Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells
Compositional engineering of organic-inorganic hybrid perovskite has attracted great research interests recently for seeking a better perovskite system to address existed challenges, such as the thermal and moisture instability, anomalous hysteresis, and toxic lead contamination, etc. In this study,...
Saved in:
Published in | Nano energy Vol. 22; no. C; pp. 328 - 337 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.04.2016
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Compositional engineering of organic-inorganic hybrid perovskite has attracted great research interests recently for seeking a better perovskite system to address existed challenges, such as the thermal and moisture instability, anomalous hysteresis, and toxic lead contamination, etc. In this study, we systematically investigated the structural, optophysical, and photovoltaic properties of the compositional MAxFA1−xPb(IyBr1−y)3 perovskite by sequentially introducing FA+ and Br- ions into the parental MAPbI3 to elucidate their respective roles when they were inserted into the perovskite lattice. We unraveled that such dual compositional tuning in perovskite can improve the crystallinity of the resultant film and thus reduce its density of defect states as evidenced by admittance spectroscopy, resulting in a prolonged carrier lifetime over 500ns. As a result, a promising average PCE (PCEAVG) of 17.34% was realized in the optimized MA0.7FA0.3Pb(I0.9Br0.1)3-based PVSC with little hysteresis and stable photocurrent output. More significantly, another compositional MA0.7FA0.3Pb(I0.8Br0.2)3 perovskite with a large bandgap of 1.69eV can yield an impressively high PCEAVG over 15%. To the best of our knowledge, this performance is among the state-of-the-art large bandgap (~1.7eV) PVSCs reported so far, which paves the way for the development of high-performance tandem cells using efficient large bandgap PVSCs as the top subcells. This study not only manifests the pivotal roles of dual compositional tuning in MAxFA1−xPb(IyBr1−y)3 perovskites but also highlights the importance of compositional engineering for developing an even more efficient perovskite.
The structural, optophysical, and photovoltaic properties of the compositional MAxFA1−xPb(IyBr1–y)3 perovskite were systematically studied by gradually introducting FA+ and Br− ions into the MAPbI3 to elucidate the roles of FA+ and Br− ions in the compositional perovskites. Benefitting from the improved thin-film crystallinity, prolonged carrier lifetime, and extended absorption introduced by such dual compositional engineering, a high average PCE of 17.34% was realized in the MA0.7FA0.3Pb(I0.9Br0.1)3-based solar cell. More importantly, the MA0.7FA0.3Pb(I0.8Br0.2)3 perovskite with a large bandgap of 1.69eV can exhibit a high PCE over 15%, which is among the state-of-the-art large bandgap (~1.7eV) PVSCs reported to date.
[Display omitted]
•The roles of FA+ and Br- ions in MAxFA1-xPb(IyBr1-y)3 perovskite were revealed.•An average PCE of 17.34% was realized in the optimized MA0.7FA0.3Pb(I0.9Br0.1)3-based PVSC.•A perovskite with a large bandgap of 1.69eV yields a high PCEAVG over 15%. |
---|---|
AbstractList | Compositional engineering of organic-inorganic hybrid perovskite has attracted great research interests recently for seeking a better perovskite system to address existed challenges, such as the thermal and moisture instability, anomalous hysteresis, and toxic lead contamination, etc. In this study, we systematically investigated the structural, optophysical, and photovoltaic properties of the compositional MAxFA1−xPb(IyBr1−y)3 perovskite by sequentially introducing FA+ and Br- ions into the parental MAPbI3 to elucidate their respective roles when they were inserted into the perovskite lattice. We unraveled that such dual compositional tuning in perovskite can improve the crystallinity of the resultant film and thus reduce its density of defect states as evidenced by admittance spectroscopy, resulting in a prolonged carrier lifetime over 500ns. As a result, a promising average PCE (PCEAVG) of 17.34% was realized in the optimized MA0.7FA0.3Pb(I0.9Br0.1)3-based PVSC with little hysteresis and stable photocurrent output. More significantly, another compositional MA0.7FA0.3Pb(I0.8Br0.2)3 perovskite with a large bandgap of 1.69eV can yield an impressively high PCEAVG over 15%. To the best of our knowledge, this performance is among the state-of-the-art large bandgap (~1.7eV) PVSCs reported so far, which paves the way for the development of high-performance tandem cells using efficient large bandgap PVSCs as the top subcells. This study not only manifests the pivotal roles of dual compositional tuning in MAxFA1−xPb(IyBr1−y)3 perovskites but also highlights the importance of compositional engineering for developing an even more efficient perovskite.
The structural, optophysical, and photovoltaic properties of the compositional MAxFA1−xPb(IyBr1–y)3 perovskite were systematically studied by gradually introducting FA+ and Br− ions into the MAPbI3 to elucidate the roles of FA+ and Br− ions in the compositional perovskites. Benefitting from the improved thin-film crystallinity, prolonged carrier lifetime, and extended absorption introduced by such dual compositional engineering, a high average PCE of 17.34% was realized in the MA0.7FA0.3Pb(I0.9Br0.1)3-based solar cell. More importantly, the MA0.7FA0.3Pb(I0.8Br0.2)3 perovskite with a large bandgap of 1.69eV can exhibit a high PCE over 15%, which is among the state-of-the-art large bandgap (~1.7eV) PVSCs reported to date.
[Display omitted]
•The roles of FA+ and Br- ions in MAxFA1-xPb(IyBr1-y)3 perovskite were revealed.•An average PCE of 17.34% was realized in the optimized MA0.7FA0.3Pb(I0.9Br0.1)3-based PVSC.•A perovskite with a large bandgap of 1.69eV yields a high PCEAVG over 15%. Compositional engineering of organic-inorganic hybrid perovskite has attracted great research interests recently for seeking a better perovskite system to address existed challenges, such as the thermal and moisture instability, anomalous hysteresis, and toxic lead contamination, etc. In this study, we systematically investigated the structural, optophysical, and photovoltaic properties of the compositional MAxFA1-xPb(IyBr1-y)3 perovskite by sequentially introducing FA+ and Br- ions into the parental MAPbI3 to elucidate their respective roles when they were inserted into the perovskite lattice. We unraveled that such dual compositional tuning in perovskite can improve the crystallinity of the resultant film and thus reduce its density of defect states as evidenced by admittance spectroscopy, resulting in a prolonged carrier lifetime over 500 ns. As a result, a promising average PCE (PCEAVG) of 17.34% was realized in the optimized MA0.7FA0.3Pb(I0.9Br0.1)3-based PVSC with little hysteresis and stable photocurrent output. More significantly, another compositional MA0.7FA0.3Pb(I0.8Br0.2)3 perovskite with a large bandgap of 1.69 eV can yield an impressively high PCEAVG over 15%. To the best of our knowledge, this performance is among the state-of-the-art large bandgap ( 1.7 eV) PVSCs reported so far, which paves the way for the development of high-performance tandem cells using efficient large bandgap PVSCs as the top subcells. Lastly, this study not only manifests the pivotal roles of dual compositional tuning in MAxFA1-xPb(IyBr1-y)3 perovskites but also highlights the importance of compositional engineering for developing an even more efficient perovskite. |
Author | Jen, Alex K.-Y. Lin, Francis Yang, Zhibin Crump, Michael Zhu, Zonglong Liang, Po-Wei Chueh, Chu-Chen |
Author_xml | – sequence: 1 givenname: Zhibin surname: Yang fullname: Yang, Zhibin organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA – sequence: 2 givenname: Chu-Chen surname: Chueh fullname: Chueh, Chu-Chen email: ccchueh@uw.edu organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA – sequence: 3 givenname: Po-Wei surname: Liang fullname: Liang, Po-Wei organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA – sequence: 4 givenname: Michael surname: Crump fullname: Crump, Michael organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA – sequence: 5 givenname: Francis surname: Lin fullname: Lin, Francis organization: Department of Chemistry, University of Washington, Seattle, WA 98195-2120, USA – sequence: 6 givenname: Zonglong surname: Zhu fullname: Zhu, Zonglong organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA – sequence: 7 givenname: Alex K.-Y. surname: Jen fullname: Jen, Alex K.-Y. email: ajen@u.washington.edu organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA |
BackLink | https://www.osti.gov/servlets/purl/1343584$$D View this record in Osti.gov |
BookMark | eNqFUDtPwzAY9FAkSuk_YLDYE_zIkwEJVeUhVWKB2XKcL9QlsSvbLeoP4H_jtEwM4OXzSXenu7tAE2MNIHRFSUoJLW42qZHGgklZRClhKeF8gqaMUZqwKs_P0dz7DYmvyGlJ2RR9LbsOVPDYdrizbpCDbrXRuwFL0-LG2YgBa2uw3zU-6LALI9AGDxDWh14Ogz3Se5AtDk5r246KYD-la_Fav6-TLbijtVGA49_u_YcOgL3tpcMK-t5forNO9h7mP3eG3h6Wr4unZPXy-Ly4XyWKl3VIypLVkvOGNnVdFVmtoOC1bLKyIdBIyUHWRVXxjBJG6wyKXBFKm4JzxiAvVMtn6Prka2MV4VWModbKGhMnEJRnPK-ySLo9kZSz3jvoROTJsXZwUveCEjGOLTbiNLYYxxaEiTh2FGe_xFunB-kO_8nuTjKI7fca3BgO4mCtdmO21uq_Db4BrOGiVA |
CitedBy_id | crossref_primary_10_3390_nano13121886 crossref_primary_10_1016_j_nanoen_2018_06_082 crossref_primary_10_1016_j_cej_2021_129735 crossref_primary_10_1002_solr_202000422 crossref_primary_10_1007_s10853_022_06867_9 crossref_primary_10_1021_acs_nanolett_6b03857 crossref_primary_10_1002_smll_202102186 crossref_primary_10_3390_nano13010186 crossref_primary_10_1016_j_nanoen_2017_08_009 crossref_primary_10_1021_acs_jpcc_7b03176 crossref_primary_10_1039_C8SE00200B crossref_primary_10_1016_j_matlet_2017_06_079 crossref_primary_10_1002_admi_201700598 crossref_primary_10_1002_cjoc_202100672 crossref_primary_10_1088_2515_7655_ab8774 crossref_primary_10_3390_ma14102573 crossref_primary_10_1002_smll_202001535 crossref_primary_10_3390_coatings9110766 crossref_primary_10_1016_j_mattod_2017_12_002 crossref_primary_10_1016_j_nanoen_2018_12_068 crossref_primary_10_1002_pssa_201800727 crossref_primary_10_1021_acsaem_1c01848 crossref_primary_10_1021_acsaem_9b02438 crossref_primary_10_1021_acs_inorgchem_6b02055 crossref_primary_10_1002_adma_201801948 crossref_primary_10_1021_acsaem_2c03395 crossref_primary_10_1016_j_mtener_2021_100837 crossref_primary_10_1016_j_optmat_2020_109687 crossref_primary_10_1016_j_orgel_2019_03_031 crossref_primary_10_1002_adfm_201808833 crossref_primary_10_1016_j_nanoen_2020_105309 crossref_primary_10_1021_acs_jpcc_7b04557 crossref_primary_10_1002_anie_201604399 crossref_primary_10_1039_D0TA05022A crossref_primary_10_1002_cjoc_202200442 crossref_primary_10_1016_j_mtener_2017_09_007 crossref_primary_10_1039_D0TA06033J crossref_primary_10_1039_C9MH01679A crossref_primary_10_1039_D3RA01304A crossref_primary_10_3390_en16062717 crossref_primary_10_1016_j_mtphys_2022_100624 crossref_primary_10_1016_j_apsusc_2017_06_064 crossref_primary_10_1016_j_mtener_2018_07_003 crossref_primary_10_1002_eem2_12089 crossref_primary_10_1002_adma_201602696 crossref_primary_10_1002_solr_202000206 crossref_primary_10_1002_er_8422 crossref_primary_10_1002_aenm_201700722 crossref_primary_10_1021_acsaem_2c00108 crossref_primary_10_1021_acsaem_7b00129 crossref_primary_10_1002_cphc_201700536 crossref_primary_10_1016_j_nanoen_2018_05_010 crossref_primary_10_1021_acs_jpcc_4c04614 crossref_primary_10_1039_C7TA00562H crossref_primary_10_1039_C8TC01345D crossref_primary_10_1021_acsomega_1c01378 crossref_primary_10_1103_PhysRevB_94_180105 crossref_primary_10_1016_j_jechem_2022_07_003 crossref_primary_10_1039_C6QI00580B crossref_primary_10_1039_C6SE00076B crossref_primary_10_1016_j_mtchem_2023_101477 crossref_primary_10_3390_en17092183 crossref_primary_10_1002_pssr_201800644 crossref_primary_10_1016_j_orgel_2018_08_030 crossref_primary_10_1002_eem2_12111 crossref_primary_10_1021_acsenergylett_8b00837 crossref_primary_10_1039_C6TA05745D crossref_primary_10_1002_adma_201800515 crossref_primary_10_1021_acs_jpcc_8b08252 crossref_primary_10_1039_C9CP06568G crossref_primary_10_3390_en13164250 crossref_primary_10_1021_acsenergylett_1c01575 crossref_primary_10_1021_acsenergylett_0c00417 crossref_primary_10_1002_adfm_202313715 crossref_primary_10_1039_C8TC01033A crossref_primary_10_1002_aenm_201801692 crossref_primary_10_1002_aenm_201601307 crossref_primary_10_1016_j_jallcom_2020_157784 crossref_primary_10_1007_s00339_019_2866_4 crossref_primary_10_1002_smll_202309646 crossref_primary_10_3390_coatings13020341 crossref_primary_10_1002_pssa_202300782 crossref_primary_10_1016_j_mtener_2016_11_001 crossref_primary_10_1016_j_jechem_2023_07_018 crossref_primary_10_1021_jacs_9b07381 crossref_primary_10_1002_ange_201604399 crossref_primary_10_3390_inorganics11100416 crossref_primary_10_1002_solr_202200120 crossref_primary_10_1007_s00339_019_2766_7 crossref_primary_10_1002_smll_201603225 crossref_primary_10_1039_C7TA08617B crossref_primary_10_1002_solr_201900485 crossref_primary_10_1016_j_jallcom_2019_151716 crossref_primary_10_1007_s00339_021_04283_5 crossref_primary_10_1016_j_jpowsour_2018_04_008 crossref_primary_10_1016_j_solener_2018_01_083 crossref_primary_10_1016_j_sna_2024_115076 crossref_primary_10_1002_adma_201803019 crossref_primary_10_1021_acsphotonics_6b00940 crossref_primary_10_1088_1674_4926_41_5_051201 crossref_primary_10_1002_smtd_201700387 crossref_primary_10_1002_er_8008 crossref_primary_10_1088_1674_1056_27_2_024208 crossref_primary_10_1039_C6TA05727F crossref_primary_10_1039_C8TA00931G crossref_primary_10_1016_j_nanoen_2018_09_023 crossref_primary_10_1039_C9EE00872A crossref_primary_10_1021_acsaem_8b01038 crossref_primary_10_1016_j_rser_2017_05_095 crossref_primary_10_1088_1361_6641_ab27f7 crossref_primary_10_1039_C7RA01496A crossref_primary_10_1016_j_orgel_2017_11_045 crossref_primary_10_1002_aenm_201700414 crossref_primary_10_1039_C7RA07514F crossref_primary_10_1016_j_orgel_2020_105988 crossref_primary_10_1016_j_cej_2022_140862 crossref_primary_10_1021_acs_inorgchem_8b03072 crossref_primary_10_1039_C9TA03454D crossref_primary_10_1002_solr_202200808 crossref_primary_10_1021_acsami_1c01685 crossref_primary_10_1021_acs_cgd_9b01717 crossref_primary_10_1016_j_solmat_2019_110197 crossref_primary_10_1002_aenm_202302124 crossref_primary_10_1002_aenm_201700491 crossref_primary_10_1002_solr_202200806 crossref_primary_10_1002_aenm_201601882 crossref_primary_10_1016_j_device_2024_100498 crossref_primary_10_1021_acsnano_0c01392 crossref_primary_10_1039_D4TA03542A crossref_primary_10_1021_acs_chemmater_9b00837 crossref_primary_10_1039_C6TC02135B crossref_primary_10_1021_acs_jpclett_0c02791 crossref_primary_10_1021_acs_jpclett_1c03213 crossref_primary_10_1038_s41560_018_0324_8 crossref_primary_10_1039_D0CP06713J crossref_primary_10_1039_D1TC01533H crossref_primary_10_1016_j_solener_2018_11_061 crossref_primary_10_1002_aenm_202101383 crossref_primary_10_1021_acs_jpcc_7b01250 crossref_primary_10_1021_acs_jpclett_6b01406 crossref_primary_10_3390_ma10070837 crossref_primary_10_1002_ejic_202100329 crossref_primary_10_1021_acsami_0c02575 crossref_primary_10_1088_1674_1056_27_1_017305 crossref_primary_10_1007_s10854_024_12010_y crossref_primary_10_1002_solr_202200777 crossref_primary_10_1007_s11664_019_07638_0 crossref_primary_10_1016_j_cej_2022_134759 crossref_primary_10_1021_acsami_6b13410 crossref_primary_10_1021_acs_jpcc_8b10070 crossref_primary_10_1016_j_nanoen_2017_03_048 crossref_primary_10_1021_acsaem_3c03086 crossref_primary_10_1016_j_jallcom_2021_160373 crossref_primary_10_1016_j_nanoen_2019_104441 crossref_primary_10_1021_acs_jpcc_9b10185 crossref_primary_10_1007_s13391_019_00149_4 crossref_primary_10_1016_j_pmatsci_2019_100580 crossref_primary_10_1039_C9TA07657C crossref_primary_10_1002_adfm_201900455 crossref_primary_10_1021_acs_jpclett_7b01185 crossref_primary_10_1021_acsami_7b04011 crossref_primary_10_1039_C7SE00094D crossref_primary_10_1115_1_4049326 crossref_primary_10_1007_s00706_017_1958_0 crossref_primary_10_3390_app14146223 crossref_primary_10_1039_C7TA01668A crossref_primary_10_1016_j_jpowsour_2021_230481 crossref_primary_10_1002_adma_201704418 crossref_primary_10_1039_C6TA06607K crossref_primary_10_3390_nano13061084 crossref_primary_10_1021_acs_chemmater_8b04871 crossref_primary_10_1039_C7TA00042A crossref_primary_10_1002_adfm_201908343 crossref_primary_10_1039_C6TA07712A crossref_primary_10_1016_j_jpowsour_2019_227386 crossref_primary_10_1016_j_molliq_2020_113674 crossref_primary_10_1016_j_orgel_2019_03_004 |
Cites_doi | 10.1021/nn5041922 10.1002/anie.201309361 10.1039/C4EE00233D 10.1002/aenm.201500279 10.1039/C4EE01076K 10.1038/nature12340 10.1002/aenm.201500328 10.1063/1.359880 10.1039/C4TA06128D 10.1063/1.4864778 10.1126/science.1254050 10.1021/ic401215x 10.1021/acs.jpclett.5b00967 10.1038/nphoton.2014.82 10.1039/c3ee43822h 10.1002/aenm.201401616 10.1063/1.1736034 10.1039/c3ee42282h 10.1002/adma.201404189 10.1126/science.1243982 10.1038/nature14133 10.1039/c2jm30755c 10.1021/nl502612m 10.1126/science.aaa9272 10.1002/adma.201306281 10.1002/aenm.201402321 10.1038/nnano.2014.181 10.1002/adma.201401641 10.1002/aenm.201500477 10.1002/aenm.201400960 10.1038/nphoton.2014.134 10.1038/ncomms6784 10.1039/C4CP04479G 10.1021/nl400349b 10.1038/nmat4014 10.1002/adma.201401685 10.1007/BF01349680 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
CorporateAuthor | Univ. of Washington, Seattle, WA (United States) |
CorporateAuthor_xml | – name: Univ. of Washington, Seattle, WA (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1016/j.nanoen.2016.02.033 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 337 |
ExternalDocumentID | 1343584 10_1016_j_nanoen_2016_02_033 S2211285516000847 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH AALMO ABPIF OIOZB OTOTI |
ID | FETCH-LOGICAL-c379t-7729a33b1b998649ce639ab47b0ebaa3ea968834102194e65c011b63322e56cd3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Mon Jul 03 03:59:12 EDT 2023 Thu Apr 24 23:02:19 EDT 2025 Tue Jul 01 01:55:50 EDT 2025 Fri Feb 23 02:30:20 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Bromine Composition Formamidinium Nickel oxide Perovskite solar cells |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-7729a33b1b998649ce639ab47b0ebaa3ea968834102194e65c011b63322e56cd3 |
Notes | USDOE Office of Energy Efficiency and Renewable Energy (EERE) DOE-UW-Jen-18 US Department of the Navy, Office of Naval Research (ONR) EE0006710; N00014-14-1-0246; FA2386-11-1-4072 Boeing-Johnson Foundation Asian Office of Aerospace R&D Washington Research Foundation Innovation Fellowship |
OpenAccessLink | https://www.osti.gov/servlets/purl/1343584 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1343584 crossref_citationtrail_10_1016_j_nanoen_2016_02_033 crossref_primary_10_1016_j_nanoen_2016_02_033 elsevier_sciencedirect_doi_10_1016_j_nanoen_2016_02_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano energy |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zhao, Chen, Qiao, Luan, Lu, Hu (bib12) 2015; 5 Williams, Zuo, Chueh, Liao, Liang, Jen (bib24) 2014; 8 Zhou, Chen, Li, Luo, Song, Duan, Hong, You, Liu, Yang (bib2) 2014; 345 Green, Ho-Baillie, Snaith (bib4) 2014; 8 Yang, Chueh, Zuo, Kim, Liang, Jen (bib10) 2015; 5 Soga, Kato, Yang, Umeno, Jimbo (bib31) 1995; 78 Jeon, Noh, Kim, Yang, Ryu, Seok (bib27) 2014; 13 Duan, Zhou, Chen, Sun, Luo, Song, Bob, Yang (bib38) 2015; 17 Liang, Chueh, Williams, Jen (bib29) 2015; 5 Stranks, Eperon, Grancini, Menelaou, Alcocer, Leijtens, Herz, Petrozza, Snaith (bib23) 2013; 342 Bi, Yuan, Fang, Huang (bib25) 2015; 5 Burschka, Pellet, Moon, Humphry-Baker, Gao, Nazeeruddin, Grätzel (bib5) 2013; 499 Noel, Stranks, Abate, Wehrenfennig, Guarnera, Haghighirad, Sadhanala, Eperon, Pathak, Johnston, Petrozza, Herz, Snaith (bib16) 2014; 7 Xiao, Dong, Bi, Shao, Yuan, Huang (bib3) 2014; 26 Shao, Xiao, Bi, Yuan, Huang (bib13) 2014; 5 Li, Chueh, Yip, O׳Malley, Chen, Jen (bib26) 2012; 22 Laban, Etgar (bib37) 2013; 6 Zuo, Williams, Liang, Chueh, Liao, Jen (bib14) 2014; 26 Yin, Shi, Yan (bib34) 2014; 26 Vegard (bib28) 1921; 5 Conings, Drijkoningen, Gauquelin, Babayigit, D׳Haen, D׳Olieslaeger, Ethirajan, Verbeeck, Manca, Mosconi (bib11) 2015; 5 Hao, Stoumpos, Cao, Chang, Kanatzidis (bib15) 2014; 8 Stoumpos, Malliakas, Kanatzidis (bib21) 2013; 52 Kim, Oh, Nguyen, Jo, Kim, Lee, Jung (bib30) 2015; 6 Rollett, Humphreys, Rohrer, Hatherly (bib32) 2004 Liang, Chueh, Xin, Zuo, Williams, Liao, Jen (bib18) 2015; 5 Eperon, Stranks, Menelaou, Johnston, Herz, Snaith (bib20) 2014; 7 Kim, Liang, Williams, Cho, Chueh, Glaz, Ginger, Jen (bib6) 2015; 27 Yang, Noh, Jeon, Kim, Ryu, Seo, Seok (bib17) 2015; 348 Buin, Pietsch, Xu, Voznyy, Ip, Comin, Sargent (bib33) 2014; 14 Yin, Shi, Yan (bib39) 2014; 104 Noh, Im, Heo, Mandal, Seok (bib9) 2013; 13 Pellet, Gao, Gregori, Yang, Nazeeruddin, Maier, Grätzel (bib19) 2014; 53 Im, Jang, Pellet, Grätzel, Park (bib7) 2014; 9 Dong, Fang, Lv, Lin, Zhang, Ding, Yuan (bib8) 2015; 3 Shockley, Queisser (bib22) 1961; 32 Lee, Kim, Kim, Seo, Cho, Park (bib35) 2015; 5 Wang, Shao, Dong, Xiao, Yuan, Huang (bib36) 2014; 7 Jeon, Noh, Yang, Kim, Ryu, Seo, Seok (bib1) 2015; 517 Yang (10.1016/j.nanoen.2016.02.033_bib10) 2015; 5 Xiao (10.1016/j.nanoen.2016.02.033_bib3) 2014; 26 Li (10.1016/j.nanoen.2016.02.033_bib26) 2012; 22 Yang (10.1016/j.nanoen.2016.02.033_bib17) 2015; 348 Liang (10.1016/j.nanoen.2016.02.033_bib18) 2015; 5 Yin (10.1016/j.nanoen.2016.02.033_bib39) 2014; 104 Kim (10.1016/j.nanoen.2016.02.033_bib6) 2015; 27 Kim (10.1016/j.nanoen.2016.02.033_bib30) 2015; 6 Conings (10.1016/j.nanoen.2016.02.033_bib11) 2015; 5 Bi (10.1016/j.nanoen.2016.02.033_bib25) 2015; 5 Burschka (10.1016/j.nanoen.2016.02.033_bib5) 2013; 499 Noh (10.1016/j.nanoen.2016.02.033_bib9) 2013; 13 Jeon (10.1016/j.nanoen.2016.02.033_bib1) 2015; 517 Eperon (10.1016/j.nanoen.2016.02.033_bib20) 2014; 7 Stoumpos (10.1016/j.nanoen.2016.02.033_bib21) 2013; 52 Stranks (10.1016/j.nanoen.2016.02.033_bib23) 2013; 342 Vegard (10.1016/j.nanoen.2016.02.033_bib28) 1921; 5 Shao (10.1016/j.nanoen.2016.02.033_bib13) 2014; 5 Zhao (10.1016/j.nanoen.2016.02.033_bib12) 2015; 5 Lee (10.1016/j.nanoen.2016.02.033_bib35) 2015; 5 Duan (10.1016/j.nanoen.2016.02.033_bib38) 2015; 17 Soga (10.1016/j.nanoen.2016.02.033_bib31) 1995; 78 Williams (10.1016/j.nanoen.2016.02.033_bib24) 2014; 8 Green (10.1016/j.nanoen.2016.02.033_bib4) 2014; 8 Jeon (10.1016/j.nanoen.2016.02.033_bib27) 2014; 13 Buin (10.1016/j.nanoen.2016.02.033_bib33) 2014; 14 Noel (10.1016/j.nanoen.2016.02.033_bib16) 2014; 7 Shockley (10.1016/j.nanoen.2016.02.033_bib22) 1961; 32 Yin (10.1016/j.nanoen.2016.02.033_bib34) 2014; 26 Dong (10.1016/j.nanoen.2016.02.033_bib8) 2015; 3 Wang (10.1016/j.nanoen.2016.02.033_bib36) 2014; 7 Zhou (10.1016/j.nanoen.2016.02.033_bib2) 2014; 345 Zuo (10.1016/j.nanoen.2016.02.033_bib14) 2014; 26 Hao (10.1016/j.nanoen.2016.02.033_bib15) 2014; 8 Liang (10.1016/j.nanoen.2016.02.033_bib29) 2015; 5 Rollett (10.1016/j.nanoen.2016.02.033_bib32) 2004 Im (10.1016/j.nanoen.2016.02.033_bib7) 2014; 9 Pellet (10.1016/j.nanoen.2016.02.033_bib19) 2014; 53 Laban (10.1016/j.nanoen.2016.02.033_bib37) 2013; 6 |
References_xml | – volume: 26 start-page: 6503 year: 2014 end-page: 6509 ident: bib3 publication-title: Adv. Mater. – volume: 5 start-page: 1500279 year: 2015 ident: bib12 publication-title: Adv. Energy Mater. – volume: 52 start-page: 9019 year: 2013 end-page: 9038 ident: bib21 publication-title: Inorg. Chem. – volume: 14 start-page: 6281 year: 2014 end-page: 6286 ident: bib33 publication-title: Nano Lett. – volume: 27 start-page: 695 year: 2015 end-page: 701 ident: bib6 publication-title: Adv. Mater. – volume: 7 start-page: 2359 year: 2014 end-page: 2365 ident: bib36 publication-title: Energy Environ. Sci. – volume: 9 start-page: 927 year: 2014 end-page: 932 ident: bib7 publication-title: Nat. Nanotechnol. – volume: 8 start-page: 10640 year: 2014 end-page: 10654 ident: bib24 publication-title: ACS Nano – volume: 5 start-page: 1401616 year: 2015 ident: bib25 publication-title: Adv. Energy Mater. – volume: 13 start-page: 1764 year: 2013 end-page: 1769 ident: bib9 publication-title: Nano Lett. – volume: 104 start-page: 063903 year: 2014 ident: bib39 publication-title: Appl. Phys. Lett. – volume: 78 start-page: 4196 year: 1995 end-page: 4199 ident: bib31 publication-title: J. Appl. Phys. – volume: 5 start-page: 1400960 year: 2015 ident: bib18 publication-title: Adv. Energy Mater. – volume: 22 start-page: 8574 year: 2012 end-page: 8578 ident: bib26 publication-title: J. Mater. Chem. – volume: 5 start-page: 5784 year: 2014 ident: bib13 publication-title: Nat. Commun. – volume: 5 year: 2015 ident: bib35 publication-title: Adv. Energy Mater. – volume: 8 start-page: 506 year: 2014 end-page: 514 ident: bib4 publication-title: Nat. Photonics – volume: 348 start-page: 1234 year: 2015 end-page: 1237 ident: bib17 publication-title: Science – volume: 13 start-page: 897 year: 2014 end-page: 903 ident: bib27 publication-title: Nat. Mater. – volume: 26 start-page: 4653 year: 2014 end-page: 4658 ident: bib34 publication-title: Adv. Mater. – volume: 6 start-page: 2355 year: 2015 end-page: 2362 ident: bib30 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 1402321 year: 2015 ident: bib29 publication-title: Adv. Energy Mater. – year: 2004 ident: bib32 article-title: Recrystallization and Related Annealing Phenomena – volume: 342 start-page: 341 year: 2013 end-page: 344 ident: bib23 publication-title: Science – volume: 499 start-page: 316 year: 2013 end-page: 319 ident: bib5 publication-title: Nature – volume: 5 year: 2015 ident: bib11 publication-title: Adv. Energy Mater. – volume: 345 start-page: 542 year: 2014 end-page: 546 ident: bib2 publication-title: Science – volume: 6 start-page: 3249 year: 2013 end-page: 3253 ident: bib37 publication-title: Energy Environ. Sci. – volume: 3 start-page: 5360 year: 2015 end-page: 5367 ident: bib8 publication-title: J. Mater. Chem. A – volume: 32 start-page: 510 year: 1961 end-page: 519 ident: bib22 publication-title: J. Appl. Phys. – volume: 8 start-page: 489 year: 2014 end-page: 494 ident: bib15 publication-title: Nat. Photonics – volume: 7 start-page: 3061 year: 2014 end-page: 3068 ident: bib16 publication-title: Energy Environ. Sci. – volume: 17 start-page: 112 year: 2015 end-page: 116 ident: bib38 publication-title: Phys. Chem. Chem. Phys. – volume: 517 start-page: 476 year: 2015 end-page: 480 ident: bib1 publication-title: Nature – volume: 5 start-page: 1500328 year: 2015 ident: bib10 publication-title: Adv. Energy Mater. – volume: 26 start-page: 6454 year: 2014 end-page: 6460 ident: bib14 publication-title: Adv. Mater. – volume: 53 start-page: 3151 year: 2014 end-page: 3157 ident: bib19 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 17 year: 1921 end-page: 26 ident: bib28 publication-title: Z. Phys. – volume: 7 start-page: 982 year: 2014 end-page: 988 ident: bib20 publication-title: Energy Environ. Sci. – volume: 8 start-page: 10640 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib24 publication-title: ACS Nano doi: 10.1021/nn5041922 – volume: 53 start-page: 3151 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib19 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201309361 – volume: 7 start-page: 2359 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib36 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00233D – volume: 5 start-page: 1500279 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib12 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500279 – volume: 7 start-page: 3061 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib16 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01076K – volume: 499 start-page: 316 year: 2013 ident: 10.1016/j.nanoen.2016.02.033_bib5 publication-title: Nature doi: 10.1038/nature12340 – volume: 5 start-page: 1500328 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib10 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500328 – volume: 78 start-page: 4196 year: 1995 ident: 10.1016/j.nanoen.2016.02.033_bib31 publication-title: J. Appl. Phys. doi: 10.1063/1.359880 – volume: 3 start-page: 5360 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib8 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06128D – volume: 104 start-page: 063903 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib39 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4864778 – volume: 345 start-page: 542 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib2 publication-title: Science doi: 10.1126/science.1254050 – volume: 52 start-page: 9019 year: 2013 ident: 10.1016/j.nanoen.2016.02.033_bib21 publication-title: Inorg. Chem. doi: 10.1021/ic401215x – volume: 6 start-page: 2355 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib30 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00967 – volume: 8 start-page: 489 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib15 publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.82 – volume: 7 start-page: 982 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib20 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43822h – volume: 5 start-page: 1401616 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib25 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401616 – volume: 32 start-page: 510 year: 1961 ident: 10.1016/j.nanoen.2016.02.033_bib22 publication-title: J. Appl. Phys. doi: 10.1063/1.1736034 – volume: 6 start-page: 3249 year: 2013 ident: 10.1016/j.nanoen.2016.02.033_bib37 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42282h – volume: 27 start-page: 695 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib6 publication-title: Adv. Mater. doi: 10.1002/adma.201404189 – volume: 342 start-page: 341 year: 2013 ident: 10.1016/j.nanoen.2016.02.033_bib23 publication-title: Science doi: 10.1126/science.1243982 – volume: 517 start-page: 476 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib1 publication-title: Nature doi: 10.1038/nature14133 – volume: 22 start-page: 8574 year: 2012 ident: 10.1016/j.nanoen.2016.02.033_bib26 publication-title: J. Mater. Chem. doi: 10.1039/c2jm30755c – volume: 14 start-page: 6281 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib33 publication-title: Nano Lett. doi: 10.1021/nl502612m – volume: 348 start-page: 1234 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib17 publication-title: Science doi: 10.1126/science.aaa9272 – volume: 26 start-page: 4653 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib34 publication-title: Adv. Mater. doi: 10.1002/adma.201306281 – volume: 5 start-page: 1402321 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib29 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402321 – volume: 9 start-page: 927 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib7 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.181 – volume: 26 start-page: 6454 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib14 publication-title: Adv. Mater. doi: 10.1002/adma.201401641 – volume: 5 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib11 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500477 – volume: 5 start-page: 1400960 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib18 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400960 – volume: 8 start-page: 506 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib4 publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.134 – volume: 5 start-page: 5784 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib13 publication-title: Nat. Commun. doi: 10.1038/ncomms6784 – volume: 17 start-page: 112 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib38 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04479G – year: 2004 ident: 10.1016/j.nanoen.2016.02.033_bib32 – volume: 13 start-page: 1764 year: 2013 ident: 10.1016/j.nanoen.2016.02.033_bib9 publication-title: Nano Lett. doi: 10.1021/nl400349b – volume: 13 start-page: 897 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib27 publication-title: Nat. Mater. doi: 10.1038/nmat4014 – volume: 26 start-page: 6503 year: 2014 ident: 10.1016/j.nanoen.2016.02.033_bib3 publication-title: Adv. Mater. doi: 10.1002/adma.201401685 – volume: 5 year: 2015 ident: 10.1016/j.nanoen.2016.02.033_bib35 publication-title: Adv. Energy Mater. – volume: 5 start-page: 17 year: 1921 ident: 10.1016/j.nanoen.2016.02.033_bib28 publication-title: Z. Phys. doi: 10.1007/BF01349680 |
SSID | ssj0000651712 |
Score | 2.5211303 |
Snippet | Compositional engineering of organic-inorganic hybrid perovskite has attracted great research interests recently for seeking a better perovskite system to... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 328 |
SubjectTerms | Bromine Composition Formamidinium MATERIALS SCIENCE Nickel oxide Perovskite solar cells SOLAR ENERGY |
Title | Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells |
URI | https://dx.doi.org/10.1016/j.nanoen.2016.02.033 https://www.osti.gov/servlets/purl/1343584 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeAooVB5YTZvYeY1VRVVAdIFK3SI7caSgNqmaFImFjf_NnZOUMqBKjI58VuQ733e27z4TcuvKvk48rhjXgWAiVh5TDpfMt61YSK0dkeB5x_PEHU_F48yZtciwqYXBtMra91c-3Xjr-kuvns3eMk17LzbsXWwfL3oQyARWlAvhoZXffVqbcxaAWMszl57Yn6FAU0Fn0rwymeUaiVAt15B3cv4XQrVzWHRb4DM6Iod11EgH1Y8dk5bOTsjBFpfgKfmqeIgLmifUBKKLFGApXS-ozGKqVjm0NQUt0AJ8hUkQwEaaUXxE-gMMAwwSu89B67RcpWkeo0Rp8mop0hqz5U-VAUWC8fcCz35pgdtjilcAxRmZju5fh2NWv7HAIu4FpQmuJefKUgEStQeRhpBFKuGpvlZSci0D1_cB6iAWCIR2nQgcgnI5-AHtuFHMz0k7yzN9QWjE40D2Y0slsGvUiYDhlPCTwNe-8iKbXxLezGsY1QTk-A7GPGwyzd7CShshaiPs2yFo45KwjdSyIuDY0d9rVBb-MqQQMGKHZAc1jFLInxthohGIWRwiSl9c_XvcDtnHVpXuc03a5WqtbyCSKVXXmGqX7A0ensaTb5Cr9ds |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4ine5MA12tqkr-M0MQ0YuwAStyhpU6kI2mktSPwA_jd2HzwOCIlj2jiqYtd24i9fAM59PbBpIAwXNpJcJibgxhOah66TSG2tJ1Pa77iZ-ZN7efXgPSzBqDsLQ7DK1vc3Pr321u2Tfjub_XmW9W9dXLu4IRV6KJDJYBlWiJ3K68HK8PJ6MvvcasEo6wR13ZNEOMl0h-hqpFeu88ISF6rj1_ydQvwWpHoF_nff4s94EzbaxJENm2_bgiWbb8P6NzrBHXhvqIhLVqSszkWfM4xM2csz03nCzKLAtmWoCFaiu6gxAtTIckb3SL-hbaBNUvcnVDyrFllWJCRR1dBaRszGfP510IARx_hrSdu_rKQVMqMqQLkL9-OLu9GEt9cs8FgEUVXn11oI45iIuNqj2GLWoo0MzMAarYXVkR-GGO0wHYik9b0YfYLxBboC6_lxIvaglxe53QcWiyTSg8QxKS4cbSpxOCPDNAptaILYFQcgunlVcctBTldhPKkObPaoGm0o0oYauAq1cQD8U2recHD80T_oVKZ-2JLCMPGH5BFpmKSIQjcmrBGKOQKTylAe_nvcM1id3N1M1fRydn0Ea_SmQf8cQ69avNgTTGwqc9oa7gf3DPiM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+formamidinium+and+bromide+ion+substitution+in+methylammonium+lead+triiodide+toward+high-performance+perovskite+solar+cells&rft.jtitle=Nano+energy&rft.au=Yang%2C+Zhibin&rft.au=Chueh%2C+Chu+-Chen&rft.au=Liang%2C+Po+-Wei&rft.au=Crump%2C+Michael&rft.date=2016-04-01&rft.pub=Elsevier&rft.issn=2211-2855&rft.volume=22&rft.issue=C&rft_id=info:doi/10.1016%2Fj.nanoen.2016.02.033&rft.externalDocID=1343584 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |