A Novel Methodology for Classifying Electrical Disturbances Using Deep Neural Networks
Electrical power quality is one of the main elements in power generation systems. At the same time, it is one of the most significant challenges regarding stability and reliability. Due to different switching devices in this type of architecture, different kinds of power generators as well as non-li...
Saved in:
Published in | Technologies (Basel) Vol. 11; no. 4; p. 82 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrical power quality is one of the main elements in power generation systems. At the same time, it is one of the most significant challenges regarding stability and reliability. Due to different switching devices in this type of architecture, different kinds of power generators as well as non-linear loads are used for different industrial processes. A result of this is the need to classify and analyze Power Quality Disturbance (PQD) to prevent and analyze the degradation of the system reliability affected by the non-linear and non-stationary oscillatory nature. This paper presents a novel Multitasking Deep Neural Network (MDL) for the classification and analysis of multiple electrical disturbances. The characteristics are extracted using a specialized and adaptive methodology for non-stationary signals, namely, Empirical Mode Decomposition (EMD). The methodology’s design, development, and various performance tests are carried out with 28 different difficulties levels, such as severity, disturbance duration time, and noise in the 20 dB to 60 dB signal range. MDL was developed with a diverse data set in difficulty and noise, with a quantity of 4500 records of different samples of multiple electrical disturbances. The analysis and classification methodology has an average accuracy percentage of 95% with multiple disturbances. In addition, it has an average accuracy percentage of 90% in analyzing important signal aspects for studying electrical power quality such as the crest factor, per unit voltage analysis, Short-term Flicker Perceptibility (Pst), and Total Harmonic Distortion (THD), among others. |
---|---|
AbstractList | Electrical power quality is one of the main elements in power generation systems. At the same time, it is one of the most significant challenges regarding stability and reliability. Due to different switching devices in this type of architecture, different kinds of power generators as well as non-linear loads are used for different industrial processes. A result of this is the need to classify and analyze Power Quality Disturbance (PQD) to prevent and analyze the degradation of the system reliability affected by the non-linear and non-stationary oscillatory nature. This paper presents a novel Multitasking Deep Neural Network (MDL) for the classification and analysis of multiple electrical disturbances. The characteristics are extracted using a specialized and adaptive methodology for non-stationary signals, namely, Empirical Mode Decomposition (EMD). The methodology’s design, development, and various performance tests are carried out with 28 different difficulties levels, such as severity, disturbance duration time, and noise in the 20 dB to 60 dB signal range. MDL was developed with a diverse data set in difficulty and noise, with a quantity of 4500 records of different samples of multiple electrical disturbances. The analysis and classification methodology has an average accuracy percentage of 95% with multiple disturbances. In addition, it has an average accuracy percentage of 90% in analyzing important signal aspects for studying electrical power quality such as the crest factor, per unit voltage analysis, Short-term Flicker Perceptibility (Pst), and Total Harmonic Distortion (THD), among others. |
Audience | Academic |
Author | Garduño-Aparicio, Mariano Toledano-Ayala, Manuel Guerrero-Sánchez, Alma E Rivas-Araiza, Edgar A Rodriguez-Resendiz, Juvenal Tovar-Arriaga, Saul |
Author_xml | – sequence: 1 givenname: Alma E. orcidid: 0000-0002-9487-7326 surname: Guerrero-Sánchez fullname: Guerrero-Sánchez, Alma E. – sequence: 2 givenname: Edgar A. orcidid: 0000-0002-0300-6462 surname: Rivas-Araiza fullname: Rivas-Araiza, Edgar A. – sequence: 3 givenname: Mariano orcidid: 0000-0002-7737-2115 surname: Garduño-Aparicio fullname: Garduño-Aparicio, Mariano – sequence: 4 givenname: Saul orcidid: 0000-0002-2695-1934 surname: Tovar-Arriaga fullname: Tovar-Arriaga, Saul – sequence: 5 givenname: Juvenal orcidid: 0000-0001-8598-5600 surname: Rodriguez-Resendiz fullname: Rodriguez-Resendiz, Juvenal – sequence: 6 givenname: Manuel orcidid: 0000-0003-1885-279X surname: Toledano-Ayala fullname: Toledano-Ayala, Manuel |
BookMark | eNptkU1PGzEQhq2KSgXKP-hhJc4Bf3t9jAK0kWh6Kb1atnccHJZ1sB2q_Ps6pEI9dOYwo_l4NJr3DJ1MaQKEvhB8xZjG1xX845TGtI5QCMEc455-QKeUUjVTuMcn_-Sf0EUpG9xME9ZLcYp-zbtVeoWx-w71MQ0Hzr4LKXeL0ZYSwz5O6-52BF9z9HbsbmKpu-zs5KF0D-XQvQHYdivY5dZeQf2d8lP5jD4GOxa4-BvP0cPd7c_Ft9n9j6_Lxfx-5pnSdaYCGbAUjOtBWgCnfC-Y4Nir4L0kUg9WQJCMAnYahJLSM2tBOi4J956wc7Q8codkN2ab47PNe5NsNG-FlNfG5hr9CMZZrAYqNDAZuBXOEsekVmpwgTvZ-8a6PLK2Ob3soFSzSbs8tfMN7YXitD1Qtamr49TaNmicQqrZ-uYDPEffpAmx1edKUsH7Xui2wI8LPqdSMoT3Mwk2BwXN_xRkfwBPR5Pp |
Cites_doi | 10.1016/j.apenergy.2018.09.160 10.3390/app11125670 10.3390/jmse10091190 10.3390/mi13091533 10.3390/mi13010039 10.3390/en11113191 10.1109/CVPR.2016.90 10.1002/2050-7038.12010 10.3390/s23063290 10.1109/TPAMI.2018.2794976 10.3390/math10152780 10.3390/mi14030570 10.3390/mi14030502 10.1109/ACCESS.2018.2863036 10.3390/mi11020134 10.1016/j.measurement.2021.109025 10.1016/j.solener.2022.12.042 10.3390/app10196755 10.3390/en13082050 10.3390/mi13091409 10.1186/s12880-022-00829-y 10.1016/j.measurement.2020.108097 10.3390/su14063305 10.3390/mi13111983 10.1109/ACCESS.2022.3206425 10.1109/ICHQP.2010.5625472 10.1016/j.neunet.2014.09.003 10.3390/mi13040565 10.1007/s00202-023-01796-5 10.3390/en14196329 10.3390/mi14020386 10.3390/mi12050545 10.1016/j.neucom.2019.01.038 10.1109/ACCESS.2020.3025190 10.1109/ICRA40945.2020.9197301 10.1109/ICHQP.2018.8378902 10.3390/mi13101646 10.3390/en12071280 10.3390/ma16062351 10.3390/app11094129 10.1016/j.rser.2017.01.064 10.3390/su14063597 10.1109/ACCESS.2018.2869884 10.1155/2022/7020979 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 GNUQQ HCIFZ JQ2 K7- KB. L6V M7S P5Z P62 PDBOC PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/technologies11040082 |
DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Materials Science Database ProQuest Engineering Collection ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Materials Science Database Engineering Collection ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2227-7080 |
ExternalDocumentID | oai_doaj_org_article_ba07d259e36f4a5ba1b36977dbf4b68c A762548859 10_3390_technologies11040082 |
GeographicLocations | Mexico |
GeographicLocations_xml | – name: Mexico |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KB. KC. KQ8 L6V M7S MODMG M~E OK1 P62 PDBOC PIMPY PROAC PTHSS 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ JQ2 PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c379t-7f1d065349d6aeeb7c853540c7fcc6169da5ef632e0b9e5766c3aae6b4614cc13 |
IEDL.DBID | 8FG |
ISSN | 2227-7080 |
IngestDate | Tue Oct 22 15:09:31 EDT 2024 Thu Oct 10 17:39:50 EDT 2024 Tue Nov 12 23:35:35 EST 2024 Thu Sep 26 19:57:50 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-7f1d065349d6aeeb7c853540c7fcc6169da5ef632e0b9e5766c3aae6b4614cc13 |
ORCID | 0000-0002-2695-1934 0000-0002-9487-7326 0000-0001-8598-5600 0000-0002-7737-2115 0000-0002-0300-6462 0000-0003-1885-279X |
OpenAccessLink | https://www.proquest.com/docview/2857420807?pq-origsite=%requestingapplication% |
PQID | 2857420807 |
PQPubID | 2032323 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ba07d259e36f4a5ba1b36977dbf4b68c proquest_journals_2857420807 gale_infotracacademiconefile_A762548859 crossref_primary_10_3390_technologies11040082 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Technologies (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Liu (ref_13) 2019; 29 Yang (ref_30) 2018; 6 Xu (ref_26) 2020; 31 ref_34 ref_11 Wang (ref_14) 2019; 235 ref_33 ref_10 Subudhi (ref_19) 2021; 22 ref_32 ref_31 Liu (ref_28) 2019; 41 Mahela (ref_12) 2020; 8 Radhakrishnan (ref_20) 2021; 175 ref_18 Thirumala (ref_15) 2019; 334 ref_17 ref_39 ref_16 ref_38 ref_37 Nagata (ref_45) 2020; 164 ref_25 ref_24 ref_23 ref_22 ref_44 ref_21 ref_43 ref_42 ref_41 ref_1 Halbouni (ref_35) 2022; 10 ref_3 ref_2 Muyeen (ref_8) 2017; 72 ref_29 Sekar (ref_46) 2022; 2022 Cao (ref_47) 2023; 251 ref_27 Naseer (ref_36) 2018; 6 ref_9 ref_5 Schmidhuber (ref_40) 2015; 61 ref_4 ref_7 ref_6 |
References_xml | – volume: 235 start-page: 1126 year: 2019 ident: ref_14 article-title: A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.160 contributor: fullname: Wang – ident: ref_21 doi: 10.3390/app11125670 – ident: ref_3 – ident: ref_23 doi: 10.3390/jmse10091190 – ident: ref_39 doi: 10.3390/mi13091533 – ident: ref_6 doi: 10.3390/mi13010039 – ident: ref_9 doi: 10.3390/en11113191 – ident: ref_43 doi: 10.1109/CVPR.2016.90 – volume: 29 start-page: 2010 year: 2019 ident: ref_13 article-title: Classification of multiple power quality events via compressed deep learning publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/2050-7038.12010 contributor: fullname: Liu – volume: 22 start-page: 100204 year: 2021 ident: ref_19 article-title: Detection and classification of power quality disturbances using GWO ELM publication-title: J. Ind. Inf. Integr. contributor: fullname: Subudhi – volume: 31 start-page: 2409 year: 2020 ident: ref_26 article-title: Survey on Multi-Output Learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Xu – ident: ref_25 doi: 10.3390/s23063290 – volume: 41 start-page: 408 year: 2019 ident: ref_28 article-title: Metric Learning for Multi-Output Tasks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2794976 contributor: fullname: Liu – ident: ref_22 doi: 10.3390/math10152780 – ident: ref_38 doi: 10.3390/mi14030570 – ident: ref_33 doi: 10.3390/mi14030502 – volume: 6 start-page: 48231 year: 2018 ident: ref_36 article-title: Enhanced Network Anomaly Detection Based on Deep Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2863036 contributor: fullname: Naseer – ident: ref_5 doi: 10.3390/mi11020134 – volume: 175 start-page: 109025 year: 2021 ident: ref_20 article-title: A stacking ensemble classification model for detection and classification of power quality disturbances in PV integrated power network publication-title: Measurement doi: 10.1016/j.measurement.2021.109025 contributor: fullname: Radhakrishnan – volume: 251 start-page: 77 year: 2023 ident: ref_47 article-title: Real-Time Machine Learning-based fault Detection, Classification, and locating in large scale solar Energy-Based Systems: Digital twin simulation publication-title: Sol. Energy doi: 10.1016/j.solener.2022.12.042 contributor: fullname: Cao – ident: ref_17 doi: 10.3390/app10196755 – ident: ref_18 doi: 10.3390/en13082050 – ident: ref_27 doi: 10.3390/mi13091409 – ident: ref_32 doi: 10.1186/s12880-022-00829-y – volume: 164 start-page: 108097 year: 2020 ident: ref_45 article-title: Real-time voltage sag detection and classification for power quality diagnostics publication-title: Measurement doi: 10.1016/j.measurement.2020.108097 contributor: fullname: Nagata – ident: ref_2 doi: 10.3390/su14063305 – ident: ref_34 doi: 10.3390/mi13111983 – volume: 10 start-page: 99837 year: 2022 ident: ref_35 article-title: CNN-LSTM: Hybrid Deep Neural Network for Network Intrusion Detection System publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3206425 contributor: fullname: Halbouni – ident: ref_4 doi: 10.1109/ICHQP.2010.5625472 – volume: 61 start-page: 85 year: 2015 ident: ref_40 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 contributor: fullname: Schmidhuber – ident: ref_42 doi: 10.3390/mi13040565 – ident: ref_11 doi: 10.1007/s00202-023-01796-5 – ident: ref_10 doi: 10.3390/en14196329 – ident: ref_44 doi: 10.3390/mi14020386 – ident: ref_37 doi: 10.3390/mi12050545 – volume: 334 start-page: 265 year: 2019 ident: ref_15 article-title: A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.038 contributor: fullname: Thirumala – volume: 8 start-page: 173530 year: 2020 ident: ref_12 article-title: Recognition of Complex Power Quality Disturbances Using S-Transform Based Ruled Decision Tree publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3025190 contributor: fullname: Mahela – ident: ref_29 doi: 10.1109/ICRA40945.2020.9197301 – ident: ref_31 doi: 10.1109/ICHQP.2018.8378902 – ident: ref_7 doi: 10.3390/mi13101646 – ident: ref_16 doi: 10.3390/en12071280 – ident: ref_24 doi: 10.3390/ma16062351 – ident: ref_41 doi: 10.3390/app11094129 – volume: 72 start-page: 205 year: 2017 ident: ref_8 article-title: Enhancing smart grid with microgrids: Challenges and opportunities publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.01.064 contributor: fullname: Muyeen – ident: ref_1 doi: 10.3390/su14063597 – volume: 6 start-page: 50839 year: 2018 ident: ref_30 article-title: Position Detection and Direction Prediction for Arbitrary-Oriented Ships via Multitask Rotation Region Convolutional Neural Network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2869884 contributor: fullname: Yang – volume: 2022 start-page: 7020979 year: 2022 ident: ref_46 article-title: An improved power quality disturbance detection using deep learning approach publication-title: Math. Probl. Eng. doi: 10.1155/2022/7020979 contributor: fullname: Sekar |
SSID | ssj0000913865 |
Score | 2.297367 |
Snippet | Electrical power quality is one of the main elements in power generation systems. At the same time, it is one of the most significant challenges regarding... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 82 |
SubjectTerms | Algorithms artificial intelligence Artificial neural networks Classification deep learning Disturbances Electric power Electrical engineering Electricity distribution Empirical analysis Energy Fourier transforms Harmonic distortion Identification and classification Mathematical functions Methodology Methods Multitasking multitasking learning Neural networks Noise levels Performance tests Power failure smart grids solar photovoltaic System reliability Taxonomy Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9iB4CibZV_ZYtVKE9qTibdnHBARpS5v6-53dpFJB8eI1yWGZLzvzzTL7fYRcQS7qUFiX6VKFjEsXMu2CzXhRM1-5wMHGc8jxRI6e-eOreN2w-oozYa08cBu4G2dzFZCjA5M1t8LZwjGJpCW4mjtZ-ZR9c73RTKUcrItoZtnelWPY198065NqbECx5PFY-77VoiTZ_1tiTtXmYY_sdjSRDtrl7ZMtmB6QnQ3xwEPyMqCT2Qe803EygU7H4xQpKE0-l2_p_hIdJpebCAS9R0BXCxdRXtI0KUDvAeY0ynPg60k7D748Is8Pw6e7Uda5JGSeKd1kqi5CFJjlOkgL4JTHCow8zKvae1lIHayAWrIScqcB2wvpmbUgHcfK7H3BjklvOpvCCaEcn3pXQgVIVCRYzbgvQ12JUCgvhOyTbB0vM2_FMAw2ETG-5qf49sltDOrXt1HKOj1AgE0HsPkL4D65jpCYuOGahfW2uzeAS47SVWaA6RzbrkroPjlfo2a6nbg0ZSVUHCHI1el_rOaMbEfD-XYE8Jz0msUKLpCWNO4y_YGfPKbkFw priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel Methodology for Classifying Electrical Disturbances Using Deep Neural Networks |
URI | https://www.proquest.com/docview/2857420807 https://doaj.org/article/ba07d259e36f4a5ba1b36977dbf4b68c |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxNBDLagvcABtTxEaInmgMRp1OzOa_eE0jZphdQIIYp6W83Di5CqJCRbfj_27KYUCbjO7GFlz9j-PPZngHc4MW0qfJB16ZLUNiRZh-SlLloVq5A0es5DXi3s5bX-eGNuhoTbdiir3NnEbKjTKnKO_KSsjOOn4In7sP4heWoUv64OIzQew35ROsfgq5pf3OdYmPOysqbvmFOE7k-6Xb6aYCg5Ps0e8A-PlIn7_2Wes8-ZH8CzIVgU0167h_AIl8_h6QMKwRfwdSoWq594K67yKOicJBcUiIo87fJ77mISszzrhtUhzkmtd5vAut6KXC8gzhHXgkk6aHvRV4VvX8L1fPbl7FIOsxJkVK7upGuLxDSzuk7WIwYXyQ9TNBZdG6MtbJ28wdaqEiehRgIZNirv0QZN_jnGQr2CveVqia9BaFqNocQKKVyx6GulY5nayqTCRWPsCOROXs26p8RoCEqwfJu_yXcEpyzU-2-Z0DovrDbfmuF-kM-euERQDJVttTfBF0FZik1TaHWwVRzBe1ZJw9eu2_joh-4B-mUmsGqmZNQJfFWmHsHxTmvNcB-3ze_T8-b_20fwhAfK9yV-x7DXbe7wLYUdXRjnszWG_dPZ4tPncQbvvwBfdN1L |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagPQAHxFOkFPABiZPV7K4fu6cqbVMFaFYItag3y49ZhISSkGz7-zvjdUqRgKu9h9WMPS_PfB9j72Gsulg4L5rSRCG1j6Lx0QlZdFWofZTgqA45b_XsQn66VJe54LbJbZVbm5gMdVwGqpEflLUy9BQ8NoerX4JYo-h1NVNo3Ge7BFWFydfu0bT98vW2ykKol7VWw8xchfn9Qb-tWGMiiq5Pkg_8wycl6P5_GejkdU6fsMc5XOSTQb9P2T1YPGOP7oAIPmffJrxdXsNPPk9k0KlMzjEU5Ynv8keaY-LTxHZDCuEnqNirtSdtb3jqGOAnACtOMB243Q594ZsX7OJ0en48E5ktQYTKNL0wXREJaFY2UTsAbwJ6YozHgulC0IVuolPQ6aqEsW8A0wwdKudAe4keOoSiesl2FssFvGJc4mrwJdSAAYsG11QylLGrVSxMUEqPmNjKy64GUAyLyQTJ1_5NviN2REK9_ZYgrdPCcv3d5huCXntsIiZjUOlOOuVd4SuN0Wn0nfS6DiP2gVRi6eL1axdcnh_AXyYIKztBs47pV62aEdvfas3mG7mxv8_P3v-337EHs_P5mT372H5-zR4SvfzQ8LfPdvr1FbzBIKT3b_NJuwF0Bd8N |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYglRAcKp4ibQEfkDitsrt-7Z6qtElUHl1ViKLeLD_GFRJK0mTL72fsdQpIwNXew2rGnpdnvo-Qt1CK4Ctji7ZWvuDS-qK13hS8Csw11nMwsQ553smzS_7hSlzl_qdtbqvc2cRkqP3KxRr5pG6Eik_BpZqE3BZxMVscr2-KyCAVX1ozncZ9sqe4ZOWI7J3Mu4vPdxWXiIDZSDHMzzHM9Sf9rnqNSSm6QR794R_-KcH4_8tYJw-0eEz2c-hIp4Oun5B7sHxKHv0GKPiMfJ3SbvUDvtPzRAydSuYUw1KauC-_pZkmOk_MN1E5dIZKvt3YqPktTd0DdAawphGyA7e7oUd8-5xcLuZfTs-KzJxQOKbavlCh8hF0lrdeGgCrHHpljM2cCs7JSrbeCAiS1VDaFjDlkI4ZA9Jy9NbOVewFGS1XS3hJKMdVZ2toAIMXCaZl3NU-NMJXygkhx6TYyUuvB4AMjYlFlK_-m3zH5CQK9e7bCG-dFlaba51vC3rwUnlMzIDJwI2wprJMYqTqbeBWNm5M3kWV6HgJ-41xJs8S4C9HOCs9RROPqVgj2jE52mlN59u51b_O0sH_t9-QB3jI9Kf33cdD8jAyzQ-9f0dk1G9u4RXGI719nQ_aT5Ot4zs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Methodology+for+Classifying+Electrical+Disturbances+Using+Deep+Neural+Networks&rft.jtitle=Technologies+%28Basel%29&rft.au=Guerrero-S%C3%A1nchez%2C+Alma+E&rft.au=Rivas-Araiza%2C+Edgar+A&rft.au=Gardu%C3%B1o-Aparicio%2C+Mariano&rft.au=Tovar-Arriaga%2C+Saul&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=2227-7080&rft.volume=11&rft.issue=4&rft_id=info:doi/10.3390%2Ftechnologies11040082&rft.externalDocID=A762548859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7080&client=summon |