Research on Multidimensional Power Big Data Clustering Algorithm Based on Graph Mode
Power system data possess many characteristics and indicators, having certain high dimensions and redundant information, which can easily increase the calculation and storage overhead. To reduce the dimension of power data, eliminate redundant information, and reduce the delay time, a data clusterin...
Saved in:
Published in | Journal of Advanced Computational Intelligence and Intelligent Informatics Vol. 29; no. 2; pp. 358 - 364 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Fuji Technology Press Ltd
20.03.2025
富士技術出版株式会社 Fuji Technology Press Co. Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Power system data possess many characteristics and indicators, having certain high dimensions and redundant information, which can easily increase the calculation and storage overhead. To reduce the dimension of power data, eliminate redundant information, and reduce the delay time, a data clustering algorithm is proposed. Firstly, an algorithm based on PCA and kernel local Fisher identification is used to reduce the dimension of large multidimensional samples and enhance the accuracy of subsequent clustering. Thereafter, the redundant data are processed after dimension reduction is processed to optimize the data quality by introducing a bloom filter structure. In the graph model, data clustering is completed based on the parallel processing of redundant data. Simulation results show that the correctness and stability of this method are over 85%, and the delay time is decreased, representing good application prospects. |
---|---|
AbstractList | Power system data possess many characteristics and indicators, having certain high dimensions and redundant information, which can easily increase the calculation and storage overhead. To reduce the dimension of power data, eliminate redundant information, and reduce the delay time, a data clustering algorithm is proposed. Firstly, an algorithm based on PCA and kernel local Fisher identification is used to reduce the dimension of large multidimensional samples and enhance the accuracy of subsequent clustering. Thereafter, the redundant data are processed after dimension reduction is processed to optimize the data quality by introducing a bloom filter structure. In the graph model, data clustering is completed based on the parallel processing of redundant data. Simulation results show that the correctness and stability of this method are over 85%, and the delay time is decreased, representing good application prospects. |
Author | Han Xue Zhang Yue Gao Sheng |
Author_xml | – sequence: 1 givenname: Xue orcidid: 0000-0002-4781-586X surname: Han fullname: Han, Xue organization: State Grid East Inner Mongolia Information & Telecommunication Company, Hohhot, Inner Mongolia 010010, China – sequence: 2 givenname: Yue surname: Zhang fullname: Zhang, Yue organization: State Grid East Inner Mongolia Information & Telecommunication Company, Hohhot, Inner Mongolia 010010, China – sequence: 3 givenname: Sheng surname: Gao fullname: Gao, Sheng organization: SICT Shenyang Institute of Computing Technology Co. Ltd., CAS, Shenyang, Liaoning 110000, China |
BackLink | https://cir.nii.ac.jp/crid/1390303564741324032$$DView record in CiNii |
BookMark | eNotkF1PwjAUhhujiYj8Aa-a6O2w3dnW9RJQ0QSiMXi9dOsZlIwV2y3Gf29h3pzv9-TNc0MuW9siIXecTWMms_RxrypjTGjidHpkkOYXZMTzHKKc8eQy1JBAxDiwazLxfs9YqOOMJXxENp_oUblqR21L133TGW0O2HpjW9XQD_uDjs7Nlj6pTtFF0_sOnWm3dNZsrTPd7kDnyqM-qZdOHXd0bTXekqtaNR4n_3lMvl6eN4vXaPW-fFvMVlEFQnaRUKWAGliJdZ0Gi5VORY0SmNCiVDVqiZXOMI8llqmCkgstGVNVluqQJMCY3A9_j85-9-i7Ym97F4z7ArjIRczjNAlX8XBVOeu9w7o4OnNQ7rfgrDgDLAaAxQlgcQYYRA-DqA3zypwiB8kgLLNEJIFfwiCGP-KVcTc |
Cites_doi | 10.1155/2022/8252492 10.3390/app13137922 10.1080/13875868.2023.2234074 10.3844/jcssp.2023.305.314 10.1021/acs.est.3c00351 10.1109/JSEN.2023.3303691 10.1016/j.engstruct.2023.115891 10.1002/spy2.316 10.3390/su15075739 10.32604/jnm.2022.032994 10.3390/electronics11060883 10.1109/TIM.2023.3250285 10.1088/1742-6596/2229/1/012015 10.1109/IEEM55944.2022.9989809 10.1016/j.aej.2023.03.008 10.1016/j.adhoc.2022.103022 10.3390/math10234539 10.1038/s41467-023-39283-x 10.3390/math10193510 10.1109/ACCESS.2022.3203692 10.14569/IJACSA.2023.0140154 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
DBID | RYH AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.20965/jaciii.2025.p0358 |
DatabaseName | CiNii Complete CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1883-8014 |
EndPage | 364 |
ExternalDocumentID | 10_20965_jaciii_2025_p0358 |
GroupedDBID | AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ JSI JSP K7- P2P PHGZM PHGZT RJT RYH RZJ TUS AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c379t-7ab73f30beff5343cd57fe9307d7bafed9ecd6e829eb5a3b17d900ac65d00a933 |
IEDL.DBID | BENPR |
ISSN | 1343-0130 |
IngestDate | Fri Jul 25 21:10:52 EDT 2025 Tue Jul 01 05:19:30 EDT 2025 Thu Jun 26 23:12:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-7ab73f30beff5343cd57fe9307d7bafed9ecd6e829eb5a3b17d900ac65d00a933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4781-586X |
OpenAccessLink | https://doi.org/10.20965/jaciii.2025.p0358 |
PQID | 3178721254 |
PQPubID | 4911628 |
PageCount | 7 |
ParticipantIDs | proquest_journals_3178721254 crossref_primary_10_20965_jaciii_2025_p0358 nii_cinii_1390303564741324032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-20 |
PublicationDateYYYYMMDD | 2025-03-20 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Advanced Computational Intelligence and Intelligent Informatics |
PublicationTitleAlternate | J. Adv. Comput. Intell. Intell. Inform Journal of Advanced Computational Intelligence and Intelligent Informatics |
PublicationTitle_FL | J. Adv. Comput. Intell. Intell. Inform Journal of Advanced Computational Intelligence and Intelligent Informatics |
PublicationYear | 2025 |
Publisher | Fuji Technology Press Ltd 富士技術出版株式会社 Fuji Technology Press Co. Ltd |
Publisher_xml | – name: 富士技術出版株式会社 – name: Fuji Technology Press Ltd – name: Fuji Technology Press Co. Ltd |
References | key-10.20965/jaciii.2025.p0358-9 key-10.20965/jaciii.2025.p0358-18 key-10.20965/jaciii.2025.p0358-19 key-10.20965/jaciii.2025.p0358-1 key-10.20965/jaciii.2025.p0358-10 key-10.20965/jaciii.2025.p0358-21 key-10.20965/jaciii.2025.p0358-2 key-10.20965/jaciii.2025.p0358-11 key-10.20965/jaciii.2025.p0358-22 key-10.20965/jaciii.2025.p0358-3 key-10.20965/jaciii.2025.p0358-12 key-10.20965/jaciii.2025.p0358-23 key-10.20965/jaciii.2025.p0358-4 key-10.20965/jaciii.2025.p0358-13 key-10.20965/jaciii.2025.p0358-24 key-10.20965/jaciii.2025.p0358-5 key-10.20965/jaciii.2025.p0358-14 key-10.20965/jaciii.2025.p0358-6 key-10.20965/jaciii.2025.p0358-15 key-10.20965/jaciii.2025.p0358-7 key-10.20965/jaciii.2025.p0358-16 key-10.20965/jaciii.2025.p0358-8 key-10.20965/jaciii.2025.p0358-17 key-10.20965/jaciii.2025.p0358-20 |
References_xml | – ident: key-10.20965/jaciii.2025.p0358-18 doi: 10.1155/2022/8252492 – ident: key-10.20965/jaciii.2025.p0358-12 doi: 10.3390/app13137922 – ident: key-10.20965/jaciii.2025.p0358-16 doi: 10.1080/13875868.2023.2234074 – ident: key-10.20965/jaciii.2025.p0358-14 doi: 10.3844/jcssp.2023.305.314 – ident: key-10.20965/jaciii.2025.p0358-23 doi: 10.1021/acs.est.3c00351 – ident: key-10.20965/jaciii.2025.p0358-24 doi: 10.1109/JSEN.2023.3303691 – ident: key-10.20965/jaciii.2025.p0358-21 doi: 10.1016/j.engstruct.2023.115891 – ident: key-10.20965/jaciii.2025.p0358-7 – ident: key-10.20965/jaciii.2025.p0358-11 doi: 10.1002/spy2.316 – ident: key-10.20965/jaciii.2025.p0358-10 – ident: key-10.20965/jaciii.2025.p0358-5 doi: 10.3390/su15075739 – ident: key-10.20965/jaciii.2025.p0358-20 doi: 10.32604/jnm.2022.032994 – ident: key-10.20965/jaciii.2025.p0358-8 doi: 10.3390/electronics11060883 – ident: key-10.20965/jaciii.2025.p0358-2 doi: 10.1109/TIM.2023.3250285 – ident: key-10.20965/jaciii.2025.p0358-17 doi: 10.1088/1742-6596/2229/1/012015 – ident: key-10.20965/jaciii.2025.p0358-19 doi: 10.1109/IEEM55944.2022.9989809 – ident: key-10.20965/jaciii.2025.p0358-6 – ident: key-10.20965/jaciii.2025.p0358-9 doi: 10.1016/j.aej.2023.03.008 – ident: key-10.20965/jaciii.2025.p0358-13 doi: 10.1016/j.adhoc.2022.103022 – ident: key-10.20965/jaciii.2025.p0358-3 doi: 10.3390/math10234539 – ident: key-10.20965/jaciii.2025.p0358-22 doi: 10.1038/s41467-023-39283-x – ident: key-10.20965/jaciii.2025.p0358-1 doi: 10.3390/math10193510 – ident: key-10.20965/jaciii.2025.p0358-4 doi: 10.1109/ACCESS.2022.3203692 – ident: key-10.20965/jaciii.2025.p0358-15 doi: 10.14569/IJACSA.2023.0140154 |
SSID | ssj0001326041 ssib051641541 |
Score | 2.3178782 |
Snippet | Power system data possess many characteristics and indicators, having certain high dimensions and redundant information, which can easily increase the... |
SourceID | proquest crossref nii |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 358 |
SubjectTerms | Accuracy Algorithms Big Data Clustering clustering algorithm Datasets Delay time Eigenvalues Eigenvectors Electric power Electricity distribution Energy consumption fisher discriminant graph model multidimension Parallel processing power big data Principal components analysis Redundancy |
Title | Research on Multidimensional Power Big Data Clustering Algorithm Based on Graph Mode |
URI | https://cir.nii.ac.jp/crid/1390303564741324032 https://www.proquest.com/docview/3178721254 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELYoLCy8EeVReWBDoU4cJ_GEaKEgBoRQK3WL_ISikhYI_5-7PFQkJJZkiKzIZ_vuPvv8fYScM2Y908oGLLM6iJOMBxJQcyBj8MjcWjztxGqLx-R-Ej9MxbTZcPtqyipbn1g5arswuEfehziXAVoBPHO1_AhQNQpPVxsJjQ7ZgE8ZgK-Nwe3j03M7owSAAcgRwtWuC2QrLK5RWIyFRJzVN2kiZEHpvymDlA4RJAKXS8ZRB_5XtOoUs9kfl13FodEO2WoSSHpdj_guWXPFHtluxRlos1b3ybitqaOLglbXbC0S-dckHPQJxdHoYPZCb1Sp6HD-jYQJEMbo9fwFul2-vtMBBDiLre-Q1JqiatoBmYxux8P7oJFQCAxPZRmkSqfcc6ad9wJ6bKxIvYPRSG2qlXdWOmMTl0XSaaG4DlMrGVMmERZekvNDsl4sCneENVBxxrzyQlsXZ1IpD61CYaWRoTaR7pKL1lT5smbKyAFhVIbNa8PmaNi8MmyXnIE1czPDJ2Sh4Gu4SGLIbyqGwKhLTls7582q-spXc-D4_88nZBN_hbViETsl6-XntzuD5KHUPdLJRne9Zp70Kgj-A8HTwVE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHNpLKZSK5VF8oCcU8MZ2Eh9QxaPLUh7isEjcXD9hK8guEIT4U_zGziQbgVSJG5fkEFmJvoxn5rPH8xGyzpiPzBqfsMLbRGQFTxSw5kQJ8Mjce9ztxGqL06x_Ln5fyIsp8tyehcGyytYn1o7ajxyukW9BnCuArQCf-Tm-TVA1CndXWwmNxiyOwtMjULb77cN9-L8_0rT3a7DXTyaqAonjuaqS3NicR85siFFywZ2XeQzwgbnPrYnBq-B8FopUBSsNt93cK8aMy6SHm8IFUHD5M4JzhTOq6B209iuBekBG0n1Z44HciImG8wksW-KsObeTYs-Vrb_GYQOJFNKOzTHjqDr_KjZ-KIfD_wJEHfV6X8jnSbpKdxr7miNToZwns60UBJ14hq9k0Fbw0VFJ60O9HmUDmpYf9Ayl2Oju8JLum8rQvesHbM8AQZPuXF8CyNXVDd2FcOpx9AG20Kao0bZAzt8F2m9kuhyVYRErrkTBoonS-iAKZUyEUV3plVNd61LbIRstVHrc9OXQwGdqYHUDrEZgdQ1sh6wCmtoN8Qo5L3g2LjMB2VTdjzDtkJUWZz2Zw_f6xeKW3n68Rj72ByfH-vjw9GiZfMLXYpVaylbIdHX3EFYhbans99pWKPnz3sb5D_DY_Q4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Multidimensional+Power+Big+Data+Clustering+Algorithm+Based+on+Graph+Mode&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Han%2C+Xue&rft.au=Zhang%2C+Yue&rft.au=Gao%2C+Sheng&rft.date=2025-03-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=2&rft.spage=358&rft.epage=364&rft_id=info:doi/10.20965%2Fjaciii.2025.p0358&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p0358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |