Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications
Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many c...
Saved in:
Published in | Methods and applications in fluorescence Vol. 3; no. 3; pp. 34003 - 34018 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
28.04.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-6120 2050-6120 |
DOI | 10.1088/2050-6120/3/3/034003 |
Cover
Loading…
Abstract | Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics. After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed. Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented. |
---|---|
AbstractList | Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics.After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed.Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented.Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics.After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed.Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented. Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics.After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed.Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented. |
Author | Nagl, Stefan Pfeiffer, Simon A |
Author_xml | – sequence: 1 givenname: Simon A surname: Pfeiffer fullname: Pfeiffer, Simon A organization: Institut für Analytische Chemie, Universität Leipzig , Germany – sequence: 2 givenname: Stefan surname: Nagl fullname: Nagl, Stefan email: nagl@chemie.uni-leipzig.de organization: Institut für Analytische Chemie, Universität Leipzig , Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29148497$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEYhYNU7If9ByJZiYveNjNJ5k66k9KqUHGj65BJ3rQp-RiTjNK9P9xc77UUKZp3kQ-ecwjnHKK9mCIg9Kojpx0Zx7OecLIaup6c0TaEMkLoM3Tw8Lz36LyPjku5I20J1vWcvUD7vejYyMT6AP385HRO1i_OOI1nr6pNORQMYfbp3sUb7GKFm6wqGNywlKFoiBWnjP0SXNxd9S0Ep5XHBWJJuZxjhTN8d_ADJ4sD1NtkygkuOs2AVTRYzbNvgupSLC_Rc6t8gePdfoS-Xl1-ufiwuv78_uPFu-uVpmtRV8xOdpjWExeMc005KDP0zCo7aiG45WY9TKAGNhLKKRMEOk1GboSaJk6pIPQIvd36zjl9W6BUGVz7vvcqQlqK7MTQDHsxioa-3qHLFMDIObug8r38k1wD2BZo8ZWSwT4gHZGbjuSmALkpQNI2246a7PwvmXb1dwo1K-f_J36zFbs0y7u05NjSkkHZR5CcjW0geQL8p_cv2y2zSg |
CODEN | MAFEB2 |
CitedBy_id | crossref_primary_10_1021_acs_analchem_6b02849 crossref_primary_10_1021_acs_nanolett_8b02292 crossref_primary_10_3390_chemosensors12030031 crossref_primary_10_1016_j_bios_2017_07_053 crossref_primary_10_1038_s41467_024_51231_x crossref_primary_10_3390_s19132856 crossref_primary_10_3390_bios5030513 crossref_primary_10_1039_C7LC00538E crossref_primary_10_1016_j_snb_2021_129664 crossref_primary_10_3390_bios12070512 crossref_primary_10_1088_2050_6120_3_4_040202 crossref_primary_10_1007_s10404_020_02355_1 crossref_primary_10_1016_j_snb_2017_08_195 crossref_primary_10_1021_acssensors_0c02399 crossref_primary_10_1002_biot_201700030 crossref_primary_10_1007_s00604_016_2021_2 crossref_primary_10_1016_j_snb_2016_01_050 crossref_primary_10_1103_PhysRevApplied_11_044091 crossref_primary_10_1007_s10544_020_00495_3 crossref_primary_10_1007_s00449_019_02095_9 crossref_primary_10_1039_C9LC00062C crossref_primary_10_1007_s10404_020_02371_1 crossref_primary_10_1016_j_snb_2015_11_009 crossref_primary_10_1109_JSEN_2022_3177426 crossref_primary_10_1002_bit_26831 crossref_primary_10_1039_C6LC00055J crossref_primary_10_1016_j_cej_2021_131460 crossref_primary_10_1002_elsc_201700035 crossref_primary_10_1016_j_jlumin_2016_08_005 crossref_primary_10_1038_s41587_021_00866_y crossref_primary_10_1021_acs_nanolett_7b04218 crossref_primary_10_3390_s19030445 crossref_primary_10_1016_j_sna_2022_113926 crossref_primary_10_1021_acs_analchem_7b02220 crossref_primary_10_1080_07388551_2017_1312271 crossref_primary_10_1007_s10895_024_03819_1 crossref_primary_10_1002_adhm_201700506 crossref_primary_10_1016_j_tet_2018_02_016 crossref_primary_10_1088_2050_6120_aa7170 crossref_primary_10_3390_polym15030505 crossref_primary_10_1007_s00216_015_9178_0 crossref_primary_10_1016_j_snb_2017_11_130 crossref_primary_10_1039_C8AN02201A crossref_primary_10_1007_s10765_023_03277_0 |
Cites_doi | 10.1002/chem.201406037 10.1021/ac202300g 10.1063/1.2828717 10.1039/c1lc20019d 10.1021/ja049901o 10.1016/j.aca.2007.08.046 10.1039/b409978h 10.1366/0003702001949726 10.1039/B806907G 10.1021/ac980656z 10.1039/C0AN00449A 10.1021/ac800473b 10.1016/S0925-4005(98)00321-9 10.1002/bit.20140 10.1039/c3lc41315b 10.1039/c003558k 10.1039/b801879k 10.1021/ac3031543 10.1039/C2LC40661F 10.1039/b508097e 10.1039/C4AN00169A 10.1039/b517237c 10.1021/ac303159b 10.1039/B808257J 10.1039/b608014f 10.1007/s00216-014-8297-3 10.1016/j.mee.2009.11.076 10.1021/ac020340y 10.1016/j.cej.2007.07.012 10.1021/ac403688g 10.1016/S0925-4005(02)00267-8 10.1016/j.bios.2011.11.033 10.1021/ac501783r 10.1021/cr068102g 10.1039/c3lc50387a 10.1039/c1lc20391f 10.1002/adfm.200801064 10.1021/ac010370l 10.3390/s101009286 10.1039/C4AN00765D 10.1039/C3LC51160J 10.1021/ac9006864 10.1039/c3cs60102a 10.1016/0925-4005(90)80209-I 10.1039/c2lc40776k 10.1021/bp034077d 10.1007/s00216-007-1720-2 10.1039/c3ra41368c 10.1039/C0LC00272K 10.1039/b305358j 10.1039/9781847558220-00035 10.1021/ac9703919 10.1021/ac071268c 10.1039/C2CC38093E 10.1021/ja010176g 10.1016/j.snb.2004.08.025 10.1351/pac199163091247 10.1117/1.3607430 10.1103/RevModPhys.77.977 10.1038/nature05058 |
ContentType | Journal Article |
Copyright | 2015 IOP Publishing Ltd |
Copyright_xml | – notice: 2015 IOP Publishing Ltd |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1088/2050-6120/3/3/034003 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications |
EISSN | 2050-6120 |
ExternalDocumentID | 29148497 10_1088_2050_6120_3_3_034003 maf512022 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Social Fund grantid: 100151781 – fundername: Deutsche Forschungsgemeinschaft grantid: DFG NA 947/1-2 funderid: http://dx.doi.org/10.13039/501100001659 |
GroupedDBID | 53G AAGCD AAJIO AALHV AATNI ABHWH ABVAM ACAFW ACGFS ACHIP AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT CEBXE CJUJL CRLBU EBS EDWGO EJD IIPPG IJHAN IOP IZVLO KOT N5L OK1 PJBAE RIN ROL RPA AAYXX ABJNI ADEQX CITATION NPM 7X8 AEINN |
ID | FETCH-LOGICAL-c379t-4fbf6b7b59455c35ead624faf8c995f5d76bea6480353490e1c085d9abb533903 |
IEDL.DBID | IOP |
ISSN | 2050-6120 |
IngestDate | Tue Aug 05 11:35:47 EDT 2025 Wed Feb 19 02:00:30 EST 2025 Tue Jul 01 02:37:43 EDT 2025 Thu Apr 24 23:04:44 EDT 2025 Thu Jan 07 13:51:08 EST 2021 Wed Aug 21 03:33:29 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-4fbf6b7b59455c35ead624faf8c995f5d76bea6480353490e1c085d9abb533903 |
Notes | MAF-100047.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29148497 |
PQID | 1966242989 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmed_primary_29148497 proquest_miscellaneous_1966242989 crossref_primary_10_1088_2050_6120_3_3_034003 crossref_citationtrail_10_1088_2050_6120_3_3_034003 iop_journals_10_1088_2050_6120_3_3_034003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Apr-28 |
PublicationDateYYYYMMDD | 2015-04-28 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-Apr-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Methods and applications in fluorescence |
PublicationTitleAbbrev | MAF |
PublicationTitleAlternate | Methods Appl. Fluoresc |
PublicationYear | 2015 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 46 47 48 49 50 51 52 53 10 54 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Cammann K (11) 1996 40 41 42 43 |
References_xml | – ident: 61 doi: 10.1002/chem.201406037 – ident: 26 doi: 10.1021/ac202300g – ident: 21 doi: 10.1063/1.2828717 – ident: 59 doi: 10.1039/c1lc20019d – ident: 46 doi: 10.1021/ja049901o – ident: 14 doi: 10.1016/j.aca.2007.08.046 – ident: 47 doi: 10.1039/b409978h – ident: 56 doi: 10.1366/0003702001949726 – ident: 23 doi: 10.1039/B806907G – ident: 18 doi: 10.1021/ac980656z – ident: 7 doi: 10.1039/C0AN00449A – ident: 13 doi: 10.1021/ac800473b – ident: 8 doi: 10.1016/S0925-4005(98)00321-9 – ident: 58 doi: 10.1002/bit.20140 – ident: 39 doi: 10.1039/c3lc41315b – ident: 24 doi: 10.1039/c003558k – ident: 31 doi: 10.1039/b801879k – ident: 5 doi: 10.1021/ac3031543 – ident: 25 doi: 10.1039/C2LC40661F – ident: 34 doi: 10.1039/b508097e – ident: 53 doi: 10.1039/C4AN00169A – ident: 54 doi: 10.1039/b517237c – ident: 9 doi: 10.1021/ac303159b – ident: 51 doi: 10.1039/B808257J – ident: 35 doi: 10.1039/b608014f – ident: 38 doi: 10.1007/s00216-014-8297-3 – ident: 32 doi: 10.1016/j.mee.2009.11.076 – ident: 42 doi: 10.1021/ac020340y – ident: 50 doi: 10.1016/j.cej.2007.07.012 – ident: 4 doi: 10.1021/ac403688g – ident: 29 doi: 10.1016/S0925-4005(02)00267-8 – ident: 44 doi: 10.1016/j.bios.2011.11.033 – ident: 52 doi: 10.1021/ac501783r – ident: 12 doi: 10.1021/cr068102g – ident: 37 doi: 10.1039/c3lc50387a – ident: 55 doi: 10.1039/c1lc20391f – ident: 22 doi: 10.1002/adfm.200801064 – ident: 60 doi: 10.1021/ac010370l – ident: 16 doi: 10.3390/s101009286 – ident: 33 doi: 10.1039/C4AN00765D – ident: 40 doi: 10.1039/C3LC51160J – ident: 36 doi: 10.1021/ac9006864 – ident: 57 doi: 10.1039/c3cs60102a – ident: 3 doi: 10.1016/0925-4005(90)80209-I – ident: 27 doi: 10.1039/c2lc40776k – ident: 49 doi: 10.1021/bp034077d – year: 1996 ident: 11 publication-title: Proc. of the Cambridge Workshop on Chemical Sensors and Biosensors – ident: 48 doi: 10.1007/s00216-007-1720-2 – ident: 41 doi: 10.1039/c3ra41368c – ident: 19 doi: 10.1039/C0LC00272K – ident: 30 doi: 10.1039/b305358j – ident: 6 doi: 10.1039/9781847558220-00035 – ident: 17 doi: 10.1021/ac9703919 – ident: 20 doi: 10.1021/ac071268c – ident: 45 doi: 10.1039/C2CC38093E – ident: 28 doi: 10.1021/ja010176g – ident: 43 doi: 10.1016/j.snb.2004.08.025 – ident: 10 doi: 10.1351/pac199163091247 – ident: 15 doi: 10.1117/1.3607430 – ident: 1 doi: 10.1103/RevModPhys.77.977 – ident: 2 doi: 10.1038/nature05058 |
SSID | ssj0000941254 |
Score | 2.1943567 |
Snippet | Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 34003 |
SubjectTerms | fluorescent or luminescent chemical sensors micro flow reactor microbioreactor microfabrication microfluidic chips miniaturization sensing (oxygen, pH, temperature) |
Title | Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications |
URI | https://iopscience.iop.org/article/10.1088/2050-6120/3/3/034003 https://www.ncbi.nlm.nih.gov/pubmed/29148497 https://www.proquest.com/docview/1966242989 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-QwFA-uHvTirrrquLsawYuwHWuTtMneFlFE8OOg4K3mE8SxHaadi2f_cF-SdlBBZFl6aelLm758vPfr-0Jor_CTwJIsyYUFgJIZkUiiWWKMsMqAQFY6ePle5Kc39OyW3XZ1TkMsTD3utv4hnMZEwZGFnUMcB7jOPOLJ0gMCR0poyPa5QDiIGh_Bd3k1-8kC2AUEOO1D5j5o_EYkfYHXfqxtBqlz8hXd9f2NziYPw2mrhvrpXSrH__igb2i500jx30i-guZstYoWj_pCcGvo-dw77bnR9N7cazweydYrug22oVgwiD48yzlhMJDVk5giCtcTDFuf96sPl7rLTYAbgM71pPmDJY6RM7h2OJaybn7jECeDZWXwa-P6d3Rzcnx9dJp0xRsSTQrRJtQpl6tCMUEZ04TBjM0z6qTjWgjmmClyZWVOeUoYoSK1hxq0PyOkUqCBipSso_mqruwmwlmhjDZABvCQpkAAtJprTlKlOFFkgEg_fqXuMpv7AhujMljYOS89h0vP4ZLAETk8QMms1Thm9viEfh8GsOyWePMJ7c4b2kfpXt0tx8YN0G4_xUoYTm-lkZWtp_BcAKCgNwkuBmgjzr1Z_zIB6JWKYusf-vIDLYGSx7wFLOM_0Xw7mdpfoEi1ajsslhcnCRI0 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcNQWCbjwfiyvGokLEllCbCc2N7SwKq_SA5V6s_yUKpZktcleOPPhjOMkapGqCqFcEmXsODO2Z8bzAnhRxUngaZGV0qOCUjiZaWp55pz0xiFDNrb38j0sD47ZpxN-sgOLKRamWQ9b_xxvU6LghMLBIU6gus6jxlPkryleOWXxLG7twi5c4bSkfRTft6PpoAX1F2TibAybu6CDc2xpFz99scTZc57lTXDjmJPDyY_5tjNz--uvdI7_-VO34MYgmZJ3qclt2PH1Hbi2GAvC3YXfX6PzXlhtT92pJeuV7qLA2xLfFw1GFkim3BOOIFizSamiSLMhuAVG__r-0Q45CkiLKnSzad8STVIEDWkCSSWt21ekj5chunbkrJH9HhwvP3xfHGRDEYfM0kp2GQsmlKYyXDLOLeU4c8uCBR2ElZIH7qrSeF0ykVNOmcz9G4tSoJPaGJREZU7vw17d1P4hkKIyzjoEQzWR5QiAsFZYQXNjBDV0BnSkobJDhvNYaGOleku7ECpiWUUsK4pXwvIMsqnVOmX4uAT-JRJRDUu9vQR2_xzsTx3OvFVI3xk8H6eZQnJGa42ufbPFflERRflJCjmDB2n-TeMrJGqxTFaP_mEs-3D16P1Sffl4-PkxXEe5j0ejWCGewF632fqnKFt15lm_dv4ABroXmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+platforms+employing+integrated+fluorescent+or+luminescent+chemical+sensors%3A+a+review+of+methods%2C+scope+and+applications&rft.jtitle=Methods+and+applications+in+fluorescence&rft.au=Pfeiffer%2C+Simon+A&rft.au=Nagl%2C+Stefan&rft.date=2015-04-28&rft.pub=IOP+Publishing&rft.eissn=2050-6120&rft.volume=3&rft.issue=3&rft_id=info:doi/10.1088%2F2050-6120%2F3%2F3%2F034003&rft.externalDocID=maf512022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-6120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-6120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-6120&client=summon |