib31) 2002; 29
References_xml – volume: 106
  start-page: 29207
  year: 2001
  ident: apjab2b3ebib12
  publication-title: JGRA
  doi: 10.1029/2001JA000177
– volume: 36
  start-page: 111
  year: 1974
  ident: apjab2b3ebib55
  publication-title: StMet
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– volume: 292
  start-page: 80
  year: 2017
  ident: apjab2b3ebib15
  publication-title: SoPh
  doi: 10.1007/s11207-017-1099-y
– volume: 109
  year: 2004
  ident: apjab2b3ebib28
  publication-title: JGRA
  doi: 10.1029/2003JA010300
– volume: 12
  start-page: 448
  year: 2014
  ident: apjab2b3ebib54
  publication-title: SpWea
  doi: 10.1002/2014SW001060
– volume: 107
  start-page: 1340
  year: 2002
  ident: apjab2b3ebib48
  publication-title: JGRA
  doi: 10.1029/2002JA009244
– volume: 13
  start-page: 1118
  year: 2013
  ident: apjab2b3ebib24
  publication-title: RAA
  doi: 10.1088/1674-4527/13/9/010
– volume: 39
  start-page: 19
  year: 2012
  ident: apjab2b3ebib40
  publication-title: GeoRL
  doi: 10.1029/2012GL053625
– volume: 202
  start-page: 173
  year: 2001
  ident: apjab2b3ebib45
  publication-title: SoPh
  doi: 10.1023/A:1011833114104
– start-page: 5
  year: 2017
  ident: apjab2b3ebib29
– volume: 114
  year: 2009
  ident: apjab2b3ebib34
  publication-title: JGRA
  doi: 10.1029/2009JA014332
– year: 2015
  ident: apjab2b3ebib18
– year: 2017
  ident: apjab2b3ebib20
– volume: 20
  start-page: 273
  year: 1995
  ident: apjab2b3ebib9
  publication-title: Machine Learning
  doi: 10.1023/A:1022627411411
– volume: 114
  start-page: A1
  year: 2009
  ident: apjab2b3ebib10
  publication-title: JGRA
  doi: 10.1029/2008JA013499
– volume: 264
  start-page: 189
  year: 2010
  ident: apjab2b3ebib35
  publication-title: SoPh
  doi: 10.1007/s11207-010-9568-6
– volume: 112
  start-page: A10
  year: 2007
  ident: apjab2b3ebib52
  publication-title: JGRA
  doi: 10.1029/2007JA012321
– volume: 29
  start-page: 28
  year: 2002
  ident: apjab2b3ebib31
  publication-title: GeoRL
  doi: 10.1029/2002GL014865
– start-page: 111
  year: 2010
  ident: apjab2b3ebib4
– volume: 456
  start-page: 1542
  year: 2016
  ident: apjab2b3ebib41
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2782
– volume: 27
  start-page: 145
  year: 2000
  ident: apjab2b3ebib11
  publication-title: GeoRL
  doi: 10.1029/1999GL003639
– volume: 101
  start-page: 15645
  year: 1996
  ident: apjab2b3ebib44
  publication-title: JGRA
  doi: 10.1029/96JA00511
– start-page: 807
  year: 2010
  ident: apjab2b3ebib33
– volume: 291
  start-page: 2419
  year: 2016
  ident: apjab2b3ebib7
  publication-title: SoPh
  doi: 10.1007/s11207-016-0971-5
– volume: 112
  start-page: A5
  year: 2007
  ident: apjab2b3ebib19
  publication-title: JGRA
  doi: 10.1029/2006JA011904
– start-page: 1137
  year: 1995
  ident: apjab2b3ebib21
– volume: 16
  start-page: 1227
  year: 2018
  ident: apjab2b3ebib50
  publication-title: SpWea
  doi: 10.1029/2018SW001955
– volume: 18
  start-page: 1527
  year: 2006
  ident: apjab2b3ebib16
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 248
  start-page: 113
  year: 2008
  ident: apjab2b3ebib30
  publication-title: SoPh
  doi: 10.1007/s11207-008-9126-7
– volume: 25
  start-page: 3019
  year: 1998
  ident: apjab2b3ebib5
  publication-title: GeoRL
  doi: 10.1029/98GL00704
– volume: 162
  start-page: 357
  year: 1995
  ident: apjab2b3ebib6
  publication-title: SoPh
  doi: 10.1007/BF00733434
– volume: 105
  start-page: 2375
  year: 2000
  ident: apjab2b3ebib25
  publication-title: JGR
  doi: 10.1029/1999JA900477
– volume: 187
  start-page: 95
  year: 2015
  ident: apjab2b3ebib53
  publication-title: J. Econometrics
  doi: 10.1016/j.jeconom.2015.02.006
– volume: 821
  start-page: 127
  year: 2016
  ident: apjab2b3ebib3
  publication-title: ApJ
  doi: 10.3847/0004-637X/821/2/127
– volume: 105
  start-page: 7491
  year: 2000
  ident: apjab2b3ebib49
  publication-title: JGR
  doi: 10.1029/1999JA000275
– volume: 117
  year: 2012
  ident: apjab2b3ebib26
  publication-title: JGRA
  doi: 10.1029/2011JA017220
– volume: 856
  start-page: 7
  year: 2018
  ident: apjab2b3ebib17
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaae00
– year: 2012
  ident: apjab2b3ebib2
– volume: 104
  start-page: 295
  year: 2009
  ident: apjab2b3ebib13
  publication-title: EM&P
  doi: 10.1007/s11038-008-9282-7
– year: 2016
  ident: apjab2b3ebib42
– year: 2018
  ident: apjab2b3ebib23
  publication-title: Optimization: Stochastic gradient descent
– year: 2015
  ident: apjab2b3ebib8
  publication-title: Keras
– volume: 96
  start-page: 7831
  year: 1991
  ident: apjab2b3ebib14
  publication-title: JGRA
  doi: 10.1029/91JA00316
– start-page: 3304
  year: 2012
  ident: apjab2b3ebib47
– volume: 118
  start-page: 600
  year: 2013
  ident: apjab2b3ebib36
  publication-title: JGRA
  doi: 10.1002/jgra.50156
– volume: 231
  start-page: 870
  year: 2012
  ident: apjab2b3ebib43
  publication-title: JCoPh
  doi: 10.1016/j.jcp.2011.02.006
– volume: 23
  start-page: 1033
  year: 2005
  ident: apjab2b3ebib37
  publication-title: AnGeo
  doi: 10.5194/angeo-23-1033-2005
– volume: 582
  start-page: 520
  year: 2003
  ident: apjab2b3ebib51
  publication-title: ApJ
  doi: 10.1086/344611
– volume: 261
  start-page: 311
  year: 2010
  ident: apjab2b3ebib39
  publication-title: SoPh
  doi: 10.1007/s11207-009-9486-7
– volume: 855
  start-page: 109
  year: 2018
  ident: apjab2b3ebib27
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaae69
– volume: 86
  start-page: 2278
  year: 1998
  ident: apjab2b3ebib22
  publication-title: IEEEP
  doi: 10.1109/5.726791
– volume: 285
  start-page: 295
  year: 2013
  ident: apjab2b3ebib46
  publication-title: SoPh
  doi: 10.1007/s11207-012-0035-4
– volume: 282
  start-page: 543
  year: 2013
  ident: apjab2b3ebib38
  publication-title: SoPh
  doi: 10.1007/s11207-012-0161-z
SSID ssj0004299
Score 2.4528809
Snippet Fast and accurate prediction of the arrival time of coronal mass ejections (CMEs) at Earth is vital to minimize hazards caused by CMEs. In this paper, we use a...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Artificial neural networks
Astrophysics
Coronal mass ejection
Neural networks
Prediction models
Regression analysis
Regression models
solar-terrestrial relations
Sun: coronal mass ejections (CMEs)
techniques: image processing
Transit time
White light
Title CME Arrival Time Prediction Using Convolutional Neural Network
URI https://iopscience.iop.org/article/10.3847/1538-4357/ab2b3e
https://www.proquest.com/docview/2365773764
Volume 881
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_8oOCLrVa5s1r2QYU-7N3eJtlkEQQ5FBHUe1B6D0LI7CWgtnfH3Vlo__pOkj1FW0RkIZuH2U12Mpn5bTIzAdjlyjvjZphWPn6LU19T5MpR4e1jjpnB4CB7UZxe87O-6C_AwWMszGhcq_4WVWOi4MhCP78Z6dJ2mKNk5WXbYI7MLsIyU2Q4ffTeZe8pKDIva-zL04LJftyj_O8bntmkRWr3H8UcrM3JR7iZ9zM6mdy3HmbYqv68SOH4zg_5BKs1Ck2OIukaLNjhOjSOpn5dfPTzd7KfhHpc9piuw4derH2Gw-75MT03uSUJTXz8SNKb-L0eP75J8D9IuqPhr1qgicZn_wi34G6-Adcnx1fd07Q-gyGtmCxnpCxRioHLlVPIhOMdpwgUOJuXAjtoMjGwmSmwJGBkeC6lclJUrhigNbLAjmWbsDQcDW0DEukqixVmVpWWYJAyhMScdFyYSjlTlE1oz0dBV3WCcn9Oxg9NPyqeYdozTHuG6ciwJnx7fGIck3O8QrtH46DrGTp9hW7nGZ0Z32mlOpouoccD14TtuWg8EeWsEFKSruZbb2zmC6wQ9CrTkFx3G5Zmkwe7Q_Bmhl-DGFN5yb7_BVZo9C0
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED90ovgifrLppn1QwYe6rkma9EUY0zG_96C4t5B0CSi6jW0K_vde0k4RRaTQ5uHShMvl7pfk7gKwT4Vzxo10mLn4LYp9DTUVFl_OPsY6Uto7yN4knXt60WO94p5THwszHBWq_xiLeaLgnIVufhPUpXU_R9HK87rSsSamPurbeVhgBE0NCvQtefgKjIzTAv_SMCG8l59T_vqXb3ZpHtv-oZy9xWmvwkoBFYNm3rE1mDODdSg3J27zevjyHhwGvpzvTUzWYbGblzbgpHV9hvXGjyhGgQvyCLpjdyDjBiHwTgJBazh4K6QOaVyKDv_xPuGbcN8-u2t1wuKihDAjPJ2iRtOc9W0srNCEWdqwAi23NXHKdEOriPVNpBKdInpRNOZcWM4ym_S1UTzRDUO2oDQYDkwZAm4zozMdGZEaxCpCIVyy3FKmMmFVklagPmOTzIos4u4yi2eJqwnHWOkYKx1jZc7YChx91hjlGTT-oD1AzstiGk3-oKt9o1OjJylEQ-LDJIpDBaqzsfsiiknCOEeFSrf_2cweLHVP2_Lq_OZyB5YRKqWhT4ZbhdJ0_GpqCEemeteL3Ae7ddfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CME+Arrival+Time+Prediction+Using+Convolutional+Neural+Network&rft.jtitle=The+Astrophysical+journal&rft.au=Wang%2C+Yimin&rft.au=Liu%2C+Jiajia&rft.au=Jiang%2C+Ye&rft.au=Erd%C3%A9lyi%2C+Robert&rft.date=2019-08-10&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=881&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fab2b3e&rft.externalDocID=apjab2b3e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon