Modeling and predicting occupancy profile in office space with a Wi-Fi probe-based Dynamic Markov Time-Window Inference approach

Demand-based HVAC control methods in buildings show great energy saving potential when accurate occupancy information is available. Appropriate service based on actual occupant demand could prevent unnecessary energy waste caused by system overcooling or overheating. Therefore, various occupancy det...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 124; pp. 130 - 142
Main Authors Wang, Wei, Chen, Jiayu, Song, Xinyi
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-1323
1873-684X
DOI10.1016/j.buildenv.2017.08.003

Cover

Loading…
Abstract Demand-based HVAC control methods in buildings show great energy saving potential when accurate occupancy information is available. Appropriate service based on actual occupant demand could prevent unnecessary energy waste caused by system overcooling or overheating. Therefore, various occupancy detection approaches had attracted increasing attentions in recent years. Among them, Wi-Fi based detection approaches have been thoroughly discussed since Wi-Fi access points (APs) and wireless devices are ubiquitously used in modern buildings. Compared with traditional request and response based occupancy assessment, the newly developed Wi-Fi probe technology can actively scan Wi-Fi enabled devices even if they are not connected to the network. However, Wi-Fi probe detection still subjects to significant errors due to unstable signal and unpredictable occupant behavior. This study stresses the time-series and stochastic characteristics of detected signals and proposes a novel Dynamic Markov Time-Window Inference (DMTWI) model to predict reliable occupancy. The conventional Auto-Regressive Moving Average (ARMA) model and Support Vector Regression (SVR) model are also examined and compared with the proposed approach. Also, an on-site experiment was conducted to validate the proposed model, and the results reveal that the prediction accuracy is over 80% when x-accuracy tolerance is less than 4 for weekdays, 3 for holidays, and 2 for weekend days. •This paper proposed a novel occupancy detection method for HVAC systems.•The Wi-Fi probe is utilized to collect and predict occupancy information.•The proposed DMTWI method achieved high x-accuracy tolerance.•Three occupancy prediction models were compared.
AbstractList Demand-based HVAC control methods in buildings show great energy saving potential when accurate occupancy information is available. Appropriate service based on actual occupant demand could prevent unnecessary energy waste caused by system overcooling or overheating. Therefore, various occupancy detection approaches had attracted increasing attentions in recent years. Among them, Wi-Fi based detection approaches have been thoroughly discussed since Wi-Fi access points (APs) and wireless devices are ubiquitously used in modern buildings. Compared with traditional request and response based occupancy assessment, the newly developed Wi-Fi probe technology can actively scan Wi-Fi enabled devices even if they are not connected to the network. However, Wi-Fi probe detection still subjects to significant errors due to unstable signal and unpredictable occupant behavior. This study stresses the time-series and stochastic characteristics of detected signals and proposes a novel Dynamic Markov Time-Window Inference (DMTWI) model to predict reliable occupancy. The conventional Auto-Regressive Moving Average (ARMA) model and Support Vector Regression (SVR) model are also examined and compared with the proposed approach. Also, an on-site experiment was conducted to validate the proposed model, and the results reveal that the prediction accuracy is over 80% when x-accuracy tolerance is less than 4 for weekdays, 3 for holidays, and 2 for weekend days.
Demand-based HVAC control methods in buildings show great energy saving potential when accurate occupancy information is available. Appropriate service based on actual occupant demand could prevent unnecessary energy waste caused by system overcooling or overheating. Therefore, various occupancy detection approaches had attracted increasing attentions in recent years. Among them, Wi-Fi based detection approaches have been thoroughly discussed since Wi-Fi access points (APs) and wireless devices are ubiquitously used in modern buildings. Compared with traditional request and response based occupancy assessment, the newly developed Wi-Fi probe technology can actively scan Wi-Fi enabled devices even if they are not connected to the network. However, Wi-Fi probe detection still subjects to significant errors due to unstable signal and unpredictable occupant behavior. This study stresses the time-series and stochastic characteristics of detected signals and proposes a novel Dynamic Markov Time-Window Inference (DMTWI) model to predict reliable occupancy. The conventional Auto-Regressive Moving Average (ARMA) model and Support Vector Regression (SVR) model are also examined and compared with the proposed approach. Also, an on-site experiment was conducted to validate the proposed model, and the results reveal that the prediction accuracy is over 80% when x-accuracy tolerance is less than 4 for weekdays, 3 for holidays, and 2 for weekend days. •This paper proposed a novel occupancy detection method for HVAC systems.•The Wi-Fi probe is utilized to collect and predict occupancy information.•The proposed DMTWI method achieved high x-accuracy tolerance.•Three occupancy prediction models were compared.
Author Wang, Wei
Song, Xinyi
Chen, Jiayu
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0001-5207-3533
  surname: Wang
  fullname: Wang, Wei
  organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Y6621, AC1, Tat Chee Ave, Kowloon, Hong Kong
– sequence: 2
  givenname: Jiayu
  orcidid: 0000-0001-9396-0059
  surname: Chen
  fullname: Chen, Jiayu
  email: jiaychen@cityu.edu.hk
  organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Y6621, AC1, Tat Chee Ave, Kowloon, Hong Kong
– sequence: 3
  givenname: Xinyi
  surname: Song
  fullname: Song, Xinyi
  organization: School of Building Construction, Georgia Institute of Technology, Atlanta, GA 30332, United States
BookMark eNqFkMFu1DAQhi1UJLaFV0CWOCc4dhJnJQ6gQkulVlxatTdrYo_pLFk7ONmt9saj19HChUsvM5rR_81I3yk7CTEgY-8rUVaiaj9uyn5Hg8OwL6WodCm6Ugj1iq2qTqui7eqHE7YSqhVFpaR6w06naSMyuFb1iv25iQ4HCj85BMfHhI7svIzR2t0IwR7yMnoakFPg0XuyyKcRcn2i-ZEDv6figpZQj0UPEzr-9RBgS5bfQPoV9_yWtljcU3DxiV8FjwlDpmHMCNjHt-y1h2HCd3_7Gbu7-HZ7_r24_nF5df7lurBKr-ei6WWPTlcKGqj7RjZCgvZQC9HZWqq6b3WD2KHX0Din9VpJ63XTtyA9CqHVGftwvJvf_t7hNJtN3KWQX5pq3UrZyVp1OfXpmLIpTlNCbyzNMFMMcwIaTCXM4txszD_nZnFuRGey84y3_-Fjoi2kw8vg5yOIWcGeMJnJ0uLJUUI7GxfppRPPsZij7A
CitedBy_id crossref_primary_10_1016_j_buildenv_2021_107936
crossref_primary_10_1016_j_enbuild_2018_03_084
crossref_primary_10_1016_j_rser_2024_114284
crossref_primary_10_1007_s12273_020_0726_y
crossref_primary_10_1016_j_enbuild_2019_109439
crossref_primary_10_1016_j_buildenv_2020_106681
crossref_primary_10_1016_j_enbuild_2019_109713
crossref_primary_10_1016_j_buildenv_2022_109040
crossref_primary_10_1080_23744731_2021_1993672
crossref_primary_10_3390_buildings13082002
crossref_primary_10_3389_frobt_2023_1280745
crossref_primary_10_1016_j_buildenv_2019_05_032
crossref_primary_10_1016_j_buildenv_2023_111005
crossref_primary_10_1016_j_buildenv_2019_01_052
crossref_primary_10_1016_j_rser_2022_112704
crossref_primary_10_1016_j_apenergy_2018_11_079
crossref_primary_10_1016_j_jclepro_2022_131602
crossref_primary_10_1016_j_buildenv_2022_109207
crossref_primary_10_1016_j_enbuild_2017_11_041
crossref_primary_10_1016_j_jobe_2019_100864
crossref_primary_10_1007_s42524_022_0244_y
crossref_primary_10_1016_j_jobe_2019_100948
crossref_primary_10_1016_j_enbuild_2020_110179
crossref_primary_10_1016_j_enbuild_2018_10_007
crossref_primary_10_1016_j_jobe_2024_110445
crossref_primary_10_1016_j_buildenv_2020_107126
crossref_primary_10_1007_s12273_021_0813_8
crossref_primary_10_1016_j_autcon_2020_103331
crossref_primary_10_1016_j_buildenv_2019_106461
crossref_primary_10_1145_3477929
crossref_primary_10_1016_j_buildenv_2018_04_034
crossref_primary_10_3390_en15031219
crossref_primary_10_1016_j_enbuild_2021_111362
crossref_primary_10_1016_j_enbuild_2022_112354
crossref_primary_10_1007_s42486_023_00130_z
crossref_primary_10_1016_j_buildenv_2018_10_028
crossref_primary_10_3390_buildings11020041
crossref_primary_10_3390_en13154033
crossref_primary_10_1016_j_apenergy_2020_114892
crossref_primary_10_1016_j_autcon_2018_07_007
crossref_primary_10_1016_j_buildenv_2019_05_015
crossref_primary_10_1016_j_buildenv_2023_110807
crossref_primary_10_1016_j_jobe_2021_102928
crossref_primary_10_1016_j_enbuild_2018_09_002
crossref_primary_10_1016_j_enbuild_2021_111759
crossref_primary_10_1016_j_enbuild_2023_113813
crossref_primary_10_1016_j_buildenv_2018_04_002
crossref_primary_10_1016_j_buildenv_2020_106818
crossref_primary_10_1016_j_scs_2020_102533
crossref_primary_10_3390_app11073108
crossref_primary_10_1016_j_buildenv_2019_106280
crossref_primary_10_3390_en18020388
crossref_primary_10_1016_j_enbuild_2021_111345
crossref_primary_10_1080_19401493_2021_2001572
crossref_primary_10_1080_19401493_2023_2250310
crossref_primary_10_1016_j_buildenv_2024_111548
crossref_primary_10_1109_ACCESS_2021_3083534
crossref_primary_10_1016_j_decarb_2023_100023
crossref_primary_10_1007_s12273_022_0907_y
crossref_primary_10_1016_j_enbuild_2025_115388
crossref_primary_10_1016_j_buildenv_2018_12_030
crossref_primary_10_1016_j_buildenv_2019_01_043
crossref_primary_10_1007_s12273_022_0948_2
crossref_primary_10_1016_j_buildenv_2020_106729
crossref_primary_10_1080_21680566_2021_1956388
Cites_doi 10.1016/j.enbuild.2015.03.013
10.1016/j.enbuild.2015.02.013
10.1177/0037549713489918
10.1007/s12273-011-0044-5
10.1016/j.buildenv.2015.06.019
10.1016/j.autcon.2012.02.013
10.1016/j.eswa.2014.04.011
10.1016/j.buildenv.2016.12.015
10.1177/1420326X09344277
10.1016/j.autcon.2016.05.005
10.1016/j.enbuild.2015.06.009
10.1016/j.apenergy.2013.01.039
10.1016/j.enbuild.2010.01.016
10.1016/j.enbuild.2005.12.001
10.1016/j.enbuild.2007.01.018
10.1016/j.buildenv.2014.04.003
10.1016/0378-7788(91)90001-J
10.1016/j.enbuild.2014.07.053
10.1016/j.enbuild.2011.12.037
10.1016/j.enbuild.2011.10.018
10.1016/j.pmcj.2016.02.001
10.1016/j.enconman.2011.02.002
10.1016/j.buildenv.2014.04.008
10.1177/1420326X9900800605
10.1016/j.enbuild.2008.12.004
10.1016/j.apenergy.2012.06.014
10.1016/j.apenergy.2014.11.064
10.1016/j.buildenv.2014.03.024
10.1016/j.enbuild.2013.10.005
10.1016/j.buildenv.2014.04.030
10.1016/j.energy.2015.09.002
10.1159/000024577
10.1016/j.enbuild.2010.03.025
10.1016/j.enbuild.2014.11.027
10.1016/j.enbuild.2016.09.002
10.1177/1420326X10388883
10.1016/j.enbuild.2012.06.001
10.1016/j.enbuild.2015.12.019
10.1016/j.buildenv.2013.07.020
10.1016/j.buildenv.2012.03.015
10.1016/j.autcon.2009.11.019
10.1016/j.enbuild.2014.11.065
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Nov 1, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 1, 2017
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.buildenv.2017.08.003
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
EndPage 142
ExternalDocumentID 10_1016_j_buildenv_2017_08_003
S0360132317303487
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
SEW
SSH
VH1
WUQ
ZMT
7ST
8FD
C1K
EFKBS
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c379t-5b2bed713a5a4b52502a7fa4008c4234b675ee8ef7a5dd77932cf75b6a2fe0073
IEDL.DBID .~1
ISSN 0360-1323
IngestDate Wed Aug 13 06:27:36 EDT 2025
Tue Jul 01 00:24:49 EDT 2025
Thu Apr 24 23:10:23 EDT 2025
Fri Feb 23 02:31:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Occupancy prediction
Markov inference
Time window approach
Wi-Fi probe
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-5b2bed713a5a4b52502a7fa4008c4234b675ee8ef7a5dd77932cf75b6a2fe0073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5207-3533
0000-0001-9396-0059
PQID 1962282438
PQPubID 2045275
PageCount 13
ParticipantIDs proquest_journals_1962282438
crossref_citationtrail_10_1016_j_buildenv_2017_08_003
crossref_primary_10_1016_j_buildenv_2017_08_003
elsevier_sciencedirect_doi_10_1016_j_buildenv_2017_08_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Building and environment
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Campos, Lovisolo, de Campos (bib42) 2014; 41
Christensen, Melfi, Nordman, Rosenblum, Viera (bib21) 2014; 12
Shan, Sun, Wang, Yan (bib30) 2012; 57
Ekwevugbe, Brown, Pakka, Fan (bib31) 2013
D'Oca, Hong (bib26) 2015; 88
Wang, Burnett, Chong (bib53) 1999; 8
Virote, Neves-Silva (bib39) 2012; 53
Mahdavi (bib17) 2009; 18
Rana, Kusy, Wall, Hu (bib47) 2015; 93
Zhao, Zeiler, Boxem, Labeodan (bib50) 2015; 93
Bisio, Lavagetto, Marchese, Sciarrone (bib40) 2016; 31
Lin, Claridge (bib5) 2015; 93
Warren, Harper (bib9) 1991; 17
McKenna, Krawczynski, Thomson (bib38) 2015; 96
Dong, Andrews, Lam, Hoynck, Zhang, Chiou (bib34) 2010; 42
Yang, Li, Becerik-Gerber, Orosz (bib33) 2014; 90
Sun, Yan, Hong, Guo (bib35) 2014; 79
Wang, Yan, Jiang (bib36) 2011; 4
Martani, Lee, Robinson, Britter, Ratti (bib44) 2012; 47
Chen, Ahn (bib43) 2014; 82
Mavrogianni, Davies, Taylor, Chalabi, Biddulph, Oikonomou (bib23) 2014; 78
Kwok, Lee (bib52) 2011; 52
Gul, Patidar (bib25) 2015; 87
Li, Calis, Becerik-Gerber (bib11) 2012; 24
Congradac, Kulic (bib8) 2009; 41
Nassif (bib7) 2012; 45
Sidiropoulos, Mioduszewski, Oljasz, Schaap EdwinSchaap (bib46) 2012
Chatfield (bib49) 2004
Goyal, Barooah, Middelkoop (bib4) 2015; 140
Gunay, O'Brien, Beausoleil-Morrison (bib29) 2013; 70
Balaji, Xu, Nwokafor, Gupta, Agarwal (bib45) 2013
Chen, Xu, Soh (bib37) 2015; 103
ASHRAE Standard 90.1-2007: Energy Standard for Buildings Except Low-Rise Residential Buildings. n.d.
Jiang, Masood, Soh, Li (bib32) 2016; 131
Page, Robinson, Morel, Scartezzini (bib24) 2008; 40
Trčka, Hensen (bib2) 2010; 19
Zhang, Liu, Lutes, Brambley (bib18) 2013
Goyal, Ingley, Barooah (bib10) 2013; 106
Teixeira, Dublon (bib22) 2010; Vol. 1
Wang, Jin (bib20) 1998; 7
Davis, Nutter (bib27) 2010; 42
Zikos, Tsolakis, Meskos, Tryferidis, Tzovaras (bib14) 2016; 68
Wang, Shao (bib41) 2017; 114
Yang, Becerik-Gerber (bib1) 2014; 78
Yang, Santamouris, Lee (bib12) 2016; 121
O'Brien, Gunay (bib13) 2014; 77
Geun Young Yun, Hyo Joo Kong, Jeong Tai Kim (bib15) 2011; 20
Dong, Andrews (bib16) 2009
Ekwevigbe, Brown, Pakka, Fan (bib19) 2013
Oldewurtel, Sturzenegger, Morari (bib3) 2013; 101
Brockwell, Davis (bib48) 1991
Dodier, Henze, Tiller, Guo (bib51) 2006; 38
Zhou, Huang, Li (bib6) 2014; 68
Wang (10.1016/j.buildenv.2017.08.003_bib20) 1998; 7
Wang (10.1016/j.buildenv.2017.08.003_bib41) 2017; 114
Wang (10.1016/j.buildenv.2017.08.003_bib53) 1999; 8
Goyal (10.1016/j.buildenv.2017.08.003_bib4) 2015; 140
Gul (10.1016/j.buildenv.2017.08.003_bib25) 2015; 87
Gunay (10.1016/j.buildenv.2017.08.003_bib29) 2013; 70
Lin (10.1016/j.buildenv.2017.08.003_bib5) 2015; 93
Jiang (10.1016/j.buildenv.2017.08.003_bib32) 2016; 131
Yang (10.1016/j.buildenv.2017.08.003_bib12) 2016; 121
Virote (10.1016/j.buildenv.2017.08.003_bib39) 2012; 53
Shan (10.1016/j.buildenv.2017.08.003_bib30) 2012; 57
Zhang (10.1016/j.buildenv.2017.08.003_bib18) 2013
Sun (10.1016/j.buildenv.2017.08.003_bib35) 2014; 79
Congradac (10.1016/j.buildenv.2017.08.003_bib8) 2009; 41
Page (10.1016/j.buildenv.2017.08.003_bib24) 2008; 40
Warren (10.1016/j.buildenv.2017.08.003_bib9) 1991; 17
10.1016/j.buildenv.2017.08.003_bib28
Brockwell (10.1016/j.buildenv.2017.08.003_bib48) 1991
Ekwevigbe (10.1016/j.buildenv.2017.08.003_bib19) 2013
Kwok (10.1016/j.buildenv.2017.08.003_bib52) 2011; 52
Balaji (10.1016/j.buildenv.2017.08.003_bib45) 2013
Trčka (10.1016/j.buildenv.2017.08.003_bib2) 2010; 19
Oldewurtel (10.1016/j.buildenv.2017.08.003_bib3) 2013; 101
Mavrogianni (10.1016/j.buildenv.2017.08.003_bib23) 2014; 78
Davis (10.1016/j.buildenv.2017.08.003_bib27) 2010; 42
Zhou (10.1016/j.buildenv.2017.08.003_bib6) 2014; 68
Mahdavi (10.1016/j.buildenv.2017.08.003_bib17) 2009; 18
Campos (10.1016/j.buildenv.2017.08.003_bib42) 2014; 41
Zhao (10.1016/j.buildenv.2017.08.003_bib50) 2015; 93
Chatfield (10.1016/j.buildenv.2017.08.003_bib49) 2004
Dong (10.1016/j.buildenv.2017.08.003_bib34) 2010; 42
Goyal (10.1016/j.buildenv.2017.08.003_bib10) 2013; 106
D'Oca (10.1016/j.buildenv.2017.08.003_bib26) 2015; 88
Li (10.1016/j.buildenv.2017.08.003_bib11) 2012; 24
Dong (10.1016/j.buildenv.2017.08.003_bib16) 2009
Bisio (10.1016/j.buildenv.2017.08.003_bib40) 2016; 31
Martani (10.1016/j.buildenv.2017.08.003_bib44) 2012; 47
Nassif (10.1016/j.buildenv.2017.08.003_bib7) 2012; 45
Zikos (10.1016/j.buildenv.2017.08.003_bib14) 2016; 68
Rana (10.1016/j.buildenv.2017.08.003_bib47) 2015; 93
Chen (10.1016/j.buildenv.2017.08.003_bib37) 2015; 103
O'Brien (10.1016/j.buildenv.2017.08.003_bib13) 2014; 77
Teixeira (10.1016/j.buildenv.2017.08.003_bib22) 2010; Vol. 1
Yang (10.1016/j.buildenv.2017.08.003_bib1) 2014; 78
Christensen (10.1016/j.buildenv.2017.08.003_bib21) 2014; 12
McKenna (10.1016/j.buildenv.2017.08.003_bib38) 2015; 96
Sidiropoulos (10.1016/j.buildenv.2017.08.003_bib46) 2012
Wang (10.1016/j.buildenv.2017.08.003_bib36) 2011; 4
Dodier (10.1016/j.buildenv.2017.08.003_bib51) 2006; 38
Geun Young Yun (10.1016/j.buildenv.2017.08.003_bib15) 2011; 20
Ekwevugbe (10.1016/j.buildenv.2017.08.003_bib31) 2013
Yang (10.1016/j.buildenv.2017.08.003_bib33) 2014; 90
Chen (10.1016/j.buildenv.2017.08.003_bib43) 2014; 82
References_xml – year: 2012
  ident: bib46
  article-title: Open Wifi SSID Broadcast Vulnerability SSN Project Assessment 2012
– start-page: 114
  year: 2013
  end-page: 119
  ident: bib31
  article-title: Real-time Building Occupancy Sensing Using Neural-network Based Sensor Network
– volume: 45
  start-page: 72
  year: 2012
  end-page: 81
  ident: bib7
  article-title: Robust CO2-based demand-controlled ventilation control strategy for multi-zone HVAC systems
  publication-title: Energy Build.
– volume: 24
  start-page: 89
  year: 2012
  end-page: 99
  ident: bib11
  article-title: Measuring and monitoring occupancy with an RFID based system for demand-driven HVAC operations
  publication-title: Autom. Constr.
– volume: 12
  year: 2014
  ident: bib21
  article-title: Using existing network infrastructure to estimate building occupancy and control plugged-in devices in user workspaces
  publication-title: Int. J. Commun. Netw. Distrib. Syst.
– volume: 121
  start-page: 344
  year: 2016
  end-page: 349
  ident: bib12
  article-title: Review of occupancy sensing systems and occupancy modeling methodologies for the application in institutional buildings
  publication-title: Energy Build.
– volume: 103
  start-page: 216
  year: 2015
  end-page: 223
  ident: bib37
  article-title: Modeling regular occupancy in commercial buildings using stochastic models
  publication-title: Energy Build.
– reference: ASHRAE Standard 90.1-2007: Energy Standard for Buildings Except Low-Rise Residential Buildings. n.d.
– volume: 70
  start-page: 31
  year: 2013
  end-page: 47
  ident: bib29
  article-title: A critical review of observation studies, modeling, and simulation of adaptive occupant behaviors in offices
  publication-title: Build. Environ.
– volume: 93
  start-page: 245
  year: 2015
  end-page: 255
  ident: bib47
  article-title: Novel activity classification and occupancy estimation methods for intelligent HVAC (heating, ventilation and air conditioning) systems
  publication-title: Energy
– volume: 140
  start-page: 75
  year: 2015
  end-page: 84
  ident: bib4
  article-title: Experimental study of occupancy-based control of HVAC zones
  publication-title: Appl. Energy
– year: 2013
  ident: bib19
  article-title: Real-time Building Occupancy Sensing for Supporting Demand Driven HVAC Operations
– volume: 57
  start-page: 28
  year: 2012
  end-page: 37
  ident: bib30
  article-title: Development and In-situ validation of a multi-zone demand-controlled ventilation strategy using a limited number of sensors
  publication-title: Build. Environ.
– volume: 8
  start-page: 377
  year: 1999
  end-page: 391
  ident: bib53
  article-title: Experimental validation of co2-based occupancy detection for demand-controlled ventilation
  publication-title: Indoor Built Environ.
– volume: 78
  start-page: 183
  year: 2014
  end-page: 198
  ident: bib23
  article-title: The impact of occupancy patterns, occupant-controlled ventilation and shading on indoor overheating risk in domestic environments
  publication-title: Build. Environ.
– volume: 38
  start-page: 1033
  year: 2006
  end-page: 1043
  ident: bib51
  article-title: Building occupancy detection through sensor belief networks
  publication-title: Energy Build.
– volume: 68
  start-page: 532
  year: 2014
  end-page: 540
  ident: bib6
  article-title: Demand-based temperature control of large-scale rooms aided by wireless sensor network: energy saving potential analysis
  publication-title: Energy Build.
– volume: 53
  start-page: 183
  year: 2012
  end-page: 193
  ident: bib39
  article-title: Stochastic models for building energy prediction based on occupant behavior assessment
  publication-title: Energy Build.
– volume: 20
  start-page: 137
  year: 2011
  end-page: 147
  ident: bib15
  article-title: A field survey of occupancy and air-conditioner use patterns in open plan offices
  publication-title: Indoor Built Environ.
– volume: 52
  start-page: 2555
  year: 2011
  end-page: 2564
  ident: bib52
  article-title: A study of the importance of occupancy to building cooling load in prediction by intelligent approach
  publication-title: Energy Convers. Manag.
– volume: 90
  start-page: 960
  year: 2014
  end-page: 977
  ident: bib33
  article-title: A systematic approach to occupancy modeling in ambient sensor-rich buildings
  publication-title: Simulation
– volume: 31
  start-page: 107
  year: 2016
  end-page: 123
  ident: bib40
  article-title: Smart probabilistic fingerprinting for WiFi-based indoor positioning with mobile devices
  publication-title: Pervasive Mob. Comput.
– volume: 40
  start-page: 83
  year: 2008
  end-page: 98
  ident: bib24
  article-title: A generalised stochastic model for the simulation of occupant presence
  publication-title: Energy Build.
– volume: 96
  start-page: 30
  year: 2015
  end-page: 39
  ident: bib38
  article-title: Four-state domestic building occupancy model for energy demand simulations
  publication-title: Energy Build.
– volume: 114
  start-page: 106
  year: 2017
  end-page: 117
  ident: bib41
  article-title: Understanding occupancy pattern and improving building energy efficiency through Wi-Fi based indoor positioning
  publication-title: Build. Environ.
– volume: 41
  start-page: 571
  year: 2009
  end-page: 577
  ident: bib8
  article-title: HVAC system optimization with CO2 concentration control using genetic algorithms
  publication-title: Energy Build.
– volume: 82
  start-page: 540
  year: 2014
  end-page: 549
  ident: bib43
  article-title: Assessing occupants' energy load variation through existing wireless network infrastructure in commercial and educational buildings
  publication-title: Energy Build.
– volume: 93
  start-page: 110
  year: 2015
  end-page: 118
  ident: bib5
  article-title: A temperature-based approach to detect abnormal building energy consumption
  publication-title: Energy Build.
– volume: 101
  start-page: 521
  year: 2013
  end-page: 532
  ident: bib3
  article-title: Importance of occupancy information for building climate control
  publication-title: Appl. Energy
– volume: Vol. 1
  year: 2010
  ident: bib22
  article-title: AS. A survey of human-sensing: methods for detecting presence, count, location, track, and identity
  publication-title: ENALAB Tech. Rep. 09-2010
– volume: 77
  start-page: 77
  year: 2014
  end-page: 87
  ident: bib13
  article-title: The contextual factors contributing to occupants' adaptive comfort behaviors in offices – a review and proposed modeling framework
  publication-title: Build. Environ.
– volume: 18
  start-page: 440
  year: 2009
  end-page: 446
  ident: bib17
  article-title: Patterns and implications of user control actions in buildings
  publication-title: Indoor Built Environ.
– volume: 106
  start-page: 209
  year: 2013
  end-page: 221
  ident: bib10
  article-title: Occupancy-based zone-climate control for energy-efficient buildings: complexity vs. performance
  publication-title: Appl. Energy
– volume: 4
  start-page: 149
  year: 2011
  end-page: 167
  ident: bib36
  article-title: A novel approach for building occupancy simulation
  publication-title: Build. Simul.
– volume: 17
  start-page: 87
  year: 1991
  end-page: 96
  ident: bib9
  article-title: Demand controlled ventilation by room CO2 concentration: a comparison of simulated energy savings in an auditorium space
  publication-title: Energy Build.
– volume: 41
  start-page: 6211
  year: 2014
  end-page: 6223
  ident: bib42
  article-title: Wi-Fi multi-floor indoor positioning considering architectural aspects and controlled computational complexity
  publication-title: Expert Syst. Appl.
– volume: 47
  start-page: 584
  year: 2012
  end-page: 591
  ident: bib44
  article-title: ENERNET: studying the dynamic relationship between building occupancy and energy consumption
  publication-title: Energy Build.
– volume: 79
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib35
  article-title: Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration
  publication-title: Build. Environ.
– volume: 68
  start-page: 128
  year: 2016
  end-page: 145
  ident: bib14
  article-title: Conditional Random Fields - based approach for real-time building occupancy estimation with multi-sensory networks
  publication-title: Autom. Constr.
– volume: 87
  start-page: 155
  year: 2015
  end-page: 165
  ident: bib25
  article-title: Understanding the energy consumption and occupancy of a multi-purpose academic building
  publication-title: Energy Build.
– volume: 131
  start-page: 132
  year: 2016
  end-page: 141
  ident: bib32
  article-title: Indoor occupancy estimation from carbon dioxide concentration
  publication-title: Energy Build.
– volume: 78
  start-page: 23
  year: 2014
  end-page: 35
  ident: bib1
  article-title: Modeling personalized occupancy profiles for representing long term patterns by using ambient context
  publication-title: Build. Environ.
– volume: 19
  start-page: 93
  year: 2010
  end-page: 99
  ident: bib2
  article-title: Overview of HVAC system simulation
  publication-title: Autom. Constr.
– start-page: 1444
  year: 2009
  end-page: 1451
  ident: bib16
  article-title: Sensor-based occupancy behavioral pattern recognition for energy and comfort management in intelligent buildings
  publication-title: Eleventh International IBPSA Conference Glasgow, Scotland
– year: 2004
  ident: bib49
  article-title: The Analysis of Time Series: an Introduction
– year: 2013
  ident: bib18
  article-title: Energy Savings for Occupancy- Based Control (OBC) of Variable- Air-volume (VAV) Systems
– volume: 88
  start-page: 395
  year: 2015
  end-page: 408
  ident: bib26
  article-title: Occupancy schedules learning process through a data mining framework
  publication-title: Energy Build.
– volume: 7
  start-page: 165
  year: 1998
  end-page: 181
  ident: bib20
  article-title: CO2-Based occupancy detection for on-line outdoor air flow control
  publication-title: Indoor Built Environ.
– volume: 42
  start-page: 1543
  year: 2010
  end-page: 1551
  ident: bib27
  article-title: Occupancy diversity factors for common university building types
  publication-title: Energy Build.
– year: 2013
  ident: bib45
  article-title: Sentinel: occupancy based HVAC actuation using existing WiFi infrastructure within commercial buildings
  publication-title: Proc. 11th ACM Conf. Embed. Networked Sens. Syst. - SenSys 13
– volume: 42
  start-page: 1038
  year: 2010
  end-page: 1046
  ident: bib34
  article-title: An information technology enabled sustainability test-bed (ITEST) for occupancy detection through an environmental sensing network
  publication-title: Energy Build.
– year: 1991
  ident: bib48
  article-title: Time Series: Theory and Methods
– volume: 93
  start-page: 9
  year: 2015
  end-page: 20
  ident: bib50
  article-title: Virtual occupancy sensors for real-time occupancy information in buildings
  publication-title: Build. Environ.
– volume: 96
  start-page: 30
  year: 2015
  ident: 10.1016/j.buildenv.2017.08.003_bib38
  article-title: Four-state domestic building occupancy model for energy demand simulations
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.03.013
– year: 1991
  ident: 10.1016/j.buildenv.2017.08.003_bib48
– volume: 93
  start-page: 110
  year: 2015
  ident: 10.1016/j.buildenv.2017.08.003_bib5
  article-title: A temperature-based approach to detect abnormal building energy consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.02.013
– start-page: 1444
  year: 2009
  ident: 10.1016/j.buildenv.2017.08.003_bib16
  article-title: Sensor-based occupancy behavioral pattern recognition for energy and comfort management in intelligent buildings
– year: 2012
  ident: 10.1016/j.buildenv.2017.08.003_bib46
– volume: 90
  start-page: 960
  year: 2014
  ident: 10.1016/j.buildenv.2017.08.003_bib33
  article-title: A systematic approach to occupancy modeling in ambient sensor-rich buildings
  publication-title: Simulation
  doi: 10.1177/0037549713489918
– volume: 4
  start-page: 149
  year: 2011
  ident: 10.1016/j.buildenv.2017.08.003_bib36
  article-title: A novel approach for building occupancy simulation
  publication-title: Build. Simul.
  doi: 10.1007/s12273-011-0044-5
– volume: 93
  start-page: 9
  year: 2015
  ident: 10.1016/j.buildenv.2017.08.003_bib50
  article-title: Virtual occupancy sensors for real-time occupancy information in buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.06.019
– volume: 24
  start-page: 89
  year: 2012
  ident: 10.1016/j.buildenv.2017.08.003_bib11
  article-title: Measuring and monitoring occupancy with an RFID based system for demand-driven HVAC operations
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2012.02.013
– volume: 41
  start-page: 6211
  year: 2014
  ident: 10.1016/j.buildenv.2017.08.003_bib42
  article-title: Wi-Fi multi-floor indoor positioning considering architectural aspects and controlled computational complexity
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.04.011
– volume: 114
  start-page: 106
  year: 2017
  ident: 10.1016/j.buildenv.2017.08.003_bib41
  article-title: Understanding occupancy pattern and improving building energy efficiency through Wi-Fi based indoor positioning
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.12.015
– volume: 18
  start-page: 440
  year: 2009
  ident: 10.1016/j.buildenv.2017.08.003_bib17
  article-title: Patterns and implications of user control actions in buildings
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X09344277
– volume: 68
  start-page: 128
  year: 2016
  ident: 10.1016/j.buildenv.2017.08.003_bib14
  article-title: Conditional Random Fields - based approach for real-time building occupancy estimation with multi-sensory networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.05.005
– volume: 103
  start-page: 216
  year: 2015
  ident: 10.1016/j.buildenv.2017.08.003_bib37
  article-title: Modeling regular occupancy in commercial buildings using stochastic models
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.06.009
– volume: 106
  start-page: 209
  year: 2013
  ident: 10.1016/j.buildenv.2017.08.003_bib10
  article-title: Occupancy-based zone-climate control for energy-efficient buildings: complexity vs. performance
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.01.039
– volume: 42
  start-page: 1038
  year: 2010
  ident: 10.1016/j.buildenv.2017.08.003_bib34
  article-title: An information technology enabled sustainability test-bed (ITEST) for occupancy detection through an environmental sensing network
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.01.016
– volume: 38
  start-page: 1033
  year: 2006
  ident: 10.1016/j.buildenv.2017.08.003_bib51
  article-title: Building occupancy detection through sensor belief networks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2005.12.001
– volume: 40
  start-page: 83
  year: 2008
  ident: 10.1016/j.buildenv.2017.08.003_bib24
  article-title: A generalised stochastic model for the simulation of occupant presence
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2007.01.018
– start-page: 114
  year: 2013
  ident: 10.1016/j.buildenv.2017.08.003_bib31
– volume: 78
  start-page: 23
  year: 2014
  ident: 10.1016/j.buildenv.2017.08.003_bib1
  article-title: Modeling personalized occupancy profiles for representing long term patterns by using ambient context
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.04.003
– volume: 17
  start-page: 87
  year: 1991
  ident: 10.1016/j.buildenv.2017.08.003_bib9
  article-title: Demand controlled ventilation by room CO2 concentration: a comparison of simulated energy savings in an auditorium space
  publication-title: Energy Build.
  doi: 10.1016/0378-7788(91)90001-J
– volume: 12
  issue: 4
  year: 2014
  ident: 10.1016/j.buildenv.2017.08.003_bib21
  article-title: Using existing network infrastructure to estimate building occupancy and control plugged-in devices in user workspaces
  publication-title: Int. J. Commun. Netw. Distrib. Syst.
– volume: Vol. 1
  issue: 1
  year: 2010
  ident: 10.1016/j.buildenv.2017.08.003_bib22
  article-title: AS. A survey of human-sensing: methods for detecting presence, count, location, track, and identity
  publication-title: ENALAB Tech. Rep. 09-2010
– volume: 82
  start-page: 540
  year: 2014
  ident: 10.1016/j.buildenv.2017.08.003_bib43
  article-title: Assessing occupants' energy load variation through existing wireless network infrastructure in commercial and educational buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.07.053
– ident: 10.1016/j.buildenv.2017.08.003_bib28
– volume: 47
  start-page: 584
  year: 2012
  ident: 10.1016/j.buildenv.2017.08.003_bib44
  article-title: ENERNET: studying the dynamic relationship between building occupancy and energy consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.12.037
– volume: 45
  start-page: 72
  year: 2012
  ident: 10.1016/j.buildenv.2017.08.003_bib7
  article-title: Robust CO2-based demand-controlled ventilation control strategy for multi-zone HVAC systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.10.018
– volume: 31
  start-page: 107
  year: 2016
  ident: 10.1016/j.buildenv.2017.08.003_bib40
  article-title: Smart probabilistic fingerprinting for WiFi-based indoor positioning with mobile devices
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2016.02.001
– volume: 52
  start-page: 2555
  year: 2011
  ident: 10.1016/j.buildenv.2017.08.003_bib52
  article-title: A study of the importance of occupancy to building cooling load in prediction by intelligent approach
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2011.02.002
– volume: 78
  start-page: 183
  year: 2014
  ident: 10.1016/j.buildenv.2017.08.003_bib23
  article-title: The impact of occupancy patterns, occupant-controlled ventilation and shading on indoor overheating risk in domestic environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.04.008
– year: 2013
  ident: 10.1016/j.buildenv.2017.08.003_bib45
  article-title: Sentinel: occupancy based HVAC actuation using existing WiFi infrastructure within commercial buildings
– volume: 8
  start-page: 377
  year: 1999
  ident: 10.1016/j.buildenv.2017.08.003_bib53
  article-title: Experimental validation of co2-based occupancy detection for demand-controlled ventilation
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X9900800605
– volume: 41
  start-page: 571
  year: 2009
  ident: 10.1016/j.buildenv.2017.08.003_bib8
  article-title: HVAC system optimization with CO2 concentration control using genetic algorithms
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2008.12.004
– volume: 101
  start-page: 521
  year: 2013
  ident: 10.1016/j.buildenv.2017.08.003_bib3
  article-title: Importance of occupancy information for building climate control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.06.014
– volume: 140
  start-page: 75
  year: 2015
  ident: 10.1016/j.buildenv.2017.08.003_bib4
  article-title: Experimental study of occupancy-based control of HVAC zones
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.11.064
– volume: 77
  start-page: 77
  year: 2014
  ident: 10.1016/j.buildenv.2017.08.003_bib13
  article-title: The contextual factors contributing to occupants' adaptive comfort behaviors in offices – a review and proposed modeling framework
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.03.024
– year: 2013
  ident: 10.1016/j.buildenv.2017.08.003_bib18
– year: 2004
  ident: 10.1016/j.buildenv.2017.08.003_bib49
– year: 2013
  ident: 10.1016/j.buildenv.2017.08.003_bib19
– volume: 68
  start-page: 532
  year: 2014
  ident: 10.1016/j.buildenv.2017.08.003_bib6
  article-title: Demand-based temperature control of large-scale rooms aided by wireless sensor network: energy saving potential analysis
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.10.005
– volume: 79
  start-page: 1
  year: 2014
  ident: 10.1016/j.buildenv.2017.08.003_bib35
  article-title: Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.04.030
– volume: 93
  start-page: 245
  year: 2015
  ident: 10.1016/j.buildenv.2017.08.003_bib47
  article-title: Novel activity classification and occupancy estimation methods for intelligent HVAC (heating, ventilation and air conditioning) systems
  publication-title: Energy
  doi: 10.1016/j.energy.2015.09.002
– volume: 7
  start-page: 165
  year: 1998
  ident: 10.1016/j.buildenv.2017.08.003_bib20
  article-title: CO2-Based occupancy detection for on-line outdoor air flow control
  publication-title: Indoor Built Environ.
  doi: 10.1159/000024577
– volume: 42
  start-page: 1543
  year: 2010
  ident: 10.1016/j.buildenv.2017.08.003_bib27
  article-title: Occupancy diversity factors for common university building types
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.03.025
– volume: 87
  start-page: 155
  year: 2015
  ident: 10.1016/j.buildenv.2017.08.003_bib25
  article-title: Understanding the energy consumption and occupancy of a multi-purpose academic building
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.11.027
– volume: 131
  start-page: 132
  year: 2016
  ident: 10.1016/j.buildenv.2017.08.003_bib32
  article-title: Indoor occupancy estimation from carbon dioxide concentration
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.09.002
– volume: 20
  start-page: 137
  year: 2011
  ident: 10.1016/j.buildenv.2017.08.003_bib15
  article-title: A field survey of occupancy and air-conditioner use patterns in open plan offices
  publication-title: Indoor Built Environ.
  doi: 10.1177/1420326X10388883
– volume: 53
  start-page: 183
  year: 2012
  ident: 10.1016/j.buildenv.2017.08.003_bib39
  article-title: Stochastic models for building energy prediction based on occupant behavior assessment
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.06.001
– volume: 121
  start-page: 344
  year: 2016
  ident: 10.1016/j.buildenv.2017.08.003_bib12
  article-title: Review of occupancy sensing systems and occupancy modeling methodologies for the application in institutional buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.12.019
– volume: 70
  start-page: 31
  year: 2013
  ident: 10.1016/j.buildenv.2017.08.003_bib29
  article-title: A critical review of observation studies, modeling, and simulation of adaptive occupant behaviors in offices
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.07.020
– volume: 57
  start-page: 28
  year: 2012
  ident: 10.1016/j.buildenv.2017.08.003_bib30
  article-title: Development and In-situ validation of a multi-zone demand-controlled ventilation strategy using a limited number of sensors
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.03.015
– volume: 19
  start-page: 93
  year: 2010
  ident: 10.1016/j.buildenv.2017.08.003_bib2
  article-title: Overview of HVAC system simulation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2009.11.019
– volume: 88
  start-page: 395
  year: 2015
  ident: 10.1016/j.buildenv.2017.08.003_bib26
  article-title: Occupancy schedules learning process through a data mining framework
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.11.065
SSID ssj0016934
Score 2.4755812
Snippet Demand-based HVAC control methods in buildings show great energy saving potential when accurate occupancy information is available. Appropriate service based...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130
SubjectTerms Autoregressive moving-average models
Buildings
Control methods
Energy conservation
HVAC
HVAC equipment
Inference
Markov chains
Markov inference
Occupancy prediction
Overheating
Predictions
Regression analysis
Regression models
Studies
Support vector machines
Time series
Time window approach
Wi-Fi probe
Windows (intervals)
Wireless access points
Wireless communications
Title Modeling and predicting occupancy profile in office space with a Wi-Fi probe-based Dynamic Markov Time-Window Inference approach
URI https://dx.doi.org/10.1016/j.buildenv.2017.08.003
https://www.proquest.com/docview/1962282438
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnqI8Kg-sJmka5zGiQlVAsACCzbLji5QKpRUU2BA_nbvErgoMDCyREtlR5Md3d_F93zF23LM9Y60xQicyF7GVIDQxlsGWUiZ5HOmEyMnXN8noPr58lI9LbOC5MJRW6bC_xfQGrd2TwI1mMK2q4Baxlw4K0AAiDKPfTQz2OCX9_JOPeZoHaY04CalQUOsFlvD4xFDpaajfKMUrbaQ8ffGs3wbqB1Q39me4wdad48hP22_bZEtQb7G1BTnBbfZJhc2IXs51bfn0mc5gKKuZTxopYYRR7kp086rmjXgEcEQUvNLvWK75QyWGFTUyIMi-WX7WVqznxOmZvHFijIgHjOMn7_zCcwW5FybfYffD87vBSLgKC6Lop_lMSBMZsBinaqljQyeckU5Ljfs6K9DPig2GEwAZlKmW1qa4l6OiTKVJdFQCHfLtsuV6UsMe46GWYQyZ6fUADWORZ3mhUwj7oENry7LsMOmHVRVOfpyqYDwpn2c2Vn46FE2HovKYYb_Dgnm_aSvA8WeP3M-a-raUFFqJP_se-mlWbjO_KASpCCPTuJ_t_-PVB2yV7loe4yFbnj2_whE6NDPTbVZsl62cXlyNbr4AwD_4gw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKDMCAeIry9MBqmqZxHiMCqvJcAMFm2fFFCkJpBaVsiJ_OXWKjAgMDS4bEjiI_vruL7_uOsYOu7RprjRE6lpmIrAShibEMtpAyzqJQx0ROvrqOB3fR-YN8aLFjz4WhtEqH_Q2m12jt7nTcaHZGZdm5QeylgwI0gAjD6HfPsLlI9hJa2ofvX3keJDbiNKQCQc2naMKPh4ZqT0M1oRyvpNby9NWzfluoH1hdG6D-MltyniM_aj5uhbWgWmWLU3qCa-yDKpsRv5zryvLRMx3CUFozH9Zawoij3NXo5mXFa_UI4AgpeKX_sVzz-1L0S2pkQJCBs_ykKVnPidQznHCijIh7DOSHb_zMkwW5VyZfZ3f909vjgXAlFkSOIzUW0oQGLAaqWurI0BFnqJNC48ZOc3S0IoPxBEAKRaKltQlu5jAvEmliHRZAp3wbbLYaVrDJeKBlEEFqul1Ay5hnaZbrBIIe6MDaoijaTPphVbnTH6cyGE_KJ5o9Kj8diqZDUX3MoNdmna9-o0aB488emZ819W0tKTQTf_bd8dOs3G5-UYhSIYamUS_d-ser99n84PbqUl2eXV9sswV60pAad9js-PkVdtG7GZu9evV-An07-hk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+predicting+occupancy+profile+in+office+space+with+a+Wi-Fi+probe-based+Dynamic+Markov+Time-Window+Inference+approach&rft.jtitle=Building+and+environment&rft.au=Wang%2C+Wei&rft.au=Chen%2C+Jiayu&rft.au=Song%2C+Xinyi&rft.date=2017-11-01&rft.pub=Elsevier+BV&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=124&rft.spage=130&rft_id=info:doi/10.1016%2Fj.buildenv.2017.08.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon