Research on Multidimensional Power Big Data Clustering Algorithm Based on Graph Mode

Power system data possess many characteristics and indicators, having certain high dimensions and redundant information, which can easily increase the calculation and storage overhead. To reduce the dimension of power data, eliminate redundant information, and reduce the delay time, a data clusterin...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Computational Intelligence and Intelligent Informatics Vol. 29; no. 2; pp. 358 - 364
Main Authors Han, Xue, Zhang, Yue, Gao, Sheng
Format Journal Article
LanguageEnglish
Published Tokyo Fuji Technology Press Ltd 20.03.2025
富士技術出版株式会社
Fuji Technology Press Co. Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Power system data possess many characteristics and indicators, having certain high dimensions and redundant information, which can easily increase the calculation and storage overhead. To reduce the dimension of power data, eliminate redundant information, and reduce the delay time, a data clustering algorithm is proposed. Firstly, an algorithm based on PCA and kernel local Fisher identification is used to reduce the dimension of large multidimensional samples and enhance the accuracy of subsequent clustering. Thereafter, the redundant data are processed after dimension reduction is processed to optimize the data quality by introducing a bloom filter structure. In the graph model, data clustering is completed based on the parallel processing of redundant data. Simulation results show that the correctness and stability of this method are over 85%, and the delay time is decreased, representing good application prospects.
AbstractList Power system data possess many characteristics and indicators, having certain high dimensions and redundant information, which can easily increase the calculation and storage overhead. To reduce the dimension of power data, eliminate redundant information, and reduce the delay time, a data clustering algorithm is proposed. Firstly, an algorithm based on PCA and kernel local Fisher identification is used to reduce the dimension of large multidimensional samples and enhance the accuracy of subsequent clustering. Thereafter, the redundant data are processed after dimension reduction is processed to optimize the data quality by introducing a bloom filter structure. In the graph model, data clustering is completed based on the parallel processing of redundant data. Simulation results show that the correctness and stability of this method are over 85%, and the delay time is decreased, representing good application prospects.
Author Han Xue
Zhang Yue
Gao Sheng
Author_xml – sequence: 1
  givenname: Xue
  orcidid: 0000-0002-4781-586X
  surname: Han
  fullname: Han, Xue
  organization: State Grid East Inner Mongolia Information & Telecommunication Company, Hohhot, Inner Mongolia 010010, China
– sequence: 2
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: State Grid East Inner Mongolia Information & Telecommunication Company, Hohhot, Inner Mongolia 010010, China
– sequence: 3
  givenname: Sheng
  surname: Gao
  fullname: Gao, Sheng
  organization: SICT Shenyang Institute of Computing Technology Co. Ltd., CAS, Shenyang, Liaoning 110000, China
BackLink https://cir.nii.ac.jp/crid/1390303564741324032$$DView record in CiNii
BookMark eNotkF1PwjAUhhujiYj8Aa-a6O2w3dnW9RJQ0QSiMXi9dOsZlIwV2y3Gf29h3pzv9-TNc0MuW9siIXecTWMms_RxrypjTGjidHpkkOYXZMTzHKKc8eQy1JBAxDiwazLxfs9YqOOMJXxENp_oUblqR21L133TGW0O2HpjW9XQD_uDjs7Nlj6pTtFF0_sOnWm3dNZsrTPd7kDnyqM-qZdOHXd0bTXekqtaNR4n_3lMvl6eN4vXaPW-fFvMVlEFQnaRUKWAGliJdZ0Gi5VORY0SmNCiVDVqiZXOMI8llqmCkgstGVNVluqQJMCY3A9_j85-9-i7Ym97F4z7ArjIRczjNAlX8XBVOeu9w7o4OnNQ7rfgrDgDLAaAxQlgcQYYRA-DqA3zypwiB8kgLLNEJIFfwiCGP-KVcTc
Cites_doi 10.1155/2022/8252492
10.3390/app13137922
10.1080/13875868.2023.2234074
10.3844/jcssp.2023.305.314
10.1021/acs.est.3c00351
10.1109/JSEN.2023.3303691
10.1016/j.engstruct.2023.115891
10.1002/spy2.316
10.3390/su15075739
10.32604/jnm.2022.032994
10.3390/electronics11060883
10.1109/TIM.2023.3250285
10.1088/1742-6596/2229/1/012015
10.1109/IEEM55944.2022.9989809
10.1016/j.aej.2023.03.008
10.1016/j.adhoc.2022.103022
10.3390/math10234539
10.1038/s41467-023-39283-x
10.3390/math10193510
10.1109/ACCESS.2022.3203692
10.14569/IJACSA.2023.0140154
ContentType Journal Article
Copyright Copyright © 2025 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2025 Fuji Technology Press Ltd.
DBID RYH
AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.20965/jaciii.2025.p0358
DatabaseName CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 364
ExternalDocumentID 10_20965_jaciii_2025_p0358
GroupedDBID AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
JSI
JSP
K7-
P2P
PHGZM
PHGZT
RJT
RYH
RZJ
TUS
AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c379t-7ab73f30beff5343cd57fe9307d7bafed9ecd6e829eb5a3b17d900ac65d00a933
IEDL.DBID BENPR
ISSN 1343-0130
IngestDate Fri Jul 25 21:10:52 EDT 2025
Tue Jul 01 05:19:30 EDT 2025
Thu Jun 26 23:12:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-7ab73f30beff5343cd57fe9307d7bafed9ecd6e829eb5a3b17d900ac65d00a933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4781-586X
OpenAccessLink https://doi.org/10.20965/jaciii.2025.p0358
PQID 3178721254
PQPubID 4911628
PageCount 7
ParticipantIDs proquest_journals_3178721254
crossref_primary_10_20965_jaciii_2025_p0358
nii_cinii_1390303564741324032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-20
PublicationDateYYYYMMDD 2025-03-20
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-20
  day: 20
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Advanced Computational Intelligence and Intelligent Informatics
PublicationTitleAlternate J. Adv. Comput. Intell. Intell. Inform
Journal of Advanced Computational Intelligence and Intelligent Informatics
PublicationTitle_FL J. Adv. Comput. Intell. Intell. Inform
Journal of Advanced Computational Intelligence and Intelligent Informatics
PublicationYear 2025
Publisher Fuji Technology Press Ltd
富士技術出版株式会社
Fuji Technology Press Co. Ltd
Publisher_xml – name: 富士技術出版株式会社
– name: Fuji Technology Press Ltd
– name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2025.p0358-9
key-10.20965/jaciii.2025.p0358-18
key-10.20965/jaciii.2025.p0358-19
key-10.20965/jaciii.2025.p0358-1
key-10.20965/jaciii.2025.p0358-10
key-10.20965/jaciii.2025.p0358-21
key-10.20965/jaciii.2025.p0358-2
key-10.20965/jaciii.2025.p0358-11
key-10.20965/jaciii.2025.p0358-22
key-10.20965/jaciii.2025.p0358-3
key-10.20965/jaciii.2025.p0358-12
key-10.20965/jaciii.2025.p0358-23
key-10.20965/jaciii.2025.p0358-4
key-10.20965/jaciii.2025.p0358-13
key-10.20965/jaciii.2025.p0358-24
key-10.20965/jaciii.2025.p0358-5
key-10.20965/jaciii.2025.p0358-14
key-10.20965/jaciii.2025.p0358-6
key-10.20965/jaciii.2025.p0358-15
key-10.20965/jaciii.2025.p0358-7
key-10.20965/jaciii.2025.p0358-16
key-10.20965/jaciii.2025.p0358-8
key-10.20965/jaciii.2025.p0358-17
key-10.20965/jaciii.2025.p0358-20
References_xml – ident: key-10.20965/jaciii.2025.p0358-18
  doi: 10.1155/2022/8252492
– ident: key-10.20965/jaciii.2025.p0358-12
  doi: 10.3390/app13137922
– ident: key-10.20965/jaciii.2025.p0358-16
  doi: 10.1080/13875868.2023.2234074
– ident: key-10.20965/jaciii.2025.p0358-14
  doi: 10.3844/jcssp.2023.305.314
– ident: key-10.20965/jaciii.2025.p0358-23
  doi: 10.1021/acs.est.3c00351
– ident: key-10.20965/jaciii.2025.p0358-24
  doi: 10.1109/JSEN.2023.3303691
– ident: key-10.20965/jaciii.2025.p0358-21
  doi: 10.1016/j.engstruct.2023.115891
– ident: key-10.20965/jaciii.2025.p0358-7
– ident: key-10.20965/jaciii.2025.p0358-11
  doi: 10.1002/spy2.316
– ident: key-10.20965/jaciii.2025.p0358-10
– ident: key-10.20965/jaciii.2025.p0358-5
  doi: 10.3390/su15075739
– ident: key-10.20965/jaciii.2025.p0358-20
  doi: 10.32604/jnm.2022.032994
– ident: key-10.20965/jaciii.2025.p0358-8
  doi: 10.3390/electronics11060883
– ident: key-10.20965/jaciii.2025.p0358-2
  doi: 10.1109/TIM.2023.3250285
– ident: key-10.20965/jaciii.2025.p0358-17
  doi: 10.1088/1742-6596/2229/1/012015
– ident: key-10.20965/jaciii.2025.p0358-19
  doi: 10.1109/IEEM55944.2022.9989809
– ident: key-10.20965/jaciii.2025.p0358-6
– ident: key-10.20965/jaciii.2025.p0358-9
  doi: 10.1016/j.aej.2023.03.008
– ident: key-10.20965/jaciii.2025.p0358-13
  doi: 10.1016/j.adhoc.2022.103022
– ident: key-10.20965/jaciii.2025.p0358-3
  doi: 10.3390/math10234539
– ident: key-10.20965/jaciii.2025.p0358-22
  doi: 10.1038/s41467-023-39283-x
– ident: key-10.20965/jaciii.2025.p0358-1
  doi: 10.3390/math10193510
– ident: key-10.20965/jaciii.2025.p0358-4
  doi: 10.1109/ACCESS.2022.3203692
– ident: key-10.20965/jaciii.2025.p0358-15
  doi: 10.14569/IJACSA.2023.0140154
SSID ssj0001326041
ssib051641541
Score 2.3178782
Snippet Power system data possess many characteristics and indicators, having certain high dimensions and redundant information, which can easily increase the...
SourceID proquest
crossref
nii
SourceType Aggregation Database
Index Database
Publisher
StartPage 358
SubjectTerms Accuracy
Algorithms
Big Data
Clustering
clustering algorithm
Datasets
Delay time
Eigenvalues
Eigenvectors
Electric power
Electricity distribution
Energy consumption
fisher discriminant
graph model
multidimension
Parallel processing
power big data
Principal components analysis
Redundancy
Title Research on Multidimensional Power Big Data Clustering Algorithm Based on Graph Mode
URI https://cir.nii.ac.jp/crid/1390303564741324032
https://www.proquest.com/docview/3178721254
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELYoLCy8EeVReWBDoU4cJ_GEaKEgBoRQK3WL_ISikhYI_5-7PFQkJJZkiKzIZ_vuPvv8fYScM2Y908oGLLM6iJOMBxJQcyBj8MjcWjztxGqLx-R-Ej9MxbTZcPtqyipbn1g5arswuEfehziXAVoBPHO1_AhQNQpPVxsJjQ7ZgE8ZgK-Nwe3j03M7owSAAcgRwtWuC2QrLK5RWIyFRJzVN2kiZEHpvymDlA4RJAKXS8ZRB_5XtOoUs9kfl13FodEO2WoSSHpdj_guWXPFHtluxRlos1b3ybitqaOLglbXbC0S-dckHPQJxdHoYPZCb1Sp6HD-jYQJEMbo9fwFul2-vtMBBDiLre-Q1JqiatoBmYxux8P7oJFQCAxPZRmkSqfcc6ad9wJ6bKxIvYPRSG2qlXdWOmMTl0XSaaG4DlMrGVMmERZekvNDsl4sCneENVBxxrzyQlsXZ1IpD61CYaWRoTaR7pKL1lT5smbKyAFhVIbNa8PmaNi8MmyXnIE1czPDJ2Sh4Gu4SGLIbyqGwKhLTls7582q-spXc-D4_88nZBN_hbViETsl6-XntzuD5KHUPdLJRne9Zp70Kgj-A8HTwVE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHNpLKZSK5VF8oCcU8MZ2Eh9QxaPLUh7isEjcXD9hK8guEIT4U_zGziQbgVSJG5fkEFmJvoxn5rPH8xGyzpiPzBqfsMLbRGQFTxSw5kQJ8Mjce9ztxGqL06x_Ln5fyIsp8tyehcGyytYn1o7ajxyukW9BnCuArQCf-Tm-TVA1CndXWwmNxiyOwtMjULb77cN9-L8_0rT3a7DXTyaqAonjuaqS3NicR85siFFywZ2XeQzwgbnPrYnBq-B8FopUBSsNt93cK8aMy6SHm8IFUHD5M4JzhTOq6B209iuBekBG0n1Z44HciImG8wksW-KsObeTYs-Vrb_GYQOJFNKOzTHjqDr_KjZ-KIfD_wJEHfV6X8jnSbpKdxr7miNToZwns60UBJ14hq9k0Fbw0VFJ60O9HmUDmpYf9Ayl2Oju8JLum8rQvesHbM8AQZPuXF8CyNXVDd2FcOpx9AG20Kao0bZAzt8F2m9kuhyVYRErrkTBoonS-iAKZUyEUV3plVNd61LbIRstVHrc9OXQwGdqYHUDrEZgdQ1sh6wCmtoN8Qo5L3g2LjMB2VTdjzDtkJUWZz2Zw_f6xeKW3n68Rj72ByfH-vjw9GiZfMLXYpVaylbIdHX3EFYhbans99pWKPnz3sb5D_DY_Q4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Multidimensional+Power+Big+Data+Clustering+Algorithm+Based+on+Graph+Mode&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Han%2C+Xue&rft.au=Zhang%2C+Yue&rft.au=Gao%2C+Sheng&rft.date=2025-03-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=2&rft.spage=358&rft.epage=364&rft_id=info:doi/10.20965%2Fjaciii.2025.p0358&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p0358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon