Catalyst self-assembly accelerates bimetallic light-driven electrocatalytic H2 evolution in water
Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H 2 ) evolution via a bimolecular mechanism, providi...
Saved in:
Published in | Nature chemistry Vol. 16; no. 5; pp. 709 - 716 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2024
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1755-4330 1755-4349 1755-4349 |
DOI | 10.1038/s41557-024-01483-3 |
Cover
Loading…
Abstract | Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H
2
) evolution via a bimolecular mechanism, providing an opportunity to understand the factors that promote bimetallic H–H coupling. Covalently tethered diiridium catalysts evolve H
2
from neutral water faster than monometallic catalysts, even at lower overpotential. The unexpected origin of this improvement is non-covalent supramolecular self-assembly into nanoscale aggregates that efficiently harvest light and form H–H bonds. Monometallic catalysts containing long-chain alkane substituents leverage the self-assembly to evolve H
2
from neutral water at low overpotential and with rates close to the expected maximum for this light-driven water splitting reaction. Design parameters for holding multiple catalytic sites in close proximity and tuning catalyst microenvironments emerge from this work.
Although the light-driven generation of hydrogen from water is a promising approach to renewable fuels, the H–H bond formation step represents a persistent mechanistic question. Now light-harvesting molecular catalysts have been shown to self-assemble into nanoscale aggregates that feature improved efficiency for photoelectrochemical H
2
evolution. |
---|---|
AbstractList | Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H2) evolution via a bimolecular mechanism, providing an opportunity to understand the factors that promote bimetallic H-H coupling. Covalently tethered diiridium catalysts evolve H2 from neutral water faster than monometallic catalysts, even at lower overpotential. The unexpected origin of this improvement is non-covalent supramolecular self-assembly into nanoscale aggregates that efficiently harvest light and form H-H bonds. Monometallic catalysts containing long-chain alkane substituents leverage the self-assembly to evolve H2 from neutral water at low overpotential and with rates close to the expected maximum for this light-driven water splitting reaction. Design parameters for holding multiple catalytic sites in close proximity and tuning catalyst microenvironments emerge from this work.Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H2) evolution via a bimolecular mechanism, providing an opportunity to understand the factors that promote bimetallic H-H coupling. Covalently tethered diiridium catalysts evolve H2 from neutral water faster than monometallic catalysts, even at lower overpotential. The unexpected origin of this improvement is non-covalent supramolecular self-assembly into nanoscale aggregates that efficiently harvest light and form H-H bonds. Monometallic catalysts containing long-chain alkane substituents leverage the self-assembly to evolve H2 from neutral water at low overpotential and with rates close to the expected maximum for this light-driven water splitting reaction. Design parameters for holding multiple catalytic sites in close proximity and tuning catalyst microenvironments emerge from this work. Not provided. Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H2) evolution via a bimolecular mechanism, providing an opportunity to understand the factors that promote bimetallic H–H coupling. Covalently tethered diiridium catalysts evolve H2 from neutral water faster than monometallic catalysts, even at lower overpotential. The unexpected origin of this improvement is non-covalent supramolecular self-assembly into nanoscale aggregates that efficiently harvest light and form H–H bonds. Monometallic catalysts containing long-chain alkane substituents leverage the self-assembly to evolve H2 from neutral water at low overpotential and with rates close to the expected maximum for this light-driven water splitting reaction. Design parameters for holding multiple catalytic sites in close proximity and tuning catalyst microenvironments emerge from this work.Although the light-driven generation of hydrogen from water is a promising approach to renewable fuels, the H–H bond formation step represents a persistent mechanistic question. Now light-harvesting molecular catalysts have been shown to self-assemble into nanoscale aggregates that feature improved efficiency for photoelectrochemical H2 evolution. Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H 2 ) evolution via a bimolecular mechanism, providing an opportunity to understand the factors that promote bimetallic H–H coupling. Covalently tethered diiridium catalysts evolve H 2 from neutral water faster than monometallic catalysts, even at lower overpotential. The unexpected origin of this improvement is non-covalent supramolecular self-assembly into nanoscale aggregates that efficiently harvest light and form H–H bonds. Monometallic catalysts containing long-chain alkane substituents leverage the self-assembly to evolve H 2 from neutral water at low overpotential and with rates close to the expected maximum for this light-driven water splitting reaction. Design parameters for holding multiple catalytic sites in close proximity and tuning catalyst microenvironments emerge from this work. Although the light-driven generation of hydrogen from water is a promising approach to renewable fuels, the H–H bond formation step represents a persistent mechanistic question. Now light-harvesting molecular catalysts have been shown to self-assemble into nanoscale aggregates that feature improved efficiency for photoelectrochemical H 2 evolution. |
Author | Bonn, Annabell G. Jurado, Tamara Rose, Jamie Pitman, Catherine L. ter Horst, Marc A. Cloward, Isaac N. Miller, Alexander J. M. Liu, Tianfei Chambers, Matthew B. |
Author_xml | – sequence: 1 givenname: Isaac N. surname: Cloward fullname: Cloward, Isaac N. organization: Department of Chemistry, University of North Carolina at Chapel Hill – sequence: 2 givenname: Tianfei orcidid: 0000-0002-9961-0137 surname: Liu fullname: Liu, Tianfei organization: Department of Chemistry, University of North Carolina at Chapel Hill, State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University – sequence: 3 givenname: Jamie surname: Rose fullname: Rose, Jamie organization: Department of Chemistry, University of North Carolina at Chapel Hill – sequence: 4 givenname: Tamara orcidid: 0009-0006-9574-4126 surname: Jurado fullname: Jurado, Tamara organization: Department of Chemistry, University of North Carolina at Chapel Hill – sequence: 5 givenname: Annabell G. surname: Bonn fullname: Bonn, Annabell G. organization: Department of Chemistry, University of North Carolina at Chapel Hill – sequence: 6 givenname: Matthew B. surname: Chambers fullname: Chambers, Matthew B. organization: Department of Chemistry, University of North Carolina at Chapel Hill – sequence: 7 givenname: Catherine L. surname: Pitman fullname: Pitman, Catherine L. organization: Department of Chemistry, University of North Carolina at Chapel Hill – sequence: 8 givenname: Marc A. surname: ter Horst fullname: ter Horst, Marc A. organization: Department of Chemistry, University of North Carolina at Chapel Hill – sequence: 9 givenname: Alexander J. M. orcidid: 0000-0001-9390-3951 surname: Miller fullname: Miller, Alexander J. M. email: ajmm@email.unc.edu organization: Department of Chemistry, University of North Carolina at Chapel Hill |
BackLink | https://www.osti.gov/biblio/2578062$$D View this record in Osti.gov |
BookMark | eNp9kU1vFSEUhompiW31D7ia6MYN9cAZPmZpbqw1aeJG14ThMi0NFypwa-6_L7djNOmiK0h4nvPBe0ZOUk6ekPcMLhig_lxHJoSiwEcKbNRI8RU5ZUoIOuI4nfy7I7whZ7XeAUiBTJ4Su7HNxkNtQ_VxobZWv5vjYbDO-eiLbb4Oc9j5DsXghhhubhvdlvDg09AB10p2TxVaf73ig3_Icd9CTkNIw5-ul7fk9WJj9e_-nufk1-XXn5srev3j2_fNl2vqUE2Nqq2WOLFZLFoDc5O0ms_eL1vlFoAFpwWthi1Iy6aJa-GQqdlKb0GySSHDc_JhrZtrC6a60Ly7dTmlPqThQmmQvEOfVui-5N97X5vZhdo3jTb5vK8GYQTkAAo7-vEZepf3JfUVOiUQJQclOqVXypVca_GL6Y3t8QNasSEaBuYYkFkDMj0g8xSQOTbgz9T7Ena2HF6WcJVqh9ONL_-nesF6BBzopMg |
CitedBy_id | crossref_primary_10_1039_D4CC03243H crossref_primary_10_1002_smo_20240056 crossref_primary_10_1016_j_jcis_2025_01_036 crossref_primary_10_1002_anie_202424222 crossref_primary_10_1039_D4DT03098B crossref_primary_10_1002_ange_202424222 crossref_primary_10_1002_nadc_20254146850 crossref_primary_10_1021_acs_organomet_4c00282 crossref_primary_10_1007_s12598_024_03081_1 crossref_primary_10_1038_s41557_024_01513_0 crossref_primary_10_1002_smll_202408437 crossref_primary_10_1016_j_cogsc_2024_100935 crossref_primary_10_3390_coatings14091147 crossref_primary_10_1016_j_jallcom_2024_176593 crossref_primary_10_1016_j_ijhydene_2024_12_379 crossref_primary_10_1002_chem_202403355 |
Cites_doi | 10.1002/anie.201000380 10.1021/cr100246c 10.1021/acscentsci.9b00194 10.1021/jacs.9b07295 10.1039/C3CS60037H 10.1021/jacs.5b00914 10.1021/cr400572f 10.1021/ic500658x 10.1002/celc.202100576 10.1021/acs.chemrev.2c00200 10.1021/ic00105a048 10.1073/pnas.0603395103 10.1038/s41929-023-00962-z 10.1039/C7AY00669A 10.1039/D2DT00333C 10.1016/j.jinorgbio.2003.10.001 10.1021/om060899e 10.1246/bcsj.64.1632 10.1021/acs.accounts.0c00044 10.1039/C3CS60405E 10.1039/D0SC03715J 10.1073/pnas.1118329109 10.1039/C3CS60027K 10.1002/(SICI)1521-3773(19980216)37:3<216::AID-ANIE216>3.0.CO;2-P 10.1002/anie.202002311 10.1021/ar900253e 10.1021/ic00234a032 10.1021/ja01134a014 10.1021/ar00154a002 10.1021/cr050193e 10.1038/s41557-018-0172-y 10.1039/D3SC02836D 10.1021/jacs.5b12363 10.1021/cr1002326 10.1038/s41570-022-00433-2 10.1021/ja505845t 10.1039/c0dt01250e 10.1021/om100106e 10.1039/b615406a 10.1039/D0CS00737D 10.1038/nphoton.2012.175 10.1021/acsenergylett.8b00255 10.1021/cs500441f 10.1021/jacs.6b08701 10.1002/chem.201902353 10.1021/acs.chemrev.5b00229 10.1002/anie.201610240 10.1021/jacs.0c12171 10.1039/D2SC01715F 10.1002/anie.201601653 10.1021/acscatal.0c02265 10.1021/acs.jpclett.0c02386 10.1002/anie.201510001 10.1002/1521-3765(20020517)8:10<2370::AID-CHEM2370>3.0.CO;2-A 10.1002/9780470132609.ch53 10.1039/P19820003041 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2024. The Author(s), under exclusive licence to Springer Nature Limited. |
CorporateAuthor | University of North Carolina, Chapel Hill, NC (United States) |
CorporateAuthor_xml | – name: University of North Carolina, Chapel Hill, NC (United States) |
DBID | AAYXX CITATION 3V. 7QR 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 OTOTI |
DOI | 10.1038/s41557-024-01483-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Chemoreception Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1755-4349 |
EndPage | 716 |
ExternalDocumentID | 2578062 10_1038_s41557_024_01483_3 |
GrantInformation_xml | – fundername: NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS) grantid: ECCS-1542015 funderid: https://doi.org/10.13039/100000148 – fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI) grantid: P30CA016086 funderid: https://doi.org/10.13039/100000054 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0014255 funderid: https://doi.org/10.13039/100000015 – fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Chemistry (CHE) grantid: CHE-1828183, CHE-1726291 funderid: https://doi.org/10.13039/100000165 |
GroupedDBID | --- 0R~ 123 29M 39C 3V. 4.4 53G 5BI 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGGDT AGHTU AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ KB. L-9 LK8 M1P M7P ML- NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT 7QR 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 OTOTI PUEGO |
ID | FETCH-LOGICAL-c379t-7d86391b5f8801c96a82beefd7cf00f39f3a80d06a199285c317ba6ea06197313 |
IEDL.DBID | 7X7 |
ISSN | 1755-4330 1755-4349 |
IngestDate | Mon Aug 25 02:20:36 EDT 2025 Thu Jul 10 22:27:59 EDT 2025 Sat Aug 23 14:25:03 EDT 2025 Tue Jul 01 03:02:16 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Fri Feb 21 02:38:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-7d86391b5f8801c96a82beefd7cf00f39f3a80d06a199285c317ba6ea06197313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 None SC0014255 USDOE Office of Science (SC) |
ORCID | 0000-0001-9390-3951 0000-0002-9961-0137 0009-0006-9574-4126 0000000299610137 0000000193903951 0009000695744126 |
PQID | 3053362075 |
PQPubID | 536302 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_2578062 proquest_miscellaneous_3040320073 proquest_journals_3053362075 crossref_citationtrail_10_1038_s41557_024_01483_3 crossref_primary_10_1038_s41557_024_01483_3 springer_journals_10_1038_s41557_024_01483_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature chemistry |
PublicationTitleAbbrev | Nat. Chem |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Wiester, Ulmann, Mirkin (CR40) 2011; 50 Brereton, Bonn, Miller (CR9) 2018; 3 Raynal, Ballester, Vidal-Ferran, van Leeuwen (CR42) 2014; 43 Guo (CR15) 2020; 59 Jiang (CR32) 1988; 21 Pannwitz (CR35) 2021; 50 Costentin, Dridi, Savéant (CR11) 2014; 136 Chambers, Kurtz, Pitman, Brennaman, Miller (CR21) 2016; 138 Martin, Wise, Pegis, Mayer (CR37) 2020; 53 Rountree, McCarthy, Eisenhart, Dempsey (CR25) 2014; 53 Cook (CR3) 2010; 110 Stratakes, Miller (CR17) 2020; 10 Pitman, Miller (CR16) 2014; 4 Dadci (CR23) 1995; 34 Keijer, Bouwens, Hessels, Reek (CR34) 2021; 12 Wadsworth, Beiler, Khusnutdinova, Reyes Cruz, Moore (CR26) 2019; 141 Yu (CR46) 2023; 6 Lewis, Nocera (CR1) 2006; 103 Walter (CR2) 2010; 110 Dempsey, Brunschwig, Winkler, Gray (CR12) 2009; 42 Bonchio (CR44) 2019; 11 Rubinson (CR55) 2017; 9 CR48 Mulyana (CR52) 2011; 40 Ashford (CR8) 2015; 115 Blesic (CR33) 2007; 9 Nguyen, Jana, Campbell, Tran, Do (CR45) 2023; 14 Bard, Faulkner (CR29) 2000 Han (CR14) 2016; 55 Tachibana, Vayssieres, Durrant (CR4) 2012; 6 Delahay, Stiehl (CR28) 1952; 74 Boulas, Go, Echegoyen (CR39) 1998; 37 Valdez, Dempsey, Brunschwig, Winkler, Gray (CR13) 2012; 109 Furue (CR51) 1991; 64 CR54 Huang, Sun, Wu, Turro (CR20) 2021; 143 Rivier (CR19) 2019; 25 Kühn (CR53) 2002; 8 Pitman, Brereton, Miller (CR24) 2016; 138 Reyes Cruz (CR10) 2022; 122 Raynal, Ballester, Vidal-Ferran, van Leeuwen (CR41) 2014; 43 Esswein, Nocera (CR5) 2007; 107 Nie, McCrory (CR38) 2022; 51 Stratakes, Dempsey, Miller (CR22) 2021; 8 Nguyen, Wadsworth, Nishiori, Reyes Cruz, Moore (CR27) 2021; 12 Schmehl (CR50) 1986; 25 Costentin, Passard, Savéant (CR30) 2015; 137 Wang (CR36) 2019; 5 Zeng (CR43) 2022; 6 Rivier (CR18) 2017; 56 Fulmer (CR57) 2010; 29 Kärkäs, Verho, Johnston, Åkermark (CR7) 2014; 114 Yang (CR47) 2016; 55 Himeda, Onozawa-Komatsuzaki, Sugihara, Kasuga (CR49) 2007; 26 Krȩżel, Bal (CR56) 2004; 98 Weberg, Murphy, Tomson (CR31) 2022; 13 Berardi (CR6) 2014; 43 JL Dempsey (1483_CR12) 2009; 42 L Rivier (1483_CR18) 2017; 56 MB Chambers (1483_CR21) 2016; 138 HD Nguyen (1483_CR45) 2023; 14 J Huang (1483_CR20) 2021; 143 NP Nguyen (1483_CR27) 2021; 12 X Jiang (1483_CR32) 1988; 21 X Guo (1483_CR15) 2020; 59 Y Mulyana (1483_CR52) 2011; 40 W Nie (1483_CR38) 2022; 51 GR Fulmer (1483_CR57) 2010; 29 A Pannwitz (1483_CR35) 2021; 50 AJ Esswein (1483_CR5) 2007; 107 A Krȩżel (1483_CR56) 2004; 98 DJ Martin (1483_CR37) 2020; 53 BM Stratakes (1483_CR22) 2021; 8 FE Kühn (1483_CR53) 2002; 8 1483_CR54 BM Stratakes (1483_CR17) 2020; 10 AJ Bard (1483_CR29) 2000 T Zeng (1483_CR43) 2022; 6 MJ Wiester (1483_CR40) 2011; 50 CL Pitman (1483_CR24) 2016; 138 M Bonchio (1483_CR44) 2019; 11 M Raynal (1483_CR41) 2014; 43 CL Pitman (1483_CR16) 2014; 4 EA Reyes Cruz (1483_CR10) 2022; 122 M Furue (1483_CR51) 1991; 64 ES Rountree (1483_CR25) 2014; 53 T Keijer (1483_CR34) 2021; 12 Y Han (1483_CR14) 2016; 55 BL Wadsworth (1483_CR26) 2019; 141 M Blesic (1483_CR33) 2007; 9 TR Cook (1483_CR3) 2010; 110 Y-H Wang (1483_CR36) 2019; 5 RH Schmehl (1483_CR50) 1986; 25 DL Ashford (1483_CR8) 2015; 115 C Costentin (1483_CR30) 2015; 137 J Yu (1483_CR46) 2023; 6 1483_CR48 Y Tachibana (1483_CR4) 2012; 6 AB Weberg (1483_CR31) 2022; 13 KA Rubinson (1483_CR55) 2017; 9 S Berardi (1483_CR6) 2014; 43 MD Kärkäs (1483_CR7) 2014; 114 P Delahay (1483_CR28) 1952; 74 MG Walter (1483_CR2) 2010; 110 M Raynal (1483_CR42) 2014; 43 B Yang (1483_CR47) 2016; 55 L Rivier (1483_CR19) 2019; 25 C Costentin (1483_CR11) 2014; 136 PL Boulas (1483_CR39) 1998; 37 KR Brereton (1483_CR9) 2018; 3 NS Lewis (1483_CR1) 2006; 103 L Dadci (1483_CR23) 1995; 34 Y Himeda (1483_CR49) 2007; 26 CN Valdez (1483_CR13) 2012; 109 |
References_xml | – volume: 50 start-page: 114 year: 2011 end-page: 137 ident: CR40 article-title: Enzyme mimics based upon supramolecular coordination chemistry publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201000380 – volume: 110 start-page: 6474 year: 2010 end-page: 6502 ident: CR3 article-title: Solar energy supply and storage for the legacy and nonlegacy worlds publication-title: Chem. Rev. doi: 10.1021/cr100246c – volume: 5 start-page: 1024 year: 2019 end-page: 1034 ident: CR36 article-title: Brønsted acid scaling relationships enable control over product selectivity from O reduction with a mononuclear cobalt porphyrin catalyst publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b00194 – volume: 141 start-page: 15932 year: 2019 end-page: 15941 ident: CR26 article-title: Interplay between light flux, quantum efficiency, and turnover frequency in molecular-modified photoelectrosynthetic assemblies publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07295 – volume: 43 start-page: 1734 year: 2014 end-page: 1787 ident: CR42 article-title: Supramolecular catalysis. Part 2: artificial enzyme mimics publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60037H – volume: 137 start-page: 5461 year: 2015 end-page: 5467 ident: CR30 article-title: Benchmarking of homogeneous electrocatalysts: overpotential, turnover frequency, limiting turnover number publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00914 – volume: 114 start-page: 11863 year: 2014 end-page: 12001 ident: CR7 article-title: Artificial photosynthesis: molecular systems for catalytic water oxidation publication-title: Chem. Rev. doi: 10.1021/cr400572f – volume: 53 start-page: 9983 year: 2014 end-page: 10002 ident: CR25 article-title: Evaluation of homogeneous electrocatalysts by cyclic voltammetry publication-title: Inorg. Chem. doi: 10.1021/ic500658x – volume: 8 start-page: 4161 year: 2021 end-page: 4180 ident: CR22 article-title: Determining the overpotential of electrochemical fuel synthesis mediated by molecular catalysts: recommended practices, standard reduction potentials, and challenges publication-title: ChemElectroChem doi: 10.1002/celc.202100576 – ident: CR54 – volume: 122 start-page: 16051 year: 2022 end-page: 16109 ident: CR10 article-title: Molecular-modified photocathodes for applications in artificial photosynthesis and solar-to-fuel technologies publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00200 – volume: 34 start-page: 306 year: 1995 end-page: 315 ident: CR23 article-title: -Arene aqua complexes of cobalt, rhodium, iridium, and ruthenium: preparation, structure, and kinetics of water exchange and water substitution publication-title: Inorg. Chem. doi: 10.1021/ic00105a048 – volume: 103 start-page: 15729 year: 2006 end-page: 15735 ident: CR1 article-title: Powering the planet: chemical challenges in solar energy utilization publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0603395103 – volume: 6 start-page: 464 year: 2023 end-page: 475 ident: CR46 article-title: Artificial spherical chromatophore nanomicelles for selective CO reduction in water publication-title: Nat. Catal. doi: 10.1038/s41929-023-00962-z – volume: 9 start-page: 2744 year: 2017 end-page: 2750 ident: CR55 article-title: Practical corrections for p(H,D) measurements in mixed H O/D O biological buffers publication-title: Anal. Methods doi: 10.1039/C7AY00669A – volume: 51 start-page: 6993 year: 2022 end-page: 7010 ident: CR38 article-title: Strategies for breaking molecular scaling relationships for the electrochemical CO reduction reaction publication-title: Dalton Trans. doi: 10.1039/D2DT00333C – volume: 98 start-page: 161 year: 2004 end-page: 166 ident: CR56 article-title: A formula for correlating p values determined in D O and H O publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2003.10.001 – volume: 26 start-page: 702 year: 2007 end-page: 712 ident: CR49 article-title: Simultaneous tuning of activity and water solubility of complex catalysts by acid-base equilibrium of ligands for conversion of carbon dioxide publication-title: Organometallics doi: 10.1021/om060899e – volume: 64 start-page: 1632 year: 1991 end-page: 1640 ident: CR51 article-title: Intramolecular energy transfer in covalently linked polypyridine ruthenium(II)/osmium(II) binuclear complexes. Ru(II)(bpy) Mebpy– (CH ) – MebpyOs(II)(bpy) ( = 2, 3, 5, and 7) publication-title: Bull. Chem. Soc. Jpn doi: 10.1246/bcsj.64.1632 – volume: 53 start-page: 1056 year: 2020 end-page: 1065 ident: CR37 article-title: Developing scaling relationships for molecular electrocatalysis through studies of Fe-porphyrin-catalyzed O reduction publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00044 – volume: 43 start-page: 7501 year: 2014 end-page: 7519 ident: CR6 article-title: Molecular artificial photosynthesis publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60405E – volume: 12 start-page: 50 year: 2021 end-page: 70 ident: CR34 article-title: Supramolecular strategies in artificial photosynthesis publication-title: Chem. Sci. doi: 10.1039/D0SC03715J – volume: 109 start-page: 15589 year: 2012 end-page: 15593 ident: CR13 article-title: Catalytic hydrogen evolution from a covalently linked dicobaloxime publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1118329109 – volume: 43 start-page: 1660 year: 2014 end-page: 1733 ident: CR41 article-title: Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60027K – volume: 37 start-page: 216 year: 1998 end-page: 247 ident: CR39 article-title: Electrochemistry of supramolecular systems publication-title: Angew. Chem. Int. Ed. doi: 10.1002/(SICI)1521-3773(19980216)37:3<216::AID-ANIE216>3.0.CO;2-P – volume: 59 start-page: 8941 year: 2020 end-page: 8946 ident: CR15 article-title: Homolytic versus heterolytic hydrogen evolution reaction steered by a steric effect publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002311 – volume: 42 start-page: 1995 year: 2009 end-page: 2004 ident: CR12 article-title: Hydrogen evolution catalyzed by cobaloximes publication-title: Acc. Chem. Res. doi: 10.1021/ar900253e – year: 2000 ident: CR29 publication-title: Electrochemical Methods: Fundamentals and Applications – volume: 25 start-page: 2440 year: 1986 end-page: 2445 ident: CR50 article-title: Formation and photophysical properties of iron-ruthenium tetranuclear bipyridyl complexes of the type {[(bpy) Ru(L-L)] Fe} publication-title: Inorg. Chem. doi: 10.1021/ic00234a032 – volume: 74 start-page: 3500 year: 1952 end-page: 3505 ident: CR28 article-title: Theory of catalytic polarographic currents publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01134a014 – volume: 21 start-page: 362 year: 1988 end-page: 367 ident: CR32 article-title: Hydrophobic-lipophilic interactions. Aggregation and self-coiling of organic molecules publication-title: Acc. Chem. Res. doi: 10.1021/ar00154a002 – volume: 107 start-page: 4022 year: 2007 end-page: 4047 ident: CR5 article-title: Hydrogen production by molecular photocatalysis publication-title: Chem. Rev. doi: 10.1021/cr050193e – volume: 11 start-page: 146 year: 2019 end-page: 153 ident: CR44 article-title: Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation publication-title: Nat. Chem. doi: 10.1038/s41557-018-0172-y – volume: 14 start-page: 10264 year: 2023 end-page: 10272 ident: CR45 article-title: Lewis acid-driven self-assembly of diiridium macrocyclic catalysts imparts substrate selectivity and glutathione tolerance publication-title: Chem. Sci. doi: 10.1039/D3SC02836D – volume: 138 start-page: 2252 year: 2016 end-page: 2260 ident: CR24 article-title: Aqueous hydricity of late metal catalysts as a continuum tuned by ligands and the medium publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12363 – volume: 110 start-page: 6446 year: 2010 end-page: 6473 ident: CR2 article-title: Solar water splitting cells publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 6 start-page: 862 year: 2022 end-page: 880 ident: CR43 article-title: Hybrid bilayer membranes as platforms for biomimicry and catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-022-00433-2 – volume: 136 start-page: 13727 year: 2014 end-page: 13734 ident: CR11 article-title: Molecular catalysis of H evolution: diagnosing heterolytic versus homolytic pathways publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505845t – volume: 40 start-page: 1510 year: 2011 end-page: 1523 ident: CR52 article-title: Oligonuclear polypyridylruthenium( ) complexes incorporating flexible polar and non-polar bridges: synthesis, DNA-binding and cytotoxicity publication-title: Dalton Trans. doi: 10.1039/c0dt01250e – volume: 29 start-page: 2176 year: 2010 end-page: 2179 ident: CR57 article-title: NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist publication-title: Organometallics doi: 10.1021/om100106e – volume: 9 start-page: 481 year: 2007 end-page: 490 ident: CR33 article-title: Self-aggregation of ionic liquids: micelle formation in aqueous solution publication-title: Green Chem. doi: 10.1039/b615406a – volume: 50 start-page: 4833 year: 2021 end-page: 4855 ident: CR35 article-title: Roadmap towards solar fuel synthesis at the water interface of liposome membranes publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00737D – volume: 6 start-page: 511 year: 2012 end-page: 518 ident: CR4 article-title: Artificial photosynthesis for solar water-splitting publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.175 – volume: 3 start-page: 1128 year: 2018 end-page: 1136 ident: CR9 article-title: Molecular photoelectrocatalysts for light-driven hydrogen production publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00255 – volume: 4 start-page: 2727 year: 2014 end-page: 2733 ident: CR16 article-title: Molecular photoelectrocatalysts for visible light-driven hydrogen evolution from neutral water publication-title: ACS Catal. doi: 10.1021/cs500441f – volume: 138 start-page: 13509 year: 2016 end-page: 13512 ident: CR21 article-title: Efficient photochemical dihydrogen generation initiated by a bimetallic self-quenching mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08701 – volume: 25 start-page: 12769 year: 2019 end-page: 12779 ident: CR19 article-title: Mechanistic study on the photogeneration of hydrogen by decamethylruthenocene publication-title: Chem. Eur. J. doi: 10.1002/chem.201902353 – ident: CR48 – volume: 115 start-page: 13006 year: 2015 end-page: 13049 ident: CR8 article-title: Molecular chromophore–catalyst assemblies for solar fuel applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00229 – volume: 56 start-page: 2324 year: 2017 end-page: 2327 ident: CR18 article-title: Photoproduction of hydrogen by decamethylruthenocene combined with electrochemical recycling publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610240 – volume: 143 start-page: 1610 year: 2021 end-page: 1617 ident: CR20 article-title: Dirhodium(II,II)/NiO photocathode for photoelectrocatalytic hydrogen evolution with red light publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12171 – volume: 13 start-page: 5432 year: 2022 end-page: 5446 ident: CR31 article-title: Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis publication-title: Chem. Sci. doi: 10.1039/D2SC01715F – volume: 55 start-page: 6229 year: 2016 end-page: 6234 ident: CR47 article-title: Self-assembled amphiphilic water oxidation catalysts: control of O−O bond formation pathways by different aggregation patterns publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601653 – volume: 10 start-page: 9006 year: 2020 end-page: 9018 ident: CR17 article-title: H evolution at an electrochemical ‘underpotential’ with an iridium-based molecular photoelectrocatalyst publication-title: ACS Catal. doi: 10.1021/acscatal.0c02265 – volume: 12 start-page: 199 year: 2021 end-page: 203 ident: CR27 article-title: Understanding and controlling the performance-limiting steps of catalyst-modified semiconductors publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02386 – volume: 55 start-page: 5457 year: 2016 end-page: 5462 ident: CR14 article-title: Singly versus doubly reduced nickel porphyrins for proton reduction: experimental and theoretical evidence for a homolytic hydrogen‐evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510001 – volume: 8 start-page: 2370 year: 2002 end-page: 2383 ident: CR53 article-title: Octahedral bipyridine and bipyrimidine dioxomolybdenum(VI) complexes: characterization, application in catalytic epoxidation, and density functional mechanistic study publication-title: Chem. Eur. J. doi: 10.1002/1521-3765(20020517)8:10<2370::AID-CHEM2370>3.0.CO;2-A – volume: 8 start-page: 4161 year: 2021 ident: 1483_CR22 publication-title: ChemElectroChem doi: 10.1002/celc.202100576 – volume: 43 start-page: 1660 year: 2014 ident: 1483_CR41 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60027K – volume: 115 start-page: 13006 year: 2015 ident: 1483_CR8 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00229 – ident: 1483_CR48 doi: 10.1002/9780470132609.ch53 – volume: 26 start-page: 702 year: 2007 ident: 1483_CR49 publication-title: Organometallics doi: 10.1021/om060899e – volume: 25 start-page: 12769 year: 2019 ident: 1483_CR19 publication-title: Chem. Eur. J. doi: 10.1002/chem.201902353 – volume: 9 start-page: 481 year: 2007 ident: 1483_CR33 publication-title: Green Chem. doi: 10.1039/b615406a – volume: 110 start-page: 6474 year: 2010 ident: 1483_CR3 publication-title: Chem. Rev. doi: 10.1021/cr100246c – volume: 74 start-page: 3500 year: 1952 ident: 1483_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01134a014 – volume: 12 start-page: 199 year: 2021 ident: 1483_CR27 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02386 – volume: 143 start-page: 1610 year: 2021 ident: 1483_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12171 – volume: 138 start-page: 13509 year: 2016 ident: 1483_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08701 – volume: 34 start-page: 306 year: 1995 ident: 1483_CR23 publication-title: Inorg. Chem. doi: 10.1021/ic00105a048 – volume: 138 start-page: 2252 year: 2016 ident: 1483_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12363 – volume: 6 start-page: 511 year: 2012 ident: 1483_CR4 publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.175 – volume: 110 start-page: 6446 year: 2010 ident: 1483_CR2 publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 122 start-page: 16051 year: 2022 ident: 1483_CR10 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00200 – volume: 37 start-page: 216 year: 1998 ident: 1483_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/(SICI)1521-3773(19980216)37:3<216::AID-ANIE216>3.0.CO;2-P – ident: 1483_CR54 doi: 10.1039/P19820003041 – volume: 55 start-page: 6229 year: 2016 ident: 1483_CR47 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201601653 – volume: 98 start-page: 161 year: 2004 ident: 1483_CR56 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2003.10.001 – volume: 11 start-page: 146 year: 2019 ident: 1483_CR44 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0172-y – volume: 3 start-page: 1128 year: 2018 ident: 1483_CR9 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00255 – volume: 51 start-page: 6993 year: 2022 ident: 1483_CR38 publication-title: Dalton Trans. doi: 10.1039/D2DT00333C – volume: 64 start-page: 1632 year: 1991 ident: 1483_CR51 publication-title: Bull. Chem. Soc. Jpn doi: 10.1246/bcsj.64.1632 – volume: 42 start-page: 1995 year: 2009 ident: 1483_CR12 publication-title: Acc. Chem. Res. doi: 10.1021/ar900253e – volume: 50 start-page: 114 year: 2011 ident: 1483_CR40 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201000380 – volume-title: Electrochemical Methods: Fundamentals and Applications year: 2000 ident: 1483_CR29 – volume: 55 start-page: 5457 year: 2016 ident: 1483_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510001 – volume: 137 start-page: 5461 year: 2015 ident: 1483_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00914 – volume: 56 start-page: 2324 year: 2017 ident: 1483_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610240 – volume: 50 start-page: 4833 year: 2021 ident: 1483_CR35 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00737D – volume: 59 start-page: 8941 year: 2020 ident: 1483_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002311 – volume: 53 start-page: 9983 year: 2014 ident: 1483_CR25 publication-title: Inorg. Chem. doi: 10.1021/ic500658x – volume: 4 start-page: 2727 year: 2014 ident: 1483_CR16 publication-title: ACS Catal. doi: 10.1021/cs500441f – volume: 12 start-page: 50 year: 2021 ident: 1483_CR34 publication-title: Chem. Sci. doi: 10.1039/D0SC03715J – volume: 29 start-page: 2176 year: 2010 ident: 1483_CR57 publication-title: Organometallics doi: 10.1021/om100106e – volume: 25 start-page: 2440 year: 1986 ident: 1483_CR50 publication-title: Inorg. Chem. doi: 10.1021/ic00234a032 – volume: 6 start-page: 464 year: 2023 ident: 1483_CR46 publication-title: Nat. Catal. doi: 10.1038/s41929-023-00962-z – volume: 53 start-page: 1056 year: 2020 ident: 1483_CR37 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00044 – volume: 13 start-page: 5432 year: 2022 ident: 1483_CR31 publication-title: Chem. Sci. doi: 10.1039/D2SC01715F – volume: 5 start-page: 1024 year: 2019 ident: 1483_CR36 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b00194 – volume: 103 start-page: 15729 year: 2006 ident: 1483_CR1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0603395103 – volume: 136 start-page: 13727 year: 2014 ident: 1483_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja505845t – volume: 107 start-page: 4022 year: 2007 ident: 1483_CR5 publication-title: Chem. Rev. doi: 10.1021/cr050193e – volume: 14 start-page: 10264 year: 2023 ident: 1483_CR45 publication-title: Chem. Sci. doi: 10.1039/D3SC02836D – volume: 10 start-page: 9006 year: 2020 ident: 1483_CR17 publication-title: ACS Catal. doi: 10.1021/acscatal.0c02265 – volume: 21 start-page: 362 year: 1988 ident: 1483_CR32 publication-title: Acc. Chem. Res. doi: 10.1021/ar00154a002 – volume: 141 start-page: 15932 year: 2019 ident: 1483_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07295 – volume: 6 start-page: 862 year: 2022 ident: 1483_CR43 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-022-00433-2 – volume: 114 start-page: 11863 year: 2014 ident: 1483_CR7 publication-title: Chem. Rev. doi: 10.1021/cr400572f – volume: 40 start-page: 1510 year: 2011 ident: 1483_CR52 publication-title: Dalton Trans. doi: 10.1039/c0dt01250e – volume: 8 start-page: 2370 year: 2002 ident: 1483_CR53 publication-title: Chem. Eur. J. doi: 10.1002/1521-3765(20020517)8:10<2370::AID-CHEM2370>3.0.CO;2-A – volume: 9 start-page: 2744 year: 2017 ident: 1483_CR55 publication-title: Anal. Methods doi: 10.1039/C7AY00669A – volume: 43 start-page: 1734 year: 2014 ident: 1483_CR42 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60037H – volume: 43 start-page: 7501 year: 2014 ident: 1483_CR6 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60405E – volume: 109 start-page: 15589 year: 2012 ident: 1483_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1118329109 |
SSID | ssj0065316 |
Score | 2.5232785 |
Snippet | Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 709 |
SubjectTerms | 639/638/263/406 639/638/541/966 639/638/675 639/638/77/886 639/638/77/890 Active sites Aggregates Alkanes Analytical Chemistry Bimetals Biochemistry Catalysis Catalysts Chemistry Chemistry and Materials Science Chemistry/Food Science Design Design parameters Evolution Hydrogen bonds Hydrogen evolution Inorganic Chemistry Iridium Ligands Light Microenvironments NMR Nuclear magnetic resonance Organic Chemistry Physical Chemistry Renewable fuels Self-assembly Water splitting |
Title | Catalyst self-assembly accelerates bimetallic light-driven electrocatalytic H2 evolution in water |
URI | https://link.springer.com/article/10.1038/s41557-024-01483-3 https://www.proquest.com/docview/3053362075 https://www.proquest.com/docview/3040320073 https://www.osti.gov/biblio/2578062 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFBdbetguY90H89oVFXbbRG0rsuXTaELTUFgYY4XchKwPCLhOG7sb-e_3niKndLBe7IMl27zPn5703iPks-C-4pnwzGd1zsbaStA5Y1gFrkEDfBZ2jLnD3xfF_Hp8tRTLGHDr4rHKwSYGQ23XBmPkZxyTRoscPNy32zuGXaNwdzW20HhODrB0GS6-yuV-wVWAfIXsolIIzAxKY9JMyuVZh460ZOChGMbUOOOPHNNoDQr2CHT-s08a3M_sNXkVcSM93zH6kDxz7RvyYjq0a3tL9BQDMduup51rPANM7G7qZku1MeBZsCBER-vVjYNBzcrQJhQQsRs0djT2wgmhnC18gM5z6n5HoaSrlv6B6Zt35Hp28Ws6Z7F_AjO8rHpWWgn4I6uFByXNTFVomdfOeVsan6aeV55rmdq00HgGVQoDWKLWhdPg47GjFX9PRu26dR8I1dJynplSCw_rtcpWJSyFvAG0pHUqdJmQbCCeMrG4OPa4aFTY5OZS7QiugOAqEFzxhHzZz7ndldZ4cvQR8kQBMMDqtgaPAZleocVJizwhxwOrVFTCTj2ITEJO94-BLbgnolu3vscxY2whD4YuIV8HFj-84v__8_HpLx6Rl3kQLjwaeUxG_ebefQL40tcnQUbhKmeXJ-TgfDaZLOA-uVj8-PkXYcHtkw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qw6FcUMsiQgs1EpzAahLHWQ4IoSnDlC6nVurNOF6kkdJMmaRU86f6G3kvk7RqJXrrOV6it33P9lsAPkrhCxFJz31UxjzRNkedM4YXCA0a3WdpE8odPjpOp6fJrzN5tgbXQy4MhVUONrEz1HZu6I58V1DSaBojwn27-MOpaxS9rg4tNFZiceCWV3hka77u7yF_P8Xx5MfJeMr7rgLciKxoeWZzROWolB5FNzJFqvO4dM7bzPgw9KLwQuehDVNNkZm5NIiwpU6dRuSjPk8C130CTxMhCgohzCc_B8ufojx32UyZlJSJFPZJOqHIdxsC7owjInK6wxNc3AHC0RwV-o6Te-9dtoO7yQY87_1U9n0lWJuw5uoXsD4e2sO9BD2mi59l07LGVZ6jD-7Oy2rJtDGIZFSAomHl7NzhoGpmWNUVLLELMq6s773TXR0tcQM2jZn72ysBm9XsCqcvXsHpo1D2NYzqee3eANO5FSIymZYez4eFLTI8enmD3pnWodRZANFAPGX6YubUU6NS3aO6yNWK4AoJrjqCKxHA55s5F6tSHg-O3iKeKHREqJquobAj0yqycGEaB7A9sEr1St-oWxEN4MPNZ2QLvcHo2s0vaUxCLevRsAbwZWDx7RL__5-3D--4A-vTk6NDdbh_fLAFz-JO0CgscxtG7eLSvUPXqS3fd_LK4PdjK8g_dRQlsg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIAEXxFM1LbBIcIJVbG_WXh8QQikhpVBxoFJvy3ofUiTXKbFLlb_Gr2PGsVsVid56ztqO5vXN7s7MB_BailCIRAYekjLlE-MU-py1vEBoMJg-Szeh3uFvh9n8aPLlWB5vwZ-hF4bKKoeY2AVqt7R0Rj4W1DSapYhw49CXRXzfm304_cWJQYpuWgc6jY2JHPj1OW7fmvf7e6jrN2k6-_RjOuc9wwC3Ii9anjuFCJ2UMqAZJ7bIjEpL74PLbYjjIIogjIpdnBmq0lTSItqWJvMGUZA4nwS-9xbczoWKiT1BzT4PKJChbXedTbmU1JUU9w07sVDjhkA854iOnM7zBBdXQHG0ROe-kvD-c0fbQd_sAdzvc1b2cWNkD2HL14_g7nSginsMZkqHQOumZY2vAsd83J-U1ZoZaxHVaBhFw8rFicdF1cKyqhte4lYUaFnPw9MdI63xA2yeMv-7dwi2qNk5Pr56Akc3ItmnMKqXtd8GZpQTIrG5kQH3ioUrctyGBYuZmjGxNHkEySA8bfvB5sSvUenugl0ovRG4RoHrTuBaRPD24pnTzViPa1fvkE40JiU0WddSCZJtNUW7OEsj2B1UpfsA0OhLc43g1cXPqBa6jzG1X57RmgnR12OQjeDdoOLLV_z__zy7_osv4Q66hv66f3iwA_fSzs6oQnMXRu3qzD_HLKotX3TmyuDnTfvHXy0FKd8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalyst+self-assembly+accelerates+bimetallic+light-driven+electrocatalytic+H2+evolution+in+water&rft.jtitle=Nature+chemistry&rft.au=Cloward%2C+Isaac+N&rft.au=Liu%2C+Tianfei&rft.au=Rose%2C+Jamie&rft.au=Jurado%2C+Tamara&rft.date=2024-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=16&rft.issue=5&rft.spage=709&rft.epage=716&rft_id=info:doi/10.1038%2Fs41557-024-01483-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon |