Review of Virus Inactivation by Visible Light
The COVID-19 pandemic is driving the search for new antiviral techniques. Bacteria and fungi are known to be inactivated not only by ultraviolet radiation but also by visible light. Several studies have recently appeared on this subject, in which viruses were mainly irradiated in media. However, it...
Saved in:
Published in | Photonics Vol. 9; no. 2; p. 113 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The COVID-19 pandemic is driving the search for new antiviral techniques. Bacteria and fungi are known to be inactivated not only by ultraviolet radiation but also by visible light. Several studies have recently appeared on this subject, in which viruses were mainly irradiated in media. However, it is an open question to what extent the applied media, and especially their riboflavin concentration, can influence the results. A literature search identified appropriate virus photoinactivation publications and, where possible, viral light susceptibility was quantitatively determined in terms of average log-reduction doses. Sensitivities of enveloped viruses were plotted against assumed riboflavin concentrations. Viruses appear to be sensitive to visible (violet/blue) light. The median log-reduction doses of all virus experiments performed in liquids is 58 J/cm2. For the non-enveloped, enveloped and coronaviruses only, they were 222, 29 and 19 J/cm2, respectively. Data are scarce, but it appears that (among other things) the riboflavin concentration in the medium has an influence on the log-reduction doses. Experiments with DMEM, with its 0.4 mg/L riboflavin, have so far produced results with the greatest viral susceptibilities. It should be critically evaluated whether the currently published virus sensitivities are really only intrinsic properties of the virus, or whether the medium played a significant role. In future experiments, irradiation should be carried out in solutions with the lowest possible riboflavin concentration. |
---|---|
AbstractList | The COVID-19 pandemic is driving the search for new antiviral techniques. Bacteria and fungi are known to be inactivated not only by ultraviolet radiation but also by visible light. Several studies have recently appeared on this subject, in which viruses were mainly irradiated in media. However, it is an open question to what extent the applied media, and especially their riboflavin concentration, can influence the results. A literature search identified appropriate virus photoinactivation publications and, where possible, viral light susceptibility was quantitatively determined in terms of average log-reduction doses. Sensitivities of enveloped viruses were plotted against assumed riboflavin concentrations. Viruses appear to be sensitive to visible (violet/blue) light. The median log-reduction doses of all virus experiments performed in liquids is 58 J/cm2. For the non-enveloped, enveloped and coronaviruses only, they were 222, 29 and 19 J/cm2, respectively. Data are scarce, but it appears that (among other things) the riboflavin concentration in the medium has an influence on the log-reduction doses. Experiments with DMEM, with its 0.4 mg/L riboflavin, have so far produced results with the greatest viral susceptibilities. It should be critically evaluated whether the currently published virus sensitivities are really only intrinsic properties of the virus, or whether the medium played a significant role. In future experiments, irradiation should be carried out in solutions with the lowest possible riboflavin concentration. |
Author | Vatter, Petra Lau, Bernhard Hessling, Martin |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0002-4859-2864 surname: Hessling fullname: Hessling, Martin – sequence: 2 givenname: Bernhard surname: Lau fullname: Lau, Bernhard – sequence: 3 givenname: Petra surname: Vatter fullname: Vatter, Petra |
BookMark | eNp1kM1LAzEQxYNUsNbePS54Xp1kdpPdoxQ_CgVB1GvIpkmbsm5qklb637u2ClJwLjMM7z0ev3My6HxnCLmkcI1Yw8166ZPvnI41MKAUT8iQIRQ5F8gGf-4zMo5xBf3UFKuyGJL82Wyd-cy8zd5c2MRs2imd3FYl57us2fXf6JrWZDO3WKYLcmpVG834Z4_I6_3dy-Qxnz09TCe3s1yjqFMuODTAtRGiroBxoXRTUwa8LC0UlJW2YVBZxaiwjAL2sqJCpmwJXBhUNY7I9JA792ol18G9q7CTXjm5f_iwkCokp1sjWak5rcAYxYpCNVrZOaI1gNVc0RKbPuvqkLUO_mNjYpIrvwldX18yjj0ZVqDoVfyg0sHHGIyV2qU9hBSUayUF-U1aHpPujXBk_K37r-ULCuiCuQ |
CitedBy_id | crossref_primary_10_3390_pathogens11070778 crossref_primary_10_1038_s41598_023_42347_z crossref_primary_10_1364_BOE_468445 crossref_primary_10_3390_life12111747 crossref_primary_10_3390_medicina58060721 crossref_primary_10_47612_0514_7506_2022_89_5_662_667 crossref_primary_10_1016_j_jpap_2023_100187 crossref_primary_10_1186_s13104_023_06658_8 crossref_primary_10_1111_php_13798 crossref_primary_10_3390_photonics11030220 crossref_primary_10_1007_s10812_022_01440_3 crossref_primary_10_1038_s41598_023_46791_9 |
Cites_doi | 10.1111/j.1537-2995.2004.03355.x 10.1111/j.1574-695X.2003.tb00644.x 10.1111/vox.12414 10.3390/photonics8100414 10.1002/jbio.202000496 10.1016/j.jhin.2020.03.025 10.1016/0021-9975(66)90051-X 10.1111/php.12883 10.3181/00379727-89-21811 10.1002/lsm.22474 10.1099/00221287-10-3-377 10.1016/0005-2787(65)90182-6 10.1117/1.JBO.19.10.105001 10.3390/pathogens10121590 10.1186/s12985-018-1019-2 10.1093/infdis/jit842 10.1038/s41598-021-99917-2 10.1007/s10103-019-02928-9 10.3103/S1068335621070071 10.1016/S0891-5849(01)00545-7 10.1016/0042-6822(62)90137-X 10.3892/etm.2016.3922 10.1111/j.1574-6968.2008.01233.x 10.22203/eCM.v025a15 10.1038/jid.2009.194 10.1111/php.13352 10.1007/s12560-016-9275-z 10.1007/s10103-021-03250-z 10.1093/femsle/fnw270 10.1089/pho.2006.24.684 10.1111/trf.12899 10.4161/bact.32129 10.3390/v13081436 10.1016/0042-6822(64)90236-3 10.1186/s13104-021-05602-y 10.1016/j.jviromet.2007.10.027 10.1016/0042-6822(59)90043-1 10.1111/vox.12937 10.1128/jb.91.2.798-802.1966 10.1016/j.jphotobiol.2021.112282 10.1099/0022-1317-5-1-53 10.1001/jama.1967.03120080053007 10.1039/c9pp00211a 10.1128/AAC.01652-12 10.1016/j.virol.2005.07.025 10.1038/s41598-021-97797-0 10.1159/000324160 10.1562/2005-04-06-RA-477 10.1099/0022-1317-1-2-143 10.1007/s10103-018-2568-8 10.3201/eid2607.200915 10.3390/v4071034 10.1099/00222615-5-4-515 10.1111/1348-0421.12600 10.1016/j.aquaculture.2020.735019 10.1101/2021.05.28.21257989 10.1016/j.jphotobiol.2018.04.021 10.1111/j.1600-0781.2009.00474.x 10.1007/s10103-019-02774-9 10.1016/j.jhin.2020.01.022 10.1007/s00784-013-1151-8 10.1016/j.jpap.2021.100082 10.1111/jam.13638 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KR7 L7M LK8 L~C L~D M7P P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/photonics9020113 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2304-6732 |
ExternalDocumentID | oai_doaj_org_article_25c6180eea244abcafd33fe038da153b 10_3390_photonics9020113 |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABHFT ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ GS5 GX1 HCIFZ IAO ITC KQ8 KZ1 LK8 LMP M7P MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC COVID DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c379t-760b06ce77980267acb9120655f04125fb208fa217f21037794832af5067e3a93 |
IEDL.DBID | DOA |
ISSN | 2304-6732 |
IngestDate | Wed Aug 27 01:31:26 EDT 2025 Fri Jul 25 09:30:12 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 00:37:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-760b06ce77980267acb9120655f04125fb208fa217f21037794832af5067e3a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4859-2864 |
OpenAccessLink | https://doaj.org/article/25c6180eea244abcafd33fe038da153b |
PQID | 2633042437 |
PQPubID | 2032352 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_25c6180eea244abcafd33fe038da153b proquest_journals_2633042437 crossref_citationtrail_10_3390_photonics9020113 crossref_primary_10_3390_photonics9020113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Photonics |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Dulbecco (ref_34) 1959; 8 Zavestovskaya (ref_53) 2021; 48 Wallis (ref_61) 1964; 23 Booth (ref_65) 1972; 5 Eagle (ref_36) 1955; 89 Appleyard (ref_47) 1967; 1 ref_55 ref_52 Enwemeka (ref_54) 2021; 222 Faddy (ref_28) 2015; 55 ref_51 Cutchins (ref_49) 1962; 17 Kratzel (ref_4) 2020; 26 Makdoumi (ref_21) 2019; 34 Cieplik (ref_13) 2014; 18 Stasko (ref_48) 2021; 11 ref_59 Cartwright (ref_60) 1966; 76 Wang (ref_18) 2020; 35 Ho (ref_41) 2020; 521 Rathnasinghe (ref_42) 2021; 11 Zupin (ref_66) 2021; 14 Martin (ref_37) 2005; 81 Bumah (ref_20) 2021; 36 Ashkenazi (ref_7) 2003; 35 Wiehe (ref_68) 2019; 18 Liebmann (ref_19) 2010; 130 Guffey (ref_8) 2006; 24 Elikaei (ref_30) 2017; 9 Hessling (ref_5) 2020; 15 Zhang (ref_24) 2014; 209 Kleinpenning (ref_16) 2010; 26 Tsugita (ref_44) 1965; 103 McDonald (ref_17) 2013; 25 Zhou (ref_33) 2017; 13 Skinner (ref_46) 1954; 10 Richardson (ref_64) 2005; 341 ref_38 Kingsley (ref_43) 2018; 15 Costa (ref_67) 2012; 4 Kampf (ref_2) 2020; 104 Ramakrishnan (ref_22) 2014; 19 Tomb (ref_15) 2018; 94 Plavskii (ref_12) 2018; 183 Nemo (ref_63) 1966; 91 Dai (ref_23) 2013; 57 Grzelak (ref_25) 2001; 30 Faddy (ref_29) 2016; 111 Tomb (ref_39) 2016; 9 Ruane (ref_26) 2004; 44 Maclean (ref_9) 2008; 285 Moore (ref_35) 1967; 199 Zupin (ref_57) 2018; 62 Vatter (ref_58) 2021; 97 Feuerstein (ref_10) 2005; 81 Hessling (ref_6) 2020; 15 Tomb (ref_40) 2014; 4 Kampf (ref_3) 2020; 105 Hessling (ref_14) 2016; 364 Amin (ref_11) 2016; 48 Callahan (ref_31) 2008; 148 ref_1 Luca (ref_50) 2021; 8 Kingsley (ref_45) 2018; 124 Zupin (ref_56) 2018; 33 Marschner (ref_27) 2011; 38 Keil (ref_32) 2020; 115 Wallis (ref_62) 1969; 5 |
References_xml | – volume: 44 start-page: 877 year: 2004 ident: ref_26 article-title: Photochemical inactivation of selected viruses and bacteria in platelet concentrates using riboflavin and light publication-title: Transfusion doi: 10.1111/j.1537-2995.2004.03355.x – volume: 35 start-page: 17 year: 2003 ident: ref_7 article-title: Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light publication-title: FEMS Immunol. Med. Microbiol. doi: 10.1111/j.1574-695X.2003.tb00644.x – volume: 111 start-page: 235 year: 2016 ident: ref_29 article-title: Riboflavin and ultraviolet light: Impact on dengue virus infectivity publication-title: Vox Sang. doi: 10.1111/vox.12414 – ident: ref_55 doi: 10.3390/photonics8100414 – volume: 14 start-page: e202000496 year: 2021 ident: ref_66 article-title: Blue photobiomodulation LED therapy impacts SARS-CoV-2 by limiting its replication in Vero cells publication-title: J. Biophotonics doi: 10.1002/jbio.202000496 – volume: 105 start-page: 348 year: 2020 ident: ref_3 article-title: Inactivation of coronaviruses by heat publication-title: J. Hosp. Infect. doi: 10.1016/j.jhin.2020.03.025 – volume: 76 start-page: 95 year: 1966 ident: ref_60 article-title: A cytopathic virus causing a transmissible gastroenteritis in swine. II. Biological and serological studies publication-title: J. Comp. Pathol. doi: 10.1016/0021-9975(66)90051-X – volume: 94 start-page: 445 year: 2018 ident: ref_15 article-title: Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light publication-title: Photochem. Photobiol. doi: 10.1111/php.12883 – volume: 89 start-page: 362 year: 1955 ident: ref_36 article-title: Propagation in a fluid medium of a human epidermoid carcinoma, strain KB publication-title: Proc. Soc. Exp. Biol. Med. doi: 10.3181/00379727-89-21811 – volume: 48 start-page: 562 year: 2016 ident: ref_11 article-title: Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies publication-title: Lasers Surg. Med. doi: 10.1002/lsm.22474 – volume: 10 start-page: 377 year: 1954 ident: ref_46 article-title: Exposure to light as a source of error in the estimation of the infectivity of virus suspensions publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-10-3-377 – volume: 103 start-page: 360 year: 1965 ident: ref_44 article-title: Photosensitized inactivation of ribonucleic acids in the presence of riboflavin publication-title: Biochim. Biophys. Acta—Nucleic Acids Protein Synth. doi: 10.1016/0005-2787(65)90182-6 – ident: ref_1 – volume: 19 start-page: 105001 year: 2014 ident: ref_22 article-title: Differential sensitivity of osteoblasts and bacterial pathogens to 405-nm light highlighting potential for decontamination applications in orthopedic surgery publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.19.10.105001 – ident: ref_38 doi: 10.3390/pathogens10121590 – volume: 15 start-page: 117 year: 2018 ident: ref_43 article-title: Oxygen-dependent laser inactivation of murine norovirus using visible light lasers publication-title: Virol. J. doi: 10.1186/s12985-018-1019-2 – volume: 209 start-page: 1963 year: 2014 ident: ref_24 article-title: Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: Implications for prophylaxis and treatment of combat-related wound infections publication-title: J. Infect. Dis. doi: 10.1093/infdis/jit842 – volume: 81 start-page: 474 year: 2005 ident: ref_37 article-title: An action spectrum of the riboflavin-photosensitized inactivation of Lambda phage publication-title: Photochem. Photobiol. – volume: 9 start-page: 50 year: 2017 ident: ref_30 article-title: Inactivation of model viruses and bacteria in human fresh frozen plasma using riboflavin and long wave ultraviolet rays publication-title: Iran. J. Microbiol. – volume: 11 start-page: 20595 year: 2021 ident: ref_48 article-title: Visible blue light inhibits infection and replication of SARS-CoV-2 at doses that are well-tolerated by human respiratory tissue publication-title: Sci. Rep. doi: 10.1038/s41598-021-99917-2 – volume: 35 start-page: 1329 year: 2020 ident: ref_18 article-title: Blue light therapy to treat candida vaginitis with comparisons of three wavelengths: An in vitro study publication-title: Lasers Med. Sci. doi: 10.1007/s10103-019-02928-9 – volume: 48 start-page: 195 year: 2021 ident: ref_53 article-title: Experimental investigation of the effect ov UVA radiation on the coronavirus infective properties publication-title: Bull. Lebedev Phys. Inst. doi: 10.3103/S1068335621070071 – volume: 30 start-page: 1418 year: 2001 ident: ref_25 article-title: Light-dependent generation of reactive oxygen species in cell culture media publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(01)00545-7 – volume: 17 start-page: 420 year: 1962 ident: ref_49 article-title: Photoinactivation of measles virus publication-title: Virology doi: 10.1016/0042-6822(62)90137-X – volume: 13 start-page: 222 year: 2017 ident: ref_33 article-title: Experimental studies on the inactivation of HBV in blood via riboflavin photochemical treatment publication-title: Exp. Ther. Med. doi: 10.3892/etm.2016.3922 – volume: 285 start-page: 227 year: 2008 ident: ref_9 article-title: High-intensity narrow-spectrum light inactivation and wavelength sensitivity of Staphylococcus aureus publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2008.01233.x – volume: 25 start-page: 204 year: 2013 ident: ref_17 article-title: 405 nm Light exposure of osteoblasts and inactivation of bacterial isolates from arthroplasty patients: Potential for new disinfection applications? publication-title: Eur. Cell. Mater. doi: 10.22203/eCM.v025a15 – volume: 130 start-page: 259 year: 2010 ident: ref_19 article-title: Blue-light irradiation regulates proliferation and differentiation in human skin cells publication-title: J. Investig. Dermatol. doi: 10.1038/jid.2009.194 – volume: 97 start-page: 122 year: 2021 ident: ref_58 article-title: Photoinactivation of the Coronavirus Surrogate phi6 by Visible Light publication-title: Photochem. Photobiol. doi: 10.1111/php.13352 – volume: 9 start-page: 159 year: 2016 ident: ref_39 article-title: New Proof-of-Concept in Viral Inactivation: Virucidal Efficacy of 405 nm Light Against Feline Calicivirus as a Model for Norovirus Decontamination publication-title: Food Environ. Virol. doi: 10.1007/s12560-016-9275-z – volume: 36 start-page: 1661 year: 2021 ident: ref_20 article-title: The viability of human cells irradiated with 470-nm light at various radiant energies in vitro publication-title: Lasers Med. Sci. doi: 10.1007/s10103-021-03250-z – volume: 364 start-page: fnw270 year: 2016 ident: ref_14 article-title: Photoinactivation of bacteria by endogenous photosensitizers and exposure to visible light of different wavelengths—A review on existing data publication-title: FEMS Microbiol. Lett. doi: 10.1093/femsle/fnw270 – volume: 24 start-page: 684 year: 2006 ident: ref_8 article-title: In vitro bactericidal effects of 405-nm and 470-nm blue light publication-title: Photomed. Laser Surg. doi: 10.1089/pho.2006.24.684 – volume: 55 start-page: 824 year: 2015 ident: ref_28 article-title: The effect of riboflavin and ultraviolet light on the infectivity of arboviruses publication-title: Transfusion doi: 10.1111/trf.12899 – volume: 4 start-page: e32129 year: 2014 ident: ref_40 article-title: Inactivation of Streptomyces phage C31 by 405 nm light: Requirement for exogenous photosensitizers? publication-title: Bacteriophage doi: 10.4161/bact.32129 – volume: 15 start-page: 16 year: 2020 ident: ref_6 article-title: Selection of parameters for thermal coronavirus inactivation—A data-based recommendation publication-title: GMS Hyg. Infect. Control – ident: ref_52 doi: 10.3390/v13081436 – volume: 23 start-page: 520 year: 1964 ident: ref_61 article-title: Irreversible photosensitization of viruses publication-title: Virology doi: 10.1016/0042-6822(64)90236-3 – ident: ref_59 doi: 10.1186/s13104-021-05602-y – volume: 148 start-page: 132 year: 2008 ident: ref_31 article-title: Controlled inactivation of recombinant viruses with vitamin B2 publication-title: J. Virol. Methods doi: 10.1016/j.jviromet.2007.10.027 – volume: 8 start-page: 396 year: 1959 ident: ref_34 article-title: Plaque production by the polyoma virus publication-title: Virology doi: 10.1016/0042-6822(59)90043-1 – volume: 115 start-page: 495 year: 2020 ident: ref_32 article-title: Inactivation of severe acute respiratory syndrome coronavirus 2 in plasma and platelet products using a riboflavin and ultraviolet light-based photochemical treatment publication-title: Vox Sang. doi: 10.1111/vox.12937 – volume: 91 start-page: 798 year: 1966 ident: ref_63 article-title: Effect of visible light on canine distemper virus publication-title: J. Bacteriol. doi: 10.1128/jb.91.2.798-802.1966 – volume: 222 start-page: 112282 year: 2021 ident: ref_54 article-title: Pulsed blue light inactivates two strains of human coronavirus publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2021.112282 – volume: 5 start-page: 53 year: 1969 ident: ref_62 article-title: Inherent photosensitivity of herpes virus and other enveloped viruses publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-5-1-53 – volume: 199 start-page: 519 year: 1967 ident: ref_35 article-title: Culture of Normal Human Leukocytes publication-title: JAMA doi: 10.1001/jama.1967.03120080053007 – volume: 18 start-page: 2565 year: 2019 ident: ref_68 article-title: Trends and targets in antiviral phototherapy publication-title: Photochem. Photobiol. Sci. doi: 10.1039/c9pp00211a – volume: 57 start-page: 1238 year: 2013 ident: ref_23 article-title: Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: Efficacy, safety, and mechanism of action publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01652-12 – volume: 341 start-page: 321 year: 2005 ident: ref_64 article-title: Inactivation of murine leukaemia virus by exposure to visible light publication-title: Virology doi: 10.1016/j.virol.2005.07.025 – volume: 11 start-page: 19470 year: 2021 ident: ref_42 article-title: The virucidal effects of 405 nm visible light on SARS-CoV-2 and influenza A virus publication-title: Sci. Rep. doi: 10.1038/s41598-021-97797-0 – volume: 38 start-page: 8 year: 2011 ident: ref_27 article-title: Pathogen Reduction Technology Treatment of Platelets, Plasma and Whole Blood Using Riboflavin and UV Light publication-title: Transfus. Med. Hemother. doi: 10.1159/000324160 – volume: 81 start-page: 1186 year: 2005 ident: ref_10 article-title: Mechanism of visible light phototoxicity on Porphyromonas gingivalis and Fusobacterium nucleatum publication-title: Photochem. Photobiol. doi: 10.1562/2005-04-06-RA-477 – volume: 1 start-page: 143 year: 1967 ident: ref_47 article-title: The photosensitivity of Semliki Forest and other viruses publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-1-2-143 – volume: 33 start-page: 2011 year: 2018 ident: ref_56 article-title: Photobiomodulation therapy reduces viral load and cell death in ZIKV-infected glioblastoma cell line publication-title: Lasers Med. Sci. doi: 10.1007/s10103-018-2568-8 – volume: 26 start-page: 1592 year: 2020 ident: ref_4 article-title: Inactivation of Severe Acute Respiratory Syndrome Coronavirus 2 by WHO-Recommended Hand Rub Formulations and Alcohols publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2607.200915 – volume: 4 start-page: 1034 year: 2012 ident: ref_67 article-title: Photodynamic inactivation of mammalian viruses and bacteriophages publication-title: Viruses doi: 10.3390/v4071034 – volume: 15 start-page: 8 year: 2020 ident: ref_5 article-title: Ultraviolet irradiation doses for coronavirus inactivation—Review and analysis of coronavirus photoinactivation studies publication-title: GMS Hyg. Infect. Control – volume: 5 start-page: 515 year: 1972 ident: ref_65 article-title: Photodynamic inactivation of rubella virus publication-title: J. Med. Microbiol. doi: 10.1099/00222615-5-4-515 – volume: 62 start-page: 477 year: 2018 ident: ref_57 article-title: Antiviral properties of blue laser in an in vitro model of HSV-1 infection publication-title: Microbiol. Immunol. doi: 10.1111/1348-0421.12600 – volume: 521 start-page: 735019 year: 2020 ident: ref_41 article-title: Effect of blue light emitting diode on viral hemorrhagic septicemia in olive flounder (Paralichthys olivaceus) publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.735019 – ident: ref_51 doi: 10.1101/2021.05.28.21257989 – volume: 183 start-page: 172 year: 2018 ident: ref_12 article-title: Porphyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2018.04.021 – volume: 26 start-page: 16 year: 2010 ident: ref_16 article-title: Clinical and histological effects of blue light on normal skin publication-title: Photodermatol. Photoimmunol. Photomed. doi: 10.1111/j.1600-0781.2009.00474.x – volume: 34 start-page: 1799 year: 2019 ident: ref_21 article-title: Different photodynamic effects of blue light with and without riboflavin on methicillin-resistant Staphylococcus aureus (MRSA) and human keratinocytes in vitro publication-title: Lasers Med. Sci. doi: 10.1007/s10103-019-02774-9 – volume: 104 start-page: 246 year: 2020 ident: ref_2 article-title: Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents publication-title: J. Hosp. Infect. doi: 10.1016/j.jhin.2020.01.022 – volume: 18 start-page: 1763 year: 2014 ident: ref_13 article-title: Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers publication-title: Clin. Oral Investig. doi: 10.1007/s00784-013-1151-8 – volume: 8 start-page: 100082 year: 2021 ident: ref_50 article-title: Rapid inactivation of SARS-CoV-2 with LED irradiation of visible spectrum wavelengths publication-title: J. Photochem. Photobiol. doi: 10.1016/j.jpap.2021.100082 – volume: 124 start-page: 1017 year: 2018 ident: ref_45 article-title: Evaluation of 405-nm monochromatic light for inactivation of Tulane virus on blueberry surfaces publication-title: J. Appl. Microbiol. doi: 10.1111/jam.13638 |
SSID | ssj0000913854 |
Score | 2.283599 |
SecondaryResourceType | review_article |
Snippet | The COVID-19 pandemic is driving the search for new antiviral techniques. Bacteria and fungi are known to be inactivated not only by ultraviolet radiation but... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 113 |
SubjectTerms | Bacteria Cell culture coronavirus Coronaviruses COVID-19 Deactivation enveloped virus Experiments Fungi Inactivation Irradiation Light media non-enveloped virus Pandemics Photoinactivation Reduction Riboflavin Severe acute respiratory syndrome coronavirus 2 Ultraviolet radiation Viruses Vitamin B |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagXVh4IwoFeWBhiJrEedgToqhVQVAhRFG3yHHOgFQlpUkH_j2-xC0CJFbHWc73_Oz7jpALENoDje1nUvgOaogjlAKHKQ4aOPNCQGjgYRyNJsHdNJxawK20zypXPrF21FmhECPv-VFdeQcsvpp_ODg1Cm9X7QiNTdI2Lpib4qvdH4wfn9YoC7Je8jBo7ieZqe9787eiQtLZUrgY-9iPeFTT9v_xynWoGe6SbZsj0uvmUPfIBuT7ZMfmi9RaY3lAnAbYp4WmL--LZUlvc2xTaEBWmn6aVaPwM6D3WIEfkslw8Hwzcuz4A0exWFROHLmpGymIY8FxTpRUqfB8kzKEGkmyQp36LtfS1BTax24_Y1nGPKUOTQACJgU7Iq28yOGY0Fh6LvgcokjzwIsjqbXUKkilykIFHnRIbyWERFlucBxRMUtMjYBiS36LrUMu13_MG16Mf_b2Ua7rfchoXS8Ui9fEGkjihyryuAsgTcIhUyV1xpgGl_FMGq-cdkh3dSqJNbMy-VaKk_8_n5ItH_sW6ufWXdKqFks4M9lElZ5blfkC97bK7Q priority: 102 providerName: ProQuest |
Title | Review of Virus Inactivation by Visible Light |
URI | https://www.proquest.com/docview/2633042437 https://doaj.org/article/25c6180eea244abcafd33fe038da153b |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagLCy8EYVSeWBhiJrEsWOPFLU8BBVCFHWLHPcskKq0atKBf48vSasCEiyslqNE9_B3d_F9R8gFKBuAxfYzrUIPLcRTxoDHjAQLkgUcsDTwOBC3w-h-xEdro77wTlhFD1wJrhNyIwLpA2gHRDo12o4Zs-AzOdbOW1M8fR3mrSVT5RmsAiZ5VP2XZC6v78zepgWSzebKR8xjX3CopOv_cRqXENPfIzt1bEivqm_aJxuQHZDdOk6ktRfmh8SrCvp0aunr-3yR07sM2xOq4ipNP9yqM_QJ0AfMvI_IsN97ub716rEHnmGxKrxY-KkvDMSxkjgfSptUBaELFbhFcixu09CXVrtcwobY5ec8yrmlttwBDzCt2DFpZNMMTgiNdeBDKEEIK6MgFtpabU2UajPmBgJoks5SCImpOcFxNMUkcbkBii35LrYmuVw9Mav4MH7Z20W5rvYhk3W54PSb1PpN_tJvk7SWWklq98qTUJRlmIjFp__xjjOyHWJXQ3kZu0UaxXwB5y7WKNI22ZT9mzbZ6vYGT8_t0sg-AZF-1aI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED4hGGDhjShPDzAwRE3sPJwBIV6lhcIEiC047hmQUFOaIsSf4jfiy6MIkNhY7WQ5f_e07zuAHYyNh4baz1TMHUKIE2uNjtASDUrhBUilgcursH3jn98FdxPwUffC0LPK2iYWhrqXaaqRN3lYZN6-iA4GLw5NjaLb1XqERgmLC3x_sylbvt85see7y3nr9Pq47VRTBRwtonjkRKGbuqHGKIoljV9SOo09bj1xYIh7KjApd6VRNlQ3nJroLGAt6pUJrF1HoYh8yZr8KV-ImDRKts7GNR3i2JSBX96G2n23OXjMRkRxm8cueVrxzfsVQwJ--YDCsbXmYbaKSNlhCaEFmMD-IsxV0SmrdD9fAqe8RmCZYbdPw9ecdfrUFFGWdFn6bletej0j61K-vww3_yKWFZjsZ31cBRYpz0UuMQyN9L0oVMYoo_1U6V6g0cMGNGshJLpiIqeBGM-JzUhIbMlPsTVgb_zHoGTh-OPbI5Lr-Dvizy4WsuFDUqljwgMdetJFVDa8UalWpieEQVfInrI-IG3ARn0qSaXUefIFwbW_t7dhun192U26nauLdZjh1DFRPPTegMnR8BU3bRwzSrcK8DC4_2-0fgJjXQNI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6hIFW9FPpSw6P40B56WMVr78N7QKghRKTQCFWl4rb1OmNAirIhG4T4a_y6ena9QW0lbly93sv4m6c93wB8wsyGaKn9TGciIIQEmTEYSKPQopJhjFQa-D5Ojs-jbxfxxRo8tL0w9KyytYm1oZ6UhmrkPZHUmXck0571zyLOBsOD-U1AE6ToprUdp9FA5ATv71z6Vu2PBu6sPwsxPPp5eBz4CQOBkWm2DNKEFzwxmKaZolFM2hRZKJxXji3xUMW2EFxZ7cJ2K6ihzoHXaYC2sbPxKDURMTnzv566rIh3YL1_ND77sarwEOOmiqPmblTKjPfmV-WSCG-rjJPflX_5wnpkwH8eoXZzw0145eNT9rUB1GtYw9kb2PCxKvOWoHoLQXOpwErLfl0vbis2mlGLRFPgZcW9W3XKNkV2Stn_Ozh_FsG8h86snOEHYKkOOQqFSWJVFKaJtlZbExXaTGKDIXah1wohN56XnMZjTHOXn5DY8n_F1oUvqz_mDSfHE3v7JNfVPmLTrhfKxWXulTMXsUlCxRG1C3Z0YbSdSGmRSzXRziMUXdhpTyX3Kl7lj4DcevrzHrxwSM1PR-OTbXgpqH2ifvW9A53l4hZ3XVCzLD569DD4_dyA_QO_5wja |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+Virus+Inactivation+by+Visible+Light&rft.jtitle=Photonics&rft.au=Hessling%2C+Martin&rft.au=Lau%2C+Bernhard&rft.au=Vatter%2C+Petra&rft.date=2022-02-01&rft.issn=2304-6732&rft.eissn=2304-6732&rft.volume=9&rft.issue=2&rft.spage=113&rft_id=info:doi/10.3390%2Fphotonics9020113&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_photonics9020113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-6732&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-6732&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-6732&client=summon |