Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications

Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many c...

Full description

Saved in:
Bibliographic Details
Published inMethods and applications in fluorescence Vol. 3; no. 3; pp. 34003 - 34018
Main Authors Pfeiffer, Simon A, Nagl, Stefan
Format Journal Article
LanguageEnglish
Published England IOP Publishing 28.04.2015
Subjects
Online AccessGet full text
ISSN2050-6120
2050-6120
DOI10.1088/2050-6120/3/3/034003

Cover

Loading…
Abstract Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics. After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed. Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented.
AbstractList Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics.After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed.Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented.Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics.After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed.Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented.
Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics.After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed.Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented.
Author Nagl, Stefan
Pfeiffer, Simon A
Author_xml – sequence: 1
  givenname: Simon A
  surname: Pfeiffer
  fullname: Pfeiffer, Simon A
  organization: Institut für Analytische Chemie, Universität Leipzig , Germany
– sequence: 2
  givenname: Stefan
  surname: Nagl
  fullname: Nagl, Stefan
  email: nagl@chemie.uni-leipzig.de
  organization: Institut für Analytische Chemie, Universität Leipzig , Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29148497$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEYhYNU7If9ByJZiYveNjNJ5k66k9KqUHGj65BJ3rQp-RiTjNK9P9xc77UUKZp3kQ-ecwjnHKK9mCIg9Kojpx0Zx7OecLIaup6c0TaEMkLoM3Tw8Lz36LyPjku5I20J1vWcvUD7vejYyMT6AP385HRO1i_OOI1nr6pNORQMYfbp3sUb7GKFm6wqGNywlKFoiBWnjP0SXNxd9S0Ep5XHBWJJuZxjhTN8d_ADJ4sD1NtkygkuOs2AVTRYzbNvgupSLC_Rc6t8gePdfoS-Xl1-ufiwuv78_uPFu-uVpmtRV8xOdpjWExeMc005KDP0zCo7aiG45WY9TKAGNhLKKRMEOk1GboSaJk6pIPQIvd36zjl9W6BUGVz7vvcqQlqK7MTQDHsxioa-3qHLFMDIObug8r38k1wD2BZo8ZWSwT4gHZGbjuSmALkpQNI2246a7PwvmXb1dwo1K-f_J36zFbs0y7u05NjSkkHZR5CcjW0geQL8p_cv2y2zSg
CODEN MAFEB2
CitedBy_id crossref_primary_10_1021_acs_analchem_6b02849
crossref_primary_10_1021_acs_nanolett_8b02292
crossref_primary_10_3390_chemosensors12030031
crossref_primary_10_1016_j_bios_2017_07_053
crossref_primary_10_1038_s41467_024_51231_x
crossref_primary_10_3390_s19132856
crossref_primary_10_3390_bios5030513
crossref_primary_10_1039_C7LC00538E
crossref_primary_10_1016_j_snb_2021_129664
crossref_primary_10_3390_bios12070512
crossref_primary_10_1088_2050_6120_3_4_040202
crossref_primary_10_1007_s10404_020_02355_1
crossref_primary_10_1016_j_snb_2017_08_195
crossref_primary_10_1021_acssensors_0c02399
crossref_primary_10_1002_biot_201700030
crossref_primary_10_1007_s00604_016_2021_2
crossref_primary_10_1016_j_snb_2016_01_050
crossref_primary_10_1103_PhysRevApplied_11_044091
crossref_primary_10_1007_s10544_020_00495_3
crossref_primary_10_1007_s00449_019_02095_9
crossref_primary_10_1039_C9LC00062C
crossref_primary_10_1007_s10404_020_02371_1
crossref_primary_10_1016_j_snb_2015_11_009
crossref_primary_10_1109_JSEN_2022_3177426
crossref_primary_10_1002_bit_26831
crossref_primary_10_1039_C6LC00055J
crossref_primary_10_1016_j_cej_2021_131460
crossref_primary_10_1002_elsc_201700035
crossref_primary_10_1016_j_jlumin_2016_08_005
crossref_primary_10_1038_s41587_021_00866_y
crossref_primary_10_1021_acs_nanolett_7b04218
crossref_primary_10_3390_s19030445
crossref_primary_10_1016_j_sna_2022_113926
crossref_primary_10_1021_acs_analchem_7b02220
crossref_primary_10_1080_07388551_2017_1312271
crossref_primary_10_1007_s10895_024_03819_1
crossref_primary_10_1002_adhm_201700506
crossref_primary_10_1016_j_tet_2018_02_016
crossref_primary_10_1088_2050_6120_aa7170
crossref_primary_10_3390_polym15030505
crossref_primary_10_1007_s00216_015_9178_0
crossref_primary_10_1016_j_snb_2017_11_130
crossref_primary_10_1039_C8AN02201A
crossref_primary_10_1007_s10765_023_03277_0
Cites_doi 10.1002/chem.201406037
10.1021/ac202300g
10.1063/1.2828717
10.1039/c1lc20019d
10.1021/ja049901o
10.1016/j.aca.2007.08.046
10.1039/b409978h
10.1366/0003702001949726
10.1039/B806907G
10.1021/ac980656z
10.1039/C0AN00449A
10.1021/ac800473b
10.1016/S0925-4005(98)00321-9
10.1002/bit.20140
10.1039/c3lc41315b
10.1039/c003558k
10.1039/b801879k
10.1021/ac3031543
10.1039/C2LC40661F
10.1039/b508097e
10.1039/C4AN00169A
10.1039/b517237c
10.1021/ac303159b
10.1039/B808257J
10.1039/b608014f
10.1007/s00216-014-8297-3
10.1016/j.mee.2009.11.076
10.1021/ac020340y
10.1016/j.cej.2007.07.012
10.1021/ac403688g
10.1016/S0925-4005(02)00267-8
10.1016/j.bios.2011.11.033
10.1021/ac501783r
10.1021/cr068102g
10.1039/c3lc50387a
10.1039/c1lc20391f
10.1002/adfm.200801064
10.1021/ac010370l
10.3390/s101009286
10.1039/C4AN00765D
10.1039/C3LC51160J
10.1021/ac9006864
10.1039/c3cs60102a
10.1016/0925-4005(90)80209-I
10.1039/c2lc40776k
10.1021/bp034077d
10.1007/s00216-007-1720-2
10.1039/c3ra41368c
10.1039/C0LC00272K
10.1039/b305358j
10.1039/9781847558220-00035
10.1021/ac9703919
10.1021/ac071268c
10.1039/C2CC38093E
10.1021/ja010176g
10.1016/j.snb.2004.08.025
10.1351/pac199163091247
10.1117/1.3607430
10.1103/RevModPhys.77.977
10.1038/nature05058
ContentType Journal Article
Copyright 2015 IOP Publishing Ltd
Copyright_xml – notice: 2015 IOP Publishing Ltd
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1088/2050-6120/3/3/034003
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications
EISSN 2050-6120
ExternalDocumentID 29148497
10_1088_2050_6120_3_3_034003
maf512022
Genre Journal Article
GrantInformation_xml – fundername: European Social Fund
  grantid: 100151781
– fundername: Deutsche Forschungsgemeinschaft
  grantid: DFG NA 947/1-2
  funderid: http://dx.doi.org/10.13039/501100001659
GroupedDBID 53G
AAGCD
AAJIO
AALHV
AATNI
ABHWH
ABVAM
ACAFW
ACGFS
ACHIP
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
CEBXE
CJUJL
CRLBU
EBS
EDWGO
EJD
IIPPG
IJHAN
IOP
IZVLO
KOT
N5L
OK1
PJBAE
RIN
ROL
RPA
AAYXX
ABJNI
ADEQX
CITATION
NPM
7X8
AEINN
ID FETCH-LOGICAL-c379t-4fbf6b7b59455c35ead624faf8c995f5d76bea6480353490e1c085d9abb533903
IEDL.DBID IOP
ISSN 2050-6120
IngestDate Tue Aug 05 11:35:47 EDT 2025
Wed Feb 19 02:00:30 EST 2025
Tue Jul 01 02:37:43 EDT 2025
Thu Apr 24 23:04:44 EDT 2025
Thu Jan 07 13:51:08 EST 2021
Wed Aug 21 03:33:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-4fbf6b7b59455c35ead624faf8c995f5d76bea6480353490e1c085d9abb533903
Notes MAF-100047.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29148497
PQID 1966242989
PQPubID 23479
PageCount 16
ParticipantIDs pubmed_primary_29148497
proquest_miscellaneous_1966242989
crossref_primary_10_1088_2050_6120_3_3_034003
crossref_citationtrail_10_1088_2050_6120_3_3_034003
iop_journals_10_1088_2050_6120_3_3_034003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Apr-28
PublicationDateYYYYMMDD 2015-04-28
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-Apr-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Methods and applications in fluorescence
PublicationTitleAbbrev MAF
PublicationTitleAlternate Methods Appl. Fluoresc
PublicationYear 2015
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
47
48
49
50
51
52
53
10
54
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Cammann K (11) 1996
40
41
42
43
References_xml – ident: 61
  doi: 10.1002/chem.201406037
– ident: 26
  doi: 10.1021/ac202300g
– ident: 21
  doi: 10.1063/1.2828717
– ident: 59
  doi: 10.1039/c1lc20019d
– ident: 46
  doi: 10.1021/ja049901o
– ident: 14
  doi: 10.1016/j.aca.2007.08.046
– ident: 47
  doi: 10.1039/b409978h
– ident: 56
  doi: 10.1366/0003702001949726
– ident: 23
  doi: 10.1039/B806907G
– ident: 18
  doi: 10.1021/ac980656z
– ident: 7
  doi: 10.1039/C0AN00449A
– ident: 13
  doi: 10.1021/ac800473b
– ident: 8
  doi: 10.1016/S0925-4005(98)00321-9
– ident: 58
  doi: 10.1002/bit.20140
– ident: 39
  doi: 10.1039/c3lc41315b
– ident: 24
  doi: 10.1039/c003558k
– ident: 31
  doi: 10.1039/b801879k
– ident: 5
  doi: 10.1021/ac3031543
– ident: 25
  doi: 10.1039/C2LC40661F
– ident: 34
  doi: 10.1039/b508097e
– ident: 53
  doi: 10.1039/C4AN00169A
– ident: 54
  doi: 10.1039/b517237c
– ident: 9
  doi: 10.1021/ac303159b
– ident: 51
  doi: 10.1039/B808257J
– ident: 35
  doi: 10.1039/b608014f
– ident: 38
  doi: 10.1007/s00216-014-8297-3
– ident: 32
  doi: 10.1016/j.mee.2009.11.076
– ident: 42
  doi: 10.1021/ac020340y
– ident: 50
  doi: 10.1016/j.cej.2007.07.012
– ident: 4
  doi: 10.1021/ac403688g
– ident: 29
  doi: 10.1016/S0925-4005(02)00267-8
– ident: 44
  doi: 10.1016/j.bios.2011.11.033
– ident: 52
  doi: 10.1021/ac501783r
– ident: 12
  doi: 10.1021/cr068102g
– ident: 37
  doi: 10.1039/c3lc50387a
– ident: 55
  doi: 10.1039/c1lc20391f
– ident: 22
  doi: 10.1002/adfm.200801064
– ident: 60
  doi: 10.1021/ac010370l
– ident: 16
  doi: 10.3390/s101009286
– ident: 33
  doi: 10.1039/C4AN00765D
– ident: 40
  doi: 10.1039/C3LC51160J
– ident: 36
  doi: 10.1021/ac9006864
– ident: 57
  doi: 10.1039/c3cs60102a
– ident: 3
  doi: 10.1016/0925-4005(90)80209-I
– ident: 27
  doi: 10.1039/c2lc40776k
– ident: 49
  doi: 10.1021/bp034077d
– year: 1996
  ident: 11
  publication-title: Proc. of the Cambridge Workshop on Chemical Sensors and Biosensors
– ident: 48
  doi: 10.1007/s00216-007-1720-2
– ident: 41
  doi: 10.1039/c3ra41368c
– ident: 19
  doi: 10.1039/C0LC00272K
– ident: 30
  doi: 10.1039/b305358j
– ident: 6
  doi: 10.1039/9781847558220-00035
– ident: 17
  doi: 10.1021/ac9703919
– ident: 20
  doi: 10.1021/ac071268c
– ident: 45
  doi: 10.1039/C2CC38093E
– ident: 28
  doi: 10.1021/ja010176g
– ident: 43
  doi: 10.1016/j.snb.2004.08.025
– ident: 10
  doi: 10.1351/pac199163091247
– ident: 15
  doi: 10.1117/1.3607430
– ident: 1
  doi: 10.1103/RevModPhys.77.977
– ident: 2
  doi: 10.1038/nature05058
SSID ssj0000941254
Score 2.1943567
Snippet Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 34003
SubjectTerms fluorescent or luminescent chemical sensors
micro flow reactor
microbioreactor
microfabrication
microfluidic chips
miniaturization
sensing (oxygen, pH, temperature)
Title Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications
URI https://iopscience.iop.org/article/10.1088/2050-6120/3/3/034003
https://www.ncbi.nlm.nih.gov/pubmed/29148497
https://www.proquest.com/docview/1966242989
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-QwFA-uHvTirrrquLsawYuwHWuTtMneFlFE8OOg4K3mE8SxHaadi2f_cF-SdlBBZFl6aelLm758vPfr-0Jor_CTwJIsyYUFgJIZkUiiWWKMsMqAQFY6ePle5Kc39OyW3XZ1TkMsTD3utv4hnMZEwZGFnUMcB7jOPOLJ0gMCR0poyPa5QDiIGh_Bd3k1-8kC2AUEOO1D5j5o_EYkfYHXfqxtBqlz8hXd9f2NziYPw2mrhvrpXSrH__igb2i500jx30i-guZstYoWj_pCcGvo-dw77bnR9N7cazweydYrug22oVgwiD48yzlhMJDVk5giCtcTDFuf96sPl7rLTYAbgM71pPmDJY6RM7h2OJaybn7jECeDZWXwa-P6d3Rzcnx9dJp0xRsSTQrRJtQpl6tCMUEZ04TBjM0z6qTjWgjmmClyZWVOeUoYoSK1hxq0PyOkUqCBipSso_mqruwmwlmhjDZABvCQpkAAtJprTlKlOFFkgEg_fqXuMpv7AhujMljYOS89h0vP4ZLAETk8QMms1Thm9viEfh8GsOyWePMJ7c4b2kfpXt0tx8YN0G4_xUoYTm-lkZWtp_BcAKCgNwkuBmgjzr1Z_zIB6JWKYusf-vIDLYGSx7wFLOM_0Xw7mdpfoEi1ajsslhcnCRI0
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcNQWCbjwfiyvGokLEllCbCc2N7SwKq_SA5V6s_yUKpZktcleOPPhjOMkapGqCqFcEmXsODO2Z8bzAnhRxUngaZGV0qOCUjiZaWp55pz0xiFDNrb38j0sD47ZpxN-sgOLKRamWQ9b_xxvU6LghMLBIU6gus6jxlPkryleOWXxLG7twi5c4bSkfRTft6PpoAX1F2TibAybu6CDc2xpFz99scTZc57lTXDjmJPDyY_5tjNz--uvdI7_-VO34MYgmZJ3qclt2PH1Hbi2GAvC3YXfX6PzXlhtT92pJeuV7qLA2xLfFw1GFkim3BOOIFizSamiSLMhuAVG__r-0Q45CkiLKnSzad8STVIEDWkCSSWt21ekj5chunbkrJH9HhwvP3xfHGRDEYfM0kp2GQsmlKYyXDLOLeU4c8uCBR2ElZIH7qrSeF0ykVNOmcz9G4tSoJPaGJREZU7vw17d1P4hkKIyzjoEQzWR5QiAsFZYQXNjBDV0BnSkobJDhvNYaGOleku7ECpiWUUsK4pXwvIMsqnVOmX4uAT-JRJRDUu9vQR2_xzsTx3OvFVI3xk8H6eZQnJGa42ufbPFflERRflJCjmDB2n-TeMrJGqxTFaP_mEs-3D16P1Sffl4-PkxXEe5j0ejWCGewF632fqnKFt15lm_dv4ABroXmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+platforms+employing+integrated+fluorescent+or+luminescent+chemical+sensors%3A+a+review+of+methods%2C+scope+and+applications&rft.jtitle=Methods+and+applications+in+fluorescence&rft.au=Pfeiffer%2C+Simon+A&rft.au=Nagl%2C+Stefan&rft.date=2015-04-28&rft.pub=IOP+Publishing&rft.eissn=2050-6120&rft.volume=3&rft.issue=3&rft_id=info:doi/10.1088%2F2050-6120%2F3%2F3%2F034003&rft.externalDocID=maf512022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-6120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-6120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-6120&client=summon