Catalyst self-assembly accelerates bimetallic light-driven electrocatalytic H2 evolution in water

Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H 2 ) evolution via a bimolecular mechanism, providi...

Full description

Saved in:
Bibliographic Details
Published inNature chemistry Vol. 16; no. 5; pp. 709 - 716
Main Authors Cloward, Isaac N., Liu, Tianfei, Rose, Jamie, Jurado, Tamara, Bonn, Annabell G., Chambers, Matthew B., Pitman, Catherine L., ter Horst, Marc A., Miller, Alexander J. M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2024
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1755-4330
1755-4349
1755-4349
DOI10.1038/s41557-024-01483-3

Cover

Loading…
Abstract Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H 2 ) evolution via a bimolecular mechanism, providing an opportunity to understand the factors that promote bimetallic H–H coupling. Covalently tethered diiridium catalysts evolve H 2 from neutral water faster than monometallic catalysts, even at lower overpotential. The unexpected origin of this improvement is non-covalent supramolecular self-assembly into nanoscale aggregates that efficiently harvest light and form H–H bonds. Monometallic catalysts containing long-chain alkane substituents leverage the self-assembly to evolve H 2 from neutral water at low overpotential and with rates close to the expected maximum for this light-driven water splitting reaction. Design parameters for holding multiple catalytic sites in close proximity and tuning catalyst microenvironments emerge from this work. Although the light-driven generation of hydrogen from water is a promising approach to renewable fuels, the H–H bond formation step represents a persistent mechanistic question. Now light-harvesting molecular catalysts have been shown to self-assemble into nanoscale aggregates that feature improved efficiency for photoelectrochemical H 2 evolution.
AbstractList Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H2) evolution via a bimolecular mechanism, providing an opportunity to understand the factors that promote bimetallic H-H coupling. Covalently tethered diiridium catalysts evolve H2 from neutral water faster than monometallic catalysts, even at lower overpotential. The unexpected origin of this improvement is non-covalent supramolecular self-assembly into nanoscale aggregates that efficiently harvest light and form H-H bonds. Monometallic catalysts containing long-chain alkane substituents leverage the self-assembly to evolve H2 from neutral water at low overpotential and with rates close to the expected maximum for this light-driven water splitting reaction. Design parameters for holding multiple catalytic sites in close proximity and tuning catalyst microenvironments emerge from this work.Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H2) evolution via a bimolecular mechanism, providing an opportunity to understand the factors that promote bimetallic H-H coupling. Covalently tethered diiridium catalysts evolve H2 from neutral water faster than monometallic catalysts, even at lower overpotential. The unexpected origin of this improvement is non-covalent supramolecular self-assembly into nanoscale aggregates that efficiently harvest light and form H-H bonds. Monometallic catalysts containing long-chain alkane substituents leverage the self-assembly to evolve H2 from neutral water at low overpotential and with rates close to the expected maximum for this light-driven water splitting reaction. Design parameters for holding multiple catalytic sites in close proximity and tuning catalyst microenvironments emerge from this work.
Not provided.
Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H2) evolution via a bimolecular mechanism, providing an opportunity to understand the factors that promote bimetallic H–H coupling. Covalently tethered diiridium catalysts evolve H2 from neutral water faster than monometallic catalysts, even at lower overpotential. The unexpected origin of this improvement is non-covalent supramolecular self-assembly into nanoscale aggregates that efficiently harvest light and form H–H bonds. Monometallic catalysts containing long-chain alkane substituents leverage the self-assembly to evolve H2 from neutral water at low overpotential and with rates close to the expected maximum for this light-driven water splitting reaction. Design parameters for holding multiple catalytic sites in close proximity and tuning catalyst microenvironments emerge from this work.Although the light-driven generation of hydrogen from water is a promising approach to renewable fuels, the H–H bond formation step represents a persistent mechanistic question. Now light-harvesting molecular catalysts have been shown to self-assemble into nanoscale aggregates that feature improved efficiency for photoelectrochemical H2 evolution.
Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H 2 ) evolution via a bimolecular mechanism, providing an opportunity to understand the factors that promote bimetallic H–H coupling. Covalently tethered diiridium catalysts evolve H 2 from neutral water faster than monometallic catalysts, even at lower overpotential. The unexpected origin of this improvement is non-covalent supramolecular self-assembly into nanoscale aggregates that efficiently harvest light and form H–H bonds. Monometallic catalysts containing long-chain alkane substituents leverage the self-assembly to evolve H 2 from neutral water at low overpotential and with rates close to the expected maximum for this light-driven water splitting reaction. Design parameters for holding multiple catalytic sites in close proximity and tuning catalyst microenvironments emerge from this work. Although the light-driven generation of hydrogen from water is a promising approach to renewable fuels, the H–H bond formation step represents a persistent mechanistic question. Now light-harvesting molecular catalysts have been shown to self-assemble into nanoscale aggregates that feature improved efficiency for photoelectrochemical H 2 evolution.
Author Bonn, Annabell G.
Jurado, Tamara
Rose, Jamie
Pitman, Catherine L.
ter Horst, Marc A.
Cloward, Isaac N.
Miller, Alexander J. M.
Liu, Tianfei
Chambers, Matthew B.
Author_xml – sequence: 1
  givenname: Isaac N.
  surname: Cloward
  fullname: Cloward, Isaac N.
  organization: Department of Chemistry, University of North Carolina at Chapel Hill
– sequence: 2
  givenname: Tianfei
  orcidid: 0000-0002-9961-0137
  surname: Liu
  fullname: Liu, Tianfei
  organization: Department of Chemistry, University of North Carolina at Chapel Hill, State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University
– sequence: 3
  givenname: Jamie
  surname: Rose
  fullname: Rose, Jamie
  organization: Department of Chemistry, University of North Carolina at Chapel Hill
– sequence: 4
  givenname: Tamara
  orcidid: 0009-0006-9574-4126
  surname: Jurado
  fullname: Jurado, Tamara
  organization: Department of Chemistry, University of North Carolina at Chapel Hill
– sequence: 5
  givenname: Annabell G.
  surname: Bonn
  fullname: Bonn, Annabell G.
  organization: Department of Chemistry, University of North Carolina at Chapel Hill
– sequence: 6
  givenname: Matthew B.
  surname: Chambers
  fullname: Chambers, Matthew B.
  organization: Department of Chemistry, University of North Carolina at Chapel Hill
– sequence: 7
  givenname: Catherine L.
  surname: Pitman
  fullname: Pitman, Catherine L.
  organization: Department of Chemistry, University of North Carolina at Chapel Hill
– sequence: 8
  givenname: Marc A.
  surname: ter Horst
  fullname: ter Horst, Marc A.
  organization: Department of Chemistry, University of North Carolina at Chapel Hill
– sequence: 9
  givenname: Alexander J. M.
  orcidid: 0000-0001-9390-3951
  surname: Miller
  fullname: Miller, Alexander J. M.
  email: ajmm@email.unc.edu
  organization: Department of Chemistry, University of North Carolina at Chapel Hill
BackLink https://www.osti.gov/biblio/2578062$$D View this record in Osti.gov
BookMark eNp9kU1vFSEUhompiW31D7ia6MYN9cAZPmZpbqw1aeJG14ThMi0NFypwa-6_L7djNOmiK0h4nvPBe0ZOUk6ekPcMLhig_lxHJoSiwEcKbNRI8RU5ZUoIOuI4nfy7I7whZ7XeAUiBTJ4Su7HNxkNtQ_VxobZWv5vjYbDO-eiLbb4Oc9j5DsXghhhubhvdlvDg09AB10p2TxVaf73ig3_Icd9CTkNIw5-ul7fk9WJj9e_-nufk1-XXn5srev3j2_fNl2vqUE2Nqq2WOLFZLFoDc5O0ms_eL1vlFoAFpwWthi1Iy6aJa-GQqdlKb0GySSHDc_JhrZtrC6a60Ly7dTmlPqThQmmQvEOfVui-5N97X5vZhdo3jTb5vK8GYQTkAAo7-vEZepf3JfUVOiUQJQclOqVXypVca_GL6Y3t8QNasSEaBuYYkFkDMj0g8xSQOTbgz9T7Ena2HF6WcJVqh9ONL_-nesF6BBzopMg
CitedBy_id crossref_primary_10_1039_D4CC03243H
crossref_primary_10_1002_smo_20240056
crossref_primary_10_1016_j_jcis_2025_01_036
crossref_primary_10_1002_anie_202424222
crossref_primary_10_1039_D4DT03098B
crossref_primary_10_1002_ange_202424222
crossref_primary_10_1002_nadc_20254146850
crossref_primary_10_1021_acs_organomet_4c00282
crossref_primary_10_1007_s12598_024_03081_1
crossref_primary_10_1038_s41557_024_01513_0
crossref_primary_10_1002_smll_202408437
crossref_primary_10_1016_j_cogsc_2024_100935
crossref_primary_10_3390_coatings14091147
crossref_primary_10_1016_j_jallcom_2024_176593
crossref_primary_10_1016_j_ijhydene_2024_12_379
crossref_primary_10_1002_chem_202403355
Cites_doi 10.1002/anie.201000380
10.1021/cr100246c
10.1021/acscentsci.9b00194
10.1021/jacs.9b07295
10.1039/C3CS60037H
10.1021/jacs.5b00914
10.1021/cr400572f
10.1021/ic500658x
10.1002/celc.202100576
10.1021/acs.chemrev.2c00200
10.1021/ic00105a048
10.1073/pnas.0603395103
10.1038/s41929-023-00962-z
10.1039/C7AY00669A
10.1039/D2DT00333C
10.1016/j.jinorgbio.2003.10.001
10.1021/om060899e
10.1246/bcsj.64.1632
10.1021/acs.accounts.0c00044
10.1039/C3CS60405E
10.1039/D0SC03715J
10.1073/pnas.1118329109
10.1039/C3CS60027K
10.1002/(SICI)1521-3773(19980216)37:3<216::AID-ANIE216>3.0.CO;2-P
10.1002/anie.202002311
10.1021/ar900253e
10.1021/ic00234a032
10.1021/ja01134a014
10.1021/ar00154a002
10.1021/cr050193e
10.1038/s41557-018-0172-y
10.1039/D3SC02836D
10.1021/jacs.5b12363
10.1021/cr1002326
10.1038/s41570-022-00433-2
10.1021/ja505845t
10.1039/c0dt01250e
10.1021/om100106e
10.1039/b615406a
10.1039/D0CS00737D
10.1038/nphoton.2012.175
10.1021/acsenergylett.8b00255
10.1021/cs500441f
10.1021/jacs.6b08701
10.1002/chem.201902353
10.1021/acs.chemrev.5b00229
10.1002/anie.201610240
10.1021/jacs.0c12171
10.1039/D2SC01715F
10.1002/anie.201601653
10.1021/acscatal.0c02265
10.1021/acs.jpclett.0c02386
10.1002/anie.201510001
10.1002/1521-3765(20020517)8:10<2370::AID-CHEM2370>3.0.CO;2-A
10.1002/9780470132609.ch53
10.1039/P19820003041
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited.
CorporateAuthor University of North Carolina, Chapel Hill, NC (United States)
CorporateAuthor_xml – name: University of North Carolina, Chapel Hill, NC (United States)
DBID AAYXX
CITATION
3V.
7QR
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
OTOTI
DOI 10.1038/s41557-024-01483-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Chemoreception Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1755-4349
EndPage 716
ExternalDocumentID 2578062
10_1038_s41557_024_01483_3
GrantInformation_xml – fundername: NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
  grantid: ECCS-1542015
  funderid: https://doi.org/10.13039/100000148
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: P30CA016086
  funderid: https://doi.org/10.13039/100000054
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0014255
  funderid: https://doi.org/10.13039/100000015
– fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Chemistry (CHE)
  grantid: CHE-1828183, CHE-1726291
  funderid: https://doi.org/10.13039/100000165
GroupedDBID ---
0R~
123
29M
39C
3V.
4.4
53G
5BI
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGGDT
AGHTU
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
KB.
L-9
LK8
M1P
M7P
ML-
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
7QR
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
OTOTI
PUEGO
ID FETCH-LOGICAL-c379t-7d86391b5f8801c96a82beefd7cf00f39f3a80d06a199285c317ba6ea06197313
IEDL.DBID 7X7
ISSN 1755-4330
1755-4349
IngestDate Mon Aug 25 02:20:36 EDT 2025
Thu Jul 10 22:27:59 EDT 2025
Sat Aug 23 14:25:03 EDT 2025
Tue Jul 01 03:02:16 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Fri Feb 21 02:38:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-7d86391b5f8801c96a82beefd7cf00f39f3a80d06a199285c317ba6ea06197313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
None
SC0014255
USDOE Office of Science (SC)
ORCID 0000-0001-9390-3951
0000-0002-9961-0137
0009-0006-9574-4126
0000000299610137
0000000193903951
0009000695744126
PQID 3053362075
PQPubID 536302
PageCount 8
ParticipantIDs osti_scitechconnect_2578062
proquest_miscellaneous_3040320073
proquest_journals_3053362075
crossref_citationtrail_10_1038_s41557_024_01483_3
crossref_primary_10_1038_s41557_024_01483_3
springer_journals_10_1038_s41557_024_01483_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature chemistry
PublicationTitleAbbrev Nat. Chem
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Wiester, Ulmann, Mirkin (CR40) 2011; 50
Brereton, Bonn, Miller (CR9) 2018; 3
Raynal, Ballester, Vidal-Ferran, van Leeuwen (CR42) 2014; 43
Guo (CR15) 2020; 59
Jiang (CR32) 1988; 21
Pannwitz (CR35) 2021; 50
Costentin, Dridi, Savéant (CR11) 2014; 136
Chambers, Kurtz, Pitman, Brennaman, Miller (CR21) 2016; 138
Martin, Wise, Pegis, Mayer (CR37) 2020; 53
Rountree, McCarthy, Eisenhart, Dempsey (CR25) 2014; 53
Cook (CR3) 2010; 110
Stratakes, Miller (CR17) 2020; 10
Pitman, Miller (CR16) 2014; 4
Dadci (CR23) 1995; 34
Keijer, Bouwens, Hessels, Reek (CR34) 2021; 12
Wadsworth, Beiler, Khusnutdinova, Reyes Cruz, Moore (CR26) 2019; 141
Yu (CR46) 2023; 6
Lewis, Nocera (CR1) 2006; 103
Walter (CR2) 2010; 110
Dempsey, Brunschwig, Winkler, Gray (CR12) 2009; 42
Bonchio (CR44) 2019; 11
Rubinson (CR55) 2017; 9
CR48
Mulyana (CR52) 2011; 40
Ashford (CR8) 2015; 115
Blesic (CR33) 2007; 9
Nguyen, Jana, Campbell, Tran, Do (CR45) 2023; 14
Bard, Faulkner (CR29) 2000
Han (CR14) 2016; 55
Tachibana, Vayssieres, Durrant (CR4) 2012; 6
Delahay, Stiehl (CR28) 1952; 74
Boulas, Go, Echegoyen (CR39) 1998; 37
Valdez, Dempsey, Brunschwig, Winkler, Gray (CR13) 2012; 109
Furue (CR51) 1991; 64
CR54
Huang, Sun, Wu, Turro (CR20) 2021; 143
Rivier (CR19) 2019; 25
Kühn (CR53) 2002; 8
Pitman, Brereton, Miller (CR24) 2016; 138
Reyes Cruz (CR10) 2022; 122
Raynal, Ballester, Vidal-Ferran, van Leeuwen (CR41) 2014; 43
Esswein, Nocera (CR5) 2007; 107
Nie, McCrory (CR38) 2022; 51
Stratakes, Dempsey, Miller (CR22) 2021; 8
Nguyen, Wadsworth, Nishiori, Reyes Cruz, Moore (CR27) 2021; 12
Schmehl (CR50) 1986; 25
Costentin, Passard, Savéant (CR30) 2015; 137
Wang (CR36) 2019; 5
Zeng (CR43) 2022; 6
Rivier (CR18) 2017; 56
Fulmer (CR57) 2010; 29
Kärkäs, Verho, Johnston, Åkermark (CR7) 2014; 114
Yang (CR47) 2016; 55
Himeda, Onozawa-Komatsuzaki, Sugihara, Kasuga (CR49) 2007; 26
Krȩżel, Bal (CR56) 2004; 98
Weberg, Murphy, Tomson (CR31) 2022; 13
Berardi (CR6) 2014; 43
JL Dempsey (1483_CR12) 2009; 42
L Rivier (1483_CR18) 2017; 56
MB Chambers (1483_CR21) 2016; 138
HD Nguyen (1483_CR45) 2023; 14
J Huang (1483_CR20) 2021; 143
NP Nguyen (1483_CR27) 2021; 12
X Jiang (1483_CR32) 1988; 21
X Guo (1483_CR15) 2020; 59
Y Mulyana (1483_CR52) 2011; 40
W Nie (1483_CR38) 2022; 51
GR Fulmer (1483_CR57) 2010; 29
A Pannwitz (1483_CR35) 2021; 50
AJ Esswein (1483_CR5) 2007; 107
A Krȩżel (1483_CR56) 2004; 98
DJ Martin (1483_CR37) 2020; 53
BM Stratakes (1483_CR22) 2021; 8
FE Kühn (1483_CR53) 2002; 8
1483_CR54
BM Stratakes (1483_CR17) 2020; 10
AJ Bard (1483_CR29) 2000
T Zeng (1483_CR43) 2022; 6
MJ Wiester (1483_CR40) 2011; 50
CL Pitman (1483_CR24) 2016; 138
M Bonchio (1483_CR44) 2019; 11
M Raynal (1483_CR41) 2014; 43
CL Pitman (1483_CR16) 2014; 4
EA Reyes Cruz (1483_CR10) 2022; 122
M Furue (1483_CR51) 1991; 64
ES Rountree (1483_CR25) 2014; 53
T Keijer (1483_CR34) 2021; 12
Y Han (1483_CR14) 2016; 55
BL Wadsworth (1483_CR26) 2019; 141
M Blesic (1483_CR33) 2007; 9
TR Cook (1483_CR3) 2010; 110
Y-H Wang (1483_CR36) 2019; 5
RH Schmehl (1483_CR50) 1986; 25
DL Ashford (1483_CR8) 2015; 115
C Costentin (1483_CR30) 2015; 137
J Yu (1483_CR46) 2023; 6
1483_CR48
Y Tachibana (1483_CR4) 2012; 6
AB Weberg (1483_CR31) 2022; 13
KA Rubinson (1483_CR55) 2017; 9
S Berardi (1483_CR6) 2014; 43
MD Kärkäs (1483_CR7) 2014; 114
P Delahay (1483_CR28) 1952; 74
MG Walter (1483_CR2) 2010; 110
M Raynal (1483_CR42) 2014; 43
B Yang (1483_CR47) 2016; 55
L Rivier (1483_CR19) 2019; 25
C Costentin (1483_CR11) 2014; 136
PL Boulas (1483_CR39) 1998; 37
KR Brereton (1483_CR9) 2018; 3
NS Lewis (1483_CR1) 2006; 103
L Dadci (1483_CR23) 1995; 34
Y Himeda (1483_CR49) 2007; 26
CN Valdez (1483_CR13) 2012; 109
References_xml – volume: 50
  start-page: 114
  year: 2011
  end-page: 137
  ident: CR40
  article-title: Enzyme mimics based upon supramolecular coordination chemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201000380
– volume: 110
  start-page: 6474
  year: 2010
  end-page: 6502
  ident: CR3
  article-title: Solar energy supply and storage for the legacy and nonlegacy worlds
  publication-title: Chem. Rev.
  doi: 10.1021/cr100246c
– volume: 5
  start-page: 1024
  year: 2019
  end-page: 1034
  ident: CR36
  article-title: Brønsted acid scaling relationships enable control over product selectivity from O reduction with a mononuclear cobalt porphyrin catalyst
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b00194
– volume: 141
  start-page: 15932
  year: 2019
  end-page: 15941
  ident: CR26
  article-title: Interplay between light flux, quantum efficiency, and turnover frequency in molecular-modified photoelectrosynthetic assemblies
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07295
– volume: 43
  start-page: 1734
  year: 2014
  end-page: 1787
  ident: CR42
  article-title: Supramolecular catalysis. Part 2: artificial enzyme mimics
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60037H
– volume: 137
  start-page: 5461
  year: 2015
  end-page: 5467
  ident: CR30
  article-title: Benchmarking of homogeneous electrocatalysts: overpotential, turnover frequency, limiting turnover number
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00914
– volume: 114
  start-page: 11863
  year: 2014
  end-page: 12001
  ident: CR7
  article-title: Artificial photosynthesis: molecular systems for catalytic water oxidation
  publication-title: Chem. Rev.
  doi: 10.1021/cr400572f
– volume: 53
  start-page: 9983
  year: 2014
  end-page: 10002
  ident: CR25
  article-title: Evaluation of homogeneous electrocatalysts by cyclic voltammetry
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500658x
– volume: 8
  start-page: 4161
  year: 2021
  end-page: 4180
  ident: CR22
  article-title: Determining the overpotential of electrochemical fuel synthesis mediated by molecular catalysts: recommended practices, standard reduction potentials, and challenges
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202100576
– ident: CR54
– volume: 122
  start-page: 16051
  year: 2022
  end-page: 16109
  ident: CR10
  article-title: Molecular-modified photocathodes for applications in artificial photosynthesis and solar-to-fuel technologies
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00200
– volume: 34
  start-page: 306
  year: 1995
  end-page: 315
  ident: CR23
  article-title: -Arene aqua complexes of cobalt, rhodium, iridium, and ruthenium: preparation, structure, and kinetics of water exchange and water substitution
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00105a048
– volume: 103
  start-page: 15729
  year: 2006
  end-page: 15735
  ident: CR1
  article-title: Powering the planet: chemical challenges in solar energy utilization
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0603395103
– volume: 6
  start-page: 464
  year: 2023
  end-page: 475
  ident: CR46
  article-title: Artificial spherical chromatophore nanomicelles for selective CO reduction in water
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-00962-z
– volume: 9
  start-page: 2744
  year: 2017
  end-page: 2750
  ident: CR55
  article-title: Practical corrections for p(H,D) measurements in mixed H O/D O biological buffers
  publication-title: Anal. Methods
  doi: 10.1039/C7AY00669A
– volume: 51
  start-page: 6993
  year: 2022
  end-page: 7010
  ident: CR38
  article-title: Strategies for breaking molecular scaling relationships for the electrochemical CO reduction reaction
  publication-title: Dalton Trans.
  doi: 10.1039/D2DT00333C
– volume: 98
  start-page: 161
  year: 2004
  end-page: 166
  ident: CR56
  article-title: A formula for correlating p values determined in D O and H O
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2003.10.001
– volume: 26
  start-page: 702
  year: 2007
  end-page: 712
  ident: CR49
  article-title: Simultaneous tuning of activity and water solubility of complex catalysts by acid-base equilibrium of ligands for conversion of carbon dioxide
  publication-title: Organometallics
  doi: 10.1021/om060899e
– volume: 64
  start-page: 1632
  year: 1991
  end-page: 1640
  ident: CR51
  article-title: Intramolecular energy transfer in covalently linked polypyridine ruthenium(II)/osmium(II) binuclear complexes. Ru(II)(bpy) Mebpy– (CH ) – MebpyOs(II)(bpy) (  = 2, 3, 5, and 7)
  publication-title: Bull. Chem. Soc. Jpn
  doi: 10.1246/bcsj.64.1632
– volume: 53
  start-page: 1056
  year: 2020
  end-page: 1065
  ident: CR37
  article-title: Developing scaling relationships for molecular electrocatalysis through studies of Fe-porphyrin-catalyzed O reduction
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00044
– volume: 43
  start-page: 7501
  year: 2014
  end-page: 7519
  ident: CR6
  article-title: Molecular artificial photosynthesis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60405E
– volume: 12
  start-page: 50
  year: 2021
  end-page: 70
  ident: CR34
  article-title: Supramolecular strategies in artificial photosynthesis
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03715J
– volume: 109
  start-page: 15589
  year: 2012
  end-page: 15593
  ident: CR13
  article-title: Catalytic hydrogen evolution from a covalently linked dicobaloxime
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1118329109
– volume: 43
  start-page: 1660
  year: 2014
  end-page: 1733
  ident: CR41
  article-title: Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60027K
– volume: 37
  start-page: 216
  year: 1998
  end-page: 247
  ident: CR39
  article-title: Electrochemistry of supramolecular systems
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19980216)37:3<216::AID-ANIE216>3.0.CO;2-P
– volume: 59
  start-page: 8941
  year: 2020
  end-page: 8946
  ident: CR15
  article-title: Homolytic versus heterolytic hydrogen evolution reaction steered by a steric effect
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202002311
– volume: 42
  start-page: 1995
  year: 2009
  end-page: 2004
  ident: CR12
  article-title: Hydrogen evolution catalyzed by cobaloximes
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900253e
– year: 2000
  ident: CR29
  publication-title: Electrochemical Methods: Fundamentals and Applications
– volume: 25
  start-page: 2440
  year: 1986
  end-page: 2445
  ident: CR50
  article-title: Formation and photophysical properties of iron-ruthenium tetranuclear bipyridyl complexes of the type {[(bpy) Ru(L-L)] Fe}
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00234a032
– volume: 74
  start-page: 3500
  year: 1952
  end-page: 3505
  ident: CR28
  article-title: Theory of catalytic polarographic currents
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01134a014
– volume: 21
  start-page: 362
  year: 1988
  end-page: 367
  ident: CR32
  article-title: Hydrophobic-lipophilic interactions. Aggregation and self-coiling of organic molecules
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00154a002
– volume: 107
  start-page: 4022
  year: 2007
  end-page: 4047
  ident: CR5
  article-title: Hydrogen production by molecular photocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr050193e
– volume: 11
  start-page: 146
  year: 2019
  end-page: 153
  ident: CR44
  article-title: Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0172-y
– volume: 14
  start-page: 10264
  year: 2023
  end-page: 10272
  ident: CR45
  article-title: Lewis acid-driven self-assembly of diiridium macrocyclic catalysts imparts substrate selectivity and glutathione tolerance
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC02836D
– volume: 138
  start-page: 2252
  year: 2016
  end-page: 2260
  ident: CR24
  article-title: Aqueous hydricity of late metal catalysts as a continuum tuned by ligands and the medium
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12363
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  ident: CR2
  article-title: Solar water splitting cells
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 6
  start-page: 862
  year: 2022
  end-page: 880
  ident: CR43
  article-title: Hybrid bilayer membranes as platforms for biomimicry and catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-022-00433-2
– volume: 136
  start-page: 13727
  year: 2014
  end-page: 13734
  ident: CR11
  article-title: Molecular catalysis of H evolution: diagnosing heterolytic versus homolytic pathways
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505845t
– volume: 40
  start-page: 1510
  year: 2011
  end-page: 1523
  ident: CR52
  article-title: Oligonuclear polypyridylruthenium( ) complexes incorporating flexible polar and non-polar bridges: synthesis, DNA-binding and cytotoxicity
  publication-title: Dalton Trans.
  doi: 10.1039/c0dt01250e
– volume: 29
  start-page: 2176
  year: 2010
  end-page: 2179
  ident: CR57
  article-title: NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist
  publication-title: Organometallics
  doi: 10.1021/om100106e
– volume: 9
  start-page: 481
  year: 2007
  end-page: 490
  ident: CR33
  article-title: Self-aggregation of ionic liquids: micelle formation in aqueous solution
  publication-title: Green Chem.
  doi: 10.1039/b615406a
– volume: 50
  start-page: 4833
  year: 2021
  end-page: 4855
  ident: CR35
  article-title: Roadmap towards solar fuel synthesis at the water interface of liposome membranes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00737D
– volume: 6
  start-page: 511
  year: 2012
  end-page: 518
  ident: CR4
  article-title: Artificial photosynthesis for solar water-splitting
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.175
– volume: 3
  start-page: 1128
  year: 2018
  end-page: 1136
  ident: CR9
  article-title: Molecular photoelectrocatalysts for light-driven hydrogen production
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00255
– volume: 4
  start-page: 2727
  year: 2014
  end-page: 2733
  ident: CR16
  article-title: Molecular photoelectrocatalysts for visible light-driven hydrogen evolution from neutral water
  publication-title: ACS Catal.
  doi: 10.1021/cs500441f
– volume: 138
  start-page: 13509
  year: 2016
  end-page: 13512
  ident: CR21
  article-title: Efficient photochemical dihydrogen generation initiated by a bimetallic self-quenching mechanism
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08701
– volume: 25
  start-page: 12769
  year: 2019
  end-page: 12779
  ident: CR19
  article-title: Mechanistic study on the photogeneration of hydrogen by decamethylruthenocene
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201902353
– ident: CR48
– volume: 115
  start-page: 13006
  year: 2015
  end-page: 13049
  ident: CR8
  article-title: Molecular chromophore–catalyst assemblies for solar fuel applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00229
– volume: 56
  start-page: 2324
  year: 2017
  end-page: 2327
  ident: CR18
  article-title: Photoproduction of hydrogen by decamethylruthenocene combined with electrochemical recycling
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610240
– volume: 143
  start-page: 1610
  year: 2021
  end-page: 1617
  ident: CR20
  article-title: Dirhodium(II,II)/NiO photocathode for photoelectrocatalytic hydrogen evolution with red light
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12171
– volume: 13
  start-page: 5432
  year: 2022
  end-page: 5446
  ident: CR31
  article-title: Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC01715F
– volume: 55
  start-page: 6229
  year: 2016
  end-page: 6234
  ident: CR47
  article-title: Self-assembled amphiphilic water oxidation catalysts: control of O−O bond formation pathways by different aggregation patterns
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201601653
– volume: 10
  start-page: 9006
  year: 2020
  end-page: 9018
  ident: CR17
  article-title: H evolution at an electrochemical ‘underpotential’ with an iridium-based molecular photoelectrocatalyst
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02265
– volume: 12
  start-page: 199
  year: 2021
  end-page: 203
  ident: CR27
  article-title: Understanding and controlling the performance-limiting steps of catalyst-modified semiconductors
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02386
– volume: 55
  start-page: 5457
  year: 2016
  end-page: 5462
  ident: CR14
  article-title: Singly versus doubly reduced nickel porphyrins for proton reduction: experimental and theoretical evidence for a homolytic hydrogen‐evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201510001
– volume: 8
  start-page: 2370
  year: 2002
  end-page: 2383
  ident: CR53
  article-title: Octahedral bipyridine and bipyrimidine dioxomolybdenum(VI) complexes: characterization, application in catalytic epoxidation, and density functional mechanistic study
  publication-title: Chem. Eur. J.
  doi: 10.1002/1521-3765(20020517)8:10<2370::AID-CHEM2370>3.0.CO;2-A
– volume: 8
  start-page: 4161
  year: 2021
  ident: 1483_CR22
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202100576
– volume: 43
  start-page: 1660
  year: 2014
  ident: 1483_CR41
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60027K
– volume: 115
  start-page: 13006
  year: 2015
  ident: 1483_CR8
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00229
– ident: 1483_CR48
  doi: 10.1002/9780470132609.ch53
– volume: 26
  start-page: 702
  year: 2007
  ident: 1483_CR49
  publication-title: Organometallics
  doi: 10.1021/om060899e
– volume: 25
  start-page: 12769
  year: 2019
  ident: 1483_CR19
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201902353
– volume: 9
  start-page: 481
  year: 2007
  ident: 1483_CR33
  publication-title: Green Chem.
  doi: 10.1039/b615406a
– volume: 110
  start-page: 6474
  year: 2010
  ident: 1483_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/cr100246c
– volume: 74
  start-page: 3500
  year: 1952
  ident: 1483_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01134a014
– volume: 12
  start-page: 199
  year: 2021
  ident: 1483_CR27
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02386
– volume: 143
  start-page: 1610
  year: 2021
  ident: 1483_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12171
– volume: 138
  start-page: 13509
  year: 2016
  ident: 1483_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08701
– volume: 34
  start-page: 306
  year: 1995
  ident: 1483_CR23
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00105a048
– volume: 138
  start-page: 2252
  year: 2016
  ident: 1483_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12363
– volume: 6
  start-page: 511
  year: 2012
  ident: 1483_CR4
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.175
– volume: 110
  start-page: 6446
  year: 2010
  ident: 1483_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 122
  start-page: 16051
  year: 2022
  ident: 1483_CR10
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00200
– volume: 37
  start-page: 216
  year: 1998
  ident: 1483_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19980216)37:3<216::AID-ANIE216>3.0.CO;2-P
– ident: 1483_CR54
  doi: 10.1039/P19820003041
– volume: 55
  start-page: 6229
  year: 2016
  ident: 1483_CR47
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201601653
– volume: 98
  start-page: 161
  year: 2004
  ident: 1483_CR56
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2003.10.001
– volume: 11
  start-page: 146
  year: 2019
  ident: 1483_CR44
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0172-y
– volume: 3
  start-page: 1128
  year: 2018
  ident: 1483_CR9
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00255
– volume: 51
  start-page: 6993
  year: 2022
  ident: 1483_CR38
  publication-title: Dalton Trans.
  doi: 10.1039/D2DT00333C
– volume: 64
  start-page: 1632
  year: 1991
  ident: 1483_CR51
  publication-title: Bull. Chem. Soc. Jpn
  doi: 10.1246/bcsj.64.1632
– volume: 42
  start-page: 1995
  year: 2009
  ident: 1483_CR12
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar900253e
– volume: 50
  start-page: 114
  year: 2011
  ident: 1483_CR40
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201000380
– volume-title: Electrochemical Methods: Fundamentals and Applications
  year: 2000
  ident: 1483_CR29
– volume: 55
  start-page: 5457
  year: 2016
  ident: 1483_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201510001
– volume: 137
  start-page: 5461
  year: 2015
  ident: 1483_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00914
– volume: 56
  start-page: 2324
  year: 2017
  ident: 1483_CR18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610240
– volume: 50
  start-page: 4833
  year: 2021
  ident: 1483_CR35
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00737D
– volume: 59
  start-page: 8941
  year: 2020
  ident: 1483_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202002311
– volume: 53
  start-page: 9983
  year: 2014
  ident: 1483_CR25
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500658x
– volume: 4
  start-page: 2727
  year: 2014
  ident: 1483_CR16
  publication-title: ACS Catal.
  doi: 10.1021/cs500441f
– volume: 12
  start-page: 50
  year: 2021
  ident: 1483_CR34
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03715J
– volume: 29
  start-page: 2176
  year: 2010
  ident: 1483_CR57
  publication-title: Organometallics
  doi: 10.1021/om100106e
– volume: 25
  start-page: 2440
  year: 1986
  ident: 1483_CR50
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00234a032
– volume: 6
  start-page: 464
  year: 2023
  ident: 1483_CR46
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-00962-z
– volume: 53
  start-page: 1056
  year: 2020
  ident: 1483_CR37
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00044
– volume: 13
  start-page: 5432
  year: 2022
  ident: 1483_CR31
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC01715F
– volume: 5
  start-page: 1024
  year: 2019
  ident: 1483_CR36
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b00194
– volume: 103
  start-page: 15729
  year: 2006
  ident: 1483_CR1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0603395103
– volume: 136
  start-page: 13727
  year: 2014
  ident: 1483_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505845t
– volume: 107
  start-page: 4022
  year: 2007
  ident: 1483_CR5
  publication-title: Chem. Rev.
  doi: 10.1021/cr050193e
– volume: 14
  start-page: 10264
  year: 2023
  ident: 1483_CR45
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC02836D
– volume: 10
  start-page: 9006
  year: 2020
  ident: 1483_CR17
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02265
– volume: 21
  start-page: 362
  year: 1988
  ident: 1483_CR32
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00154a002
– volume: 141
  start-page: 15932
  year: 2019
  ident: 1483_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07295
– volume: 6
  start-page: 862
  year: 2022
  ident: 1483_CR43
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-022-00433-2
– volume: 114
  start-page: 11863
  year: 2014
  ident: 1483_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/cr400572f
– volume: 40
  start-page: 1510
  year: 2011
  ident: 1483_CR52
  publication-title: Dalton Trans.
  doi: 10.1039/c0dt01250e
– volume: 8
  start-page: 2370
  year: 2002
  ident: 1483_CR53
  publication-title: Chem. Eur. J.
  doi: 10.1002/1521-3765(20020517)8:10<2370::AID-CHEM2370>3.0.CO;2-A
– volume: 9
  start-page: 2744
  year: 2017
  ident: 1483_CR55
  publication-title: Anal. Methods
  doi: 10.1039/C7AY00669A
– volume: 43
  start-page: 1734
  year: 2014
  ident: 1483_CR42
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60037H
– volume: 43
  start-page: 7501
  year: 2014
  ident: 1483_CR6
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60405E
– volume: 109
  start-page: 15589
  year: 2012
  ident: 1483_CR13
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1118329109
SSID ssj0065316
Score 2.5232785
Snippet Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic...
Not provided.
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 709
SubjectTerms 639/638/263/406
639/638/541/966
639/638/675
639/638/77/886
639/638/77/890
Active sites
Aggregates
Alkanes
Analytical Chemistry
Bimetals
Biochemistry
Catalysis
Catalysts
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Design
Design parameters
Evolution
Hydrogen bonds
Hydrogen evolution
Inorganic Chemistry
Iridium
Ligands
Light
Microenvironments
NMR
Nuclear magnetic resonance
Organic Chemistry
Physical Chemistry
Renewable fuels
Self-assembly
Water splitting
Title Catalyst self-assembly accelerates bimetallic light-driven electrocatalytic H2 evolution in water
URI https://link.springer.com/article/10.1038/s41557-024-01483-3
https://www.proquest.com/docview/3053362075
https://www.proquest.com/docview/3040320073
https://www.osti.gov/biblio/2578062
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFBdbetguY90H89oVFXbbRG0rsuXTaELTUFgYY4XchKwPCLhOG7sb-e_3niKndLBe7IMl27zPn5703iPks-C-4pnwzGd1zsbaStA5Y1gFrkEDfBZ2jLnD3xfF_Hp8tRTLGHDr4rHKwSYGQ23XBmPkZxyTRoscPNy32zuGXaNwdzW20HhODrB0GS6-yuV-wVWAfIXsolIIzAxKY9JMyuVZh460ZOChGMbUOOOPHNNoDQr2CHT-s08a3M_sNXkVcSM93zH6kDxz7RvyYjq0a3tL9BQDMduup51rPANM7G7qZku1MeBZsCBER-vVjYNBzcrQJhQQsRs0djT2wgmhnC18gM5z6n5HoaSrlv6B6Zt35Hp28Ws6Z7F_AjO8rHpWWgn4I6uFByXNTFVomdfOeVsan6aeV55rmdq00HgGVQoDWKLWhdPg47GjFX9PRu26dR8I1dJynplSCw_rtcpWJSyFvAG0pHUqdJmQbCCeMrG4OPa4aFTY5OZS7QiugOAqEFzxhHzZz7ndldZ4cvQR8kQBMMDqtgaPAZleocVJizwhxwOrVFTCTj2ITEJO94-BLbgnolu3vscxY2whD4YuIV8HFj-84v__8_HpLx6Rl3kQLjwaeUxG_ebefQL40tcnQUbhKmeXJ-TgfDaZLOA-uVj8-PkXYcHtkw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qw6FcUMsiQgs1EpzAahLHWQ4IoSnDlC6nVurNOF6kkdJMmaRU86f6G3kvk7RqJXrrOV6it33P9lsAPkrhCxFJz31UxjzRNkedM4YXCA0a3WdpE8odPjpOp6fJrzN5tgbXQy4MhVUONrEz1HZu6I58V1DSaBojwn27-MOpaxS9rg4tNFZiceCWV3hka77u7yF_P8Xx5MfJeMr7rgLciKxoeWZzROWolB5FNzJFqvO4dM7bzPgw9KLwQuehDVNNkZm5NIiwpU6dRuSjPk8C130CTxMhCgohzCc_B8ufojx32UyZlJSJFPZJOqHIdxsC7owjInK6wxNc3AHC0RwV-o6Te-9dtoO7yQY87_1U9n0lWJuw5uoXsD4e2sO9BD2mi59l07LGVZ6jD-7Oy2rJtDGIZFSAomHl7NzhoGpmWNUVLLELMq6s773TXR0tcQM2jZn72ysBm9XsCqcvXsHpo1D2NYzqee3eANO5FSIymZYez4eFLTI8enmD3pnWodRZANFAPGX6YubUU6NS3aO6yNWK4AoJrjqCKxHA55s5F6tSHg-O3iKeKHREqJquobAj0yqycGEaB7A9sEr1St-oWxEN4MPNZ2QLvcHo2s0vaUxCLevRsAbwZWDx7RL__5-3D--4A-vTk6NDdbh_fLAFz-JO0CgscxtG7eLSvUPXqS3fd_LK4PdjK8g_dRQlsg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIAEXxFM1LbBIcIJVbG_WXh8QQikhpVBxoFJvy3ofUiTXKbFLlb_Gr2PGsVsVid56ztqO5vXN7s7MB_BailCIRAYekjLlE-MU-py1vEBoMJg-Szeh3uFvh9n8aPLlWB5vwZ-hF4bKKoeY2AVqt7R0Rj4W1DSapYhw49CXRXzfm304_cWJQYpuWgc6jY2JHPj1OW7fmvf7e6jrN2k6-_RjOuc9wwC3Ii9anjuFCJ2UMqAZJ7bIjEpL74PLbYjjIIogjIpdnBmq0lTSItqWJvMGUZA4nwS-9xbczoWKiT1BzT4PKJChbXedTbmU1JUU9w07sVDjhkA854iOnM7zBBdXQHG0ROe-kvD-c0fbQd_sAdzvc1b2cWNkD2HL14_g7nSginsMZkqHQOumZY2vAsd83J-U1ZoZaxHVaBhFw8rFicdF1cKyqhte4lYUaFnPw9MdI63xA2yeMv-7dwi2qNk5Pr56Akc3ItmnMKqXtd8GZpQTIrG5kQH3ioUrctyGBYuZmjGxNHkEySA8bfvB5sSvUenugl0ovRG4RoHrTuBaRPD24pnTzViPa1fvkE40JiU0WddSCZJtNUW7OEsj2B1UpfsA0OhLc43g1cXPqBa6jzG1X57RmgnR12OQjeDdoOLLV_z__zy7_osv4Q66hv66f3iwA_fSzs6oQnMXRu3qzD_HLKotX3TmyuDnTfvHXy0FKd8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalyst+self-assembly+accelerates+bimetallic+light-driven+electrocatalytic+H2+evolution+in+water&rft.jtitle=Nature+chemistry&rft.au=Cloward%2C+Isaac+N&rft.au=Liu%2C+Tianfei&rft.au=Rose%2C+Jamie&rft.au=Jurado%2C+Tamara&rft.date=2024-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=16&rft.issue=5&rft.spage=709&rft.epage=716&rft_id=info:doi/10.1038%2Fs41557-024-01483-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon