Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
•A novel nonlinear-learning ensemble of deep learning time series prediction is proposed for wind speed forecasting.•A cluster of LSTMs with diverse hidden layers and neurons are introduced to explore and exploit the wind speed time series.•One nonlinear-learning regression top-layer composed of SVR...
Saved in:
Published in | Energy conversion and management Vol. 165; pp. 681 - 695 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A novel nonlinear-learning ensemble of deep learning time series prediction is proposed for wind speed forecasting.•A cluster of LSTMs with diverse hidden layers and neurons are introduced to explore and exploit the wind speed time series.•One nonlinear-learning regression top-layer composed of SVRM is developed to perform ensemble prediction.•The extremal optimization algorithm is employed to search for the optimal parameters of top-layer SVRM.•The effectiveness of proposed EnsemLSTM is validated on two case studies data collected from a wind farm in China.
As an essential issue in wind energy industry, wind speed forecasting plays a vital role in optimal scheduling and control of wind energy generation and conversion. In this paper, a novel method called EnsemLSTM is proposed by using nonlinear-learning ensemble of deep learning time series prediction based on LSTMs (Long Short Term Memory neural networks), SVRM (support vector regression machine) and EO (extremal optimization algorithm). First, in order to avert the drawback of weak generalization capability and robustness of a single deep learning approach when facing diversiform data, a cluster of LSTMs with diverse hidden layers and neurons are employed to explore and exploit the implicit information of wind speed time series. Then predictions of LSTMs are aggregated into a nonlinear-learning regression top-layer composed of SVRM and the EO is introduced to optimize the parameters of the top-layer. Lastly, the final ensemble prediction for wind speed is given by the fine-turning top-layer. The proposed EnsemLSTM is applied on two case studies data collected from a wind farm in Inner Mongolia, China, to perform ten-minute ahead utmost short term wind speed forecasting and one-hour ahead short term wind speed forecasting. Statistical tests of experimental results compared with other popular prediction models demonstrated the proposed EnsemLSTM can achieve a better forecasting performance. |
---|---|
AbstractList | As an essential issue in wind energy industry, wind speed forecasting plays a vital role in optimal scheduling and control of wind energy generation and conversion. In this paper, a novel method called EnsemLSTM is proposed by using nonlinear-learning ensemble of deep learning time series prediction based on LSTMs (Long Short Term Memory neural networks), SVRM (support vector regression machine) and EO (extremal optimization algorithm). First, in order to avert the drawback of weak generalization capability and robustness of a single deep learning approach when facing diversiform data, a cluster of LSTMs with diverse hidden layers and neurons are employed to explore and exploit the implicit information of wind speed time series. Then predictions of LSTMs are aggregated into a nonlinear-learning regression top-layer composed of SVRM and the EO is introduced to optimize the parameters of the top-layer. Lastly, the final ensemble prediction for wind speed is given by the fine-turning top-layer. The proposed EnsemLSTM is applied on two case studies data collected from a wind farm in Inner Mongolia, China, to perform ten-minute ahead utmost short term wind speed forecasting and one-hour ahead short term wind speed forecasting. Statistical tests of experimental results compared with other popular prediction models demonstrated the proposed EnsemLSTM can achieve a better forecasting performance. •A novel nonlinear-learning ensemble of deep learning time series prediction is proposed for wind speed forecasting.•A cluster of LSTMs with diverse hidden layers and neurons are introduced to explore and exploit the wind speed time series.•One nonlinear-learning regression top-layer composed of SVRM is developed to perform ensemble prediction.•The extremal optimization algorithm is employed to search for the optimal parameters of top-layer SVRM.•The effectiveness of proposed EnsemLSTM is validated on two case studies data collected from a wind farm in China. As an essential issue in wind energy industry, wind speed forecasting plays a vital role in optimal scheduling and control of wind energy generation and conversion. In this paper, a novel method called EnsemLSTM is proposed by using nonlinear-learning ensemble of deep learning time series prediction based on LSTMs (Long Short Term Memory neural networks), SVRM (support vector regression machine) and EO (extremal optimization algorithm). First, in order to avert the drawback of weak generalization capability and robustness of a single deep learning approach when facing diversiform data, a cluster of LSTMs with diverse hidden layers and neurons are employed to explore and exploit the implicit information of wind speed time series. Then predictions of LSTMs are aggregated into a nonlinear-learning regression top-layer composed of SVRM and the EO is introduced to optimize the parameters of the top-layer. Lastly, the final ensemble prediction for wind speed is given by the fine-turning top-layer. The proposed EnsemLSTM is applied on two case studies data collected from a wind farm in Inner Mongolia, China, to perform ten-minute ahead utmost short term wind speed forecasting and one-hour ahead short term wind speed forecasting. Statistical tests of experimental results compared with other popular prediction models demonstrated the proposed EnsemLSTM can achieve a better forecasting performance. |
Author | Zeng, Guo-Qiang Lu, Kang-Di Du, Wei Chen, Jie Zhou, Wuneng |
Author_xml | – sequence: 1 givenname: Jie surname: Chen fullname: Chen, Jie organization: School of Information Sciences and Technology, Donghua University, Shanghai 200051, China – sequence: 2 givenname: Guo-Qiang surname: Zeng fullname: Zeng, Guo-Qiang organization: National-Local Joint Engineering Laboratory of Digitalize Electrical Design Technology, Wenzhou University, Wenzhou 325035, China – sequence: 3 givenname: Wuneng orcidid: 0000-0003-3867-8557 surname: Zhou fullname: Zhou, Wuneng email: zhouwuneng@163.com organization: School of Information Sciences and Technology, Donghua University, Shanghai 200051, China – sequence: 4 givenname: Wei surname: Du fullname: Du, Wei organization: School of Information Sciences and Technology, Donghua University, Shanghai 200051, China – sequence: 5 givenname: Kang-Di surname: Lu fullname: Lu, Kang-Di organization: School of Information Sciences and Technology, Donghua University, Shanghai 200051, China |
BookMark | eNqFkE9LxDAQxYOs4Lr6FSTguXWS7CbtTVn8BwteFjyGtJ1KljapSVd0P70pq169zMDMm_eY3zmZOe-QkCsGOQMmb3Y5utq73ricAytyEDmUxQmZs0KVGedczcgcWCmzooTlGTmPcQcAYgVyTg6v1jU0DogNbX3A2sTRuje6j1NNSZ11aELWpeKmEbqIfdUh9S1tEAf6txltjzRisBjpELCx9Wi9oyb54-cYsDcd9UNS2YOZNhfktDVdxMufviDbh_vt-inbvDw-r-82WS1UOWYSVmy1VFJywQCrGmumSpBtw8qKFYit5IqjagxnSlYrJUQFRdEawUyFUIoFuT7aDsG_7zGOeuf3waVEzUFJIRVjKqnkUVUHH2PAVg_B9iZ8aQZ6wqx3-heznjBrEDphToe3x0NML3xYDDrWNinT_4nmqBtv_7P4Bv3yjf8 |
CitedBy_id | crossref_primary_10_3389_fpls_2023_1093905 crossref_primary_10_1016_j_energy_2024_131142 crossref_primary_10_1016_j_jweia_2023_105421 crossref_primary_10_1007_s00500_023_09499_6 crossref_primary_10_1016_j_renene_2023_03_094 crossref_primary_10_1016_j_enconman_2020_112824 crossref_primary_10_1016_j_rser_2021_111459 crossref_primary_10_1002_er_5331 crossref_primary_10_1016_j_energy_2020_117081 crossref_primary_10_1016_j_egyai_2021_100060 crossref_primary_10_1016_j_engappai_2023_107461 crossref_primary_10_1007_s10163_020_01022_5 crossref_primary_10_3390_jmse11122350 crossref_primary_10_1007_s00500_019_04292_w crossref_primary_10_1063_5_0016226 crossref_primary_10_1016_j_ins_2020_08_053 crossref_primary_10_1016_j_enconman_2018_07_070 crossref_primary_10_1016_j_apenergy_2020_115975 crossref_primary_10_1080_17445302_2023_2218323 crossref_primary_10_1016_j_enconman_2020_112956 crossref_primary_10_3390_jmse9121426 crossref_primary_10_1089_big_2020_0159 crossref_primary_10_1007_s00477_022_02188_0 crossref_primary_10_1007_s00500_020_04680_7 crossref_primary_10_1016_j_apenergy_2023_122553 crossref_primary_10_1007_s10462_020_09822_9 crossref_primary_10_1016_j_jclepro_2022_135414 crossref_primary_10_1109_JSYST_2023_3265982 crossref_primary_10_1155_2022_9915481 crossref_primary_10_1002_for_2657 crossref_primary_10_1016_j_energy_2021_122012 crossref_primary_10_1145_3586006 crossref_primary_10_1007_s11063_022_11055_6 crossref_primary_10_1109_ACCESS_2021_3131649 crossref_primary_10_1007_s11831_020_09500_7 crossref_primary_10_2478_amns_2021_2_00064 crossref_primary_10_3390_su142316317 crossref_primary_10_1016_j_apenergy_2021_117766 crossref_primary_10_1016_j_engappai_2020_104000 crossref_primary_10_1109_TIA_2021_3126272 crossref_primary_10_1007_s00500_020_05176_0 crossref_primary_10_1080_15567036_2022_2066226 crossref_primary_10_1016_j_ijhydene_2022_02_084 crossref_primary_10_1142_S0219455423500049 crossref_primary_10_1109_ACCESS_2020_3039002 crossref_primary_10_1016_j_seta_2022_102068 crossref_primary_10_5937_fme2103653G crossref_primary_10_1016_j_rser_2020_110413 crossref_primary_10_1016_j_ins_2022_11_145 crossref_primary_10_1016_j_seta_2021_101698 crossref_primary_10_1080_00207179_2022_2067080 crossref_primary_10_3390_pr9101793 crossref_primary_10_1007_s11071_021_07139_y crossref_primary_10_1016_j_optlastec_2024_111170 crossref_primary_10_1016_j_oceaneng_2022_111352 crossref_primary_10_1016_j_engappai_2019_03_012 crossref_primary_10_1016_j_jweia_2021_104788 crossref_primary_10_1103_PRXQuantum_2_010316 crossref_primary_10_1016_j_energy_2022_126383 crossref_primary_10_1016_j_eswa_2020_114364 crossref_primary_10_1016_j_neucom_2020_01_127 crossref_primary_10_1007_s10489_023_04483_x crossref_primary_10_1016_j_energy_2021_121981 crossref_primary_10_1029_2020JA027908 crossref_primary_10_1088_1361_6501_acd8e2 crossref_primary_10_1016_j_enconman_2019_06_083 crossref_primary_10_1002_we_2906 crossref_primary_10_1002_2050_7038_12531 crossref_primary_10_1109_TIM_2020_3038285 crossref_primary_10_1016_j_energy_2022_124095 crossref_primary_10_1016_j_future_2018_09_054 crossref_primary_10_1016_j_enconman_2018_11_006 crossref_primary_10_1016_j_jweia_2023_105507 crossref_primary_10_1016_j_istruc_2023_105559 crossref_primary_10_3390_math12132105 crossref_primary_10_1007_s10462_019_09719_2 crossref_primary_10_32604_cmc_2020_012423 crossref_primary_10_1016_j_rser_2019_109387 crossref_primary_10_1007_s00477_020_01776_2 crossref_primary_10_1016_j_energy_2023_128565 crossref_primary_10_3390_e23111424 crossref_primary_10_1016_j_enconman_2021_113944 crossref_primary_10_1155_2022_9649825 crossref_primary_10_1016_j_eswa_2018_10_043 crossref_primary_10_1016_j_enconman_2021_114002 crossref_primary_10_1109_JIOT_2019_2913176 crossref_primary_10_1007_s12517_021_06982_y crossref_primary_10_1007_s10462_019_09768_7 crossref_primary_10_1016_j_eswa_2023_121051 crossref_primary_10_1016_j_jhydrol_2022_127534 crossref_primary_10_1016_j_egyr_2022_09_188 crossref_primary_10_1016_j_enconman_2019_112239 crossref_primary_10_1177_1475921720909440 crossref_primary_10_1016_j_enconman_2020_112524 crossref_primary_10_1016_j_apm_2018_10_019 crossref_primary_10_1016_j_advwatres_2019_103405 crossref_primary_10_1016_j_ins_2021_09_054 crossref_primary_10_1016_j_renene_2023_118942 crossref_primary_10_1016_j_energy_2021_121795 crossref_primary_10_5194_wes_6_111_2021 crossref_primary_10_3390_en12203920 crossref_primary_10_1016_j_egyr_2021_06_014 crossref_primary_10_1177_0309524X221106184 crossref_primary_10_1016_j_eswa_2023_121177 crossref_primary_10_1016_j_jclepro_2020_120983 crossref_primary_10_3390_su16114438 crossref_primary_10_1016_j_enconman_2019_112345 crossref_primary_10_1016_j_engappai_2021_104570 crossref_primary_10_1016_j_ins_2023_03_031 crossref_primary_10_1016_j_seta_2021_101780 crossref_primary_10_1016_j_energy_2022_125098 crossref_primary_10_1016_j_energy_2019_05_084 crossref_primary_10_1016_j_rser_2021_110992 crossref_primary_10_3390_en17081947 crossref_primary_10_1016_j_neucom_2024_128096 crossref_primary_10_1016_j_eswa_2024_123453 crossref_primary_10_1016_j_renene_2018_12_035 crossref_primary_10_1080_19942060_2022_2103588 crossref_primary_10_3233_WOR_205360 crossref_primary_10_1111_coin_12617 crossref_primary_10_1016_j_rser_2019_03_040 crossref_primary_10_1007_s10462_022_10283_5 crossref_primary_10_3390_app10175975 crossref_primary_10_1109_TII_2022_3221219 crossref_primary_10_1109_ACCESS_2020_3045182 crossref_primary_10_3390_e25040647 crossref_primary_10_1016_j_jweia_2023_105499 crossref_primary_10_1016_j_engappai_2019_08_018 crossref_primary_10_2139_ssrn_4193710 crossref_primary_10_1016_j_enconman_2019_111799 crossref_primary_10_1016_j_energy_2023_129171 crossref_primary_10_1109_ACCESS_2020_2984796 crossref_primary_10_1016_j_scs_2023_105150 crossref_primary_10_1051_matecconf_202030905011 crossref_primary_10_1002_ente_202300919 crossref_primary_10_1007_s11063_023_11187_3 crossref_primary_10_1109_ACCESS_2020_3022872 crossref_primary_10_21605_cukurovaumfd_1146047 crossref_primary_10_1016_j_energy_2022_123483 crossref_primary_10_1080_02533839_2019_1708802 crossref_primary_10_3390_en13226125 crossref_primary_10_1016_j_egyr_2021_09_150 crossref_primary_10_1016_j_jhydrol_2023_130394 crossref_primary_10_1016_j_ijepes_2021_107452 crossref_primary_10_1016_j_oceaneng_2022_111527 crossref_primary_10_1016_j_ijepes_2019_03_056 crossref_primary_10_3390_en14010184 crossref_primary_10_1016_j_apor_2021_102937 crossref_primary_10_1016_j_scs_2020_102052 crossref_primary_10_1016_j_seta_2022_102223 crossref_primary_10_1016_j_clrc_2021_100040 crossref_primary_10_3390_e22101161 crossref_primary_10_1016_j_seta_2022_102467 crossref_primary_10_1016_j_jclepro_2022_134977 crossref_primary_10_1016_j_enconman_2019_02_018 crossref_primary_10_1007_s11004_020_09864_3 crossref_primary_10_1016_j_rser_2021_111758 crossref_primary_10_1155_2022_4795535 crossref_primary_10_1080_15567036_2023_2284840 crossref_primary_10_1016_j_jconhyd_2023_104262 crossref_primary_10_1080_0951192X_2022_2078514 crossref_primary_10_1016_j_inffus_2023_101918 crossref_primary_10_1007_s00703_021_00791_4 crossref_primary_10_3846_jcem_2021_14649 crossref_primary_10_1016_j_epsr_2022_108174 crossref_primary_10_32604_cmc_2022_026771 crossref_primary_10_3390_math11122746 crossref_primary_10_1016_j_seta_2023_103603 crossref_primary_10_1080_15567036_2021_1925379 crossref_primary_10_1002_ese3_1562 crossref_primary_10_3390_en15196942 crossref_primary_10_1016_j_energy_2021_120492 crossref_primary_10_1016_j_renene_2021_04_028 crossref_primary_10_1016_j_epsr_2023_109792 crossref_primary_10_1007_s00366_021_01356_0 crossref_primary_10_1007_s00607_023_01164_y crossref_primary_10_1093_comjnl_bxz164 crossref_primary_10_3390_atmos12070924 crossref_primary_10_1016_j_eswa_2022_117011 crossref_primary_10_1109_ACCESS_2022_3187839 crossref_primary_10_1016_j_apm_2021_07_024 crossref_primary_10_1016_j_asoc_2023_110873 crossref_primary_10_1016_j_isatra_2018_11_043 crossref_primary_10_1155_2022_8696558 crossref_primary_10_3389_fenrg_2022_934935 crossref_primary_10_1016_j_egyai_2023_100302 crossref_primary_10_1016_j_ins_2021_12_001 crossref_primary_10_1016_j_apenergy_2019_113686 crossref_primary_10_1016_j_energy_2019_02_194 crossref_primary_10_1016_j_enconman_2019_05_020 crossref_primary_10_1016_j_eswa_2024_123487 crossref_primary_10_1016_j_knosys_2022_108889 crossref_primary_10_1038_s41598_021_96751_4 crossref_primary_10_1016_j_energy_2021_121808 crossref_primary_10_3390_en16124766 crossref_primary_10_1016_j_energy_2022_125231 crossref_primary_10_1109_ACCESS_2021_3135362 crossref_primary_10_1007_s00477_022_02265_4 crossref_primary_10_1016_j_energy_2020_117728 crossref_primary_10_1016_j_est_2021_102704 crossref_primary_10_1016_j_energy_2022_125342 crossref_primary_10_1016_j_engappai_2024_107891 crossref_primary_10_1016_j_neucom_2023_126435 crossref_primary_10_1007_s11227_019_03045_8 crossref_primary_10_1016_j_energy_2021_121121 crossref_primary_10_1016_j_renene_2022_12_123 crossref_primary_10_1016_j_renene_2022_12_124 crossref_primary_10_3390_atmos12050651 crossref_primary_10_3390_en11112976 crossref_primary_10_1007_s00521_023_08807_3 crossref_primary_10_1016_j_aei_2021_101290 crossref_primary_10_1016_j_jweia_2022_104990 crossref_primary_10_3390_en17112687 crossref_primary_10_1016_j_energy_2024_131164 crossref_primary_10_1016_j_asoc_2020_106996 crossref_primary_10_1016_j_engappai_2023_107479 crossref_primary_10_1016_j_enconman_2020_113456 crossref_primary_10_1155_2019_7414318 crossref_primary_10_1109_ACCESS_2024_3370679 crossref_primary_10_1016_j_enconman_2023_117818 crossref_primary_10_31590_ejosat_785699 crossref_primary_10_1007_s00521_023_08506_z crossref_primary_10_1016_j_rser_2020_110626 crossref_primary_10_1016_j_ijepes_2023_109269 crossref_primary_10_3233_JIFS_201279 crossref_primary_10_1109_ACCESS_2019_2929542 crossref_primary_10_1016_j_apenergy_2019_113541 crossref_primary_10_1016_j_energy_2021_120617 crossref_primary_10_1016_j_engappai_2023_105987 crossref_primary_10_1016_j_enconman_2019_112188 crossref_primary_10_1109_TMECH_2022_3214314 crossref_primary_10_3390_en16031530 crossref_primary_10_1109_TSG_2021_3112510 crossref_primary_10_3390_data9010013 crossref_primary_10_3390_en16186414 crossref_primary_10_1155_2020_8439719 crossref_primary_10_3390_su10093202 crossref_primary_10_1007_s40808_020_00830_w crossref_primary_10_1016_j_enconman_2020_113346 crossref_primary_10_1016_j_seta_2022_102535 crossref_primary_10_1049_tje2_12151 crossref_primary_10_1016_j_isci_2022_105804 crossref_primary_10_7717_peerj_cs_732 crossref_primary_10_1142_S0218001422550059 crossref_primary_10_1109_ACCESS_2020_3045157 crossref_primary_10_3389_fbuil_2022_762054 crossref_primary_10_2139_ssrn_4165241 crossref_primary_10_1016_j_ijepes_2022_108780 |
Cites_doi | 10.1016/j.patrec.2014.01.008 10.1016/j.ins.2015.10.010 10.1016/j.rser.2014.12.012 10.1016/j.neucom.2014.10.060 10.1016/j.rser.2014.03.033 10.1016/j.enconman.2017.04.007 10.1162/neco.1997.9.1.1 10.1016/j.apenergy.2013.08.025 10.1016/j.apenergy.2016.08.108 10.1016/j.jfranklin.2017.12.034 10.1016/j.neucom.2015.02.051 10.1103/PhysRevLett.71.4083 10.1016/j.renene.2011.12.006 10.1016/j.neucom.2016.03.061 10.1016/j.swevo.2011.02.002 10.1016/j.renene.2015.06.034 10.1016/j.energy.2015.08.045 10.1016/j.enconman.2010.11.007 10.1016/j.renene.2016.12.071 10.1109/FOCI.2007.372163 10.1016/j.energy.2016.10.040 10.1016/j.asoc.2017.01.033 10.1016/j.energy.2017.02.150 10.1016/j.enconman.2017.04.019 10.1016/j.rser.2015.12.223 10.3390/e19020052 10.1016/j.neucom.2017.05.063 10.1109/MCI.2015.2471235 10.1016/j.renene.2008.09.006 10.1016/j.asoc.2017.01.015 10.1016/j.enconman.2016.02.041 10.1016/j.energy.2016.11.035 10.1016/j.enconman.2016.05.024 10.1016/j.epsr.2017.01.035 10.1016/j.rser.2012.02.044 10.1016/j.knosys.2013.11.015 10.1016/S0004-3702(00)00007-2 10.1103/PhysRevLett.86.5211 10.1016/j.jweia.2015.02.004 10.1109/TII.2017.2730846 10.1016/j.atmosenv.2016.10.046 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier Science Ltd. Jun 1, 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jun 1, 2018 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
DOI | 10.1016/j.enconman.2018.03.098 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2227 |
EndPage | 695 |
ExternalDocumentID | 10_1016_j_enconman_2018_03_098 S0196890418303261 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AAXKI AAYXX ABXDB ACNNM ADMUD AFFNX AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 G8K HVGLF HZ~ H~9 R2- SAC SEW WUQ 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI |
ID | FETCH-LOGICAL-c379t-6051547662310ebcec17906fd19b18eef6272e7da2176b5733b088fa31abe093 |
IEDL.DBID | .~1 |
ISSN | 0196-8904 |
IngestDate | Thu Oct 10 15:37:41 EDT 2024 Thu Sep 26 16:54:30 EDT 2024 Fri Feb 23 02:47:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Time series prediction Ensemble learning LSTMs (Long Short Term Memory neural networks) Extremal optimization Wind speed forecasting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-6051547662310ebcec17906fd19b18eef6272e7da2176b5733b088fa31abe093 |
ORCID | 0000-0003-3867-8557 |
PQID | 2076367117 |
PQPubID | 2047472 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2076367117 crossref_primary_10_1016_j_enconman_2018_03_098 elsevier_sciencedirect_doi_10_1016_j_enconman_2018_03_098 |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy conversion and management |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Xiao, Shao, Yu, Ma, Jin (b0085) 2017; 119 Jiang, Wang, Wang (b0075) 2017; 119 Hu, Zhang, Zhou (b0120) 2016; 85 Zhang, Wang, Zhang (b0145) 2017; 146 Liu, Tian, Li (b0025) 2015; 141 Sainath, Vinyals, Senior, Sak (b0160) 2015; 2015 Shi, Guo, Zheng (b0220) 2012; 16 Ren, An, Wang, Li, Hu, Shang (b0035) 2014; 56 Zhang, Zhou, Li, Fu, Peng (b0055) 2017; 143 Wang, Wang, Li, Peng, Liu (b0130) 2016; 182 Wang, Heng, Xiao, Wang (b0095) 2017; 125 Boettcher, Percus (b0165) 2000; 119 Goodfellow, Bengio, Courville (b0210) 2016 Ren, Zhang, Suganthan (b0135) 2016; 11 Wu, Yuan, Dong, Lin, Liu (b0215) 2018; 275 Lv, Duan, Kang, Li, Wang (b0110) 2014; 16 http://www.gwec.net/. Kavasseri, Seetharaman (b0030) 2009; 34 Zhou, Shi, Li (b0225) 2011; 52 Li, Shi (b0050) 2012; 43 Wang, Hu (b0100) 2015; 93 Xu, Yang, Wang (b0150) 2017; 148 Zeng, Chen, Chen, Dai, Li, Lu (b0200) 2015; 151 Lu, Zhou, Zeng, Du (b0205) 2018; 355 Lu Y, Chen Y, Chen M, Chen P, Zeng G. Extremal optimization: fundamentals, algorithms, and applications. CRC Press & Chemical Industry Press; 2016. Tascikaraoglu, Uzunoglu (b0020) 2014; 34 Aghajani, Kazemzadeh, Ebrahimi (b0040) 2016; 121 Chang, Lu, Chang, Lee (b0060) 2017; 105 Boettcher, Percus (b0170) 2001; 86 Ma, Jin, Dong (b0070) 2017; 54 Noorollahi, Jokar, Kalhor (b0065) 2016; 115 Khare, Nema, Baredar (b0010) 2016; 58 Bak, Sneppen (b0175) 1993; 71 Zeng, Chen, Dai, Li, Zheng, Chen (b0195) 2015; 160 Yang, Wang, Wang (b0140) 2017; 19 Qiu, Ren, Suganthan, Amaratunga (b0115) 2017; 54 Längkvist, Karlsson, Loutfi (b0105) 2014; 42 . Xiao, Wang, Dong, Wu (b0090) 2015; 44 Lu Y, Chen M, Chen Y. Studies on extremal optimization and its applications in solving realworld optimization problems. In: Foci; 2007. p. 162–8. Al-falahi, Jayasinghe, Enshaei (b0015) 2017; 143 Zhang, Wei, Xie, Shen, Zhang (b0045) 2016; 205 Chen, Yu (b0080) 2014; 113 Zeng, Chen, Li, Chen, Wu, Dai (b0190) 2016; 330 Derrac, García, Molina, Herrera (b0240) 2011; 1 Khodayar, Kaynak, Khodayar (b0125) 2017; 13 Hochreiter, Schmidhuber (b0155) 1997; 9 Hochreiter (10.1016/j.enconman.2018.03.098_b0155) 1997; 9 Zhang (10.1016/j.enconman.2018.03.098_b0145) 2017; 146 Derrac (10.1016/j.enconman.2018.03.098_b0240) 2011; 1 Zeng (10.1016/j.enconman.2018.03.098_b0190) 2016; 330 Chang (10.1016/j.enconman.2018.03.098_b0060) 2017; 105 Noorollahi (10.1016/j.enconman.2018.03.098_b0065) 2016; 115 10.1016/j.enconman.2018.03.098_b0180 Qiu (10.1016/j.enconman.2018.03.098_b0115) 2017; 54 Shi (10.1016/j.enconman.2018.03.098_b0220) 2012; 16 Tascikaraoglu (10.1016/j.enconman.2018.03.098_b0020) 2014; 34 Liu (10.1016/j.enconman.2018.03.098_b0025) 2015; 141 10.1016/j.enconman.2018.03.098_b0230 Wang (10.1016/j.enconman.2018.03.098_b0100) 2015; 93 10.1016/j.enconman.2018.03.098_b0235 Wu (10.1016/j.enconman.2018.03.098_b0215) 2018; 275 Lv (10.1016/j.enconman.2018.03.098_b0110) 2014; 16 Zhou (10.1016/j.enconman.2018.03.098_b0225) 2011; 52 Längkvist (10.1016/j.enconman.2018.03.098_b0105) 2014; 42 Boettcher (10.1016/j.enconman.2018.03.098_b0170) 2001; 86 Ren (10.1016/j.enconman.2018.03.098_b0035) 2014; 56 Zeng (10.1016/j.enconman.2018.03.098_b0195) 2015; 160 Aghajani (10.1016/j.enconman.2018.03.098_b0040) 2016; 121 Ma (10.1016/j.enconman.2018.03.098_b0070) 2017; 54 Li (10.1016/j.enconman.2018.03.098_b0050) 2012; 43 Xiao (10.1016/j.enconman.2018.03.098_b0085) 2017; 119 Zhang (10.1016/j.enconman.2018.03.098_b0045) 2016; 205 Lu (10.1016/j.enconman.2018.03.098_b0205) 2018; 355 Al-falahi (10.1016/j.enconman.2018.03.098_b0015) 2017; 143 Xiao (10.1016/j.enconman.2018.03.098_b0090) 2015; 44 Sainath (10.1016/j.enconman.2018.03.098_b0160) 2015; 2015 Ren (10.1016/j.enconman.2018.03.098_b0135) 2016; 11 Goodfellow (10.1016/j.enconman.2018.03.098_b0210) 2016 10.1016/j.enconman.2018.03.098_b0185 Zeng (10.1016/j.enconman.2018.03.098_b0200) 2015; 151 Khodayar (10.1016/j.enconman.2018.03.098_b0125) 2017; 13 Boettcher (10.1016/j.enconman.2018.03.098_b0165) 2000; 119 Bak (10.1016/j.enconman.2018.03.098_b0175) 1993; 71 Wang (10.1016/j.enconman.2018.03.098_b0095) 2017; 125 Xu (10.1016/j.enconman.2018.03.098_b0150) 2017; 148 10.1016/j.enconman.2018.03.098_b0005 Hu (10.1016/j.enconman.2018.03.098_b0120) 2016; 85 Yang (10.1016/j.enconman.2018.03.098_b0140) 2017; 19 Kavasseri (10.1016/j.enconman.2018.03.098_b0030) 2009; 34 Zhang (10.1016/j.enconman.2018.03.098_b0055) 2017; 143 Khare (10.1016/j.enconman.2018.03.098_b0010) 2016; 58 Wang (10.1016/j.enconman.2018.03.098_b0130) 2016; 182 Jiang (10.1016/j.enconman.2018.03.098_b0075) 2017; 119 Chen (10.1016/j.enconman.2018.03.098_b0080) 2014; 113 |
References_xml | – volume: 151 start-page: 1343 year: 2015 end-page: 1353 ident: b0200 article-title: Design of multivariable PID controllers using real-coded population-based extremal optimization publication-title: Neurocomputing contributor: fullname: Lu – volume: 355 start-page: 2197 year: 2018 end-page: 2220 ident: b0205 article-title: Design of PID controller based on a self-adaptive state-space predictive functional control using extremal optimization method publication-title: J Franklin Inst contributor: fullname: Du – volume: 43 start-page: 1 year: 2012 end-page: 8 ident: b0050 article-title: Applications of Bayesian methods in wind energy conversion systems publication-title: Renew Energy contributor: fullname: Shi – volume: 119 start-page: 561 year: 2017 end-page: 577 ident: b0075 article-title: Short-term wind speed forecasting using a hybrid model publication-title: Energy contributor: fullname: Wang – volume: 205 start-page: 53 year: 2016 end-page: 63 ident: b0045 article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework publication-title: Neurocomputing contributor: fullname: Zhang – volume: 141 start-page: 27 year: 2015 end-page: 38 ident: b0025 article-title: An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system publication-title: J Wind Eng Ind Aerodyn contributor: fullname: Li – volume: 182 start-page: 80 year: 2016 end-page: 93 ident: b0130 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl Energy contributor: fullname: Liu – volume: 146 start-page: 270 year: 2017 end-page: 285 ident: b0145 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm publication-title: Electr Power Syst Res contributor: fullname: Zhang – volume: 56 start-page: 226 year: 2014 end-page: 239 ident: b0035 article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting publication-title: Knowledge-Based Syst contributor: fullname: Shang – volume: 16 start-page: 3471 year: 2012 end-page: 3480 ident: b0220 article-title: Evaluation of hybrid forecasting approaches for wind speed and power generation time series publication-title: Renew Sustain Energy Rev contributor: fullname: Zheng – volume: 42 start-page: 11 year: 2014 end-page: 24 ident: b0105 article-title: A review of unsupervised feature learning and deep learning for time-series modeling publication-title: Pattern Recognit Lett contributor: fullname: Loutfi – volume: 113 start-page: 690 year: 2014 end-page: 705 ident: b0080 article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach publication-title: Appl Energy contributor: fullname: Yu – volume: 34 start-page: 243 year: 2014 end-page: 254 ident: b0020 article-title: A review of combined approaches for prediction of short-term wind speed and power publication-title: Renew Sustain Energy Rev contributor: fullname: Uzunoglu – volume: 34 start-page: 1388 year: 2009 end-page: 1393 ident: b0030 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew Energy contributor: fullname: Seetharaman – volume: 13 start-page: 2770 year: 2017 end-page: 2779 ident: b0125 article-title: Rough deep neural architecture for short-term wind speed forecasting publication-title: IEEE Trans Ind Inform contributor: fullname: Khodayar – volume: 86 start-page: 5211 year: 2001 end-page: 5214 ident: b0170 article-title: Optimization with extremal dynamics publication-title: Phys Rev Lett contributor: fullname: Percus – volume: 105 start-page: 301 year: 2017 end-page: 311 ident: b0060 article-title: An improved neural network-based approach for short-term wind speed and power forecast publication-title: Renew Energy contributor: fullname: Lee – volume: 44 start-page: 271 year: 2015 end-page: 288 ident: b0090 article-title: Combined forecasting models for wind energy forecasting: a case study in China publication-title: Renew Sustain Energy Rev contributor: fullname: Wu – volume: 160 start-page: 173 year: 2015 end-page: 184 ident: b0195 article-title: Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization publication-title: Neurocomputing contributor: fullname: Chen – volume: 58 start-page: 23 year: 2016 end-page: 33 ident: b0010 article-title: Solar-wind hybrid renewable energy system: a review publication-title: Renew Sustain Energy Rev contributor: fullname: Baredar – volume: 143 start-page: 360 year: 2017 end-page: 376 ident: b0055 article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting publication-title: Energy Convers Manag contributor: fullname: Peng – volume: 125 start-page: 591 year: 2017 end-page: 613 ident: b0095 article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy contributor: fullname: Wang – volume: 11 start-page: 41 year: 2016 end-page: 53 ident: b0135 article-title: Ensemble classification and regression: Recent developments, applications and future directions publication-title: IEEE Comput Intell Mag contributor: fullname: Suganthan – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: b0240 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol Comput contributor: fullname: Herrera – volume: 54 start-page: 296 year: 2017 end-page: 312 ident: b0070 article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting publication-title: Appl Soft Comput J contributor: fullname: Dong – volume: 121 start-page: 232 year: 2016 end-page: 240 ident: b0040 article-title: A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm publication-title: Energy Convers Manag contributor: fullname: Ebrahimi – volume: 148 start-page: 239 year: 2017 end-page: 257 ident: b0150 article-title: Air quality early-warning system for cities in China publication-title: Atmos Environ contributor: fullname: Wang – volume: 2015 start-page: 4580 year: 2015 end-page: 4584 ident: b0160 article-title: Convolutional, long short-term memory, fully connected deep neural networks publication-title: IEEE Int Conf Acoust Speech Signal Process contributor: fullname: Sak – volume: 119 start-page: 275 year: 2000 end-page: 286 ident: b0165 article-title: Nature’s way of optimizing publication-title: Artif Intell contributor: fullname: Percus – volume: 52 start-page: 1990 year: 2011 end-page: 1998 ident: b0225 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers Manag contributor: fullname: Li – volume: 275 start-page: 167 year: 2018 end-page: 179 ident: b0215 article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks publication-title: Neurocomputing contributor: fullname: Liu – year: 2016 ident: b0210 article-title: Deep Learning contributor: fullname: Courville – volume: 115 start-page: 17 year: 2016 end-page: 25 ident: b0065 article-title: Using artificial neural networks for temporal and spatial wind speed forecasting in Iran publication-title: Energy Convers Manag contributor: fullname: Kalhor – volume: 16 start-page: 865 year: 2014 end-page: 873 ident: b0110 article-title: Traffic flow prediction with big data: a deep learning approach publication-title: IEEE Trans Intell Transp Syst contributor: fullname: Wang – volume: 9 start-page: 1 year: 1997 end-page: 32 ident: b0155 article-title: Long short-term memory publication-title: Neural Comput contributor: fullname: Schmidhuber – volume: 330 start-page: 49 year: 2016 end-page: 73 ident: b0190 article-title: An improved multi-objective population-based extremal optimization algorithm with polynomial mutation publication-title: Inf Sci contributor: fullname: Dai – volume: 19 start-page: 52 year: 2017 ident: b0140 article-title: Research and application of a novel hybrid model based on data selection and artificial intelligence algorithm for short term load forecasting publication-title: Entropy contributor: fullname: Wang – volume: 71 start-page: 4083 year: 1993 end-page: 4086 ident: b0175 article-title: Punctuated equilibrium and criticality in a simple model of evolution publication-title: Phys Rev Lett contributor: fullname: Sneppen – volume: 143 start-page: 252 year: 2017 end-page: 274 ident: b0015 article-title: A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system publication-title: Energy Convers Manag contributor: fullname: Enshaei – volume: 93 start-page: 41 year: 2015 end-page: 56 ident: b0100 article-title: A robust combination approach for short-term wind speed forecasting and analysis – combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model publication-title: Energy contributor: fullname: Hu – volume: 54 start-page: 246 year: 2017 end-page: 255 ident: b0115 article-title: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting publication-title: Appl Soft Comput contributor: fullname: Amaratunga – volume: 85 start-page: 83 year: 2016 end-page: 95 ident: b0120 article-title: Transfer learning for short-term wind speed prediction with deep neural networks publication-title: Renew Energy contributor: fullname: Zhou – volume: 119 start-page: 1057 year: 2017 end-page: 1074 ident: b0085 article-title: Research and application of a combined model based on multi-objective optimization for electrical load forecasting publication-title: Energy contributor: fullname: Jin – volume: 42 start-page: 11 year: 2014 ident: 10.1016/j.enconman.2018.03.098_b0105 article-title: A review of unsupervised feature learning and deep learning for time-series modeling publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2014.01.008 contributor: fullname: Längkvist – volume: 330 start-page: 49 year: 2016 ident: 10.1016/j.enconman.2018.03.098_b0190 article-title: An improved multi-objective population-based extremal optimization algorithm with polynomial mutation publication-title: Inf Sci doi: 10.1016/j.ins.2015.10.010 contributor: fullname: Zeng – volume: 44 start-page: 271 year: 2015 ident: 10.1016/j.enconman.2018.03.098_b0090 article-title: Combined forecasting models for wind energy forecasting: a case study in China publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.12.012 contributor: fullname: Xiao – volume: 151 start-page: 1343 year: 2015 ident: 10.1016/j.enconman.2018.03.098_b0200 article-title: Design of multivariable PID controllers using real-coded population-based extremal optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.10.060 contributor: fullname: Zeng – volume: 34 start-page: 243 year: 2014 ident: 10.1016/j.enconman.2018.03.098_b0020 article-title: A review of combined approaches for prediction of short-term wind speed and power publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.03.033 contributor: fullname: Tascikaraoglu – volume: 143 start-page: 360 year: 2017 ident: 10.1016/j.enconman.2018.03.098_b0055 article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.04.007 contributor: fullname: Zhang – volume: 9 start-page: 1 year: 1997 ident: 10.1016/j.enconman.2018.03.098_b0155 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.1.1 contributor: fullname: Hochreiter – volume: 2015 start-page: 4580 year: 2015 ident: 10.1016/j.enconman.2018.03.098_b0160 article-title: Convolutional, long short-term memory, fully connected deep neural networks publication-title: IEEE Int Conf Acoust Speech Signal Process contributor: fullname: Sainath – ident: 10.1016/j.enconman.2018.03.098_b0230 – volume: 113 start-page: 690 year: 2014 ident: 10.1016/j.enconman.2018.03.098_b0080 article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.08.025 contributor: fullname: Chen – volume: 182 start-page: 80 year: 2016 ident: 10.1016/j.enconman.2018.03.098_b0130 article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.108 contributor: fullname: Wang – volume: 355 start-page: 2197 year: 2018 ident: 10.1016/j.enconman.2018.03.098_b0205 article-title: Design of PID controller based on a self-adaptive state-space predictive functional control using extremal optimization method publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2017.12.034 contributor: fullname: Lu – ident: 10.1016/j.enconman.2018.03.098_b0005 – volume: 160 start-page: 173 year: 2015 ident: 10.1016/j.enconman.2018.03.098_b0195 article-title: Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.051 contributor: fullname: Zeng – volume: 71 start-page: 4083 year: 1993 ident: 10.1016/j.enconman.2018.03.098_b0175 article-title: Punctuated equilibrium and criticality in a simple model of evolution publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.71.4083 contributor: fullname: Bak – volume: 43 start-page: 1 year: 2012 ident: 10.1016/j.enconman.2018.03.098_b0050 article-title: Applications of Bayesian methods in wind energy conversion systems publication-title: Renew Energy doi: 10.1016/j.renene.2011.12.006 contributor: fullname: Li – ident: 10.1016/j.enconman.2018.03.098_b0185 – volume: 205 start-page: 53 year: 2016 ident: 10.1016/j.enconman.2018.03.098_b0045 article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.03.061 contributor: fullname: Zhang – year: 2016 ident: 10.1016/j.enconman.2018.03.098_b0210 contributor: fullname: Goodfellow – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.enconman.2018.03.098_b0240 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2011.02.002 contributor: fullname: Derrac – volume: 85 start-page: 83 year: 2016 ident: 10.1016/j.enconman.2018.03.098_b0120 article-title: Transfer learning for short-term wind speed prediction with deep neural networks publication-title: Renew Energy doi: 10.1016/j.renene.2015.06.034 contributor: fullname: Hu – volume: 93 start-page: 41 year: 2015 ident: 10.1016/j.enconman.2018.03.098_b0100 publication-title: Energy doi: 10.1016/j.energy.2015.08.045 contributor: fullname: Wang – volume: 52 start-page: 1990 year: 2011 ident: 10.1016/j.enconman.2018.03.098_b0225 article-title: Fine tuning support vector machines for short-term wind speed forecasting publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.11.007 contributor: fullname: Zhou – volume: 105 start-page: 301 year: 2017 ident: 10.1016/j.enconman.2018.03.098_b0060 article-title: An improved neural network-based approach for short-term wind speed and power forecast publication-title: Renew Energy doi: 10.1016/j.renene.2016.12.071 contributor: fullname: Chang – ident: 10.1016/j.enconman.2018.03.098_b0180 doi: 10.1109/FOCI.2007.372163 – volume: 16 start-page: 865 year: 2014 ident: 10.1016/j.enconman.2018.03.098_b0110 article-title: Traffic flow prediction with big data: a deep learning approach publication-title: IEEE Trans Intell Transp Syst contributor: fullname: Lv – volume: 119 start-page: 561 year: 2017 ident: 10.1016/j.enconman.2018.03.098_b0075 article-title: Short-term wind speed forecasting using a hybrid model publication-title: Energy doi: 10.1016/j.energy.2016.10.040 contributor: fullname: Jiang – volume: 54 start-page: 296 year: 2017 ident: 10.1016/j.enconman.2018.03.098_b0070 article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2017.01.033 contributor: fullname: Ma – volume: 125 start-page: 591 year: 2017 ident: 10.1016/j.enconman.2018.03.098_b0095 article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting publication-title: Energy doi: 10.1016/j.energy.2017.02.150 contributor: fullname: Wang – volume: 143 start-page: 252 year: 2017 ident: 10.1016/j.enconman.2018.03.098_b0015 article-title: A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.04.019 contributor: fullname: Al-falahi – volume: 58 start-page: 23 year: 2016 ident: 10.1016/j.enconman.2018.03.098_b0010 article-title: Solar-wind hybrid renewable energy system: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.12.223 contributor: fullname: Khare – volume: 19 start-page: 52 issue: 2 year: 2017 ident: 10.1016/j.enconman.2018.03.098_b0140 article-title: Research and application of a novel hybrid model based on data selection and artificial intelligence algorithm for short term load forecasting publication-title: Entropy doi: 10.3390/e19020052 contributor: fullname: Yang – ident: 10.1016/j.enconman.2018.03.098_b0235 – volume: 275 start-page: 167 year: 2018 ident: 10.1016/j.enconman.2018.03.098_b0215 article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.063 contributor: fullname: Wu – volume: 11 start-page: 41 year: 2016 ident: 10.1016/j.enconman.2018.03.098_b0135 article-title: Ensemble classification and regression: Recent developments, applications and future directions publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2015.2471235 contributor: fullname: Ren – volume: 34 start-page: 1388 year: 2009 ident: 10.1016/j.enconman.2018.03.098_b0030 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew Energy doi: 10.1016/j.renene.2008.09.006 contributor: fullname: Kavasseri – volume: 54 start-page: 246 year: 2017 ident: 10.1016/j.enconman.2018.03.098_b0115 article-title: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.01.015 contributor: fullname: Qiu – volume: 115 start-page: 17 year: 2016 ident: 10.1016/j.enconman.2018.03.098_b0065 article-title: Using artificial neural networks for temporal and spatial wind speed forecasting in Iran publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.02.041 contributor: fullname: Noorollahi – volume: 119 start-page: 1057 year: 2017 ident: 10.1016/j.enconman.2018.03.098_b0085 article-title: Research and application of a combined model based on multi-objective optimization for electrical load forecasting publication-title: Energy doi: 10.1016/j.energy.2016.11.035 contributor: fullname: Xiao – volume: 121 start-page: 232 year: 2016 ident: 10.1016/j.enconman.2018.03.098_b0040 article-title: A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.05.024 contributor: fullname: Aghajani – volume: 146 start-page: 270 year: 2017 ident: 10.1016/j.enconman.2018.03.098_b0145 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2017.01.035 contributor: fullname: Zhang – volume: 16 start-page: 3471 year: 2012 ident: 10.1016/j.enconman.2018.03.098_b0220 article-title: Evaluation of hybrid forecasting approaches for wind speed and power generation time series publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.02.044 contributor: fullname: Shi – volume: 56 start-page: 226 year: 2014 ident: 10.1016/j.enconman.2018.03.098_b0035 article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2013.11.015 contributor: fullname: Ren – volume: 119 start-page: 275 year: 2000 ident: 10.1016/j.enconman.2018.03.098_b0165 article-title: Nature’s way of optimizing publication-title: Artif Intell doi: 10.1016/S0004-3702(00)00007-2 contributor: fullname: Boettcher – volume: 86 start-page: 5211 year: 2001 ident: 10.1016/j.enconman.2018.03.098_b0170 article-title: Optimization with extremal dynamics publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.86.5211 contributor: fullname: Boettcher – volume: 141 start-page: 27 year: 2015 ident: 10.1016/j.enconman.2018.03.098_b0025 article-title: An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2015.02.004 contributor: fullname: Liu – volume: 13 start-page: 2770 year: 2017 ident: 10.1016/j.enconman.2018.03.098_b0125 article-title: Rough deep neural architecture for short-term wind speed forecasting publication-title: IEEE Trans Ind Inform doi: 10.1109/TII.2017.2730846 contributor: fullname: Khodayar – volume: 148 start-page: 239 year: 2017 ident: 10.1016/j.enconman.2018.03.098_b0150 article-title: Air quality early-warning system for cities in China publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2016.10.046 contributor: fullname: Xu |
SSID | ssj0003506 |
Score | 2.6735206 |
Snippet | •A novel nonlinear-learning ensemble of deep learning time series prediction is proposed for wind speed forecasting.•A cluster of LSTMs with diverse hidden... As an essential issue in wind energy industry, wind speed forecasting plays a vital role in optimal scheduling and control of wind energy generation and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 681 |
SubjectTerms | Case studies Deep learning Electricity generation Ensemble learning Extremal optimization Forecasting Long short-term memory LSTMs (Long Short Term Memory neural networks) Neural networks Optimization Prediction models Statistical analysis Statistical tests Support vector machines Time series Time series prediction Velocity Wind farms Wind power Wind speed Wind speed forecasting |
Title | Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization |
URI | https://dx.doi.org/10.1016/j.enconman.2018.03.098 https://www.proquest.com/docview/2076367117 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPEV5VB5YQ5Mm8WOsEFUBqQsgull2ckZUtI3asjDw27nLg5eEGBiTOJblu3z3Wbn7jrEzBUo5YWWAAJniAUWGgevpPHA6T9LQRR6pEmVbjMTwPrkep-M1dtHUwlBaZY39FaaXaF3f6da72S2enrq3pOyidJigU4ZIQsoKdgx_6NPnb59pHnFa9tekwQGN_lIlPDknrcjZ1JIOaqRKsVOtfgtQP6C6jD-DbbZVE0fer9a2w9Zgtss2v8gJ7rHXBzxg82WBAYkjF4XMLimpmVNu-yOfVaIYdhHUnSIeOR5hYeqegc89zwEK_vGEWs5z8k5Y8mJBP3PIgNzi_IjmC5jiUuaINtO6jHOf3Q0u7y6GQd1bIchiqVeBoN4uiRSC-B24DDKS6hI-j7SLFIAXPdkDmVs8sghHookO8cjbOLIOQh0fsBYuGw4ZRwqhhM_SnrA-ib3TSmc-R95hE0mEps26zX6aolLQME1q2cQ0FjBkARPGBi3QZrrZdvPNFwzC_J_vnjR2MvXXuMTniKJCRpE8-sfUx2yDrqo8sRPWWi1e4BQZycp1SpfrsPX-1c1w9A77puLJ |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeIry9MAamjSJH2NVgcqrC0WwWXZyRiBaorYs_HruGgcBEmJgjWPL8p0_fyefv2PsRIFSTlgZIUDmGKDIOHIdXUZOl1keu8QjVaJsi4Ho32WXD_nDAus1b2EorTJgf43pc7QOX9phNdvV01P7lpRdlI4zdMoYSQiGQEvIBjTuzqXuxVV_8AnIaT4vsUn_R9Thy0Ph51OSixyPLEmhJmqud6rVb2fUD7SeH0Hn62wtcEferae3wRZgvMlWvygKbrH3e4yx-bTCM4kjHYXCTimvmVN6-yMf17oYdhKFYhGPHKNYGLkX4K-elwAV_2yhqvOcHBSmvJrQfQ7ZkFscHwF9AiOcyisCzii85Nxmw_OzYa8fhfIKUZFKPYsElXfJpBBE8cAVUJBal_Blol2iALzoyA7I0mLUIhzpJjqEJG_TxDqIdbrDFnHasMs4sgglfJF3hPVZ6p1WuvAlUg-bSeI0LdZu1tNUtYiGabLLnk1jAUMWMHFq0AItpptlN9_cwSDS_9n3oLGTCRtyiu0IpEImidz7x9DHbLk_vLk21xeDq322Qi112tgBW5xN3uAQCcrMHQUH_ADJzuV9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+speed+forecasting+using+nonlinear-learning+ensemble+of+deep+learning+time+series+prediction+and+extremal+optimization&rft.jtitle=Energy+conversion+and+management&rft.au=Chen%2C+Jie&rft.au=Zeng%2C+Guo-Qiang&rft.au=Zhou%2C+Wuneng&rft.au=Du%2C+Wei&rft.date=2018-06-01&rft.issn=0196-8904&rft.volume=165&rft.spage=681&rft.epage=695&rft_id=info:doi/10.1016%2Fj.enconman.2018.03.098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2018_03_098 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |