Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells

Compositional engineering of organic-inorganic hybrid perovskite has attracted great research interests recently for seeking a better perovskite system to address existed challenges, such as the thermal and moisture instability, anomalous hysteresis, and toxic lead contamination, etc. In this study,...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 22; no. C; pp. 328 - 337
Main Authors Yang, Zhibin, Chueh, Chu-Chen, Liang, Po-Wei, Crump, Michael, Lin, Francis, Zhu, Zonglong, Jen, Alex K.-Y.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.04.2016
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Compositional engineering of organic-inorganic hybrid perovskite has attracted great research interests recently for seeking a better perovskite system to address existed challenges, such as the thermal and moisture instability, anomalous hysteresis, and toxic lead contamination, etc. In this study, we systematically investigated the structural, optophysical, and photovoltaic properties of the compositional MAxFA1−xPb(IyBr1−y)3 perovskite by sequentially introducing FA+ and Br- ions into the parental MAPbI3 to elucidate their respective roles when they were inserted into the perovskite lattice. We unraveled that such dual compositional tuning in perovskite can improve the crystallinity of the resultant film and thus reduce its density of defect states as evidenced by admittance spectroscopy, resulting in a prolonged carrier lifetime over 500ns. As a result, a promising average PCE (PCEAVG) of 17.34% was realized in the optimized MA0.7FA0.3Pb(I0.9Br0.1)3-based PVSC with little hysteresis and stable photocurrent output. More significantly, another compositional MA0.7FA0.3Pb(I0.8Br0.2)3 perovskite with a large bandgap of 1.69eV can yield an impressively high PCEAVG over 15%. To the best of our knowledge, this performance is among the state-of-the-art large bandgap (~1.7eV) PVSCs reported so far, which paves the way for the development of high-performance tandem cells using efficient large bandgap PVSCs as the top subcells. This study not only manifests the pivotal roles of dual compositional tuning in MAxFA1−xPb(IyBr1−y)3 perovskites but also highlights the importance of compositional engineering for developing an even more efficient perovskite. The structural, optophysical, and photovoltaic properties of the compositional MAxFA1−xPb(IyBr1–y)3 perovskite were systematically studied by gradually introducting FA+ and Br− ions into the MAPbI3 to elucidate the roles of FA+ and Br− ions in the compositional perovskites. Benefitting from the improved thin-film crystallinity, prolonged carrier lifetime, and extended absorption introduced by such dual compositional engineering, a high average PCE of 17.34% was realized in the MA0.7FA0.3Pb(I0.9Br0.1)3-based solar cell. More importantly, the MA0.7FA0.3Pb(I0.8Br0.2)3 perovskite with a large bandgap of 1.69eV can exhibit a high PCE over 15%, which is among the state-of-the-art large bandgap (~1.7eV) PVSCs reported to date. [Display omitted] •The roles of FA+ and Br- ions in MAxFA1-xPb(IyBr1-y)3 perovskite were revealed.•An average PCE of 17.34% was realized in the optimized MA0.7FA0.3Pb(I0.9Br0.1)3-based PVSC.•A perovskite with a large bandgap of 1.69eV yields a high PCEAVG over 15%.
AbstractList Compositional engineering of organic-inorganic hybrid perovskite has attracted great research interests recently for seeking a better perovskite system to address existed challenges, such as the thermal and moisture instability, anomalous hysteresis, and toxic lead contamination, etc. In this study, we systematically investigated the structural, optophysical, and photovoltaic properties of the compositional MAxFA1−xPb(IyBr1−y)3 perovskite by sequentially introducing FA+ and Br- ions into the parental MAPbI3 to elucidate their respective roles when they were inserted into the perovskite lattice. We unraveled that such dual compositional tuning in perovskite can improve the crystallinity of the resultant film and thus reduce its density of defect states as evidenced by admittance spectroscopy, resulting in a prolonged carrier lifetime over 500ns. As a result, a promising average PCE (PCEAVG) of 17.34% was realized in the optimized MA0.7FA0.3Pb(I0.9Br0.1)3-based PVSC with little hysteresis and stable photocurrent output. More significantly, another compositional MA0.7FA0.3Pb(I0.8Br0.2)3 perovskite with a large bandgap of 1.69eV can yield an impressively high PCEAVG over 15%. To the best of our knowledge, this performance is among the state-of-the-art large bandgap (~1.7eV) PVSCs reported so far, which paves the way for the development of high-performance tandem cells using efficient large bandgap PVSCs as the top subcells. This study not only manifests the pivotal roles of dual compositional tuning in MAxFA1−xPb(IyBr1−y)3 perovskites but also highlights the importance of compositional engineering for developing an even more efficient perovskite. The structural, optophysical, and photovoltaic properties of the compositional MAxFA1−xPb(IyBr1–y)3 perovskite were systematically studied by gradually introducting FA+ and Br− ions into the MAPbI3 to elucidate the roles of FA+ and Br− ions in the compositional perovskites. Benefitting from the improved thin-film crystallinity, prolonged carrier lifetime, and extended absorption introduced by such dual compositional engineering, a high average PCE of 17.34% was realized in the MA0.7FA0.3Pb(I0.9Br0.1)3-based solar cell. More importantly, the MA0.7FA0.3Pb(I0.8Br0.2)3 perovskite with a large bandgap of 1.69eV can exhibit a high PCE over 15%, which is among the state-of-the-art large bandgap (~1.7eV) PVSCs reported to date. [Display omitted] •The roles of FA+ and Br- ions in MAxFA1-xPb(IyBr1-y)3 perovskite were revealed.•An average PCE of 17.34% was realized in the optimized MA0.7FA0.3Pb(I0.9Br0.1)3-based PVSC.•A perovskite with a large bandgap of 1.69eV yields a high PCEAVG over 15%.
Compositional engineering of organic-inorganic hybrid perovskite has attracted great research interests recently for seeking a better perovskite system to address existed challenges, such as the thermal and moisture instability, anomalous hysteresis, and toxic lead contamination, etc. In this study, we systematically investigated the structural, optophysical, and photovoltaic properties of the compositional MAxFA1-xPb(IyBr1-y)3 perovskite by sequentially introducing FA+ and Br- ions into the parental MAPbI3 to elucidate their respective roles when they were inserted into the perovskite lattice. We unraveled that such dual compositional tuning in perovskite can improve the crystallinity of the resultant film and thus reduce its density of defect states as evidenced by admittance spectroscopy, resulting in a prolonged carrier lifetime over 500 ns. As a result, a promising average PCE (PCEAVG) of 17.34% was realized in the optimized MA0.7FA0.3Pb(I0.9Br0.1)3-based PVSC with little hysteresis and stable photocurrent output. More significantly, another compositional MA0.7FA0.3Pb(I0.8Br0.2)3 perovskite with a large bandgap of 1.69 eV can yield an impressively high PCEAVG over 15%. To the best of our knowledge, this performance is among the state-of-the-art large bandgap ( 1.7 eV) PVSCs reported so far, which paves the way for the development of high-performance tandem cells using efficient large bandgap PVSCs as the top subcells. Lastly, this study not only manifests the pivotal roles of dual compositional tuning in MAxFA1-xPb(IyBr1-y)3 perovskites but also highlights the importance of compositional engineering for developing an even more efficient perovskite.
Author Jen, Alex K.-Y.
Lin, Francis
Yang, Zhibin
Crump, Michael
Zhu, Zonglong
Liang, Po-Wei
Chueh, Chu-Chen
Author_xml – sequence: 1
  givenname: Zhibin
  surname: Yang
  fullname: Yang, Zhibin
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 2
  givenname: Chu-Chen
  surname: Chueh
  fullname: Chueh, Chu-Chen
  email: ccchueh@uw.edu
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 3
  givenname: Po-Wei
  surname: Liang
  fullname: Liang, Po-Wei
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 4
  givenname: Michael
  surname: Crump
  fullname: Crump, Michael
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 5
  givenname: Francis
  surname: Lin
  fullname: Lin, Francis
  organization: Department of Chemistry, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 6
  givenname: Zonglong
  surname: Zhu
  fullname: Zhu, Zonglong
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
– sequence: 7
  givenname: Alex K.-Y.
  surname: Jen
  fullname: Jen, Alex K.-Y.
  email: ajen@u.washington.edu
  organization: Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120, USA
BackLink https://www.osti.gov/servlets/purl/1343584$$D View this record in Osti.gov
BookMark eNqFUDtPwzAY9FAkSuk_YLDYE_zIkwEJVeUhVWKB2XKcL9QlsSvbLeoP4H_jtEwM4OXzSXenu7tAE2MNIHRFSUoJLW42qZHGgklZRClhKeF8gqaMUZqwKs_P0dz7DYmvyGlJ2RR9LbsOVPDYdrizbpCDbrXRuwFL0-LG2YgBa2uw3zU-6LALI9AGDxDWh14Ogz3Se5AtDk5r246KYD-la_Fav6-TLbijtVGA49_u_YcOgL3tpcMK-t5forNO9h7mP3eG3h6Wr4unZPXy-Ly4XyWKl3VIypLVkvOGNnVdFVmtoOC1bLKyIdBIyUHWRVXxjBJG6wyKXBFKm4JzxiAvVMtn6Prka2MV4VWModbKGhMnEJRnPK-ySLo9kZSz3jvoROTJsXZwUveCEjGOLTbiNLYYxxaEiTh2FGe_xFunB-kO_8nuTjKI7fca3BgO4mCtdmO21uq_Db4BrOGiVA
CitedBy_id crossref_primary_10_3390_nano13121886
crossref_primary_10_1016_j_nanoen_2018_06_082
crossref_primary_10_1016_j_cej_2021_129735
crossref_primary_10_1002_solr_202000422
crossref_primary_10_1007_s10853_022_06867_9
crossref_primary_10_1021_acs_nanolett_6b03857
crossref_primary_10_1002_smll_202102186
crossref_primary_10_3390_nano13010186
crossref_primary_10_1016_j_nanoen_2017_08_009
crossref_primary_10_1021_acs_jpcc_7b03176
crossref_primary_10_1039_C8SE00200B
crossref_primary_10_1016_j_matlet_2017_06_079
crossref_primary_10_1002_admi_201700598
crossref_primary_10_1002_cjoc_202100672
crossref_primary_10_1088_2515_7655_ab8774
crossref_primary_10_3390_ma14102573
crossref_primary_10_1002_smll_202001535
crossref_primary_10_3390_coatings9110766
crossref_primary_10_1016_j_mattod_2017_12_002
crossref_primary_10_1016_j_nanoen_2018_12_068
crossref_primary_10_1002_pssa_201800727
crossref_primary_10_1021_acsaem_1c01848
crossref_primary_10_1021_acsaem_9b02438
crossref_primary_10_1021_acs_inorgchem_6b02055
crossref_primary_10_1002_adma_201801948
crossref_primary_10_1021_acsaem_2c03395
crossref_primary_10_1016_j_mtener_2021_100837
crossref_primary_10_1016_j_optmat_2020_109687
crossref_primary_10_1016_j_orgel_2019_03_031
crossref_primary_10_1002_adfm_201808833
crossref_primary_10_1016_j_nanoen_2020_105309
crossref_primary_10_1021_acs_jpcc_7b04557
crossref_primary_10_1002_anie_201604399
crossref_primary_10_1039_D0TA05022A
crossref_primary_10_1002_cjoc_202200442
crossref_primary_10_1016_j_mtener_2017_09_007
crossref_primary_10_1039_D0TA06033J
crossref_primary_10_1039_C9MH01679A
crossref_primary_10_1039_D3RA01304A
crossref_primary_10_3390_en16062717
crossref_primary_10_1016_j_mtphys_2022_100624
crossref_primary_10_1016_j_apsusc_2017_06_064
crossref_primary_10_1016_j_mtener_2018_07_003
crossref_primary_10_1002_eem2_12089
crossref_primary_10_1002_adma_201602696
crossref_primary_10_1002_solr_202000206
crossref_primary_10_1002_er_8422
crossref_primary_10_1002_aenm_201700722
crossref_primary_10_1021_acsaem_2c00108
crossref_primary_10_1021_acsaem_7b00129
crossref_primary_10_1002_cphc_201700536
crossref_primary_10_1016_j_nanoen_2018_05_010
crossref_primary_10_1021_acs_jpcc_4c04614
crossref_primary_10_1039_C7TA00562H
crossref_primary_10_1039_C8TC01345D
crossref_primary_10_1021_acsomega_1c01378
crossref_primary_10_1103_PhysRevB_94_180105
crossref_primary_10_1016_j_jechem_2022_07_003
crossref_primary_10_1039_C6QI00580B
crossref_primary_10_1039_C6SE00076B
crossref_primary_10_1016_j_mtchem_2023_101477
crossref_primary_10_3390_en17092183
crossref_primary_10_1002_pssr_201800644
crossref_primary_10_1016_j_orgel_2018_08_030
crossref_primary_10_1002_eem2_12111
crossref_primary_10_1021_acsenergylett_8b00837
crossref_primary_10_1039_C6TA05745D
crossref_primary_10_1002_adma_201800515
crossref_primary_10_1021_acs_jpcc_8b08252
crossref_primary_10_1039_C9CP06568G
crossref_primary_10_3390_en13164250
crossref_primary_10_1021_acsenergylett_1c01575
crossref_primary_10_1021_acsenergylett_0c00417
crossref_primary_10_1002_adfm_202313715
crossref_primary_10_1039_C8TC01033A
crossref_primary_10_1002_aenm_201801692
crossref_primary_10_1002_aenm_201601307
crossref_primary_10_1016_j_jallcom_2020_157784
crossref_primary_10_1007_s00339_019_2866_4
crossref_primary_10_1002_smll_202309646
crossref_primary_10_3390_coatings13020341
crossref_primary_10_1002_pssa_202300782
crossref_primary_10_1016_j_mtener_2016_11_001
crossref_primary_10_1016_j_jechem_2023_07_018
crossref_primary_10_1021_jacs_9b07381
crossref_primary_10_1002_ange_201604399
crossref_primary_10_3390_inorganics11100416
crossref_primary_10_1002_solr_202200120
crossref_primary_10_1007_s00339_019_2766_7
crossref_primary_10_1002_smll_201603225
crossref_primary_10_1039_C7TA08617B
crossref_primary_10_1002_solr_201900485
crossref_primary_10_1016_j_jallcom_2019_151716
crossref_primary_10_1007_s00339_021_04283_5
crossref_primary_10_1016_j_jpowsour_2018_04_008
crossref_primary_10_1016_j_solener_2018_01_083
crossref_primary_10_1016_j_sna_2024_115076
crossref_primary_10_1002_adma_201803019
crossref_primary_10_1021_acsphotonics_6b00940
crossref_primary_10_1088_1674_4926_41_5_051201
crossref_primary_10_1002_smtd_201700387
crossref_primary_10_1002_er_8008
crossref_primary_10_1088_1674_1056_27_2_024208
crossref_primary_10_1039_C6TA05727F
crossref_primary_10_1039_C8TA00931G
crossref_primary_10_1016_j_nanoen_2018_09_023
crossref_primary_10_1039_C9EE00872A
crossref_primary_10_1021_acsaem_8b01038
crossref_primary_10_1016_j_rser_2017_05_095
crossref_primary_10_1088_1361_6641_ab27f7
crossref_primary_10_1039_C7RA01496A
crossref_primary_10_1016_j_orgel_2017_11_045
crossref_primary_10_1002_aenm_201700414
crossref_primary_10_1039_C7RA07514F
crossref_primary_10_1016_j_orgel_2020_105988
crossref_primary_10_1016_j_cej_2022_140862
crossref_primary_10_1021_acs_inorgchem_8b03072
crossref_primary_10_1039_C9TA03454D
crossref_primary_10_1002_solr_202200808
crossref_primary_10_1021_acsami_1c01685
crossref_primary_10_1021_acs_cgd_9b01717
crossref_primary_10_1016_j_solmat_2019_110197
crossref_primary_10_1002_aenm_202302124
crossref_primary_10_1002_aenm_201700491
crossref_primary_10_1002_solr_202200806
crossref_primary_10_1002_aenm_201601882
crossref_primary_10_1016_j_device_2024_100498
crossref_primary_10_1021_acsnano_0c01392
crossref_primary_10_1039_D4TA03542A
crossref_primary_10_1021_acs_chemmater_9b00837
crossref_primary_10_1039_C6TC02135B
crossref_primary_10_1021_acs_jpclett_0c02791
crossref_primary_10_1021_acs_jpclett_1c03213
crossref_primary_10_1038_s41560_018_0324_8
crossref_primary_10_1039_D0CP06713J
crossref_primary_10_1039_D1TC01533H
crossref_primary_10_1016_j_solener_2018_11_061
crossref_primary_10_1002_aenm_202101383
crossref_primary_10_1021_acs_jpcc_7b01250
crossref_primary_10_1021_acs_jpclett_6b01406
crossref_primary_10_3390_ma10070837
crossref_primary_10_1002_ejic_202100329
crossref_primary_10_1021_acsami_0c02575
crossref_primary_10_1088_1674_1056_27_1_017305
crossref_primary_10_1007_s10854_024_12010_y
crossref_primary_10_1002_solr_202200777
crossref_primary_10_1007_s11664_019_07638_0
crossref_primary_10_1016_j_cej_2022_134759
crossref_primary_10_1021_acsami_6b13410
crossref_primary_10_1021_acs_jpcc_8b10070
crossref_primary_10_1016_j_nanoen_2017_03_048
crossref_primary_10_1021_acsaem_3c03086
crossref_primary_10_1016_j_jallcom_2021_160373
crossref_primary_10_1016_j_nanoen_2019_104441
crossref_primary_10_1021_acs_jpcc_9b10185
crossref_primary_10_1007_s13391_019_00149_4
crossref_primary_10_1016_j_pmatsci_2019_100580
crossref_primary_10_1039_C9TA07657C
crossref_primary_10_1002_adfm_201900455
crossref_primary_10_1021_acs_jpclett_7b01185
crossref_primary_10_1021_acsami_7b04011
crossref_primary_10_1039_C7SE00094D
crossref_primary_10_1115_1_4049326
crossref_primary_10_1007_s00706_017_1958_0
crossref_primary_10_3390_app14146223
crossref_primary_10_1039_C7TA01668A
crossref_primary_10_1016_j_jpowsour_2021_230481
crossref_primary_10_1002_adma_201704418
crossref_primary_10_1039_C6TA06607K
crossref_primary_10_3390_nano13061084
crossref_primary_10_1021_acs_chemmater_8b04871
crossref_primary_10_1039_C7TA00042A
crossref_primary_10_1002_adfm_201908343
crossref_primary_10_1039_C6TA07712A
crossref_primary_10_1016_j_jpowsour_2019_227386
crossref_primary_10_1016_j_molliq_2020_113674
crossref_primary_10_1016_j_orgel_2019_03_004
Cites_doi 10.1021/nn5041922
10.1002/anie.201309361
10.1039/C4EE00233D
10.1002/aenm.201500279
10.1039/C4EE01076K
10.1038/nature12340
10.1002/aenm.201500328
10.1063/1.359880
10.1039/C4TA06128D
10.1063/1.4864778
10.1126/science.1254050
10.1021/ic401215x
10.1021/acs.jpclett.5b00967
10.1038/nphoton.2014.82
10.1039/c3ee43822h
10.1002/aenm.201401616
10.1063/1.1736034
10.1039/c3ee42282h
10.1002/adma.201404189
10.1126/science.1243982
10.1038/nature14133
10.1039/c2jm30755c
10.1021/nl502612m
10.1126/science.aaa9272
10.1002/adma.201306281
10.1002/aenm.201402321
10.1038/nnano.2014.181
10.1002/adma.201401641
10.1002/aenm.201500477
10.1002/aenm.201400960
10.1038/nphoton.2014.134
10.1038/ncomms6784
10.1039/C4CP04479G
10.1021/nl400349b
10.1038/nmat4014
10.1002/adma.201401685
10.1007/BF01349680
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
CorporateAuthor Univ. of Washington, Seattle, WA (United States)
CorporateAuthor_xml – name: Univ. of Washington, Seattle, WA (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1016/j.nanoen.2016.02.033
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 337
ExternalDocumentID 1343584
10_1016_j_nanoen_2016_02_033
S2211285516000847
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AALMO
ABPIF
OIOZB
OTOTI
ID FETCH-LOGICAL-c379t-7729a33b1b998649ce639ab47b0ebaa3ea968834102194e65c011b63322e56cd3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Mon Jul 03 03:59:12 EDT 2023
Thu Apr 24 23:02:19 EDT 2025
Tue Jul 01 01:55:50 EDT 2025
Fri Feb 23 02:30:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Bromine
Composition
Formamidinium
Nickel oxide
Perovskite solar cells
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-7729a33b1b998649ce639ab47b0ebaa3ea968834102194e65c011b63322e56cd3
Notes USDOE Office of Energy Efficiency and Renewable Energy (EERE)
DOE-UW-Jen-18
US Department of the Navy, Office of Naval Research (ONR)
EE0006710; N00014-14-1-0246; FA2386-11-1-4072
Boeing-Johnson Foundation
Asian Office of Aerospace R&D
Washington Research Foundation Innovation Fellowship
OpenAccessLink https://www.osti.gov/servlets/purl/1343584
PageCount 10
ParticipantIDs osti_scitechconnect_1343584
crossref_citationtrail_10_1016_j_nanoen_2016_02_033
crossref_primary_10_1016_j_nanoen_2016_02_033
elsevier_sciencedirect_doi_10_1016_j_nanoen_2016_02_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano energy
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhao, Chen, Qiao, Luan, Lu, Hu (bib12) 2015; 5
Williams, Zuo, Chueh, Liao, Liang, Jen (bib24) 2014; 8
Zhou, Chen, Li, Luo, Song, Duan, Hong, You, Liu, Yang (bib2) 2014; 345
Green, Ho-Baillie, Snaith (bib4) 2014; 8
Yang, Chueh, Zuo, Kim, Liang, Jen (bib10) 2015; 5
Soga, Kato, Yang, Umeno, Jimbo (bib31) 1995; 78
Jeon, Noh, Kim, Yang, Ryu, Seok (bib27) 2014; 13
Duan, Zhou, Chen, Sun, Luo, Song, Bob, Yang (bib38) 2015; 17
Liang, Chueh, Williams, Jen (bib29) 2015; 5
Stranks, Eperon, Grancini, Menelaou, Alcocer, Leijtens, Herz, Petrozza, Snaith (bib23) 2013; 342
Bi, Yuan, Fang, Huang (bib25) 2015; 5
Burschka, Pellet, Moon, Humphry-Baker, Gao, Nazeeruddin, Grätzel (bib5) 2013; 499
Noel, Stranks, Abate, Wehrenfennig, Guarnera, Haghighirad, Sadhanala, Eperon, Pathak, Johnston, Petrozza, Herz, Snaith (bib16) 2014; 7
Xiao, Dong, Bi, Shao, Yuan, Huang (bib3) 2014; 26
Shao, Xiao, Bi, Yuan, Huang (bib13) 2014; 5
Li, Chueh, Yip, O׳Malley, Chen, Jen (bib26) 2012; 22
Laban, Etgar (bib37) 2013; 6
Zuo, Williams, Liang, Chueh, Liao, Jen (bib14) 2014; 26
Yin, Shi, Yan (bib34) 2014; 26
Vegard (bib28) 1921; 5
Conings, Drijkoningen, Gauquelin, Babayigit, D׳Haen, D׳Olieslaeger, Ethirajan, Verbeeck, Manca, Mosconi (bib11) 2015; 5
Hao, Stoumpos, Cao, Chang, Kanatzidis (bib15) 2014; 8
Stoumpos, Malliakas, Kanatzidis (bib21) 2013; 52
Kim, Oh, Nguyen, Jo, Kim, Lee, Jung (bib30) 2015; 6
Rollett, Humphreys, Rohrer, Hatherly (bib32) 2004
Liang, Chueh, Xin, Zuo, Williams, Liao, Jen (bib18) 2015; 5
Eperon, Stranks, Menelaou, Johnston, Herz, Snaith (bib20) 2014; 7
Kim, Liang, Williams, Cho, Chueh, Glaz, Ginger, Jen (bib6) 2015; 27
Yang, Noh, Jeon, Kim, Ryu, Seo, Seok (bib17) 2015; 348
Buin, Pietsch, Xu, Voznyy, Ip, Comin, Sargent (bib33) 2014; 14
Yin, Shi, Yan (bib39) 2014; 104
Noh, Im, Heo, Mandal, Seok (bib9) 2013; 13
Pellet, Gao, Gregori, Yang, Nazeeruddin, Maier, Grätzel (bib19) 2014; 53
Im, Jang, Pellet, Grätzel, Park (bib7) 2014; 9
Dong, Fang, Lv, Lin, Zhang, Ding, Yuan (bib8) 2015; 3
Shockley, Queisser (bib22) 1961; 32
Lee, Kim, Kim, Seo, Cho, Park (bib35) 2015; 5
Wang, Shao, Dong, Xiao, Yuan, Huang (bib36) 2014; 7
Jeon, Noh, Yang, Kim, Ryu, Seo, Seok (bib1) 2015; 517
Yang (10.1016/j.nanoen.2016.02.033_bib10) 2015; 5
Xiao (10.1016/j.nanoen.2016.02.033_bib3) 2014; 26
Li (10.1016/j.nanoen.2016.02.033_bib26) 2012; 22
Yang (10.1016/j.nanoen.2016.02.033_bib17) 2015; 348
Liang (10.1016/j.nanoen.2016.02.033_bib18) 2015; 5
Yin (10.1016/j.nanoen.2016.02.033_bib39) 2014; 104
Kim (10.1016/j.nanoen.2016.02.033_bib6) 2015; 27
Kim (10.1016/j.nanoen.2016.02.033_bib30) 2015; 6
Conings (10.1016/j.nanoen.2016.02.033_bib11) 2015; 5
Bi (10.1016/j.nanoen.2016.02.033_bib25) 2015; 5
Burschka (10.1016/j.nanoen.2016.02.033_bib5) 2013; 499
Noh (10.1016/j.nanoen.2016.02.033_bib9) 2013; 13
Jeon (10.1016/j.nanoen.2016.02.033_bib1) 2015; 517
Eperon (10.1016/j.nanoen.2016.02.033_bib20) 2014; 7
Stoumpos (10.1016/j.nanoen.2016.02.033_bib21) 2013; 52
Stranks (10.1016/j.nanoen.2016.02.033_bib23) 2013; 342
Vegard (10.1016/j.nanoen.2016.02.033_bib28) 1921; 5
Shao (10.1016/j.nanoen.2016.02.033_bib13) 2014; 5
Zhao (10.1016/j.nanoen.2016.02.033_bib12) 2015; 5
Lee (10.1016/j.nanoen.2016.02.033_bib35) 2015; 5
Duan (10.1016/j.nanoen.2016.02.033_bib38) 2015; 17
Soga (10.1016/j.nanoen.2016.02.033_bib31) 1995; 78
Williams (10.1016/j.nanoen.2016.02.033_bib24) 2014; 8
Green (10.1016/j.nanoen.2016.02.033_bib4) 2014; 8
Jeon (10.1016/j.nanoen.2016.02.033_bib27) 2014; 13
Buin (10.1016/j.nanoen.2016.02.033_bib33) 2014; 14
Noel (10.1016/j.nanoen.2016.02.033_bib16) 2014; 7
Shockley (10.1016/j.nanoen.2016.02.033_bib22) 1961; 32
Yin (10.1016/j.nanoen.2016.02.033_bib34) 2014; 26
Dong (10.1016/j.nanoen.2016.02.033_bib8) 2015; 3
Wang (10.1016/j.nanoen.2016.02.033_bib36) 2014; 7
Zhou (10.1016/j.nanoen.2016.02.033_bib2) 2014; 345
Zuo (10.1016/j.nanoen.2016.02.033_bib14) 2014; 26
Hao (10.1016/j.nanoen.2016.02.033_bib15) 2014; 8
Liang (10.1016/j.nanoen.2016.02.033_bib29) 2015; 5
Rollett (10.1016/j.nanoen.2016.02.033_bib32) 2004
Im (10.1016/j.nanoen.2016.02.033_bib7) 2014; 9
Pellet (10.1016/j.nanoen.2016.02.033_bib19) 2014; 53
Laban (10.1016/j.nanoen.2016.02.033_bib37) 2013; 6
References_xml – volume: 26
  start-page: 6503
  year: 2014
  end-page: 6509
  ident: bib3
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1500279
  year: 2015
  ident: bib12
  publication-title: Adv. Energy Mater.
– volume: 52
  start-page: 9019
  year: 2013
  end-page: 9038
  ident: bib21
  publication-title: Inorg. Chem.
– volume: 14
  start-page: 6281
  year: 2014
  end-page: 6286
  ident: bib33
  publication-title: Nano Lett.
– volume: 27
  start-page: 695
  year: 2015
  end-page: 701
  ident: bib6
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2359
  year: 2014
  end-page: 2365
  ident: bib36
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 927
  year: 2014
  end-page: 932
  ident: bib7
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 10640
  year: 2014
  end-page: 10654
  ident: bib24
  publication-title: ACS Nano
– volume: 5
  start-page: 1401616
  year: 2015
  ident: bib25
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 1764
  year: 2013
  end-page: 1769
  ident: bib9
  publication-title: Nano Lett.
– volume: 104
  start-page: 063903
  year: 2014
  ident: bib39
  publication-title: Appl. Phys. Lett.
– volume: 78
  start-page: 4196
  year: 1995
  end-page: 4199
  ident: bib31
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 1400960
  year: 2015
  ident: bib18
  publication-title: Adv. Energy Mater.
– volume: 22
  start-page: 8574
  year: 2012
  end-page: 8578
  ident: bib26
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 5784
  year: 2014
  ident: bib13
  publication-title: Nat. Commun.
– volume: 5
  year: 2015
  ident: bib35
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 506
  year: 2014
  end-page: 514
  ident: bib4
  publication-title: Nat. Photonics
– volume: 348
  start-page: 1234
  year: 2015
  end-page: 1237
  ident: bib17
  publication-title: Science
– volume: 13
  start-page: 897
  year: 2014
  end-page: 903
  ident: bib27
  publication-title: Nat. Mater.
– volume: 26
  start-page: 4653
  year: 2014
  end-page: 4658
  ident: bib34
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2355
  year: 2015
  end-page: 2362
  ident: bib30
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 1402321
  year: 2015
  ident: bib29
  publication-title: Adv. Energy Mater.
– year: 2004
  ident: bib32
  article-title: Recrystallization and Related Annealing Phenomena
– volume: 342
  start-page: 341
  year: 2013
  end-page: 344
  ident: bib23
  publication-title: Science
– volume: 499
  start-page: 316
  year: 2013
  end-page: 319
  ident: bib5
  publication-title: Nature
– volume: 5
  year: 2015
  ident: bib11
  publication-title: Adv. Energy Mater.
– volume: 345
  start-page: 542
  year: 2014
  end-page: 546
  ident: bib2
  publication-title: Science
– volume: 6
  start-page: 3249
  year: 2013
  end-page: 3253
  ident: bib37
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 5360
  year: 2015
  end-page: 5367
  ident: bib8
  publication-title: J. Mater. Chem. A
– volume: 32
  start-page: 510
  year: 1961
  end-page: 519
  ident: bib22
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 489
  year: 2014
  end-page: 494
  ident: bib15
  publication-title: Nat. Photonics
– volume: 7
  start-page: 3061
  year: 2014
  end-page: 3068
  ident: bib16
  publication-title: Energy Environ. Sci.
– volume: 17
  start-page: 112
  year: 2015
  end-page: 116
  ident: bib38
  publication-title: Phys. Chem. Chem. Phys.
– volume: 517
  start-page: 476
  year: 2015
  end-page: 480
  ident: bib1
  publication-title: Nature
– volume: 5
  start-page: 1500328
  year: 2015
  ident: bib10
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 6454
  year: 2014
  end-page: 6460
  ident: bib14
  publication-title: Adv. Mater.
– volume: 53
  start-page: 3151
  year: 2014
  end-page: 3157
  ident: bib19
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 17
  year: 1921
  end-page: 26
  ident: bib28
  publication-title: Z. Phys.
– volume: 7
  start-page: 982
  year: 2014
  end-page: 988
  ident: bib20
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 10640
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib24
  publication-title: ACS Nano
  doi: 10.1021/nn5041922
– volume: 53
  start-page: 3151
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib19
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201309361
– volume: 7
  start-page: 2359
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib36
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00233D
– volume: 5
  start-page: 1500279
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib12
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500279
– volume: 7
  start-page: 3061
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib16
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01076K
– volume: 499
  start-page: 316
  year: 2013
  ident: 10.1016/j.nanoen.2016.02.033_bib5
  publication-title: Nature
  doi: 10.1038/nature12340
– volume: 5
  start-page: 1500328
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib10
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500328
– volume: 78
  start-page: 4196
  year: 1995
  ident: 10.1016/j.nanoen.2016.02.033_bib31
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.359880
– volume: 3
  start-page: 5360
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib8
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06128D
– volume: 104
  start-page: 063903
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib39
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4864778
– volume: 345
  start-page: 542
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib2
  publication-title: Science
  doi: 10.1126/science.1254050
– volume: 52
  start-page: 9019
  year: 2013
  ident: 10.1016/j.nanoen.2016.02.033_bib21
  publication-title: Inorg. Chem.
  doi: 10.1021/ic401215x
– volume: 6
  start-page: 2355
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib30
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00967
– volume: 8
  start-page: 489
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib15
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.82
– volume: 7
  start-page: 982
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib20
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43822h
– volume: 5
  start-page: 1401616
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib25
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401616
– volume: 32
  start-page: 510
  year: 1961
  ident: 10.1016/j.nanoen.2016.02.033_bib22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736034
– volume: 6
  start-page: 3249
  year: 2013
  ident: 10.1016/j.nanoen.2016.02.033_bib37
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42282h
– volume: 27
  start-page: 695
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404189
– volume: 342
  start-page: 341
  year: 2013
  ident: 10.1016/j.nanoen.2016.02.033_bib23
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 517
  start-page: 476
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib1
  publication-title: Nature
  doi: 10.1038/nature14133
– volume: 22
  start-page: 8574
  year: 2012
  ident: 10.1016/j.nanoen.2016.02.033_bib26
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30755c
– volume: 14
  start-page: 6281
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib33
  publication-title: Nano Lett.
  doi: 10.1021/nl502612m
– volume: 348
  start-page: 1234
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib17
  publication-title: Science
  doi: 10.1126/science.aaa9272
– volume: 26
  start-page: 4653
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306281
– volume: 5
  start-page: 1402321
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib29
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402321
– volume: 9
  start-page: 927
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.181
– volume: 26
  start-page: 6454
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401641
– volume: 5
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib11
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500477
– volume: 5
  start-page: 1400960
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib18
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400960
– volume: 8
  start-page: 506
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib4
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.134
– volume: 5
  start-page: 5784
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6784
– volume: 17
  start-page: 112
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib38
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04479G
– year: 2004
  ident: 10.1016/j.nanoen.2016.02.033_bib32
– volume: 13
  start-page: 1764
  year: 2013
  ident: 10.1016/j.nanoen.2016.02.033_bib9
  publication-title: Nano Lett.
  doi: 10.1021/nl400349b
– volume: 13
  start-page: 897
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib27
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4014
– volume: 26
  start-page: 6503
  year: 2014
  ident: 10.1016/j.nanoen.2016.02.033_bib3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401685
– volume: 5
  year: 2015
  ident: 10.1016/j.nanoen.2016.02.033_bib35
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 17
  year: 1921
  ident: 10.1016/j.nanoen.2016.02.033_bib28
  publication-title: Z. Phys.
  doi: 10.1007/BF01349680
SSID ssj0000651712
Score 2.5211303
Snippet Compositional engineering of organic-inorganic hybrid perovskite has attracted great research interests recently for seeking a better perovskite system to...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 328
SubjectTerms Bromine
Composition
Formamidinium
MATERIALS SCIENCE
Nickel oxide
Perovskite solar cells
SOLAR ENERGY
Title Effects of formamidinium and bromide ion substitution in methylammonium lead triiodide toward high-performance perovskite solar cells
URI https://dx.doi.org/10.1016/j.nanoen.2016.02.033
https://www.osti.gov/servlets/purl/1343584
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeAooVB5YTZvYeY1VRVVAdIFK3SI7caSgNqmaFImFjf_NnZOUMqBKjI58VuQ733e27z4TcuvKvk48rhjXgWAiVh5TDpfMt61YSK0dkeB5x_PEHU_F48yZtciwqYXBtMra91c-3Xjr-kuvns3eMk17LzbsXWwfL3oQyARWlAvhoZXffVqbcxaAWMszl57Yn6FAU0Fn0rwymeUaiVAt15B3cv4XQrVzWHRb4DM6Iod11EgH1Y8dk5bOTsjBFpfgKfmqeIgLmifUBKKLFGApXS-ozGKqVjm0NQUt0AJ8hUkQwEaaUXxE-gMMAwwSu89B67RcpWkeo0Rp8mop0hqz5U-VAUWC8fcCz35pgdtjilcAxRmZju5fh2NWv7HAIu4FpQmuJefKUgEStQeRhpBFKuGpvlZSci0D1_cB6iAWCIR2nQgcgnI5-AHtuFHMz0k7yzN9QWjE40D2Y0slsGvUiYDhlPCTwNe-8iKbXxLezGsY1QTk-A7GPGwyzd7CShshaiPs2yFo45KwjdSyIuDY0d9rVBb-MqQQMGKHZAc1jFLInxthohGIWRwiSl9c_XvcDtnHVpXuc03a5WqtbyCSKVXXmGqX7A0ensaTb5Cr9ds
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4ine5MA12tqkr-M0MQ0YuwAStyhpU6kI2mktSPwA_jd2HzwOCIlj2jiqYtd24i9fAM59PbBpIAwXNpJcJibgxhOah66TSG2tJ1Pa77iZ-ZN7efXgPSzBqDsLQ7DK1vc3Pr321u2Tfjub_XmW9W9dXLu4IRV6KJDJYBlWiJ3K68HK8PJ6MvvcasEo6wR13ZNEOMl0h-hqpFeu88ISF6rj1_ydQvwWpHoF_nff4s94EzbaxJENm2_bgiWbb8P6NzrBHXhvqIhLVqSszkWfM4xM2csz03nCzKLAtmWoCFaiu6gxAtTIckb3SL-hbaBNUvcnVDyrFllWJCRR1dBaRszGfP510IARx_hrSdu_rKQVMqMqQLkL9-OLu9GEt9cs8FgEUVXn11oI45iIuNqj2GLWoo0MzMAarYXVkR-GGO0wHYik9b0YfYLxBboC6_lxIvaglxe53QcWiyTSg8QxKS4cbSpxOCPDNAptaILYFQcgunlVcctBTldhPKkObPaoGm0o0oYauAq1cQD8U2recHD80T_oVKZ-2JLCMPGH5BFpmKSIQjcmrBGKOQKTylAe_nvcM1id3N1M1fRydn0Ea_SmQf8cQ69avNgTTGwqc9oa7gf3DPiM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+formamidinium+and+bromide+ion+substitution+in+methylammonium+lead+triiodide+toward+high-performance+perovskite+solar+cells&rft.jtitle=Nano+energy&rft.au=Yang%2C+Zhibin&rft.au=Chueh%2C+Chu+-Chen&rft.au=Liang%2C+Po+-Wei&rft.au=Crump%2C+Michael&rft.date=2016-04-01&rft.pub=Elsevier&rft.issn=2211-2855&rft.volume=22&rft.issue=C&rft_id=info:doi/10.1016%2Fj.nanoen.2016.02.033&rft.externalDocID=1343584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon