Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization

•A novel nonlinear-learning ensemble of deep learning time series prediction is proposed for wind speed forecasting.•A cluster of LSTMs with diverse hidden layers and neurons are introduced to explore and exploit the wind speed time series.•One nonlinear-learning regression top-layer composed of SVR...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 165; pp. 681 - 695
Main Authors Chen, Jie, Zeng, Guo-Qiang, Zhou, Wuneng, Du, Wei, Lu, Kang-Di
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A novel nonlinear-learning ensemble of deep learning time series prediction is proposed for wind speed forecasting.•A cluster of LSTMs with diverse hidden layers and neurons are introduced to explore and exploit the wind speed time series.•One nonlinear-learning regression top-layer composed of SVRM is developed to perform ensemble prediction.•The extremal optimization algorithm is employed to search for the optimal parameters of top-layer SVRM.•The effectiveness of proposed EnsemLSTM is validated on two case studies data collected from a wind farm in China. As an essential issue in wind energy industry, wind speed forecasting plays a vital role in optimal scheduling and control of wind energy generation and conversion. In this paper, a novel method called EnsemLSTM is proposed by using nonlinear-learning ensemble of deep learning time series prediction based on LSTMs (Long Short Term Memory neural networks), SVRM (support vector regression machine) and EO (extremal optimization algorithm). First, in order to avert the drawback of weak generalization capability and robustness of a single deep learning approach when facing diversiform data, a cluster of LSTMs with diverse hidden layers and neurons are employed to explore and exploit the implicit information of wind speed time series. Then predictions of LSTMs are aggregated into a nonlinear-learning regression top-layer composed of SVRM and the EO is introduced to optimize the parameters of the top-layer. Lastly, the final ensemble prediction for wind speed is given by the fine-turning top-layer. The proposed EnsemLSTM is applied on two case studies data collected from a wind farm in Inner Mongolia, China, to perform ten-minute ahead utmost short term wind speed forecasting and one-hour ahead short term wind speed forecasting. Statistical tests of experimental results compared with other popular prediction models demonstrated the proposed EnsemLSTM can achieve a better forecasting performance.
AbstractList As an essential issue in wind energy industry, wind speed forecasting plays a vital role in optimal scheduling and control of wind energy generation and conversion. In this paper, a novel method called EnsemLSTM is proposed by using nonlinear-learning ensemble of deep learning time series prediction based on LSTMs (Long Short Term Memory neural networks), SVRM (support vector regression machine) and EO (extremal optimization algorithm). First, in order to avert the drawback of weak generalization capability and robustness of a single deep learning approach when facing diversiform data, a cluster of LSTMs with diverse hidden layers and neurons are employed to explore and exploit the implicit information of wind speed time series. Then predictions of LSTMs are aggregated into a nonlinear-learning regression top-layer composed of SVRM and the EO is introduced to optimize the parameters of the top-layer. Lastly, the final ensemble prediction for wind speed is given by the fine-turning top-layer. The proposed EnsemLSTM is applied on two case studies data collected from a wind farm in Inner Mongolia, China, to perform ten-minute ahead utmost short term wind speed forecasting and one-hour ahead short term wind speed forecasting. Statistical tests of experimental results compared with other popular prediction models demonstrated the proposed EnsemLSTM can achieve a better forecasting performance.
•A novel nonlinear-learning ensemble of deep learning time series prediction is proposed for wind speed forecasting.•A cluster of LSTMs with diverse hidden layers and neurons are introduced to explore and exploit the wind speed time series.•One nonlinear-learning regression top-layer composed of SVRM is developed to perform ensemble prediction.•The extremal optimization algorithm is employed to search for the optimal parameters of top-layer SVRM.•The effectiveness of proposed EnsemLSTM is validated on two case studies data collected from a wind farm in China. As an essential issue in wind energy industry, wind speed forecasting plays a vital role in optimal scheduling and control of wind energy generation and conversion. In this paper, a novel method called EnsemLSTM is proposed by using nonlinear-learning ensemble of deep learning time series prediction based on LSTMs (Long Short Term Memory neural networks), SVRM (support vector regression machine) and EO (extremal optimization algorithm). First, in order to avert the drawback of weak generalization capability and robustness of a single deep learning approach when facing diversiform data, a cluster of LSTMs with diverse hidden layers and neurons are employed to explore and exploit the implicit information of wind speed time series. Then predictions of LSTMs are aggregated into a nonlinear-learning regression top-layer composed of SVRM and the EO is introduced to optimize the parameters of the top-layer. Lastly, the final ensemble prediction for wind speed is given by the fine-turning top-layer. The proposed EnsemLSTM is applied on two case studies data collected from a wind farm in Inner Mongolia, China, to perform ten-minute ahead utmost short term wind speed forecasting and one-hour ahead short term wind speed forecasting. Statistical tests of experimental results compared with other popular prediction models demonstrated the proposed EnsemLSTM can achieve a better forecasting performance.
Author Zeng, Guo-Qiang
Lu, Kang-Di
Du, Wei
Chen, Jie
Zhou, Wuneng
Author_xml – sequence: 1
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  organization: School of Information Sciences and Technology, Donghua University, Shanghai 200051, China
– sequence: 2
  givenname: Guo-Qiang
  surname: Zeng
  fullname: Zeng, Guo-Qiang
  organization: National-Local Joint Engineering Laboratory of Digitalize Electrical Design Technology, Wenzhou University, Wenzhou 325035, China
– sequence: 3
  givenname: Wuneng
  orcidid: 0000-0003-3867-8557
  surname: Zhou
  fullname: Zhou, Wuneng
  email: zhouwuneng@163.com
  organization: School of Information Sciences and Technology, Donghua University, Shanghai 200051, China
– sequence: 4
  givenname: Wei
  surname: Du
  fullname: Du, Wei
  organization: School of Information Sciences and Technology, Donghua University, Shanghai 200051, China
– sequence: 5
  givenname: Kang-Di
  surname: Lu
  fullname: Lu, Kang-Di
  organization: School of Information Sciences and Technology, Donghua University, Shanghai 200051, China
BookMark eNqFkE9LxDAQxYOs4Lr6FSTguXWS7CbtTVn8BwteFjyGtJ1KljapSVd0P70pq169zMDMm_eY3zmZOe-QkCsGOQMmb3Y5utq73ricAytyEDmUxQmZs0KVGedczcgcWCmzooTlGTmPcQcAYgVyTg6v1jU0DogNbX3A2sTRuje6j1NNSZ11aELWpeKmEbqIfdUh9S1tEAf6txltjzRisBjpELCx9Wi9oyb54-cYsDcd9UNS2YOZNhfktDVdxMufviDbh_vt-inbvDw-r-82WS1UOWYSVmy1VFJywQCrGmumSpBtw8qKFYit5IqjagxnSlYrJUQFRdEawUyFUIoFuT7aDsG_7zGOeuf3waVEzUFJIRVjKqnkUVUHH2PAVg_B9iZ8aQZ6wqx3-heznjBrEDphToe3x0NML3xYDDrWNinT_4nmqBtv_7P4Bv3yjf8
CitedBy_id crossref_primary_10_3389_fpls_2023_1093905
crossref_primary_10_1016_j_energy_2024_131142
crossref_primary_10_1016_j_jweia_2023_105421
crossref_primary_10_1007_s00500_023_09499_6
crossref_primary_10_1016_j_renene_2023_03_094
crossref_primary_10_1016_j_enconman_2020_112824
crossref_primary_10_1016_j_rser_2021_111459
crossref_primary_10_1002_er_5331
crossref_primary_10_1016_j_energy_2020_117081
crossref_primary_10_1016_j_egyai_2021_100060
crossref_primary_10_1016_j_engappai_2023_107461
crossref_primary_10_1007_s10163_020_01022_5
crossref_primary_10_3390_jmse11122350
crossref_primary_10_1007_s00500_019_04292_w
crossref_primary_10_1063_5_0016226
crossref_primary_10_1016_j_ins_2020_08_053
crossref_primary_10_1016_j_enconman_2018_07_070
crossref_primary_10_1016_j_apenergy_2020_115975
crossref_primary_10_1080_17445302_2023_2218323
crossref_primary_10_1016_j_enconman_2020_112956
crossref_primary_10_3390_jmse9121426
crossref_primary_10_1089_big_2020_0159
crossref_primary_10_1007_s00477_022_02188_0
crossref_primary_10_1007_s00500_020_04680_7
crossref_primary_10_1016_j_apenergy_2023_122553
crossref_primary_10_1007_s10462_020_09822_9
crossref_primary_10_1016_j_jclepro_2022_135414
crossref_primary_10_1109_JSYST_2023_3265982
crossref_primary_10_1155_2022_9915481
crossref_primary_10_1002_for_2657
crossref_primary_10_1016_j_energy_2021_122012
crossref_primary_10_1145_3586006
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1109_ACCESS_2021_3131649
crossref_primary_10_1007_s11831_020_09500_7
crossref_primary_10_2478_amns_2021_2_00064
crossref_primary_10_3390_su142316317
crossref_primary_10_1016_j_apenergy_2021_117766
crossref_primary_10_1016_j_engappai_2020_104000
crossref_primary_10_1109_TIA_2021_3126272
crossref_primary_10_1007_s00500_020_05176_0
crossref_primary_10_1080_15567036_2022_2066226
crossref_primary_10_1016_j_ijhydene_2022_02_084
crossref_primary_10_1142_S0219455423500049
crossref_primary_10_1109_ACCESS_2020_3039002
crossref_primary_10_1016_j_seta_2022_102068
crossref_primary_10_5937_fme2103653G
crossref_primary_10_1016_j_rser_2020_110413
crossref_primary_10_1016_j_ins_2022_11_145
crossref_primary_10_1016_j_seta_2021_101698
crossref_primary_10_1080_00207179_2022_2067080
crossref_primary_10_3390_pr9101793
crossref_primary_10_1007_s11071_021_07139_y
crossref_primary_10_1016_j_optlastec_2024_111170
crossref_primary_10_1016_j_oceaneng_2022_111352
crossref_primary_10_1016_j_engappai_2019_03_012
crossref_primary_10_1016_j_jweia_2021_104788
crossref_primary_10_1103_PRXQuantum_2_010316
crossref_primary_10_1016_j_energy_2022_126383
crossref_primary_10_1016_j_eswa_2020_114364
crossref_primary_10_1016_j_neucom_2020_01_127
crossref_primary_10_1007_s10489_023_04483_x
crossref_primary_10_1016_j_energy_2021_121981
crossref_primary_10_1029_2020JA027908
crossref_primary_10_1088_1361_6501_acd8e2
crossref_primary_10_1016_j_enconman_2019_06_083
crossref_primary_10_1002_we_2906
crossref_primary_10_1002_2050_7038_12531
crossref_primary_10_1109_TIM_2020_3038285
crossref_primary_10_1016_j_energy_2022_124095
crossref_primary_10_1016_j_future_2018_09_054
crossref_primary_10_1016_j_enconman_2018_11_006
crossref_primary_10_1016_j_jweia_2023_105507
crossref_primary_10_1016_j_istruc_2023_105559
crossref_primary_10_3390_math12132105
crossref_primary_10_1007_s10462_019_09719_2
crossref_primary_10_32604_cmc_2020_012423
crossref_primary_10_1016_j_rser_2019_109387
crossref_primary_10_1007_s00477_020_01776_2
crossref_primary_10_1016_j_energy_2023_128565
crossref_primary_10_3390_e23111424
crossref_primary_10_1016_j_enconman_2021_113944
crossref_primary_10_1155_2022_9649825
crossref_primary_10_1016_j_eswa_2018_10_043
crossref_primary_10_1016_j_enconman_2021_114002
crossref_primary_10_1109_JIOT_2019_2913176
crossref_primary_10_1007_s12517_021_06982_y
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_1016_j_eswa_2023_121051
crossref_primary_10_1016_j_jhydrol_2022_127534
crossref_primary_10_1016_j_egyr_2022_09_188
crossref_primary_10_1016_j_enconman_2019_112239
crossref_primary_10_1177_1475921720909440
crossref_primary_10_1016_j_enconman_2020_112524
crossref_primary_10_1016_j_apm_2018_10_019
crossref_primary_10_1016_j_advwatres_2019_103405
crossref_primary_10_1016_j_ins_2021_09_054
crossref_primary_10_1016_j_renene_2023_118942
crossref_primary_10_1016_j_energy_2021_121795
crossref_primary_10_5194_wes_6_111_2021
crossref_primary_10_3390_en12203920
crossref_primary_10_1016_j_egyr_2021_06_014
crossref_primary_10_1177_0309524X221106184
crossref_primary_10_1016_j_eswa_2023_121177
crossref_primary_10_1016_j_jclepro_2020_120983
crossref_primary_10_3390_su16114438
crossref_primary_10_1016_j_enconman_2019_112345
crossref_primary_10_1016_j_engappai_2021_104570
crossref_primary_10_1016_j_ins_2023_03_031
crossref_primary_10_1016_j_seta_2021_101780
crossref_primary_10_1016_j_energy_2022_125098
crossref_primary_10_1016_j_energy_2019_05_084
crossref_primary_10_1016_j_rser_2021_110992
crossref_primary_10_3390_en17081947
crossref_primary_10_1016_j_neucom_2024_128096
crossref_primary_10_1016_j_eswa_2024_123453
crossref_primary_10_1016_j_renene_2018_12_035
crossref_primary_10_1080_19942060_2022_2103588
crossref_primary_10_3233_WOR_205360
crossref_primary_10_1111_coin_12617
crossref_primary_10_1016_j_rser_2019_03_040
crossref_primary_10_1007_s10462_022_10283_5
crossref_primary_10_3390_app10175975
crossref_primary_10_1109_TII_2022_3221219
crossref_primary_10_1109_ACCESS_2020_3045182
crossref_primary_10_3390_e25040647
crossref_primary_10_1016_j_jweia_2023_105499
crossref_primary_10_1016_j_engappai_2019_08_018
crossref_primary_10_2139_ssrn_4193710
crossref_primary_10_1016_j_enconman_2019_111799
crossref_primary_10_1016_j_energy_2023_129171
crossref_primary_10_1109_ACCESS_2020_2984796
crossref_primary_10_1016_j_scs_2023_105150
crossref_primary_10_1051_matecconf_202030905011
crossref_primary_10_1002_ente_202300919
crossref_primary_10_1007_s11063_023_11187_3
crossref_primary_10_1109_ACCESS_2020_3022872
crossref_primary_10_21605_cukurovaumfd_1146047
crossref_primary_10_1016_j_energy_2022_123483
crossref_primary_10_1080_02533839_2019_1708802
crossref_primary_10_3390_en13226125
crossref_primary_10_1016_j_egyr_2021_09_150
crossref_primary_10_1016_j_jhydrol_2023_130394
crossref_primary_10_1016_j_ijepes_2021_107452
crossref_primary_10_1016_j_oceaneng_2022_111527
crossref_primary_10_1016_j_ijepes_2019_03_056
crossref_primary_10_3390_en14010184
crossref_primary_10_1016_j_apor_2021_102937
crossref_primary_10_1016_j_scs_2020_102052
crossref_primary_10_1016_j_seta_2022_102223
crossref_primary_10_1016_j_clrc_2021_100040
crossref_primary_10_3390_e22101161
crossref_primary_10_1016_j_seta_2022_102467
crossref_primary_10_1016_j_jclepro_2022_134977
crossref_primary_10_1016_j_enconman_2019_02_018
crossref_primary_10_1007_s11004_020_09864_3
crossref_primary_10_1016_j_rser_2021_111758
crossref_primary_10_1155_2022_4795535
crossref_primary_10_1080_15567036_2023_2284840
crossref_primary_10_1016_j_jconhyd_2023_104262
crossref_primary_10_1080_0951192X_2022_2078514
crossref_primary_10_1016_j_inffus_2023_101918
crossref_primary_10_1007_s00703_021_00791_4
crossref_primary_10_3846_jcem_2021_14649
crossref_primary_10_1016_j_epsr_2022_108174
crossref_primary_10_32604_cmc_2022_026771
crossref_primary_10_3390_math11122746
crossref_primary_10_1016_j_seta_2023_103603
crossref_primary_10_1080_15567036_2021_1925379
crossref_primary_10_1002_ese3_1562
crossref_primary_10_3390_en15196942
crossref_primary_10_1016_j_energy_2021_120492
crossref_primary_10_1016_j_renene_2021_04_028
crossref_primary_10_1016_j_epsr_2023_109792
crossref_primary_10_1007_s00366_021_01356_0
crossref_primary_10_1007_s00607_023_01164_y
crossref_primary_10_1093_comjnl_bxz164
crossref_primary_10_3390_atmos12070924
crossref_primary_10_1016_j_eswa_2022_117011
crossref_primary_10_1109_ACCESS_2022_3187839
crossref_primary_10_1016_j_apm_2021_07_024
crossref_primary_10_1016_j_asoc_2023_110873
crossref_primary_10_1016_j_isatra_2018_11_043
crossref_primary_10_1155_2022_8696558
crossref_primary_10_3389_fenrg_2022_934935
crossref_primary_10_1016_j_egyai_2023_100302
crossref_primary_10_1016_j_ins_2021_12_001
crossref_primary_10_1016_j_apenergy_2019_113686
crossref_primary_10_1016_j_energy_2019_02_194
crossref_primary_10_1016_j_enconman_2019_05_020
crossref_primary_10_1016_j_eswa_2024_123487
crossref_primary_10_1016_j_knosys_2022_108889
crossref_primary_10_1038_s41598_021_96751_4
crossref_primary_10_1016_j_energy_2021_121808
crossref_primary_10_3390_en16124766
crossref_primary_10_1016_j_energy_2022_125231
crossref_primary_10_1109_ACCESS_2021_3135362
crossref_primary_10_1007_s00477_022_02265_4
crossref_primary_10_1016_j_energy_2020_117728
crossref_primary_10_1016_j_est_2021_102704
crossref_primary_10_1016_j_energy_2022_125342
crossref_primary_10_1016_j_engappai_2024_107891
crossref_primary_10_1016_j_neucom_2023_126435
crossref_primary_10_1007_s11227_019_03045_8
crossref_primary_10_1016_j_energy_2021_121121
crossref_primary_10_1016_j_renene_2022_12_123
crossref_primary_10_1016_j_renene_2022_12_124
crossref_primary_10_3390_atmos12050651
crossref_primary_10_3390_en11112976
crossref_primary_10_1007_s00521_023_08807_3
crossref_primary_10_1016_j_aei_2021_101290
crossref_primary_10_1016_j_jweia_2022_104990
crossref_primary_10_3390_en17112687
crossref_primary_10_1016_j_energy_2024_131164
crossref_primary_10_1016_j_asoc_2020_106996
crossref_primary_10_1016_j_engappai_2023_107479
crossref_primary_10_1016_j_enconman_2020_113456
crossref_primary_10_1155_2019_7414318
crossref_primary_10_1109_ACCESS_2024_3370679
crossref_primary_10_1016_j_enconman_2023_117818
crossref_primary_10_31590_ejosat_785699
crossref_primary_10_1007_s00521_023_08506_z
crossref_primary_10_1016_j_rser_2020_110626
crossref_primary_10_1016_j_ijepes_2023_109269
crossref_primary_10_3233_JIFS_201279
crossref_primary_10_1109_ACCESS_2019_2929542
crossref_primary_10_1016_j_apenergy_2019_113541
crossref_primary_10_1016_j_energy_2021_120617
crossref_primary_10_1016_j_engappai_2023_105987
crossref_primary_10_1016_j_enconman_2019_112188
crossref_primary_10_1109_TMECH_2022_3214314
crossref_primary_10_3390_en16031530
crossref_primary_10_1109_TSG_2021_3112510
crossref_primary_10_3390_data9010013
crossref_primary_10_3390_en16186414
crossref_primary_10_1155_2020_8439719
crossref_primary_10_3390_su10093202
crossref_primary_10_1007_s40808_020_00830_w
crossref_primary_10_1016_j_enconman_2020_113346
crossref_primary_10_1016_j_seta_2022_102535
crossref_primary_10_1049_tje2_12151
crossref_primary_10_1016_j_isci_2022_105804
crossref_primary_10_7717_peerj_cs_732
crossref_primary_10_1142_S0218001422550059
crossref_primary_10_1109_ACCESS_2020_3045157
crossref_primary_10_3389_fbuil_2022_762054
crossref_primary_10_2139_ssrn_4165241
crossref_primary_10_1016_j_ijepes_2022_108780
Cites_doi 10.1016/j.patrec.2014.01.008
10.1016/j.ins.2015.10.010
10.1016/j.rser.2014.12.012
10.1016/j.neucom.2014.10.060
10.1016/j.rser.2014.03.033
10.1016/j.enconman.2017.04.007
10.1162/neco.1997.9.1.1
10.1016/j.apenergy.2013.08.025
10.1016/j.apenergy.2016.08.108
10.1016/j.jfranklin.2017.12.034
10.1016/j.neucom.2015.02.051
10.1103/PhysRevLett.71.4083
10.1016/j.renene.2011.12.006
10.1016/j.neucom.2016.03.061
10.1016/j.swevo.2011.02.002
10.1016/j.renene.2015.06.034
10.1016/j.energy.2015.08.045
10.1016/j.enconman.2010.11.007
10.1016/j.renene.2016.12.071
10.1109/FOCI.2007.372163
10.1016/j.energy.2016.10.040
10.1016/j.asoc.2017.01.033
10.1016/j.energy.2017.02.150
10.1016/j.enconman.2017.04.019
10.1016/j.rser.2015.12.223
10.3390/e19020052
10.1016/j.neucom.2017.05.063
10.1109/MCI.2015.2471235
10.1016/j.renene.2008.09.006
10.1016/j.asoc.2017.01.015
10.1016/j.enconman.2016.02.041
10.1016/j.energy.2016.11.035
10.1016/j.enconman.2016.05.024
10.1016/j.epsr.2017.01.035
10.1016/j.rser.2012.02.044
10.1016/j.knosys.2013.11.015
10.1016/S0004-3702(00)00007-2
10.1103/PhysRevLett.86.5211
10.1016/j.jweia.2015.02.004
10.1109/TII.2017.2730846
10.1016/j.atmosenv.2016.10.046
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier Science Ltd. Jun 1, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jun 1, 2018
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
DOI 10.1016/j.enconman.2018.03.098
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
EndPage 695
ExternalDocumentID 10_1016_j_enconman_2018_03_098
S0196890418303261
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFFNX
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
G8K
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
ID FETCH-LOGICAL-c379t-6051547662310ebcec17906fd19b18eef6272e7da2176b5733b088fa31abe093
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Thu Oct 10 15:37:41 EDT 2024
Thu Sep 26 16:54:30 EDT 2024
Fri Feb 23 02:47:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Time series prediction
Ensemble learning
LSTMs (Long Short Term Memory neural networks)
Extremal optimization
Wind speed forecasting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-6051547662310ebcec17906fd19b18eef6272e7da2176b5733b088fa31abe093
ORCID 0000-0003-3867-8557
PQID 2076367117
PQPubID 2047472
PageCount 15
ParticipantIDs proquest_journals_2076367117
crossref_primary_10_1016_j_enconman_2018_03_098
elsevier_sciencedirect_doi_10_1016_j_enconman_2018_03_098
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Xiao, Shao, Yu, Ma, Jin (b0085) 2017; 119
Jiang, Wang, Wang (b0075) 2017; 119
Hu, Zhang, Zhou (b0120) 2016; 85
Zhang, Wang, Zhang (b0145) 2017; 146
Liu, Tian, Li (b0025) 2015; 141
Sainath, Vinyals, Senior, Sak (b0160) 2015; 2015
Shi, Guo, Zheng (b0220) 2012; 16
Ren, An, Wang, Li, Hu, Shang (b0035) 2014; 56
Zhang, Zhou, Li, Fu, Peng (b0055) 2017; 143
Wang, Wang, Li, Peng, Liu (b0130) 2016; 182
Wang, Heng, Xiao, Wang (b0095) 2017; 125
Boettcher, Percus (b0165) 2000; 119
Goodfellow, Bengio, Courville (b0210) 2016
Ren, Zhang, Suganthan (b0135) 2016; 11
Wu, Yuan, Dong, Lin, Liu (b0215) 2018; 275
Lv, Duan, Kang, Li, Wang (b0110) 2014; 16
http://www.gwec.net/.
Kavasseri, Seetharaman (b0030) 2009; 34
Zhou, Shi, Li (b0225) 2011; 52
Li, Shi (b0050) 2012; 43
Wang, Hu (b0100) 2015; 93
Xu, Yang, Wang (b0150) 2017; 148
Zeng, Chen, Chen, Dai, Li, Lu (b0200) 2015; 151
Lu, Zhou, Zeng, Du (b0205) 2018; 355
Lu Y, Chen Y, Chen M, Chen P, Zeng G. Extremal optimization: fundamentals, algorithms, and applications. CRC Press & Chemical Industry Press; 2016.
Tascikaraoglu, Uzunoglu (b0020) 2014; 34
Aghajani, Kazemzadeh, Ebrahimi (b0040) 2016; 121
Chang, Lu, Chang, Lee (b0060) 2017; 105
Boettcher, Percus (b0170) 2001; 86
Ma, Jin, Dong (b0070) 2017; 54
Noorollahi, Jokar, Kalhor (b0065) 2016; 115
Khare, Nema, Baredar (b0010) 2016; 58
Bak, Sneppen (b0175) 1993; 71
Zeng, Chen, Dai, Li, Zheng, Chen (b0195) 2015; 160
Yang, Wang, Wang (b0140) 2017; 19
Qiu, Ren, Suganthan, Amaratunga (b0115) 2017; 54
Längkvist, Karlsson, Loutfi (b0105) 2014; 42
.
Xiao, Wang, Dong, Wu (b0090) 2015; 44
Lu Y, Chen M, Chen Y. Studies on extremal optimization and its applications in solving realworld optimization problems. In: Foci; 2007. p. 162–8.
Al-falahi, Jayasinghe, Enshaei (b0015) 2017; 143
Zhang, Wei, Xie, Shen, Zhang (b0045) 2016; 205
Chen, Yu (b0080) 2014; 113
Zeng, Chen, Li, Chen, Wu, Dai (b0190) 2016; 330
Derrac, García, Molina, Herrera (b0240) 2011; 1
Khodayar, Kaynak, Khodayar (b0125) 2017; 13
Hochreiter, Schmidhuber (b0155) 1997; 9
Hochreiter (10.1016/j.enconman.2018.03.098_b0155) 1997; 9
Zhang (10.1016/j.enconman.2018.03.098_b0145) 2017; 146
Derrac (10.1016/j.enconman.2018.03.098_b0240) 2011; 1
Zeng (10.1016/j.enconman.2018.03.098_b0190) 2016; 330
Chang (10.1016/j.enconman.2018.03.098_b0060) 2017; 105
Noorollahi (10.1016/j.enconman.2018.03.098_b0065) 2016; 115
10.1016/j.enconman.2018.03.098_b0180
Qiu (10.1016/j.enconman.2018.03.098_b0115) 2017; 54
Shi (10.1016/j.enconman.2018.03.098_b0220) 2012; 16
Tascikaraoglu (10.1016/j.enconman.2018.03.098_b0020) 2014; 34
Liu (10.1016/j.enconman.2018.03.098_b0025) 2015; 141
10.1016/j.enconman.2018.03.098_b0230
Wang (10.1016/j.enconman.2018.03.098_b0100) 2015; 93
10.1016/j.enconman.2018.03.098_b0235
Wu (10.1016/j.enconman.2018.03.098_b0215) 2018; 275
Lv (10.1016/j.enconman.2018.03.098_b0110) 2014; 16
Zhou (10.1016/j.enconman.2018.03.098_b0225) 2011; 52
Längkvist (10.1016/j.enconman.2018.03.098_b0105) 2014; 42
Boettcher (10.1016/j.enconman.2018.03.098_b0170) 2001; 86
Ren (10.1016/j.enconman.2018.03.098_b0035) 2014; 56
Zeng (10.1016/j.enconman.2018.03.098_b0195) 2015; 160
Aghajani (10.1016/j.enconman.2018.03.098_b0040) 2016; 121
Ma (10.1016/j.enconman.2018.03.098_b0070) 2017; 54
Li (10.1016/j.enconman.2018.03.098_b0050) 2012; 43
Xiao (10.1016/j.enconman.2018.03.098_b0085) 2017; 119
Zhang (10.1016/j.enconman.2018.03.098_b0045) 2016; 205
Lu (10.1016/j.enconman.2018.03.098_b0205) 2018; 355
Al-falahi (10.1016/j.enconman.2018.03.098_b0015) 2017; 143
Xiao (10.1016/j.enconman.2018.03.098_b0090) 2015; 44
Sainath (10.1016/j.enconman.2018.03.098_b0160) 2015; 2015
Ren (10.1016/j.enconman.2018.03.098_b0135) 2016; 11
Goodfellow (10.1016/j.enconman.2018.03.098_b0210) 2016
10.1016/j.enconman.2018.03.098_b0185
Zeng (10.1016/j.enconman.2018.03.098_b0200) 2015; 151
Khodayar (10.1016/j.enconman.2018.03.098_b0125) 2017; 13
Boettcher (10.1016/j.enconman.2018.03.098_b0165) 2000; 119
Bak (10.1016/j.enconman.2018.03.098_b0175) 1993; 71
Wang (10.1016/j.enconman.2018.03.098_b0095) 2017; 125
Xu (10.1016/j.enconman.2018.03.098_b0150) 2017; 148
10.1016/j.enconman.2018.03.098_b0005
Hu (10.1016/j.enconman.2018.03.098_b0120) 2016; 85
Yang (10.1016/j.enconman.2018.03.098_b0140) 2017; 19
Kavasseri (10.1016/j.enconman.2018.03.098_b0030) 2009; 34
Zhang (10.1016/j.enconman.2018.03.098_b0055) 2017; 143
Khare (10.1016/j.enconman.2018.03.098_b0010) 2016; 58
Wang (10.1016/j.enconman.2018.03.098_b0130) 2016; 182
Jiang (10.1016/j.enconman.2018.03.098_b0075) 2017; 119
Chen (10.1016/j.enconman.2018.03.098_b0080) 2014; 113
References_xml – volume: 151
  start-page: 1343
  year: 2015
  end-page: 1353
  ident: b0200
  article-title: Design of multivariable PID controllers using real-coded population-based extremal optimization
  publication-title: Neurocomputing
  contributor:
    fullname: Lu
– volume: 355
  start-page: 2197
  year: 2018
  end-page: 2220
  ident: b0205
  article-title: Design of PID controller based on a self-adaptive state-space predictive functional control using extremal optimization method
  publication-title: J Franklin Inst
  contributor:
    fullname: Du
– volume: 43
  start-page: 1
  year: 2012
  end-page: 8
  ident: b0050
  article-title: Applications of Bayesian methods in wind energy conversion systems
  publication-title: Renew Energy
  contributor:
    fullname: Shi
– volume: 119
  start-page: 561
  year: 2017
  end-page: 577
  ident: b0075
  article-title: Short-term wind speed forecasting using a hybrid model
  publication-title: Energy
  contributor:
    fullname: Wang
– volume: 205
  start-page: 53
  year: 2016
  end-page: 63
  ident: b0045
  article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework
  publication-title: Neurocomputing
  contributor:
    fullname: Zhang
– volume: 141
  start-page: 27
  year: 2015
  end-page: 38
  ident: b0025
  article-title: An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system
  publication-title: J Wind Eng Ind Aerodyn
  contributor:
    fullname: Li
– volume: 182
  start-page: 80
  year: 2016
  end-page: 93
  ident: b0130
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
  contributor:
    fullname: Liu
– volume: 146
  start-page: 270
  year: 2017
  end-page: 285
  ident: b0145
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm
  publication-title: Electr Power Syst Res
  contributor:
    fullname: Zhang
– volume: 56
  start-page: 226
  year: 2014
  end-page: 239
  ident: b0035
  article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
  publication-title: Knowledge-Based Syst
  contributor:
    fullname: Shang
– volume: 16
  start-page: 3471
  year: 2012
  end-page: 3480
  ident: b0220
  article-title: Evaluation of hybrid forecasting approaches for wind speed and power generation time series
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Zheng
– volume: 42
  start-page: 11
  year: 2014
  end-page: 24
  ident: b0105
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recognit Lett
  contributor:
    fullname: Loutfi
– volume: 113
  start-page: 690
  year: 2014
  end-page: 705
  ident: b0080
  article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
  publication-title: Appl Energy
  contributor:
    fullname: Yu
– volume: 34
  start-page: 243
  year: 2014
  end-page: 254
  ident: b0020
  article-title: A review of combined approaches for prediction of short-term wind speed and power
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Uzunoglu
– volume: 34
  start-page: 1388
  year: 2009
  end-page: 1393
  ident: b0030
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew Energy
  contributor:
    fullname: Seetharaman
– volume: 13
  start-page: 2770
  year: 2017
  end-page: 2779
  ident: b0125
  article-title: Rough deep neural architecture for short-term wind speed forecasting
  publication-title: IEEE Trans Ind Inform
  contributor:
    fullname: Khodayar
– volume: 86
  start-page: 5211
  year: 2001
  end-page: 5214
  ident: b0170
  article-title: Optimization with extremal dynamics
  publication-title: Phys Rev Lett
  contributor:
    fullname: Percus
– volume: 105
  start-page: 301
  year: 2017
  end-page: 311
  ident: b0060
  article-title: An improved neural network-based approach for short-term wind speed and power forecast
  publication-title: Renew Energy
  contributor:
    fullname: Lee
– volume: 44
  start-page: 271
  year: 2015
  end-page: 288
  ident: b0090
  article-title: Combined forecasting models for wind energy forecasting: a case study in China
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Wu
– volume: 160
  start-page: 173
  year: 2015
  end-page: 184
  ident: b0195
  article-title: Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization
  publication-title: Neurocomputing
  contributor:
    fullname: Chen
– volume: 58
  start-page: 23
  year: 2016
  end-page: 33
  ident: b0010
  article-title: Solar-wind hybrid renewable energy system: a review
  publication-title: Renew Sustain Energy Rev
  contributor:
    fullname: Baredar
– volume: 143
  start-page: 360
  year: 2017
  end-page: 376
  ident: b0055
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energy Convers Manag
  contributor:
    fullname: Peng
– volume: 125
  start-page: 591
  year: 2017
  end-page: 613
  ident: b0095
  article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
  contributor:
    fullname: Wang
– volume: 11
  start-page: 41
  year: 2016
  end-page: 53
  ident: b0135
  article-title: Ensemble classification and regression: Recent developments, applications and future directions
  publication-title: IEEE Comput Intell Mag
  contributor:
    fullname: Suganthan
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b0240
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
  contributor:
    fullname: Herrera
– volume: 54
  start-page: 296
  year: 2017
  end-page: 312
  ident: b0070
  article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting
  publication-title: Appl Soft Comput J
  contributor:
    fullname: Dong
– volume: 121
  start-page: 232
  year: 2016
  end-page: 240
  ident: b0040
  article-title: A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm
  publication-title: Energy Convers Manag
  contributor:
    fullname: Ebrahimi
– volume: 148
  start-page: 239
  year: 2017
  end-page: 257
  ident: b0150
  article-title: Air quality early-warning system for cities in China
  publication-title: Atmos Environ
  contributor:
    fullname: Wang
– volume: 2015
  start-page: 4580
  year: 2015
  end-page: 4584
  ident: b0160
  article-title: Convolutional, long short-term memory, fully connected deep neural networks
  publication-title: IEEE Int Conf Acoust Speech Signal Process
  contributor:
    fullname: Sak
– volume: 119
  start-page: 275
  year: 2000
  end-page: 286
  ident: b0165
  article-title: Nature’s way of optimizing
  publication-title: Artif Intell
  contributor:
    fullname: Percus
– volume: 52
  start-page: 1990
  year: 2011
  end-page: 1998
  ident: b0225
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers Manag
  contributor:
    fullname: Li
– volume: 275
  start-page: 167
  year: 2018
  end-page: 179
  ident: b0215
  article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
  publication-title: Neurocomputing
  contributor:
    fullname: Liu
– year: 2016
  ident: b0210
  article-title: Deep Learning
  contributor:
    fullname: Courville
– volume: 115
  start-page: 17
  year: 2016
  end-page: 25
  ident: b0065
  article-title: Using artificial neural networks for temporal and spatial wind speed forecasting in Iran
  publication-title: Energy Convers Manag
  contributor:
    fullname: Kalhor
– volume: 16
  start-page: 865
  year: 2014
  end-page: 873
  ident: b0110
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans Intell Transp Syst
  contributor:
    fullname: Wang
– volume: 9
  start-page: 1
  year: 1997
  end-page: 32
  ident: b0155
  article-title: Long short-term memory
  publication-title: Neural Comput
  contributor:
    fullname: Schmidhuber
– volume: 330
  start-page: 49
  year: 2016
  end-page: 73
  ident: b0190
  article-title: An improved multi-objective population-based extremal optimization algorithm with polynomial mutation
  publication-title: Inf Sci
  contributor:
    fullname: Dai
– volume: 19
  start-page: 52
  year: 2017
  ident: b0140
  article-title: Research and application of a novel hybrid model based on data selection and artificial intelligence algorithm for short term load forecasting
  publication-title: Entropy
  contributor:
    fullname: Wang
– volume: 71
  start-page: 4083
  year: 1993
  end-page: 4086
  ident: b0175
  article-title: Punctuated equilibrium and criticality in a simple model of evolution
  publication-title: Phys Rev Lett
  contributor:
    fullname: Sneppen
– volume: 143
  start-page: 252
  year: 2017
  end-page: 274
  ident: b0015
  article-title: A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system
  publication-title: Energy Convers Manag
  contributor:
    fullname: Enshaei
– volume: 93
  start-page: 41
  year: 2015
  end-page: 56
  ident: b0100
  article-title: A robust combination approach for short-term wind speed forecasting and analysis – combination of the ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model
  publication-title: Energy
  contributor:
    fullname: Hu
– volume: 54
  start-page: 246
  year: 2017
  end-page: 255
  ident: b0115
  article-title: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting
  publication-title: Appl Soft Comput
  contributor:
    fullname: Amaratunga
– volume: 85
  start-page: 83
  year: 2016
  end-page: 95
  ident: b0120
  article-title: Transfer learning for short-term wind speed prediction with deep neural networks
  publication-title: Renew Energy
  contributor:
    fullname: Zhou
– volume: 119
  start-page: 1057
  year: 2017
  end-page: 1074
  ident: b0085
  article-title: Research and application of a combined model based on multi-objective optimization for electrical load forecasting
  publication-title: Energy
  contributor:
    fullname: Jin
– volume: 42
  start-page: 11
  year: 2014
  ident: 10.1016/j.enconman.2018.03.098_b0105
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2014.01.008
  contributor:
    fullname: Längkvist
– volume: 330
  start-page: 49
  year: 2016
  ident: 10.1016/j.enconman.2018.03.098_b0190
  article-title: An improved multi-objective population-based extremal optimization algorithm with polynomial mutation
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.10.010
  contributor:
    fullname: Zeng
– volume: 44
  start-page: 271
  year: 2015
  ident: 10.1016/j.enconman.2018.03.098_b0090
  article-title: Combined forecasting models for wind energy forecasting: a case study in China
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.12.012
  contributor:
    fullname: Xiao
– volume: 151
  start-page: 1343
  year: 2015
  ident: 10.1016/j.enconman.2018.03.098_b0200
  article-title: Design of multivariable PID controllers using real-coded population-based extremal optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.10.060
  contributor:
    fullname: Zeng
– volume: 34
  start-page: 243
  year: 2014
  ident: 10.1016/j.enconman.2018.03.098_b0020
  article-title: A review of combined approaches for prediction of short-term wind speed and power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.03.033
  contributor:
    fullname: Tascikaraoglu
– volume: 143
  start-page: 360
  year: 2017
  ident: 10.1016/j.enconman.2018.03.098_b0055
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.04.007
  contributor:
    fullname: Zhang
– volume: 9
  start-page: 1
  year: 1997
  ident: 10.1016/j.enconman.2018.03.098_b0155
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.1.1
  contributor:
    fullname: Hochreiter
– volume: 2015
  start-page: 4580
  year: 2015
  ident: 10.1016/j.enconman.2018.03.098_b0160
  article-title: Convolutional, long short-term memory, fully connected deep neural networks
  publication-title: IEEE Int Conf Acoust Speech Signal Process
  contributor:
    fullname: Sainath
– ident: 10.1016/j.enconman.2018.03.098_b0230
– volume: 113
  start-page: 690
  year: 2014
  ident: 10.1016/j.enconman.2018.03.098_b0080
  article-title: Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.08.025
  contributor:
    fullname: Chen
– volume: 182
  start-page: 80
  year: 2016
  ident: 10.1016/j.enconman.2018.03.098_b0130
  article-title: Deep belief network based deterministic and probabilistic wind speed forecasting approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.108
  contributor:
    fullname: Wang
– volume: 355
  start-page: 2197
  year: 2018
  ident: 10.1016/j.enconman.2018.03.098_b0205
  article-title: Design of PID controller based on a self-adaptive state-space predictive functional control using extremal optimization method
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2017.12.034
  contributor:
    fullname: Lu
– ident: 10.1016/j.enconman.2018.03.098_b0005
– volume: 160
  start-page: 173
  year: 2015
  ident: 10.1016/j.enconman.2018.03.098_b0195
  article-title: Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.051
  contributor:
    fullname: Zeng
– volume: 71
  start-page: 4083
  year: 1993
  ident: 10.1016/j.enconman.2018.03.098_b0175
  article-title: Punctuated equilibrium and criticality in a simple model of evolution
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.71.4083
  contributor:
    fullname: Bak
– volume: 43
  start-page: 1
  year: 2012
  ident: 10.1016/j.enconman.2018.03.098_b0050
  article-title: Applications of Bayesian methods in wind energy conversion systems
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2011.12.006
  contributor:
    fullname: Li
– ident: 10.1016/j.enconman.2018.03.098_b0185
– volume: 205
  start-page: 53
  year: 2016
  ident: 10.1016/j.enconman.2018.03.098_b0045
  article-title: Direct interval forecasting of wind speed using radial basis function neural networks in a multi-objective optimization framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.061
  contributor:
    fullname: Zhang
– year: 2016
  ident: 10.1016/j.enconman.2018.03.098_b0210
  contributor:
    fullname: Goodfellow
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.enconman.2018.03.098_b0240
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2011.02.002
  contributor:
    fullname: Derrac
– volume: 85
  start-page: 83
  year: 2016
  ident: 10.1016/j.enconman.2018.03.098_b0120
  article-title: Transfer learning for short-term wind speed prediction with deep neural networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.06.034
  contributor:
    fullname: Hu
– volume: 93
  start-page: 41
  year: 2015
  ident: 10.1016/j.enconman.2018.03.098_b0100
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.045
  contributor:
    fullname: Wang
– volume: 52
  start-page: 1990
  year: 2011
  ident: 10.1016/j.enconman.2018.03.098_b0225
  article-title: Fine tuning support vector machines for short-term wind speed forecasting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.11.007
  contributor:
    fullname: Zhou
– volume: 105
  start-page: 301
  year: 2017
  ident: 10.1016/j.enconman.2018.03.098_b0060
  article-title: An improved neural network-based approach for short-term wind speed and power forecast
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.12.071
  contributor:
    fullname: Chang
– ident: 10.1016/j.enconman.2018.03.098_b0180
  doi: 10.1109/FOCI.2007.372163
– volume: 16
  start-page: 865
  year: 2014
  ident: 10.1016/j.enconman.2018.03.098_b0110
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans Intell Transp Syst
  contributor:
    fullname: Lv
– volume: 119
  start-page: 561
  year: 2017
  ident: 10.1016/j.enconman.2018.03.098_b0075
  article-title: Short-term wind speed forecasting using a hybrid model
  publication-title: Energy
  doi: 10.1016/j.energy.2016.10.040
  contributor:
    fullname: Jiang
– volume: 54
  start-page: 296
  year: 2017
  ident: 10.1016/j.enconman.2018.03.098_b0070
  article-title: A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2017.01.033
  contributor:
    fullname: Ma
– volume: 125
  start-page: 591
  year: 2017
  ident: 10.1016/j.enconman.2018.03.098_b0095
  article-title: Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.150
  contributor:
    fullname: Wang
– volume: 143
  start-page: 252
  year: 2017
  ident: 10.1016/j.enconman.2018.03.098_b0015
  article-title: A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.04.019
  contributor:
    fullname: Al-falahi
– volume: 58
  start-page: 23
  year: 2016
  ident: 10.1016/j.enconman.2018.03.098_b0010
  article-title: Solar-wind hybrid renewable energy system: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.12.223
  contributor:
    fullname: Khare
– volume: 19
  start-page: 52
  issue: 2
  year: 2017
  ident: 10.1016/j.enconman.2018.03.098_b0140
  article-title: Research and application of a novel hybrid model based on data selection and artificial intelligence algorithm for short term load forecasting
  publication-title: Entropy
  doi: 10.3390/e19020052
  contributor:
    fullname: Yang
– ident: 10.1016/j.enconman.2018.03.098_b0235
– volume: 275
  start-page: 167
  year: 2018
  ident: 10.1016/j.enconman.2018.03.098_b0215
  article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.063
  contributor:
    fullname: Wu
– volume: 11
  start-page: 41
  year: 2016
  ident: 10.1016/j.enconman.2018.03.098_b0135
  article-title: Ensemble classification and regression: Recent developments, applications and future directions
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2015.2471235
  contributor:
    fullname: Ren
– volume: 34
  start-page: 1388
  year: 2009
  ident: 10.1016/j.enconman.2018.03.098_b0030
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2008.09.006
  contributor:
    fullname: Kavasseri
– volume: 54
  start-page: 246
  year: 2017
  ident: 10.1016/j.enconman.2018.03.098_b0115
  article-title: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.01.015
  contributor:
    fullname: Qiu
– volume: 115
  start-page: 17
  year: 2016
  ident: 10.1016/j.enconman.2018.03.098_b0065
  article-title: Using artificial neural networks for temporal and spatial wind speed forecasting in Iran
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.02.041
  contributor:
    fullname: Noorollahi
– volume: 119
  start-page: 1057
  year: 2017
  ident: 10.1016/j.enconman.2018.03.098_b0085
  article-title: Research and application of a combined model based on multi-objective optimization for electrical load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.035
  contributor:
    fullname: Xiao
– volume: 121
  start-page: 232
  year: 2016
  ident: 10.1016/j.enconman.2018.03.098_b0040
  article-title: A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.05.024
  contributor:
    fullname: Aghajani
– volume: 146
  start-page: 270
  year: 2017
  ident: 10.1016/j.enconman.2018.03.098_b0145
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2017.01.035
  contributor:
    fullname: Zhang
– volume: 16
  start-page: 3471
  year: 2012
  ident: 10.1016/j.enconman.2018.03.098_b0220
  article-title: Evaluation of hybrid forecasting approaches for wind speed and power generation time series
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.02.044
  contributor:
    fullname: Shi
– volume: 56
  start-page: 226
  year: 2014
  ident: 10.1016/j.enconman.2018.03.098_b0035
  article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2013.11.015
  contributor:
    fullname: Ren
– volume: 119
  start-page: 275
  year: 2000
  ident: 10.1016/j.enconman.2018.03.098_b0165
  article-title: Nature’s way of optimizing
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(00)00007-2
  contributor:
    fullname: Boettcher
– volume: 86
  start-page: 5211
  year: 2001
  ident: 10.1016/j.enconman.2018.03.098_b0170
  article-title: Optimization with extremal dynamics
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.86.5211
  contributor:
    fullname: Boettcher
– volume: 141
  start-page: 27
  year: 2015
  ident: 10.1016/j.enconman.2018.03.098_b0025
  article-title: An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2015.02.004
  contributor:
    fullname: Liu
– volume: 13
  start-page: 2770
  year: 2017
  ident: 10.1016/j.enconman.2018.03.098_b0125
  article-title: Rough deep neural architecture for short-term wind speed forecasting
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2017.2730846
  contributor:
    fullname: Khodayar
– volume: 148
  start-page: 239
  year: 2017
  ident: 10.1016/j.enconman.2018.03.098_b0150
  article-title: Air quality early-warning system for cities in China
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2016.10.046
  contributor:
    fullname: Xu
SSID ssj0003506
Score 2.6735206
Snippet •A novel nonlinear-learning ensemble of deep learning time series prediction is proposed for wind speed forecasting.•A cluster of LSTMs with diverse hidden...
As an essential issue in wind energy industry, wind speed forecasting plays a vital role in optimal scheduling and control of wind energy generation and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 681
SubjectTerms Case studies
Deep learning
Electricity generation
Ensemble learning
Extremal optimization
Forecasting
Long short-term memory
LSTMs (Long Short Term Memory neural networks)
Neural networks
Optimization
Prediction models
Statistical analysis
Statistical tests
Support vector machines
Time series
Time series prediction
Velocity
Wind farms
Wind power
Wind speed
Wind speed forecasting
Title Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization
URI https://dx.doi.org/10.1016/j.enconman.2018.03.098
https://www.proquest.com/docview/2076367117
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPEV5VB5YQ5Mm8WOsEFUBqQsgull2ckZUtI3asjDw27nLg5eEGBiTOJblu3z3Wbn7jrEzBUo5YWWAAJniAUWGgevpPHA6T9LQRR6pEmVbjMTwPrkep-M1dtHUwlBaZY39FaaXaF3f6da72S2enrq3pOyidJigU4ZIQsoKdgx_6NPnb59pHnFa9tekwQGN_lIlPDknrcjZ1JIOaqRKsVOtfgtQP6C6jD-DbbZVE0fer9a2w9Zgtss2v8gJ7rHXBzxg82WBAYkjF4XMLimpmVNu-yOfVaIYdhHUnSIeOR5hYeqegc89zwEK_vGEWs5z8k5Y8mJBP3PIgNzi_IjmC5jiUuaINtO6jHOf3Q0u7y6GQd1bIchiqVeBoN4uiRSC-B24DDKS6hI-j7SLFIAXPdkDmVs8sghHookO8cjbOLIOQh0fsBYuGw4ZRwqhhM_SnrA-ib3TSmc-R95hE0mEps26zX6aolLQME1q2cQ0FjBkARPGBi3QZrrZdvPNFwzC_J_vnjR2MvXXuMTniKJCRpE8-sfUx2yDrqo8sRPWWi1e4BQZycp1SpfrsPX-1c1w9A77puLJ
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeIry9MAamjSJH2NVgcqrC0WwWXZyRiBaorYs_HruGgcBEmJgjWPL8p0_fyefv2PsRIFSTlgZIUDmGKDIOHIdXUZOl1keu8QjVaJsi4Ho32WXD_nDAus1b2EorTJgf43pc7QOX9phNdvV01P7lpRdlI4zdMoYSQiGQEvIBjTuzqXuxVV_8AnIaT4vsUn_R9Thy0Ph51OSixyPLEmhJmqud6rVb2fUD7SeH0Hn62wtcEferae3wRZgvMlWvygKbrH3e4yx-bTCM4kjHYXCTimvmVN6-yMf17oYdhKFYhGPHKNYGLkX4K-elwAV_2yhqvOcHBSmvJrQfQ7ZkFscHwF9AiOcyisCzii85Nxmw_OzYa8fhfIKUZFKPYsElXfJpBBE8cAVUJBal_Blol2iALzoyA7I0mLUIhzpJjqEJG_TxDqIdbrDFnHasMs4sgglfJF3hPVZ6p1WuvAlUg-bSeI0LdZu1tNUtYiGabLLnk1jAUMWMHFq0AItpptlN9_cwSDS_9n3oLGTCRtyiu0IpEImidz7x9DHbLk_vLk21xeDq322Qi112tgBW5xN3uAQCcrMHQUH_ADJzuV9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+speed+forecasting+using+nonlinear-learning+ensemble+of+deep+learning+time+series+prediction+and+extremal+optimization&rft.jtitle=Energy+conversion+and+management&rft.au=Chen%2C+Jie&rft.au=Zeng%2C+Guo-Qiang&rft.au=Zhou%2C+Wuneng&rft.au=Du%2C+Wei&rft.date=2018-06-01&rft.issn=0196-8904&rft.volume=165&rft.spage=681&rft.epage=695&rft_id=info:doi/10.1016%2Fj.enconman.2018.03.098&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2018_03_098
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon