A Novel Methodology for Classifying Electrical Disturbances Using Deep Neural Networks

Electrical power quality is one of the main elements in power generation systems. At the same time, it is one of the most significant challenges regarding stability and reliability. Due to different switching devices in this type of architecture, different kinds of power generators as well as non-li...

Full description

Saved in:
Bibliographic Details
Published inTechnologies (Basel) Vol. 11; no. 4; p. 82
Main Authors Guerrero-Sánchez, Alma E., Rivas-Araiza, Edgar A., Garduño-Aparicio, Mariano, Tovar-Arriaga, Saul, Rodriguez-Resendiz, Juvenal, Toledano-Ayala, Manuel
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrical power quality is one of the main elements in power generation systems. At the same time, it is one of the most significant challenges regarding stability and reliability. Due to different switching devices in this type of architecture, different kinds of power generators as well as non-linear loads are used for different industrial processes. A result of this is the need to classify and analyze Power Quality Disturbance (PQD) to prevent and analyze the degradation of the system reliability affected by the non-linear and non-stationary oscillatory nature. This paper presents a novel Multitasking Deep Neural Network (MDL) for the classification and analysis of multiple electrical disturbances. The characteristics are extracted using a specialized and adaptive methodology for non-stationary signals, namely, Empirical Mode Decomposition (EMD). The methodology’s design, development, and various performance tests are carried out with 28 different difficulties levels, such as severity, disturbance duration time, and noise in the 20 dB to 60 dB signal range. MDL was developed with a diverse data set in difficulty and noise, with a quantity of 4500 records of different samples of multiple electrical disturbances. The analysis and classification methodology has an average accuracy percentage of 95% with multiple disturbances. In addition, it has an average accuracy percentage of 90% in analyzing important signal aspects for studying electrical power quality such as the crest factor, per unit voltage analysis, Short-term Flicker Perceptibility (Pst), and Total Harmonic Distortion (THD), among others.
AbstractList Electrical power quality is one of the main elements in power generation systems. At the same time, it is one of the most significant challenges regarding stability and reliability. Due to different switching devices in this type of architecture, different kinds of power generators as well as non-linear loads are used for different industrial processes. A result of this is the need to classify and analyze Power Quality Disturbance (PQD) to prevent and analyze the degradation of the system reliability affected by the non-linear and non-stationary oscillatory nature. This paper presents a novel Multitasking Deep Neural Network (MDL) for the classification and analysis of multiple electrical disturbances. The characteristics are extracted using a specialized and adaptive methodology for non-stationary signals, namely, Empirical Mode Decomposition (EMD). The methodology’s design, development, and various performance tests are carried out with 28 different difficulties levels, such as severity, disturbance duration time, and noise in the 20 dB to 60 dB signal range. MDL was developed with a diverse data set in difficulty and noise, with a quantity of 4500 records of different samples of multiple electrical disturbances. The analysis and classification methodology has an average accuracy percentage of 95% with multiple disturbances. In addition, it has an average accuracy percentage of 90% in analyzing important signal aspects for studying electrical power quality such as the crest factor, per unit voltage analysis, Short-term Flicker Perceptibility (Pst), and Total Harmonic Distortion (THD), among others.
Audience Academic
Author Garduño-Aparicio, Mariano
Toledano-Ayala, Manuel
Guerrero-Sánchez, Alma E
Rivas-Araiza, Edgar A
Rodriguez-Resendiz, Juvenal
Tovar-Arriaga, Saul
Author_xml – sequence: 1
  givenname: Alma E.
  orcidid: 0000-0002-9487-7326
  surname: Guerrero-Sánchez
  fullname: Guerrero-Sánchez, Alma E.
– sequence: 2
  givenname: Edgar A.
  orcidid: 0000-0002-0300-6462
  surname: Rivas-Araiza
  fullname: Rivas-Araiza, Edgar A.
– sequence: 3
  givenname: Mariano
  orcidid: 0000-0002-7737-2115
  surname: Garduño-Aparicio
  fullname: Garduño-Aparicio, Mariano
– sequence: 4
  givenname: Saul
  orcidid: 0000-0002-2695-1934
  surname: Tovar-Arriaga
  fullname: Tovar-Arriaga, Saul
– sequence: 5
  givenname: Juvenal
  orcidid: 0000-0001-8598-5600
  surname: Rodriguez-Resendiz
  fullname: Rodriguez-Resendiz, Juvenal
– sequence: 6
  givenname: Manuel
  orcidid: 0000-0003-1885-279X
  surname: Toledano-Ayala
  fullname: Toledano-Ayala, Manuel
BookMark eNptkU1PGzEQhq2KSgXKP-hhJc4Bf3t9jAK0kWh6Kb1atnccHJZ1sB2q_Ps6pEI9dOYwo_l4NJr3DJ1MaQKEvhB8xZjG1xX845TGtI5QCMEc455-QKeUUjVTuMcn_-Sf0EUpG9xME9ZLcYp-zbtVeoWx-w71MQ0Hzr4LKXeL0ZYSwz5O6-52BF9z9HbsbmKpu-zs5KF0D-XQvQHYdivY5dZeQf2d8lP5jD4GOxa4-BvP0cPd7c_Ft9n9j6_Lxfx-5pnSdaYCGbAUjOtBWgCnfC-Y4Nir4L0kUg9WQJCMAnYahJLSM2tBOi4J956wc7Q8codkN2ab47PNe5NsNG-FlNfG5hr9CMZZrAYqNDAZuBXOEsekVmpwgTvZ-8a6PLK2Ob3soFSzSbs8tfMN7YXitD1Qtamr49TaNmicQqrZ-uYDPEffpAmx1edKUsH7Xui2wI8LPqdSMoT3Mwk2BwXN_xRkfwBPR5Pp
Cites_doi 10.1016/j.apenergy.2018.09.160
10.3390/app11125670
10.3390/jmse10091190
10.3390/mi13091533
10.3390/mi13010039
10.3390/en11113191
10.1109/CVPR.2016.90
10.1002/2050-7038.12010
10.3390/s23063290
10.1109/TPAMI.2018.2794976
10.3390/math10152780
10.3390/mi14030570
10.3390/mi14030502
10.1109/ACCESS.2018.2863036
10.3390/mi11020134
10.1016/j.measurement.2021.109025
10.1016/j.solener.2022.12.042
10.3390/app10196755
10.3390/en13082050
10.3390/mi13091409
10.1186/s12880-022-00829-y
10.1016/j.measurement.2020.108097
10.3390/su14063305
10.3390/mi13111983
10.1109/ACCESS.2022.3206425
10.1109/ICHQP.2010.5625472
10.1016/j.neunet.2014.09.003
10.3390/mi13040565
10.1007/s00202-023-01796-5
10.3390/en14196329
10.3390/mi14020386
10.3390/mi12050545
10.1016/j.neucom.2019.01.038
10.1109/ACCESS.2020.3025190
10.1109/ICRA40945.2020.9197301
10.1109/ICHQP.2018.8378902
10.3390/mi13101646
10.3390/en12071280
10.3390/ma16062351
10.3390/app11094129
10.1016/j.rser.2017.01.064
10.3390/su14063597
10.1109/ACCESS.2018.2869884
10.1155/2022/7020979
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
HCIFZ
JQ2
K7-
KB.
L6V
M7S
P5Z
P62
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/technologies11040082
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Materials Science Database
ProQuest Engineering Collection
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2227-7080
ExternalDocumentID oai_doaj_org_article_ba07d259e36f4a5ba1b36977dbf4b68c
A762548859
10_3390_technologies11040082
GeographicLocations Mexico
GeographicLocations_xml – name: Mexico
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KB.
KC.
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PDBOC
PIMPY
PROAC
PTHSS
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
JQ2
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c379t-7f1d065349d6aeeb7c853540c7fcc6169da5ef632e0b9e5766c3aae6b4614cc13
IEDL.DBID 8FG
ISSN 2227-7080
IngestDate Tue Oct 22 15:09:31 EDT 2024
Thu Oct 10 17:39:50 EDT 2024
Tue Nov 12 23:35:35 EST 2024
Thu Sep 26 19:57:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-7f1d065349d6aeeb7c853540c7fcc6169da5ef632e0b9e5766c3aae6b4614cc13
ORCID 0000-0002-2695-1934
0000-0002-9487-7326
0000-0001-8598-5600
0000-0002-7737-2115
0000-0002-0300-6462
0000-0003-1885-279X
OpenAccessLink https://www.proquest.com/docview/2857420807?pq-origsite=%requestingapplication%
PQID 2857420807
PQPubID 2032323
ParticipantIDs doaj_primary_oai_doaj_org_article_ba07d259e36f4a5ba1b36977dbf4b68c
proquest_journals_2857420807
gale_infotracacademiconefile_A762548859
crossref_primary_10_3390_technologies11040082
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Technologies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_13) 2019; 29
Yang (ref_30) 2018; 6
Xu (ref_26) 2020; 31
ref_34
ref_11
Wang (ref_14) 2019; 235
ref_33
ref_10
Subudhi (ref_19) 2021; 22
ref_32
ref_31
Liu (ref_28) 2019; 41
Mahela (ref_12) 2020; 8
Radhakrishnan (ref_20) 2021; 175
ref_18
Thirumala (ref_15) 2019; 334
ref_17
ref_39
ref_16
ref_38
ref_37
Nagata (ref_45) 2020; 164
ref_25
ref_24
ref_23
ref_22
ref_44
ref_21
ref_43
ref_42
ref_41
ref_1
Halbouni (ref_35) 2022; 10
ref_3
ref_2
Muyeen (ref_8) 2017; 72
ref_29
Sekar (ref_46) 2022; 2022
Cao (ref_47) 2023; 251
ref_27
Naseer (ref_36) 2018; 6
ref_9
ref_5
Schmidhuber (ref_40) 2015; 61
ref_4
ref_7
ref_6
References_xml – volume: 235
  start-page: 1126
  year: 2019
  ident: ref_14
  article-title: A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.160
  contributor:
    fullname: Wang
– ident: ref_21
  doi: 10.3390/app11125670
– ident: ref_3
– ident: ref_23
  doi: 10.3390/jmse10091190
– ident: ref_39
  doi: 10.3390/mi13091533
– ident: ref_6
  doi: 10.3390/mi13010039
– ident: ref_9
  doi: 10.3390/en11113191
– ident: ref_43
  doi: 10.1109/CVPR.2016.90
– volume: 29
  start-page: 2010
  year: 2019
  ident: ref_13
  article-title: Classification of multiple power quality events via compressed deep learning
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.12010
  contributor:
    fullname: Liu
– volume: 22
  start-page: 100204
  year: 2021
  ident: ref_19
  article-title: Detection and classification of power quality disturbances using GWO ELM
  publication-title: J. Ind. Inf. Integr.
  contributor:
    fullname: Subudhi
– volume: 31
  start-page: 2409
  year: 2020
  ident: ref_26
  article-title: Survey on Multi-Output Learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  contributor:
    fullname: Xu
– ident: ref_25
  doi: 10.3390/s23063290
– volume: 41
  start-page: 408
  year: 2019
  ident: ref_28
  article-title: Metric Learning for Multi-Output Tasks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2794976
  contributor:
    fullname: Liu
– ident: ref_22
  doi: 10.3390/math10152780
– ident: ref_38
  doi: 10.3390/mi14030570
– ident: ref_33
  doi: 10.3390/mi14030502
– volume: 6
  start-page: 48231
  year: 2018
  ident: ref_36
  article-title: Enhanced Network Anomaly Detection Based on Deep Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2863036
  contributor:
    fullname: Naseer
– ident: ref_5
  doi: 10.3390/mi11020134
– volume: 175
  start-page: 109025
  year: 2021
  ident: ref_20
  article-title: A stacking ensemble classification model for detection and classification of power quality disturbances in PV integrated power network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109025
  contributor:
    fullname: Radhakrishnan
– volume: 251
  start-page: 77
  year: 2023
  ident: ref_47
  article-title: Real-Time Machine Learning-based fault Detection, Classification, and locating in large scale solar Energy-Based Systems: Digital twin simulation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.12.042
  contributor:
    fullname: Cao
– ident: ref_17
  doi: 10.3390/app10196755
– ident: ref_18
  doi: 10.3390/en13082050
– ident: ref_27
  doi: 10.3390/mi13091409
– ident: ref_32
  doi: 10.1186/s12880-022-00829-y
– volume: 164
  start-page: 108097
  year: 2020
  ident: ref_45
  article-title: Real-time voltage sag detection and classification for power quality diagnostics
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108097
  contributor:
    fullname: Nagata
– ident: ref_2
  doi: 10.3390/su14063305
– ident: ref_34
  doi: 10.3390/mi13111983
– volume: 10
  start-page: 99837
  year: 2022
  ident: ref_35
  article-title: CNN-LSTM: Hybrid Deep Neural Network for Network Intrusion Detection System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3206425
  contributor:
    fullname: Halbouni
– ident: ref_4
  doi: 10.1109/ICHQP.2010.5625472
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_40
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
  contributor:
    fullname: Schmidhuber
– ident: ref_42
  doi: 10.3390/mi13040565
– ident: ref_11
  doi: 10.1007/s00202-023-01796-5
– ident: ref_10
  doi: 10.3390/en14196329
– ident: ref_44
  doi: 10.3390/mi14020386
– ident: ref_37
  doi: 10.3390/mi12050545
– volume: 334
  start-page: 265
  year: 2019
  ident: ref_15
  article-title: A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.038
  contributor:
    fullname: Thirumala
– volume: 8
  start-page: 173530
  year: 2020
  ident: ref_12
  article-title: Recognition of Complex Power Quality Disturbances Using S-Transform Based Ruled Decision Tree
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3025190
  contributor:
    fullname: Mahela
– ident: ref_29
  doi: 10.1109/ICRA40945.2020.9197301
– ident: ref_31
  doi: 10.1109/ICHQP.2018.8378902
– ident: ref_7
  doi: 10.3390/mi13101646
– ident: ref_16
  doi: 10.3390/en12071280
– ident: ref_24
  doi: 10.3390/ma16062351
– ident: ref_41
  doi: 10.3390/app11094129
– volume: 72
  start-page: 205
  year: 2017
  ident: ref_8
  article-title: Enhancing smart grid with microgrids: Challenges and opportunities
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.01.064
  contributor:
    fullname: Muyeen
– ident: ref_1
  doi: 10.3390/su14063597
– volume: 6
  start-page: 50839
  year: 2018
  ident: ref_30
  article-title: Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multitask Rotation Region Convolutional Neural Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2869884
  contributor:
    fullname: Yang
– volume: 2022
  start-page: 7020979
  year: 2022
  ident: ref_46
  article-title: An improved power quality disturbance detection using deep learning approach
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2022/7020979
  contributor:
    fullname: Sekar
SSID ssj0000913865
Score 2.297367
Snippet Electrical power quality is one of the main elements in power generation systems. At the same time, it is one of the most significant challenges regarding...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 82
SubjectTerms Algorithms
artificial intelligence
Artificial neural networks
Classification
deep learning
Disturbances
Electric power
Electrical engineering
Electricity distribution
Empirical analysis
Energy
Fourier transforms
Harmonic distortion
Identification and classification
Mathematical functions
Methodology
Methods
Multitasking
multitasking learning
Neural networks
Noise levels
Performance tests
Power failure
smart grids
solar photovoltaic
System reliability
Taxonomy
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9iB4CibZV_ZYtVKE9qTibdnHBARpS5v6-53dpFJB8eI1yWGZLzvzzTL7fYRcQS7qUFiX6VKFjEsXMu2CzXhRM1-5wMHGc8jxRI6e-eOreN2w-oozYa08cBu4G2dzFZCjA5M1t8LZwjGJpCW4mjtZ-ZR9c73RTKUcrItoZtnelWPY198065NqbECx5PFY-77VoiTZ_1tiTtXmYY_sdjSRDtrl7ZMtmB6QnQ3xwEPyMqCT2Qe803EygU7H4xQpKE0-l2_p_hIdJpebCAS9R0BXCxdRXtI0KUDvAeY0ynPg60k7D748Is8Pw6e7Uda5JGSeKd1kqi5CFJjlOkgL4JTHCow8zKvae1lIHayAWrIScqcB2wvpmbUgHcfK7H3BjklvOpvCCaEcn3pXQgVIVCRYzbgvQ12JUCgvhOyTbB0vM2_FMAw2ETG-5qf49sltDOrXt1HKOj1AgE0HsPkL4D65jpCYuOGahfW2uzeAS47SVWaA6RzbrkroPjlfo2a6nbg0ZSVUHCHI1el_rOaMbEfD-XYE8Jz0msUKLpCWNO4y_YGfPKbkFw
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Methodology for Classifying Electrical Disturbances Using Deep Neural Networks
URI https://www.proquest.com/docview/2857420807
https://doaj.org/article/ba07d259e36f4a5ba1b36977dbf4b68c
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxNBDLagvcABtTxEaInmgMRp1OzOa_eE0jZphdQIIYp6W83Di5CqJCRbfj_27KYUCbjO7GFlz9j-PPZngHc4MW0qfJB16ZLUNiRZh-SlLloVq5A0es5DXi3s5bX-eGNuhoTbdiir3NnEbKjTKnKO_KSsjOOn4In7sP4heWoUv64OIzQew35ROsfgq5pf3OdYmPOysqbvmFOE7k-6Xb6aYCg5Ps0e8A-PlIn7_2Wes8-ZH8CzIVgU0167h_AIl8_h6QMKwRfwdSoWq594K67yKOicJBcUiIo87fJ77mISszzrhtUhzkmtd5vAut6KXC8gzhHXgkk6aHvRV4VvX8L1fPbl7FIOsxJkVK7upGuLxDSzuk7WIwYXyQ9TNBZdG6MtbJ28wdaqEiehRgIZNirv0QZN_jnGQr2CveVqia9BaFqNocQKKVyx6GulY5nayqTCRWPsCOROXs26p8RoCEqwfJu_yXcEpyzU-2-Z0DovrDbfmuF-kM-euERQDJVttTfBF0FZik1TaHWwVRzBe1ZJw9eu2_joh-4B-mUmsGqmZNQJfFWmHsHxTmvNcB-3ze_T8-b_20fwhAfK9yV-x7DXbe7wLYUdXRjnszWG_dPZ4tPncQbvvwBfdN1L
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagPQAHxFOkFPABiZPV7K4fu6cqbVMFaFYItag3y49ZhISSkGz7-zvjdUqRgKu9h9WMPS_PfB9j72Gsulg4L5rSRCG1j6Lx0QlZdFWofZTgqA45b_XsQn66VJe54LbJbZVbm5gMdVwGqpEflLUy9BQ8NoerX4JYo-h1NVNo3Ge7BFWFydfu0bT98vW2ykKol7VWw8xchfn9Qb-tWGMiiq5Pkg_8wycl6P5_GejkdU6fsMc5XOSTQb9P2T1YPGOP7oAIPmffJrxdXsNPPk9k0KlMzjEU5Ynv8keaY-LTxHZDCuEnqNirtSdtb3jqGOAnACtOMB243Q594ZsX7OJ0en48E5ktQYTKNL0wXREJaFY2UTsAbwJ6YozHgulC0IVuolPQ6aqEsW8A0wwdKudAe4keOoSiesl2FssFvGJc4mrwJdSAAYsG11QylLGrVSxMUEqPmNjKy64GUAyLyQTJ1_5NviN2REK9_ZYgrdPCcv3d5huCXntsIiZjUOlOOuVd4SuN0Wn0nfS6DiP2gVRi6eL1axdcnh_AXyYIKztBs47pV62aEdvfas3mG7mxv8_P3v-337EHs_P5mT372H5-zR4SvfzQ8LfPdvr1FbzBIKT3b_NJuwF0Bd8N
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYglRAcKp4ibQEfkDitsrt-7Z6qtElUHl1ViKLeLD_GFRJK0mTL72fsdQpIwNXew2rGnpdnvo-Qt1CK4Ctji7ZWvuDS-qK13hS8Csw11nMwsQ553smzS_7hSlzl_qdtbqvc2cRkqP3KxRr5pG6Eik_BpZqE3BZxMVscr2-KyCAVX1ozncZ9sqe4ZOWI7J3Mu4vPdxWXiIDZSDHMzzHM9Sf9rnqNSSm6QR794R_-KcH4_8tYJw-0eEz2c-hIp4Oun5B7sHxKHv0GKPiMfJ3SbvUDvtPzRAydSuYUw1KauC-_pZkmOk_MN1E5dIZKvt3YqPktTd0DdAawphGyA7e7oUd8-5xcLuZfTs-KzJxQOKbavlCh8hF0lrdeGgCrHHpljM2cCs7JSrbeCAiS1VDaFjDlkI4ZA9Jy9NbOVewFGS1XS3hJKMdVZ2toAIMXCaZl3NU-NMJXygkhx6TYyUuvB4AMjYlFlK_-m3zH5CQK9e7bCG-dFlaba51vC3rwUnlMzIDJwI2wprJMYqTqbeBWNm5M3kWV6HgJ-41xJs8S4C9HOCs9RROPqVgj2jE52mlN59u51b_O0sH_t9-QB3jI9Kf33cdD8jAyzQ-9f0dk1G9u4RXGI719nQ_aT5Ot4zs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Methodology+for+Classifying+Electrical+Disturbances+Using+Deep+Neural+Networks&rft.jtitle=Technologies+%28Basel%29&rft.au=Guerrero-S%C3%A1nchez%2C+Alma+E&rft.au=Rivas-Araiza%2C+Edgar+A&rft.au=Gardu%C3%B1o-Aparicio%2C+Mariano&rft.au=Tovar-Arriaga%2C+Saul&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=2227-7080&rft.volume=11&rft.issue=4&rft_id=info:doi/10.3390%2Ftechnologies11040082&rft.externalDocID=A762548859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7080&client=summon