Modeling and predicting occupancy profile in office space with a Wi-Fi probe-based Dynamic Markov Time-Window Inference approach
Demand-based HVAC control methods in buildings show great energy saving potential when accurate occupancy information is available. Appropriate service based on actual occupant demand could prevent unnecessary energy waste caused by system overcooling or overheating. Therefore, various occupancy det...
Saved in:
Published in | Building and environment Vol. 124; pp. 130 - 142 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.11.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0360-1323 1873-684X |
DOI | 10.1016/j.buildenv.2017.08.003 |
Cover
Loading…
Abstract | Demand-based HVAC control methods in buildings show great energy saving potential when accurate occupancy information is available. Appropriate service based on actual occupant demand could prevent unnecessary energy waste caused by system overcooling or overheating. Therefore, various occupancy detection approaches had attracted increasing attentions in recent years. Among them, Wi-Fi based detection approaches have been thoroughly discussed since Wi-Fi access points (APs) and wireless devices are ubiquitously used in modern buildings. Compared with traditional request and response based occupancy assessment, the newly developed Wi-Fi probe technology can actively scan Wi-Fi enabled devices even if they are not connected to the network. However, Wi-Fi probe detection still subjects to significant errors due to unstable signal and unpredictable occupant behavior. This study stresses the time-series and stochastic characteristics of detected signals and proposes a novel Dynamic Markov Time-Window Inference (DMTWI) model to predict reliable occupancy. The conventional Auto-Regressive Moving Average (ARMA) model and Support Vector Regression (SVR) model are also examined and compared with the proposed approach. Also, an on-site experiment was conducted to validate the proposed model, and the results reveal that the prediction accuracy is over 80% when x-accuracy tolerance is less than 4 for weekdays, 3 for holidays, and 2 for weekend days.
•This paper proposed a novel occupancy detection method for HVAC systems.•The Wi-Fi probe is utilized to collect and predict occupancy information.•The proposed DMTWI method achieved high x-accuracy tolerance.•Three occupancy prediction models were compared. |
---|---|
AbstractList | Demand-based HVAC control methods in buildings show great energy saving potential when accurate occupancy information is available. Appropriate service based on actual occupant demand could prevent unnecessary energy waste caused by system overcooling or overheating. Therefore, various occupancy detection approaches had attracted increasing attentions in recent years. Among them, Wi-Fi based detection approaches have been thoroughly discussed since Wi-Fi access points (APs) and wireless devices are ubiquitously used in modern buildings. Compared with traditional request and response based occupancy assessment, the newly developed Wi-Fi probe technology can actively scan Wi-Fi enabled devices even if they are not connected to the network. However, Wi-Fi probe detection still subjects to significant errors due to unstable signal and unpredictable occupant behavior. This study stresses the time-series and stochastic characteristics of detected signals and proposes a novel Dynamic Markov Time-Window Inference (DMTWI) model to predict reliable occupancy. The conventional Auto-Regressive Moving Average (ARMA) model and Support Vector Regression (SVR) model are also examined and compared with the proposed approach. Also, an on-site experiment was conducted to validate the proposed model, and the results reveal that the prediction accuracy is over 80% when x-accuracy tolerance is less than 4 for weekdays, 3 for holidays, and 2 for weekend days. Demand-based HVAC control methods in buildings show great energy saving potential when accurate occupancy information is available. Appropriate service based on actual occupant demand could prevent unnecessary energy waste caused by system overcooling or overheating. Therefore, various occupancy detection approaches had attracted increasing attentions in recent years. Among them, Wi-Fi based detection approaches have been thoroughly discussed since Wi-Fi access points (APs) and wireless devices are ubiquitously used in modern buildings. Compared with traditional request and response based occupancy assessment, the newly developed Wi-Fi probe technology can actively scan Wi-Fi enabled devices even if they are not connected to the network. However, Wi-Fi probe detection still subjects to significant errors due to unstable signal and unpredictable occupant behavior. This study stresses the time-series and stochastic characteristics of detected signals and proposes a novel Dynamic Markov Time-Window Inference (DMTWI) model to predict reliable occupancy. The conventional Auto-Regressive Moving Average (ARMA) model and Support Vector Regression (SVR) model are also examined and compared with the proposed approach. Also, an on-site experiment was conducted to validate the proposed model, and the results reveal that the prediction accuracy is over 80% when x-accuracy tolerance is less than 4 for weekdays, 3 for holidays, and 2 for weekend days. •This paper proposed a novel occupancy detection method for HVAC systems.•The Wi-Fi probe is utilized to collect and predict occupancy information.•The proposed DMTWI method achieved high x-accuracy tolerance.•Three occupancy prediction models were compared. |
Author | Wang, Wei Song, Xinyi Chen, Jiayu |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0001-5207-3533 surname: Wang fullname: Wang, Wei organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Y6621, AC1, Tat Chee Ave, Kowloon, Hong Kong – sequence: 2 givenname: Jiayu orcidid: 0000-0001-9396-0059 surname: Chen fullname: Chen, Jiayu email: jiaychen@cityu.edu.hk organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Y6621, AC1, Tat Chee Ave, Kowloon, Hong Kong – sequence: 3 givenname: Xinyi surname: Song fullname: Song, Xinyi organization: School of Building Construction, Georgia Institute of Technology, Atlanta, GA 30332, United States |
BookMark | eNqFkMFu1DAQhi1UJLaFV0CWOCc4dhJnJQ6gQkulVlxatTdrYo_pLFk7ONmt9saj19HChUsvM5rR_81I3yk7CTEgY-8rUVaiaj9uyn5Hg8OwL6WodCm6Ugj1iq2qTqui7eqHE7YSqhVFpaR6w06naSMyuFb1iv25iQ4HCj85BMfHhI7svIzR2t0IwR7yMnoakFPg0XuyyKcRcn2i-ZEDv6figpZQj0UPEzr-9RBgS5bfQPoV9_yWtljcU3DxiV8FjwlDpmHMCNjHt-y1h2HCd3_7Gbu7-HZ7_r24_nF5df7lurBKr-ei6WWPTlcKGqj7RjZCgvZQC9HZWqq6b3WD2KHX0Din9VpJ63XTtyA9CqHVGftwvJvf_t7hNJtN3KWQX5pq3UrZyVp1OfXpmLIpTlNCbyzNMFMMcwIaTCXM4txszD_nZnFuRGey84y3_-Fjoi2kw8vg5yOIWcGeMJnJ0uLJUUI7GxfppRPPsZij7A |
CitedBy_id | crossref_primary_10_1016_j_buildenv_2021_107936 crossref_primary_10_1016_j_enbuild_2018_03_084 crossref_primary_10_1016_j_rser_2024_114284 crossref_primary_10_1007_s12273_020_0726_y crossref_primary_10_1016_j_enbuild_2019_109439 crossref_primary_10_1016_j_buildenv_2020_106681 crossref_primary_10_1016_j_enbuild_2019_109713 crossref_primary_10_1016_j_buildenv_2022_109040 crossref_primary_10_1080_23744731_2021_1993672 crossref_primary_10_3390_buildings13082002 crossref_primary_10_3389_frobt_2023_1280745 crossref_primary_10_1016_j_buildenv_2019_05_032 crossref_primary_10_1016_j_buildenv_2023_111005 crossref_primary_10_1016_j_buildenv_2019_01_052 crossref_primary_10_1016_j_rser_2022_112704 crossref_primary_10_1016_j_apenergy_2018_11_079 crossref_primary_10_1016_j_jclepro_2022_131602 crossref_primary_10_1016_j_buildenv_2022_109207 crossref_primary_10_1016_j_enbuild_2017_11_041 crossref_primary_10_1016_j_jobe_2019_100864 crossref_primary_10_1007_s42524_022_0244_y crossref_primary_10_1016_j_jobe_2019_100948 crossref_primary_10_1016_j_enbuild_2020_110179 crossref_primary_10_1016_j_enbuild_2018_10_007 crossref_primary_10_1016_j_jobe_2024_110445 crossref_primary_10_1016_j_buildenv_2020_107126 crossref_primary_10_1007_s12273_021_0813_8 crossref_primary_10_1016_j_autcon_2020_103331 crossref_primary_10_1016_j_buildenv_2019_106461 crossref_primary_10_1145_3477929 crossref_primary_10_1016_j_buildenv_2018_04_034 crossref_primary_10_3390_en15031219 crossref_primary_10_1016_j_enbuild_2021_111362 crossref_primary_10_1016_j_enbuild_2022_112354 crossref_primary_10_1007_s42486_023_00130_z crossref_primary_10_1016_j_buildenv_2018_10_028 crossref_primary_10_3390_buildings11020041 crossref_primary_10_3390_en13154033 crossref_primary_10_1016_j_apenergy_2020_114892 crossref_primary_10_1016_j_autcon_2018_07_007 crossref_primary_10_1016_j_buildenv_2019_05_015 crossref_primary_10_1016_j_buildenv_2023_110807 crossref_primary_10_1016_j_jobe_2021_102928 crossref_primary_10_1016_j_enbuild_2018_09_002 crossref_primary_10_1016_j_enbuild_2021_111759 crossref_primary_10_1016_j_enbuild_2023_113813 crossref_primary_10_1016_j_buildenv_2018_04_002 crossref_primary_10_1016_j_buildenv_2020_106818 crossref_primary_10_1016_j_scs_2020_102533 crossref_primary_10_3390_app11073108 crossref_primary_10_1016_j_buildenv_2019_106280 crossref_primary_10_3390_en18020388 crossref_primary_10_1016_j_enbuild_2021_111345 crossref_primary_10_1080_19401493_2021_2001572 crossref_primary_10_1080_19401493_2023_2250310 crossref_primary_10_1016_j_buildenv_2024_111548 crossref_primary_10_1109_ACCESS_2021_3083534 crossref_primary_10_1016_j_decarb_2023_100023 crossref_primary_10_1007_s12273_022_0907_y crossref_primary_10_1016_j_enbuild_2025_115388 crossref_primary_10_1016_j_buildenv_2018_12_030 crossref_primary_10_1016_j_buildenv_2019_01_043 crossref_primary_10_1007_s12273_022_0948_2 crossref_primary_10_1016_j_buildenv_2020_106729 crossref_primary_10_1080_21680566_2021_1956388 |
Cites_doi | 10.1016/j.enbuild.2015.03.013 10.1016/j.enbuild.2015.02.013 10.1177/0037549713489918 10.1007/s12273-011-0044-5 10.1016/j.buildenv.2015.06.019 10.1016/j.autcon.2012.02.013 10.1016/j.eswa.2014.04.011 10.1016/j.buildenv.2016.12.015 10.1177/1420326X09344277 10.1016/j.autcon.2016.05.005 10.1016/j.enbuild.2015.06.009 10.1016/j.apenergy.2013.01.039 10.1016/j.enbuild.2010.01.016 10.1016/j.enbuild.2005.12.001 10.1016/j.enbuild.2007.01.018 10.1016/j.buildenv.2014.04.003 10.1016/0378-7788(91)90001-J 10.1016/j.enbuild.2014.07.053 10.1016/j.enbuild.2011.12.037 10.1016/j.enbuild.2011.10.018 10.1016/j.pmcj.2016.02.001 10.1016/j.enconman.2011.02.002 10.1016/j.buildenv.2014.04.008 10.1177/1420326X9900800605 10.1016/j.enbuild.2008.12.004 10.1016/j.apenergy.2012.06.014 10.1016/j.apenergy.2014.11.064 10.1016/j.buildenv.2014.03.024 10.1016/j.enbuild.2013.10.005 10.1016/j.buildenv.2014.04.030 10.1016/j.energy.2015.09.002 10.1159/000024577 10.1016/j.enbuild.2010.03.025 10.1016/j.enbuild.2014.11.027 10.1016/j.enbuild.2016.09.002 10.1177/1420326X10388883 10.1016/j.enbuild.2012.06.001 10.1016/j.enbuild.2015.12.019 10.1016/j.buildenv.2013.07.020 10.1016/j.buildenv.2012.03.015 10.1016/j.autcon.2009.11.019 10.1016/j.enbuild.2014.11.065 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Nov 1, 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Nov 1, 2017 |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
DOI | 10.1016/j.buildenv.2017.08.003 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-684X |
EndPage | 142 |
ExternalDocumentID | 10_1016_j_buildenv_2017_08_003 S0360132317303487 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SEN SES SPC SPCBC SSJ SSR SST SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SAC SET SEW SSH VH1 WUQ ZMT 7ST 8FD C1K EFKBS F28 FR3 KR7 SOI |
ID | FETCH-LOGICAL-c379t-5b2bed713a5a4b52502a7fa4008c4234b675ee8ef7a5dd77932cf75b6a2fe0073 |
IEDL.DBID | .~1 |
ISSN | 0360-1323 |
IngestDate | Wed Aug 13 06:27:36 EDT 2025 Tue Jul 01 00:24:49 EDT 2025 Thu Apr 24 23:10:23 EDT 2025 Fri Feb 23 02:31:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Occupancy prediction Markov inference Time window approach Wi-Fi probe |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-5b2bed713a5a4b52502a7fa4008c4234b675ee8ef7a5dd77932cf75b6a2fe0073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5207-3533 0000-0001-9396-0059 |
PQID | 1962282438 |
PQPubID | 2045275 |
PageCount | 13 |
ParticipantIDs | proquest_journals_1962282438 crossref_citationtrail_10_1016_j_buildenv_2017_08_003 crossref_primary_10_1016_j_buildenv_2017_08_003 elsevier_sciencedirect_doi_10_1016_j_buildenv_2017_08_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Building and environment |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Campos, Lovisolo, de Campos (bib42) 2014; 41 Christensen, Melfi, Nordman, Rosenblum, Viera (bib21) 2014; 12 Shan, Sun, Wang, Yan (bib30) 2012; 57 Ekwevugbe, Brown, Pakka, Fan (bib31) 2013 D'Oca, Hong (bib26) 2015; 88 Wang, Burnett, Chong (bib53) 1999; 8 Virote, Neves-Silva (bib39) 2012; 53 Mahdavi (bib17) 2009; 18 Rana, Kusy, Wall, Hu (bib47) 2015; 93 Zhao, Zeiler, Boxem, Labeodan (bib50) 2015; 93 Bisio, Lavagetto, Marchese, Sciarrone (bib40) 2016; 31 Lin, Claridge (bib5) 2015; 93 Warren, Harper (bib9) 1991; 17 McKenna, Krawczynski, Thomson (bib38) 2015; 96 Dong, Andrews, Lam, Hoynck, Zhang, Chiou (bib34) 2010; 42 Yang, Li, Becerik-Gerber, Orosz (bib33) 2014; 90 Sun, Yan, Hong, Guo (bib35) 2014; 79 Wang, Yan, Jiang (bib36) 2011; 4 Martani, Lee, Robinson, Britter, Ratti (bib44) 2012; 47 Chen, Ahn (bib43) 2014; 82 Mavrogianni, Davies, Taylor, Chalabi, Biddulph, Oikonomou (bib23) 2014; 78 Kwok, Lee (bib52) 2011; 52 Gul, Patidar (bib25) 2015; 87 Li, Calis, Becerik-Gerber (bib11) 2012; 24 Congradac, Kulic (bib8) 2009; 41 Nassif (bib7) 2012; 45 Sidiropoulos, Mioduszewski, Oljasz, Schaap EdwinSchaap (bib46) 2012 Chatfield (bib49) 2004 Goyal, Barooah, Middelkoop (bib4) 2015; 140 Gunay, O'Brien, Beausoleil-Morrison (bib29) 2013; 70 Balaji, Xu, Nwokafor, Gupta, Agarwal (bib45) 2013 Chen, Xu, Soh (bib37) 2015; 103 ASHRAE Standard 90.1-2007: Energy Standard for Buildings Except Low-Rise Residential Buildings. n.d. Jiang, Masood, Soh, Li (bib32) 2016; 131 Page, Robinson, Morel, Scartezzini (bib24) 2008; 40 Trčka, Hensen (bib2) 2010; 19 Zhang, Liu, Lutes, Brambley (bib18) 2013 Goyal, Ingley, Barooah (bib10) 2013; 106 Teixeira, Dublon (bib22) 2010; Vol. 1 Wang, Jin (bib20) 1998; 7 Davis, Nutter (bib27) 2010; 42 Zikos, Tsolakis, Meskos, Tryferidis, Tzovaras (bib14) 2016; 68 Wang, Shao (bib41) 2017; 114 Yang, Becerik-Gerber (bib1) 2014; 78 Yang, Santamouris, Lee (bib12) 2016; 121 O'Brien, Gunay (bib13) 2014; 77 Geun Young Yun, Hyo Joo Kong, Jeong Tai Kim (bib15) 2011; 20 Dong, Andrews (bib16) 2009 Ekwevigbe, Brown, Pakka, Fan (bib19) 2013 Oldewurtel, Sturzenegger, Morari (bib3) 2013; 101 Brockwell, Davis (bib48) 1991 Dodier, Henze, Tiller, Guo (bib51) 2006; 38 Zhou, Huang, Li (bib6) 2014; 68 Wang (10.1016/j.buildenv.2017.08.003_bib20) 1998; 7 Wang (10.1016/j.buildenv.2017.08.003_bib41) 2017; 114 Wang (10.1016/j.buildenv.2017.08.003_bib53) 1999; 8 Goyal (10.1016/j.buildenv.2017.08.003_bib4) 2015; 140 Gul (10.1016/j.buildenv.2017.08.003_bib25) 2015; 87 Gunay (10.1016/j.buildenv.2017.08.003_bib29) 2013; 70 Lin (10.1016/j.buildenv.2017.08.003_bib5) 2015; 93 Jiang (10.1016/j.buildenv.2017.08.003_bib32) 2016; 131 Yang (10.1016/j.buildenv.2017.08.003_bib12) 2016; 121 Virote (10.1016/j.buildenv.2017.08.003_bib39) 2012; 53 Shan (10.1016/j.buildenv.2017.08.003_bib30) 2012; 57 Zhang (10.1016/j.buildenv.2017.08.003_bib18) 2013 Sun (10.1016/j.buildenv.2017.08.003_bib35) 2014; 79 Congradac (10.1016/j.buildenv.2017.08.003_bib8) 2009; 41 Page (10.1016/j.buildenv.2017.08.003_bib24) 2008; 40 Warren (10.1016/j.buildenv.2017.08.003_bib9) 1991; 17 10.1016/j.buildenv.2017.08.003_bib28 Brockwell (10.1016/j.buildenv.2017.08.003_bib48) 1991 Ekwevigbe (10.1016/j.buildenv.2017.08.003_bib19) 2013 Kwok (10.1016/j.buildenv.2017.08.003_bib52) 2011; 52 Balaji (10.1016/j.buildenv.2017.08.003_bib45) 2013 Trčka (10.1016/j.buildenv.2017.08.003_bib2) 2010; 19 Oldewurtel (10.1016/j.buildenv.2017.08.003_bib3) 2013; 101 Mavrogianni (10.1016/j.buildenv.2017.08.003_bib23) 2014; 78 Davis (10.1016/j.buildenv.2017.08.003_bib27) 2010; 42 Zhou (10.1016/j.buildenv.2017.08.003_bib6) 2014; 68 Mahdavi (10.1016/j.buildenv.2017.08.003_bib17) 2009; 18 Campos (10.1016/j.buildenv.2017.08.003_bib42) 2014; 41 Zhao (10.1016/j.buildenv.2017.08.003_bib50) 2015; 93 Chatfield (10.1016/j.buildenv.2017.08.003_bib49) 2004 Dong (10.1016/j.buildenv.2017.08.003_bib34) 2010; 42 Goyal (10.1016/j.buildenv.2017.08.003_bib10) 2013; 106 D'Oca (10.1016/j.buildenv.2017.08.003_bib26) 2015; 88 Li (10.1016/j.buildenv.2017.08.003_bib11) 2012; 24 Dong (10.1016/j.buildenv.2017.08.003_bib16) 2009 Bisio (10.1016/j.buildenv.2017.08.003_bib40) 2016; 31 Martani (10.1016/j.buildenv.2017.08.003_bib44) 2012; 47 Nassif (10.1016/j.buildenv.2017.08.003_bib7) 2012; 45 Zikos (10.1016/j.buildenv.2017.08.003_bib14) 2016; 68 Rana (10.1016/j.buildenv.2017.08.003_bib47) 2015; 93 Chen (10.1016/j.buildenv.2017.08.003_bib37) 2015; 103 O'Brien (10.1016/j.buildenv.2017.08.003_bib13) 2014; 77 Teixeira (10.1016/j.buildenv.2017.08.003_bib22) 2010; Vol. 1 Yang (10.1016/j.buildenv.2017.08.003_bib1) 2014; 78 Christensen (10.1016/j.buildenv.2017.08.003_bib21) 2014; 12 McKenna (10.1016/j.buildenv.2017.08.003_bib38) 2015; 96 Sidiropoulos (10.1016/j.buildenv.2017.08.003_bib46) 2012 Wang (10.1016/j.buildenv.2017.08.003_bib36) 2011; 4 Dodier (10.1016/j.buildenv.2017.08.003_bib51) 2006; 38 Geun Young Yun (10.1016/j.buildenv.2017.08.003_bib15) 2011; 20 Ekwevugbe (10.1016/j.buildenv.2017.08.003_bib31) 2013 Yang (10.1016/j.buildenv.2017.08.003_bib33) 2014; 90 Chen (10.1016/j.buildenv.2017.08.003_bib43) 2014; 82 |
References_xml | – year: 2012 ident: bib46 article-title: Open Wifi SSID Broadcast Vulnerability SSN Project Assessment 2012 – start-page: 114 year: 2013 end-page: 119 ident: bib31 article-title: Real-time Building Occupancy Sensing Using Neural-network Based Sensor Network – volume: 45 start-page: 72 year: 2012 end-page: 81 ident: bib7 article-title: Robust CO2-based demand-controlled ventilation control strategy for multi-zone HVAC systems publication-title: Energy Build. – volume: 24 start-page: 89 year: 2012 end-page: 99 ident: bib11 article-title: Measuring and monitoring occupancy with an RFID based system for demand-driven HVAC operations publication-title: Autom. Constr. – volume: 12 year: 2014 ident: bib21 article-title: Using existing network infrastructure to estimate building occupancy and control plugged-in devices in user workspaces publication-title: Int. J. Commun. Netw. Distrib. Syst. – volume: 121 start-page: 344 year: 2016 end-page: 349 ident: bib12 article-title: Review of occupancy sensing systems and occupancy modeling methodologies for the application in institutional buildings publication-title: Energy Build. – volume: 103 start-page: 216 year: 2015 end-page: 223 ident: bib37 article-title: Modeling regular occupancy in commercial buildings using stochastic models publication-title: Energy Build. – reference: ASHRAE Standard 90.1-2007: Energy Standard for Buildings Except Low-Rise Residential Buildings. n.d. – volume: 70 start-page: 31 year: 2013 end-page: 47 ident: bib29 article-title: A critical review of observation studies, modeling, and simulation of adaptive occupant behaviors in offices publication-title: Build. Environ. – volume: 93 start-page: 245 year: 2015 end-page: 255 ident: bib47 article-title: Novel activity classification and occupancy estimation methods for intelligent HVAC (heating, ventilation and air conditioning) systems publication-title: Energy – volume: 140 start-page: 75 year: 2015 end-page: 84 ident: bib4 article-title: Experimental study of occupancy-based control of HVAC zones publication-title: Appl. Energy – year: 2013 ident: bib19 article-title: Real-time Building Occupancy Sensing for Supporting Demand Driven HVAC Operations – volume: 57 start-page: 28 year: 2012 end-page: 37 ident: bib30 article-title: Development and In-situ validation of a multi-zone demand-controlled ventilation strategy using a limited number of sensors publication-title: Build. Environ. – volume: 8 start-page: 377 year: 1999 end-page: 391 ident: bib53 article-title: Experimental validation of co2-based occupancy detection for demand-controlled ventilation publication-title: Indoor Built Environ. – volume: 78 start-page: 183 year: 2014 end-page: 198 ident: bib23 article-title: The impact of occupancy patterns, occupant-controlled ventilation and shading on indoor overheating risk in domestic environments publication-title: Build. Environ. – volume: 38 start-page: 1033 year: 2006 end-page: 1043 ident: bib51 article-title: Building occupancy detection through sensor belief networks publication-title: Energy Build. – volume: 68 start-page: 532 year: 2014 end-page: 540 ident: bib6 article-title: Demand-based temperature control of large-scale rooms aided by wireless sensor network: energy saving potential analysis publication-title: Energy Build. – volume: 53 start-page: 183 year: 2012 end-page: 193 ident: bib39 article-title: Stochastic models for building energy prediction based on occupant behavior assessment publication-title: Energy Build. – volume: 20 start-page: 137 year: 2011 end-page: 147 ident: bib15 article-title: A field survey of occupancy and air-conditioner use patterns in open plan offices publication-title: Indoor Built Environ. – volume: 52 start-page: 2555 year: 2011 end-page: 2564 ident: bib52 article-title: A study of the importance of occupancy to building cooling load in prediction by intelligent approach publication-title: Energy Convers. Manag. – volume: 90 start-page: 960 year: 2014 end-page: 977 ident: bib33 article-title: A systematic approach to occupancy modeling in ambient sensor-rich buildings publication-title: Simulation – volume: 31 start-page: 107 year: 2016 end-page: 123 ident: bib40 article-title: Smart probabilistic fingerprinting for WiFi-based indoor positioning with mobile devices publication-title: Pervasive Mob. Comput. – volume: 40 start-page: 83 year: 2008 end-page: 98 ident: bib24 article-title: A generalised stochastic model for the simulation of occupant presence publication-title: Energy Build. – volume: 96 start-page: 30 year: 2015 end-page: 39 ident: bib38 article-title: Four-state domestic building occupancy model for energy demand simulations publication-title: Energy Build. – volume: 114 start-page: 106 year: 2017 end-page: 117 ident: bib41 article-title: Understanding occupancy pattern and improving building energy efficiency through Wi-Fi based indoor positioning publication-title: Build. Environ. – volume: 41 start-page: 571 year: 2009 end-page: 577 ident: bib8 article-title: HVAC system optimization with CO2 concentration control using genetic algorithms publication-title: Energy Build. – volume: 82 start-page: 540 year: 2014 end-page: 549 ident: bib43 article-title: Assessing occupants' energy load variation through existing wireless network infrastructure in commercial and educational buildings publication-title: Energy Build. – volume: 93 start-page: 110 year: 2015 end-page: 118 ident: bib5 article-title: A temperature-based approach to detect abnormal building energy consumption publication-title: Energy Build. – volume: 101 start-page: 521 year: 2013 end-page: 532 ident: bib3 article-title: Importance of occupancy information for building climate control publication-title: Appl. Energy – volume: Vol. 1 year: 2010 ident: bib22 article-title: AS. A survey of human-sensing: methods for detecting presence, count, location, track, and identity publication-title: ENALAB Tech. Rep. 09-2010 – volume: 77 start-page: 77 year: 2014 end-page: 87 ident: bib13 article-title: The contextual factors contributing to occupants' adaptive comfort behaviors in offices – a review and proposed modeling framework publication-title: Build. Environ. – volume: 18 start-page: 440 year: 2009 end-page: 446 ident: bib17 article-title: Patterns and implications of user control actions in buildings publication-title: Indoor Built Environ. – volume: 106 start-page: 209 year: 2013 end-page: 221 ident: bib10 article-title: Occupancy-based zone-climate control for energy-efficient buildings: complexity vs. performance publication-title: Appl. Energy – volume: 4 start-page: 149 year: 2011 end-page: 167 ident: bib36 article-title: A novel approach for building occupancy simulation publication-title: Build. Simul. – volume: 17 start-page: 87 year: 1991 end-page: 96 ident: bib9 article-title: Demand controlled ventilation by room CO2 concentration: a comparison of simulated energy savings in an auditorium space publication-title: Energy Build. – volume: 41 start-page: 6211 year: 2014 end-page: 6223 ident: bib42 article-title: Wi-Fi multi-floor indoor positioning considering architectural aspects and controlled computational complexity publication-title: Expert Syst. Appl. – volume: 47 start-page: 584 year: 2012 end-page: 591 ident: bib44 article-title: ENERNET: studying the dynamic relationship between building occupancy and energy consumption publication-title: Energy Build. – volume: 79 start-page: 1 year: 2014 end-page: 12 ident: bib35 article-title: Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration publication-title: Build. Environ. – volume: 68 start-page: 128 year: 2016 end-page: 145 ident: bib14 article-title: Conditional Random Fields - based approach for real-time building occupancy estimation with multi-sensory networks publication-title: Autom. Constr. – volume: 87 start-page: 155 year: 2015 end-page: 165 ident: bib25 article-title: Understanding the energy consumption and occupancy of a multi-purpose academic building publication-title: Energy Build. – volume: 131 start-page: 132 year: 2016 end-page: 141 ident: bib32 article-title: Indoor occupancy estimation from carbon dioxide concentration publication-title: Energy Build. – volume: 78 start-page: 23 year: 2014 end-page: 35 ident: bib1 article-title: Modeling personalized occupancy profiles for representing long term patterns by using ambient context publication-title: Build. Environ. – volume: 19 start-page: 93 year: 2010 end-page: 99 ident: bib2 article-title: Overview of HVAC system simulation publication-title: Autom. Constr. – start-page: 1444 year: 2009 end-page: 1451 ident: bib16 article-title: Sensor-based occupancy behavioral pattern recognition for energy and comfort management in intelligent buildings publication-title: Eleventh International IBPSA Conference Glasgow, Scotland – year: 2004 ident: bib49 article-title: The Analysis of Time Series: an Introduction – year: 2013 ident: bib18 article-title: Energy Savings for Occupancy- Based Control (OBC) of Variable- Air-volume (VAV) Systems – volume: 88 start-page: 395 year: 2015 end-page: 408 ident: bib26 article-title: Occupancy schedules learning process through a data mining framework publication-title: Energy Build. – volume: 7 start-page: 165 year: 1998 end-page: 181 ident: bib20 article-title: CO2-Based occupancy detection for on-line outdoor air flow control publication-title: Indoor Built Environ. – volume: 42 start-page: 1543 year: 2010 end-page: 1551 ident: bib27 article-title: Occupancy diversity factors for common university building types publication-title: Energy Build. – year: 2013 ident: bib45 article-title: Sentinel: occupancy based HVAC actuation using existing WiFi infrastructure within commercial buildings publication-title: Proc. 11th ACM Conf. Embed. Networked Sens. Syst. - SenSys 13 – volume: 42 start-page: 1038 year: 2010 end-page: 1046 ident: bib34 article-title: An information technology enabled sustainability test-bed (ITEST) for occupancy detection through an environmental sensing network publication-title: Energy Build. – year: 1991 ident: bib48 article-title: Time Series: Theory and Methods – volume: 93 start-page: 9 year: 2015 end-page: 20 ident: bib50 article-title: Virtual occupancy sensors for real-time occupancy information in buildings publication-title: Build. Environ. – volume: 96 start-page: 30 year: 2015 ident: 10.1016/j.buildenv.2017.08.003_bib38 article-title: Four-state domestic building occupancy model for energy demand simulations publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.03.013 – year: 1991 ident: 10.1016/j.buildenv.2017.08.003_bib48 – volume: 93 start-page: 110 year: 2015 ident: 10.1016/j.buildenv.2017.08.003_bib5 article-title: A temperature-based approach to detect abnormal building energy consumption publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.02.013 – start-page: 1444 year: 2009 ident: 10.1016/j.buildenv.2017.08.003_bib16 article-title: Sensor-based occupancy behavioral pattern recognition for energy and comfort management in intelligent buildings – year: 2012 ident: 10.1016/j.buildenv.2017.08.003_bib46 – volume: 90 start-page: 960 year: 2014 ident: 10.1016/j.buildenv.2017.08.003_bib33 article-title: A systematic approach to occupancy modeling in ambient sensor-rich buildings publication-title: Simulation doi: 10.1177/0037549713489918 – volume: 4 start-page: 149 year: 2011 ident: 10.1016/j.buildenv.2017.08.003_bib36 article-title: A novel approach for building occupancy simulation publication-title: Build. Simul. doi: 10.1007/s12273-011-0044-5 – volume: 93 start-page: 9 year: 2015 ident: 10.1016/j.buildenv.2017.08.003_bib50 article-title: Virtual occupancy sensors for real-time occupancy information in buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.06.019 – volume: 24 start-page: 89 year: 2012 ident: 10.1016/j.buildenv.2017.08.003_bib11 article-title: Measuring and monitoring occupancy with an RFID based system for demand-driven HVAC operations publication-title: Autom. Constr. doi: 10.1016/j.autcon.2012.02.013 – volume: 41 start-page: 6211 year: 2014 ident: 10.1016/j.buildenv.2017.08.003_bib42 article-title: Wi-Fi multi-floor indoor positioning considering architectural aspects and controlled computational complexity publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.04.011 – volume: 114 start-page: 106 year: 2017 ident: 10.1016/j.buildenv.2017.08.003_bib41 article-title: Understanding occupancy pattern and improving building energy efficiency through Wi-Fi based indoor positioning publication-title: Build. Environ. doi: 10.1016/j.buildenv.2016.12.015 – volume: 18 start-page: 440 year: 2009 ident: 10.1016/j.buildenv.2017.08.003_bib17 article-title: Patterns and implications of user control actions in buildings publication-title: Indoor Built Environ. doi: 10.1177/1420326X09344277 – volume: 68 start-page: 128 year: 2016 ident: 10.1016/j.buildenv.2017.08.003_bib14 article-title: Conditional Random Fields - based approach for real-time building occupancy estimation with multi-sensory networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.05.005 – volume: 103 start-page: 216 year: 2015 ident: 10.1016/j.buildenv.2017.08.003_bib37 article-title: Modeling regular occupancy in commercial buildings using stochastic models publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.06.009 – volume: 106 start-page: 209 year: 2013 ident: 10.1016/j.buildenv.2017.08.003_bib10 article-title: Occupancy-based zone-climate control for energy-efficient buildings: complexity vs. performance publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.01.039 – volume: 42 start-page: 1038 year: 2010 ident: 10.1016/j.buildenv.2017.08.003_bib34 article-title: An information technology enabled sustainability test-bed (ITEST) for occupancy detection through an environmental sensing network publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.01.016 – volume: 38 start-page: 1033 year: 2006 ident: 10.1016/j.buildenv.2017.08.003_bib51 article-title: Building occupancy detection through sensor belief networks publication-title: Energy Build. doi: 10.1016/j.enbuild.2005.12.001 – volume: 40 start-page: 83 year: 2008 ident: 10.1016/j.buildenv.2017.08.003_bib24 article-title: A generalised stochastic model for the simulation of occupant presence publication-title: Energy Build. doi: 10.1016/j.enbuild.2007.01.018 – start-page: 114 year: 2013 ident: 10.1016/j.buildenv.2017.08.003_bib31 – volume: 78 start-page: 23 year: 2014 ident: 10.1016/j.buildenv.2017.08.003_bib1 article-title: Modeling personalized occupancy profiles for representing long term patterns by using ambient context publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.04.003 – volume: 17 start-page: 87 year: 1991 ident: 10.1016/j.buildenv.2017.08.003_bib9 article-title: Demand controlled ventilation by room CO2 concentration: a comparison of simulated energy savings in an auditorium space publication-title: Energy Build. doi: 10.1016/0378-7788(91)90001-J – volume: 12 issue: 4 year: 2014 ident: 10.1016/j.buildenv.2017.08.003_bib21 article-title: Using existing network infrastructure to estimate building occupancy and control plugged-in devices in user workspaces publication-title: Int. J. Commun. Netw. Distrib. Syst. – volume: Vol. 1 issue: 1 year: 2010 ident: 10.1016/j.buildenv.2017.08.003_bib22 article-title: AS. A survey of human-sensing: methods for detecting presence, count, location, track, and identity publication-title: ENALAB Tech. Rep. 09-2010 – volume: 82 start-page: 540 year: 2014 ident: 10.1016/j.buildenv.2017.08.003_bib43 article-title: Assessing occupants' energy load variation through existing wireless network infrastructure in commercial and educational buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.07.053 – ident: 10.1016/j.buildenv.2017.08.003_bib28 – volume: 47 start-page: 584 year: 2012 ident: 10.1016/j.buildenv.2017.08.003_bib44 article-title: ENERNET: studying the dynamic relationship between building occupancy and energy consumption publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.12.037 – volume: 45 start-page: 72 year: 2012 ident: 10.1016/j.buildenv.2017.08.003_bib7 article-title: Robust CO2-based demand-controlled ventilation control strategy for multi-zone HVAC systems publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.10.018 – volume: 31 start-page: 107 year: 2016 ident: 10.1016/j.buildenv.2017.08.003_bib40 article-title: Smart probabilistic fingerprinting for WiFi-based indoor positioning with mobile devices publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2016.02.001 – volume: 52 start-page: 2555 year: 2011 ident: 10.1016/j.buildenv.2017.08.003_bib52 article-title: A study of the importance of occupancy to building cooling load in prediction by intelligent approach publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2011.02.002 – volume: 78 start-page: 183 year: 2014 ident: 10.1016/j.buildenv.2017.08.003_bib23 article-title: The impact of occupancy patterns, occupant-controlled ventilation and shading on indoor overheating risk in domestic environments publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.04.008 – year: 2013 ident: 10.1016/j.buildenv.2017.08.003_bib45 article-title: Sentinel: occupancy based HVAC actuation using existing WiFi infrastructure within commercial buildings – volume: 8 start-page: 377 year: 1999 ident: 10.1016/j.buildenv.2017.08.003_bib53 article-title: Experimental validation of co2-based occupancy detection for demand-controlled ventilation publication-title: Indoor Built Environ. doi: 10.1177/1420326X9900800605 – volume: 41 start-page: 571 year: 2009 ident: 10.1016/j.buildenv.2017.08.003_bib8 article-title: HVAC system optimization with CO2 concentration control using genetic algorithms publication-title: Energy Build. doi: 10.1016/j.enbuild.2008.12.004 – volume: 101 start-page: 521 year: 2013 ident: 10.1016/j.buildenv.2017.08.003_bib3 article-title: Importance of occupancy information for building climate control publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.06.014 – volume: 140 start-page: 75 year: 2015 ident: 10.1016/j.buildenv.2017.08.003_bib4 article-title: Experimental study of occupancy-based control of HVAC zones publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.11.064 – volume: 77 start-page: 77 year: 2014 ident: 10.1016/j.buildenv.2017.08.003_bib13 article-title: The contextual factors contributing to occupants' adaptive comfort behaviors in offices – a review and proposed modeling framework publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.03.024 – year: 2013 ident: 10.1016/j.buildenv.2017.08.003_bib18 – year: 2004 ident: 10.1016/j.buildenv.2017.08.003_bib49 – year: 2013 ident: 10.1016/j.buildenv.2017.08.003_bib19 – volume: 68 start-page: 532 year: 2014 ident: 10.1016/j.buildenv.2017.08.003_bib6 article-title: Demand-based temperature control of large-scale rooms aided by wireless sensor network: energy saving potential analysis publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.10.005 – volume: 79 start-page: 1 year: 2014 ident: 10.1016/j.buildenv.2017.08.003_bib35 article-title: Stochastic modeling of overtime occupancy and its application in building energy simulation and calibration publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.04.030 – volume: 93 start-page: 245 year: 2015 ident: 10.1016/j.buildenv.2017.08.003_bib47 article-title: Novel activity classification and occupancy estimation methods for intelligent HVAC (heating, ventilation and air conditioning) systems publication-title: Energy doi: 10.1016/j.energy.2015.09.002 – volume: 7 start-page: 165 year: 1998 ident: 10.1016/j.buildenv.2017.08.003_bib20 article-title: CO2-Based occupancy detection for on-line outdoor air flow control publication-title: Indoor Built Environ. doi: 10.1159/000024577 – volume: 42 start-page: 1543 year: 2010 ident: 10.1016/j.buildenv.2017.08.003_bib27 article-title: Occupancy diversity factors for common university building types publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.03.025 – volume: 87 start-page: 155 year: 2015 ident: 10.1016/j.buildenv.2017.08.003_bib25 article-title: Understanding the energy consumption and occupancy of a multi-purpose academic building publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.11.027 – volume: 131 start-page: 132 year: 2016 ident: 10.1016/j.buildenv.2017.08.003_bib32 article-title: Indoor occupancy estimation from carbon dioxide concentration publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.09.002 – volume: 20 start-page: 137 year: 2011 ident: 10.1016/j.buildenv.2017.08.003_bib15 article-title: A field survey of occupancy and air-conditioner use patterns in open plan offices publication-title: Indoor Built Environ. doi: 10.1177/1420326X10388883 – volume: 53 start-page: 183 year: 2012 ident: 10.1016/j.buildenv.2017.08.003_bib39 article-title: Stochastic models for building energy prediction based on occupant behavior assessment publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.06.001 – volume: 121 start-page: 344 year: 2016 ident: 10.1016/j.buildenv.2017.08.003_bib12 article-title: Review of occupancy sensing systems and occupancy modeling methodologies for the application in institutional buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.12.019 – volume: 70 start-page: 31 year: 2013 ident: 10.1016/j.buildenv.2017.08.003_bib29 article-title: A critical review of observation studies, modeling, and simulation of adaptive occupant behaviors in offices publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.07.020 – volume: 57 start-page: 28 year: 2012 ident: 10.1016/j.buildenv.2017.08.003_bib30 article-title: Development and In-situ validation of a multi-zone demand-controlled ventilation strategy using a limited number of sensors publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.03.015 – volume: 19 start-page: 93 year: 2010 ident: 10.1016/j.buildenv.2017.08.003_bib2 article-title: Overview of HVAC system simulation publication-title: Autom. Constr. doi: 10.1016/j.autcon.2009.11.019 – volume: 88 start-page: 395 year: 2015 ident: 10.1016/j.buildenv.2017.08.003_bib26 article-title: Occupancy schedules learning process through a data mining framework publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.11.065 |
SSID | ssj0016934 |
Score | 2.4755812 |
Snippet | Demand-based HVAC control methods in buildings show great energy saving potential when accurate occupancy information is available. Appropriate service based... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 130 |
SubjectTerms | Autoregressive moving-average models Buildings Control methods Energy conservation HVAC HVAC equipment Inference Markov chains Markov inference Occupancy prediction Overheating Predictions Regression analysis Regression models Studies Support vector machines Time series Time window approach Wi-Fi probe Windows (intervals) Wireless access points Wireless communications |
Title | Modeling and predicting occupancy profile in office space with a Wi-Fi probe-based Dynamic Markov Time-Window Inference approach |
URI | https://dx.doi.org/10.1016/j.buildenv.2017.08.003 https://www.proquest.com/docview/1962282438 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDAgnqI8Kg-sJmka5zGiQlVAsACCzbLji5QKpRUU2BA_nbvErgoMDCyREtlR5Md3d_F93zF23LM9Y60xQicyF7GVIDQxlsGWUiZ5HOmEyMnXN8noPr58lI9LbOC5MJRW6bC_xfQGrd2TwI1mMK2q4Baxlw4K0AAiDKPfTQz2OCX9_JOPeZoHaY04CalQUOsFlvD4xFDpaajfKMUrbaQ8ffGs3wbqB1Q39me4wdad48hP22_bZEtQb7G1BTnBbfZJhc2IXs51bfn0mc5gKKuZTxopYYRR7kp086rmjXgEcEQUvNLvWK75QyWGFTUyIMi-WX7WVqznxOmZvHFijIgHjOMn7_zCcwW5FybfYffD87vBSLgKC6Lop_lMSBMZsBinaqljQyeckU5Ljfs6K9DPig2GEwAZlKmW1qa4l6OiTKVJdFQCHfLtsuV6UsMe46GWYQyZ6fUADWORZ3mhUwj7oENry7LsMOmHVRVOfpyqYDwpn2c2Vn46FE2HovKYYb_Dgnm_aSvA8WeP3M-a-raUFFqJP_se-mlWbjO_KASpCCPTuJ_t_-PVB2yV7loe4yFbnj2_whE6NDPTbVZsl62cXlyNbr4AwD_4gw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKDMCAeIry9MBqmqZxHiMCqvJcAMFm2fFFCkJpBaVsiJ_OXWKjAgMDS4bEjiI_vruL7_uOsYOu7RprjRE6lpmIrAShibEMtpAyzqJQx0ROvrqOB3fR-YN8aLFjz4WhtEqH_Q2m12jt7nTcaHZGZdm5QeylgwI0gAjD6HfPsLlI9hJa2ofvX3keJDbiNKQCQc2naMKPh4ZqT0M1oRyvpNby9NWzfluoH1hdG6D-MltyniM_aj5uhbWgWmWLU3qCa-yDKpsRv5zryvLRMx3CUFozH9Zawoij3NXo5mXFa_UI4AgpeKX_sVzz-1L0S2pkQJCBs_ykKVnPidQznHCijIh7DOSHb_zMkwW5VyZfZ3f909vjgXAlFkSOIzUW0oQGLAaqWurI0BFnqJNC48ZOc3S0IoPxBEAKRaKltQlu5jAvEmliHRZAp3wbbLYaVrDJeKBlEEFqul1Ay5hnaZbrBIIe6MDaoijaTPphVbnTH6cyGE_KJ5o9Kj8diqZDUX3MoNdmna9-o0aB488emZ819W0tKTQTf_bd8dOs3G5-UYhSIYamUS_d-ser99n84PbqUl2eXV9sswV60pAad9js-PkVdtG7GZu9evV-An07-hk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+predicting+occupancy+profile+in+office+space+with+a+Wi-Fi+probe-based+Dynamic+Markov+Time-Window+Inference+approach&rft.jtitle=Building+and+environment&rft.au=Wang%2C+Wei&rft.au=Chen%2C+Jiayu&rft.au=Song%2C+Xinyi&rft.date=2017-11-01&rft.pub=Elsevier+BV&rft.issn=0360-1323&rft.eissn=1873-684X&rft.volume=124&rft.spage=130&rft_id=info:doi/10.1016%2Fj.buildenv.2017.08.003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |