Toward high efficiency at high temperatures: Recent progress and prospects on InGaN-Based solar cells
III-nitride InGaN material is an ideal candidate for the fabrication of high performance photovoltaic (PV) solar cells, especially for high-temperature applications. Over the past decade, significant efforts have been made to improve the PV performance of InGaN-based solar cells. In this paper, we p...
Saved in:
Published in | Materials today energy Vol. 31; no. C; p. 101229 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United Kingdom
Elsevier Ltd
01.01.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | III-nitride InGaN material is an ideal candidate for the fabrication of high performance photovoltaic (PV) solar cells, especially for high-temperature applications. Over the past decade, significant efforts have been made to improve the PV performance of InGaN-based solar cells. In this paper, we perform a comprehensive review of the recent developments in InGaN-based solar cells. The topics of discussion include theoretical modeling, material epitaxy, device engineering, and high-temperature measurement. Particularly, we highlight subjects such as substrate technology, and properties that are unique to InGaN materials such as polarization control and their positive thermal coefficient. To date, outstanding high-temperature InGaN-based solar cells with quantum efficiency approaching 80% at 450 °C have been demonstrated. Future innovations in epitaxy science, device engineering, and integration methods are required to further advance the efficiency and expand the applications of InGaN-based solar cells.
[Display omitted]
•A detailed summary of theoretical modeling of InGaN solar cells.•State-of the-art techniques for InGaN epitaxial growth.•Effective device engineering methods to improve the performance of InGaN solar cells.•High temperature performance of InGaN solar cells including temperature coefficient and carrier dynamics. |
---|---|
AbstractList | III-nitride InGaN material is an ideal candidate for the fabrication of high performance photovoltaic (PV) solar cells, especially for high-temperature applications. Over the past decade, significant efforts have been made to improve the PV performance of InGaN-based solar cells. In this paper, we perform a comprehensive review of the recent developments in InGaN-based solar cells. The topics of discussion include theoretical modeling, material epitaxy, device engineering, and high-temperature measurement. Particularly, we highlight subjects such as substrate technology, and properties that are unique to InGaN materials such as polarization control and their positive thermal coefficient. To date, outstanding high-temperature InGaN-based solar cells with quantum efficiency approaching 80% at 450 °C have been demonstrated. Future innovations in epitaxy science, device engineering, and integration methods are required to further advance the efficiency and expand the applications of InGaN-based solar cells.
[Display omitted]
•A detailed summary of theoretical modeling of InGaN solar cells.•State-of the-art techniques for InGaN epitaxial growth.•Effective device engineering methods to improve the performance of InGaN solar cells.•High temperature performance of InGaN solar cells including temperature coefficient and carrier dynamics. |
ArticleNumber | 101229 |
Author | Lin, Jingyu Wang, Dawei Li, Tao Wang, Xinqiang Xu, Mingfei Fu, Kai Fu, Houqiang Jiang, Hongxing Zhao, Yuji Lebeau, Justin Huang, Xuanqi |
Author_xml | – sequence: 1 givenname: Yuji orcidid: 0000-0001-9199-4159 surname: Zhao fullname: Zhao, Yuji email: yuji.zhao@rice.edu organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA – sequence: 2 givenname: Mingfei orcidid: 0000-0002-1717-1290 surname: Xu fullname: Xu, Mingfei organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA – sequence: 3 givenname: Xuanqi surname: Huang fullname: Huang, Xuanqi organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA – sequence: 4 givenname: Justin surname: Lebeau fullname: Lebeau, Justin organization: Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA – sequence: 5 givenname: Tao surname: Li fullname: Li, Tao organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA – sequence: 6 givenname: Dawei surname: Wang fullname: Wang, Dawei organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA – sequence: 7 givenname: Houqiang surname: Fu fullname: Fu, Houqiang organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA – sequence: 8 givenname: Kai surname: Fu fullname: Fu, Kai organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA – sequence: 9 givenname: Xinqiang surname: Wang fullname: Wang, Xinqiang organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China – sequence: 10 givenname: Jingyu surname: Lin fullname: Lin, Jingyu organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA – sequence: 11 givenname: Hongxing surname: Jiang fullname: Jiang, Hongxing organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA |
BackLink | https://www.osti.gov/biblio/1962241$$D View this record in Osti.gov |
BookMark | eNqFkE9PAyEQxYmpibX6DTwQ71uB7p_Sg4karSaNJqaeCYXB0myhAdT028u6HowHPRCYYd7Lm98xGjjvAKEzSsaU0PpiM94mcBDGjDDWtRjjB2jIynpa1KTmgx_vI3Qa44YQwmiZTzVEsPQfMmi8tq9rDMZYZcGpPZapbyXY7iDI9BYgzvAzKHAJ74J_zXXE0umuiDtQKWLv8IOby8fiWkbQOPpWBqygbeMJOjSyjXD6fY_Qy93t8ua-WDzNH26uFoWaNDwVpVk1jFRAyIoB0SvQU6ObhrBpqU2leA0Vm9LSUGp4NakryWvOVmqiJOGcNOVkhM57Xx-TFVHZBGqtvHM5n6C8Zqykeajsh1ROHgMYsQt2K8NeUCI6pGIjeqSiQyp6pFk2-yXL9jJZ71KQtv1PfNmLIW__bvNv_AIN2oYum_b2b4NPwCeWdw |
CitedBy_id | crossref_primary_10_1021_acs_iecr_4c01924 crossref_primary_10_1063_5_0241120 crossref_primary_10_1007_s13369_023_08645_4 crossref_primary_10_1038_s41598_023_34637_3 crossref_primary_10_1007_s40820_024_01412_6 crossref_primary_10_1109_TED_2023_3272297 crossref_primary_10_1088_2631_8695_ad5c2d crossref_primary_10_1007_s11082_024_07459_4 crossref_primary_10_1109_JPHOTOV_2024_3495024 crossref_primary_10_1021_acsami_4c13648 crossref_primary_10_1038_s41598_025_87919_3 crossref_primary_10_1109_LED_2023_3279813 crossref_primary_10_1021_acsaelm_3c01173 crossref_primary_10_1063_5_0232885 crossref_primary_10_1021_acsaelm_4c00404 crossref_primary_10_1049_ntw2_12115 crossref_primary_10_1016_j_joule_2024_08_006 |
Cites_doi | 10.1063/1.4873117 10.1109/LED.2012.2237376 10.1016/S0022-0248(98)00147-X 10.1364/OE.23.00A614 10.1364/OE.26.00A946 10.1364/OE.18.002682 10.1016/j.solmat.2017.10.005 10.1016/j.nanoen.2014.10.013 10.1109/JQE.2012.2225601 10.1063/1.3481424 10.1016/j.solmat.2009.11.010 10.1109/JPHOTOV.2013.2292748 10.1063/1.3081123 10.1016/j.sse.2016.12.009 10.1109/JPHOTOV.2015.2504790 10.1109/LPT.2017.2775706 10.1016/j.mssp.2015.07.009 10.1002/pssa.200723202 10.1557/JMR.1996.0071 10.1016/j.jcrysgro.2015.02.100 10.1364/OE.20.00A991 10.1063/1.3005640 10.7567/JJAP.52.08JH02 10.1364/OE.22.0A1222 10.1002/pssc.200778434 10.1016/j.solmat.2015.10.026 10.1002/adfm.201910479 10.1063/1.4980139 10.1063/1.4896679 10.1051/epjpv/2017003 10.1063/1.1482786 10.1143/JJAP.51.10ND10 10.1063/1.4864640 10.1002/pip.3326 10.7567/APEX.6.115503 10.1002/pssr.201206038 10.1063/1.3668111 10.1016/S0022-0248(97)00082-1 10.7567/APEX.11.082304 10.1063/1.3484040 10.1143/APEX.2.082101 10.7567/1347-4065/ab1a5b 10.1109/TED.2019.2920934 10.1088/0022-3727/42/10/105101 10.1109/JPROC.2002.1021567 10.1063/1.4820839 10.1016/j.spmi.2021.106906 10.1021/nl104536x 10.7567/JJAP.56.110305 10.1088/0268-1242/28/7/074011 10.1016/j.solmat.2014.07.018 10.1088/1742-6596/1135/1/012050 10.1557/S1092578300000880 10.1016/j.sse.2017.06.020 10.1109/LED.2010.2058087 10.1088/0268-1242/30/10/105015 10.1109/JPHOTOV.2019.2892079 10.7567/JJAP.54.072302 10.1002/pssa.201700581 10.1016/j.solmat.2012.03.030 10.1016/j.spmi.2018.04.033 10.1063/1.4829443 10.1063/1.4731730 10.1063/1.4989998 10.1109/JPROC.2007.911060 10.1063/1.3254215 10.3390/ma10101221 10.1063/1.2952031 10.1063/1.3595487 10.1016/j.jmst.2012.12.005 10.1143/JJAP.30.L1705 10.1002/adfm.202005677 10.1063/1.5028530 10.1063/1.4904717 10.1021/acsphotonics.9b00655 10.1109/JDT.2016.2570814 10.1016/j.cap.2018.10.002 10.1016/j.solmat.2011.07.001 10.1063/5.0071506 10.1063/1.122164 10.1002/pssr.201004512 10.1063/1.2793180 10.1016/j.spmi.2017.05.014 10.1063/1.118493 10.1016/j.rser.2017.05.136 10.1016/j.nanoen.2020.105013 10.1364/AOP.10.000246 10.1063/1.3591976 10.1063/1.3695170 10.1016/j.pquantelec.2015.11.001 10.1016/j.solmat.2012.04.007 10.1109/JPHOTOV.2017.2756057 10.1016/j.spmi.2017.04.025 10.1063/1.4953006 10.1063/1.4765068 10.1109/LED.2009.2021414 10.1002/pssa.201026489 10.1063/1.3605244 10.1103/PhysRevB.60.8849 10.1016/j.jcrysgro.2007.01.044 10.1063/1.2988894 10.1038/35022529 10.1002/pssr.201600429 10.1016/j.solmat.2010.03.020 10.1063/1.1618353 10.1063/1.4893024 10.1063/1.3624850 10.1021/acsnano.7b04935 10.1002/pssr.201004044 10.1364/OE.435556 10.1063/1.5006650 10.1109/LED.2011.2150195 10.1063/1.3666314 10.1016/j.mssp.2022.106545 10.1088/0268-1242/24/5/055009 10.1103/PhysRevB.95.125314 10.1109/LED.2011.2158061 10.1063/1.111832 10.1039/C5EE01998B 10.1143/APEX.4.021001 10.1063/1.1600519 10.1002/(SICI)1521-3951(199911)216:1<381::AID-PSSB381>3.0.CO;2-O 10.1063/1.4947445 10.1109/LED.2009.2034280 10.1016/j.nanoen.2018.12.036 10.1063/1.3103305 10.1016/j.solmat.2016.09.030 10.1088/1361-6641/abc51c 10.1063/1.4826483 10.1063/1.5020988 10.1016/j.jcrysgro.2015.02.014 10.1109/LED.2019.2941830 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1016/j.mtener.2022.101229 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics |
EISSN | 2468-6069 |
ExternalDocumentID | 1962241 10_1016_j_mtener_2022_101229 S2468606922002878 |
GroupedDBID | --M 0R~ AABXZ AACTN AAEDT AAEDW AAIAV AAKOC AALRI AAOAW AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV AEBSH AEZYN AFKWA AFRZQ AFTJW AGUBO AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM M41 O9- RIG ROL SPC SPCBC SSM SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH OTOTI |
ID | FETCH-LOGICAL-c379t-4fb7205e00b2e0dbed8fd770284df5c96e52814f11f95365a9692bc3ca0990743 |
IEDL.DBID | AIKHN |
ISSN | 2468-6069 |
IngestDate | Mon Dec 25 05:01:13 EST 2023 Thu Apr 24 23:16:09 EDT 2025 Tue Jul 01 03:24:37 EDT 2025 Fri Feb 23 02:38:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Epitaxy growth High temperature performance Device engineering InGaN-based solar cells |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-4fb7205e00b2e0dbed8fd770284df5c96e52814f11f95365a9692bc3ca0990743 |
Notes | USDOE Office of Science (SC), Basic Energy Sciences (BES) SC0021230 |
ORCID | 0000-0002-1717-1290 0000-0001-9199-4159 0000000191994159 0000000217171290 |
OpenAccessLink | https://www.osti.gov/biblio/1962241 |
ParticipantIDs | osti_scitechconnect_1962241 crossref_primary_10_1016_j_mtener_2022_101229 crossref_citationtrail_10_1016_j_mtener_2022_101229 elsevier_sciencedirect_doi_10_1016_j_mtener_2022_101229 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom |
PublicationTitle | Materials today energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Feng, Lai, Chen, Sun, Tu (bib45) 2010; 108 Toledo, Mishra (bib43) 2012; 111 Liu (bib149) 2011; 110 Wu (bib10) 2009; 106 Miyoshi, Tsutsumi, Kabata, Mori, Egawa (bib87) 2017; 129 Ho, Lin, Fu, Lin, Yang, Chan, Lai, He (bib38) 2012; 103 Horng, Lin, Tsai, Chu, Liao, Wu, Lin, Lu (bib20) 2009; 30 Wierer, Koleske, Lee (bib89) 2012; 100 Sarollahi, Zamani-Alavijeh, Allaparthi, Aldawsari, Refaei, Alhelais, Maruf, Mazur, Ware (bib130) 2022; 40 Fabien, Gunning, Doolittle, Fischer, Wei, Xie, Ponce (bib77) 2015; 425 Dahal, Li, Aryal, Lin, Jiang (bib16) 2010; 97 Redaelli (bib86) 2014; 105 Fabien, Moseley, Gunning, Doolittle, Fischer, Wei, Ponce (bib27) 2016; 4 Nakamura (bib115) 1991; 30 Arif (bib102) 2017; 159 Wang, Wang, Chu, Xiao, Wang, Wang (bib126) 2018; 26 Jampana, Melton, Jamil, Faleev, Opila, Ferguson, Honsberg (bib81) 2010; 31 Namkoong, Boland, Bae, Shim, Lee, Jeon, Foe, Latimer, Doolittle (bib65) 2011; 5 Neufeld, Samantha, Farrell, Iza, Keller, Nakamura, DenBaars, Speck, Mishra (bib11) 2011; 99 Branz, Regan, Gerst, Borak, Santori (bib15) 2015; 8 Huang (bib30) 2019; 6 Yamamoto, Hasan, Kodama, Shigekawa, Kuzuhara (bib73) 2015; 419 Tan, Hamzah, Ahmad, Ng, Hassan (bib67) 2022; 143 Baliga (bib7) 2013; 28 Sheu, Chen, Wu, Lee, Chen, Yeh (bib139) 2014; 22 Asgari, Khalili (bib46) 2011; 95 Farrell (bib22) 2011; 98 Nakamura, Pearton, Fasol (bib3) 2000 Hestroffer, Wu, Li, Lund, Keller, Speck, Mishra (bib118) 2015; 30 Ambacher (bib125) 1999; 216 Neufeld (bib124) 2011; 98 Huang, Fu, Chen, Lu, Ding, Zhao (bib49) 2016; 119 Walterweit, Brandt, Trampert, Grahn, Menniger, Ramsteiner, Reiche, Ploog (bib26) 2000; 406 White, Khoury, Wu, Keller, Rozhavskaia, Shotta, Nakaruma, DenBaars (bib116) 2021; 36 Dahal, Pantha, Li, Lin, Jiang (bib21) 2009; 94 Young, Farrell, Hu, Terao, Iza, Keller, DenBaars, Nakamura, Speck (bib112) 2013; 103 Jani, Yu, Trybus, Jampana, Ferguson, Doolittle, Honsberg (bib70) 2007 Shahmohammadi (bib147) 2017; 95 Hsu, Walukiewicz (bib44) 2008; 104 Enya (bib4) 2009; 2 Sheng (bib150) 2019; 58 Chen (bib13) 2016; 109 Aseev (bib120) 2013; 6 Jiang, Jing, Huang, Liu, Du, Liu, Pu, Hu, Wang (bib100) 2017; 11 Zhao, Fu, Wang, Nakamura (bib2) 2018; 10 Watanabe, Yokoyama, Shigekawa, Sugita, Yamamoto (bib90) 2012; 51 Bi, Bacon-Brown, Du, Zhang, Xu, Li, Zhang, Zhan, Hao (bib103) 2018; 30 Mishra, Parikh, Wu (bib5) 2022; 90 Wang, Wang, Chu, Xiao, Wang, Wang (bib122) 2018; 26 Lin, Chiou (bib40) 2015; 23 Marcinkevičius, Kelchner, Kuritzky, Nakamura, DenBaars, Speck (bib146) 2013; 103 Lee, Su, Chuang, Lin, Huang, Cheng, Chang (bib132) 2010; 94 Lin, Wang, Li (bib92) 2020; 30 Zhao, Huang, Fu, Chen, Liu, Montes, Baranowski (bib17) 2017 Wang, Tsai, Huang, Chen, Li, Kiang, Yang (bib55) 2010; 18 Li, Zhang, Xu, Bi, Zhang, Kuo (bib39) 2017; 10 Lang, Young, Farrell, Wu, Speck (bib131) 2012; 101 Neufeld, Toledo, Cruz, Iza, DenBaars, Mishra (bib19) 2008; 93 Singh, Doppalapudi, Moustakas, Romano (bib75) 1997; 70 Belghouthi, Taamalli, Echouchene, Mejri, Belmabrouk (bib48) 2015; 40 Clinton (bib66) 2017; 136 Zhao, Nguyen, Kibria, Mi (bib96) 2015; 44 Bai, Athanasiou, Wang (bib137) 2016; 145 Mishra, Shen, Kazior, Wu (bib6) 2008; 96 Wu, Cheng, Wang (bib52) 2018; 119 Zhuang, Iida, Kirilenko, Ohkawa (bib152) 2021; 29 Fabien, Doolittle (bib28) 2014; 130 Shim, Jeon, Jeong, Lee (bib82) 2010; 31 Sayed, Bedair (bib84) 2019; 9 Melton, Pankove (bib113) 1997; 178 Cho, Gainer, Fischer, Song, Keller, Mishra, DenBaars (bib144) 1998; 73 Cai, Lv, Huang, Wang, Wang, Yang, Zhu, Zhang (bib107) 2018; 215 Vadiee (bib101) 2018; 11 Wu (bib9) 2002; 80 Yu, Dang, Asbeck, Lau, Sullivan (bib123) 1999; 17 Yamamoto (bib138) 2012; 6 Chen, Hung (bib50) 2017; 11 El-Huni, Migan, Alamarguy, Djebbour (bib63) 2017; 8 Williams (bib141) 2017 Jani, Ferguson, Honsberg, Kurtz (bib18) 2007; 91 Huang (bib35) 2017; 111 Johnston, Kappers, Humphreys (bib78) 2009; 105 Chang, Kuo (bib56) 2011; 32 Liu, Wang, Xiao, Wang, Wang, Wang, Ge, Wang (bib104) 2017; 109 Wang, Imai, Kusakabe, Yoshikawa (bib109) 2016; 108 Fiorentini, Bernardini, Sala, Carlo, Lugli (bib25) 1999; 60 Seo, Shim, Choi, Seo, Suh, Lee (bib135) 2012; 20 Arteev, Sakharov, Zavarin, Lundin, Smirnov, Davydov, Yagovkina, Usov, Tsatsulnikov (bib37) 2018; 1135 Siddharth, Garg, Sengar, Bhardwaj, Kumar, Mukherjee (bib53) 2019; 66 Inoue, Katoh, Kobayashi, Ohta, Fujioka (bib127) 2010; 4 Brown, Ager, Walukiewicz, Wu (bib32) 2010; 94 Vurgaftman, Meyer (bib148) 2003; 94 Yang (bib79) 2007; 204 Namkoong, Trybus, Lee, Moseley, Doolittle, Look (bib76) 2008; 93 Koukitu, Seki (bib69) 1998; 189 Adaine, Hamady, Fressengeas (bib51) 2017; 107 Redaelli, Mukhtarova, Ajay, Núñez-Cascajero, Valdueza-Felip, Bleuse, Durand, Eymery, Monroy (bib88) 2015; 54 Bai, Gong, Li, Zhang, Wang (bib106) 2018; 175 Lee, Lee, M Cheng, Yang (bib110) 2011; 98 Mori, Kondo, Yamamoto, Nakao, Iwaya, Takeuchi, Kamiyama, Akasaki, Amano (bib140) 2013; 52 Liu, Wang, Xiao, Wang, Wang, Wang, Ge, Wang (bib24) 2017; 109 Golam Sarwar, Myers (bib58) 2012; 101 Sang, Sumiya, Liao, Koide, Yang, Shen (bib105) 2021; 119 Lee, Honda, Amano (bib61) 2015; 49 Li, Lestradet, Xiao, Li (bib57) 2011; 208 Wu, Walukiewicz, Yu, Shan, Ager (bib14) 2003; 94 Jeng, Lee, Chang (bib64) 2009; 42 Togashi, Kamoshita, Nishizawa, Murakami, Kumagai, Koukitu (bib72) 2008; 5 Nguyen, Zhang, Cui, Han, Fathololoumi, Couillard, Botton, Mi (bib95) 2011; 11 Yao, Tsai, Huang, Lin, Sheu, Lee (bib59) 2013; 103 Kazazis, Papadomanolaki, Androulidaki, Kayambaki, Iliopoulos (bib36) 2018; 123 Huang (bib29) 2017; 110 Huang (bib54) 2018; 113 Kwak, Lee, Kim, Kim, Moon (bib111) 2011; 1399 M Fabien, Maros, Honsberg, Doolittle (bib108) 2016; 6 Karpov (bib74) 1998; 3 Huang (bib31) 2020; 76 Caria (bib142) 2020 Lien, Hsiao, Yang, Tsai, Wei, Lee, He (bib34) 2015; 11 Young, Perl, Farrell, Iza, Keller, Bowers, Nakamura, DenBaars, Speck (bib133) 2014; 104 Lin, Lai, Lin, Lai, He (bib134) 2011; 32 Bai, Yang, Athanasiou, Wang (bib136) 2014; 104 Zeng, Zhang, Sun, Cai, Chen, Yu (bib80) 2009; 24 Shan, Chen, Li, Lin, Xu, Hao, Zhang (bib98) 2017; 56 Prajon, Nirmal, Menokey, Pravin (bib121) 2016; 12 Li (bib151) 2022; 120 Islam, Kaysir, Islam, Hashimoto, Yamamoto (bib68) 2013; 29 Tran (bib119) 2012; 102 Nakamura, Mukai, Senoh (bib1) 1994; 64 Badcock, Hao, Moram, Kappers, Dawson, Oliver, Humphreys (bib145) 2012; 112 Misra, Boney, Medelci, Starikov, Freundlich, Bensaoula (bib83) 2008 Kuwahara (bib23) 2011; 4 Hrachowina, Chen, Barrigón, Wallenberg, Borgström (bib94) 2022; 27 Cai, Zeng, Zhang (bib129) 2009; 95 Dickerson, Pantzas, Ougazzaden, Voss (bib128) 2013; 34 Mukhtarova, Valdueza-Felip, Redaelli, Durand, Bougerol, Monroy, Eymery (bib85) 2016; 108 Williams (bib33) 2017; 7 Cavassilas, Michelini, Bescond (bib47) 2014; 105 Chatterjee, Park, Um, Lee (bib93) 2017; 79 Chang, Yen, Chang, Kuo (bib60) 2013; 49 Even, Laval, Ledoux, Ferret, Ferret, Shotta, Guiot, Levy, Robin, Dussaigne (bib117) 2017; 110 Fu, Fu, Huang, Chen, Yang, Montes, Yang, Zhou, Zhao (bib8) 2019; 40 Fang, McFavilen, Ding, Vasileska, Goodnick (bib62) 2016 Jiang (bib99) 2019; 57 Komaki, Katayama, Onabe, Ozeki, Ikari (bib71) 2007; 305 Ning, Chien, Pirouz, Yang, Khan (bib114) 1996; 11 Lai, Li, Long, Ying, Zheng, Zhang (bib41) 2021; 155 Lin, Yu, Zhang, Gao, Liu, Wang, Li (bib91) 2020; 30 Miyoshi, Ohta, Mori, Egawa (bib97) 2017; 215 Moses, Huang, Zhao, Maur, Katz, Gordon (bib143) 2020; 28 Zhao, Detchprohm, Wetzel (bib12) 2014; 105 Woo, Jo, Kim, Cho, Roh, Lee, Kim, Hahn, Im (bib42) 2018; 18 Ambacher (10.1016/j.mtener.2022.101229_bib125) 1999; 216 Farrell (10.1016/j.mtener.2022.101229_bib22) 2011; 98 Li (10.1016/j.mtener.2022.101229_bib39) 2017; 10 Kuwahara (10.1016/j.mtener.2022.101229_bib23) 2011; 4 Huang (10.1016/j.mtener.2022.101229_bib49) 2016; 119 Zhao (10.1016/j.mtener.2022.101229_bib2) 2018; 10 Lee (10.1016/j.mtener.2022.101229_bib61) 2015; 49 Nakamura (10.1016/j.mtener.2022.101229_bib115) 1991; 30 Chang (10.1016/j.mtener.2022.101229_bib60) 2013; 49 Brown (10.1016/j.mtener.2022.101229_bib32) 2010; 94 Cai (10.1016/j.mtener.2022.101229_bib107) 2018; 215 Cho (10.1016/j.mtener.2022.101229_bib144) 1998; 73 Jampana (10.1016/j.mtener.2022.101229_bib81) 2010; 31 Li (10.1016/j.mtener.2022.101229_bib57) 2011; 208 Bai (10.1016/j.mtener.2022.101229_bib106) 2018; 175 Chen (10.1016/j.mtener.2022.101229_bib13) 2016; 109 Jiang (10.1016/j.mtener.2022.101229_bib100) 2017; 11 Marcinkevičius (10.1016/j.mtener.2022.101229_bib146) 2013; 103 Williams (10.1016/j.mtener.2022.101229_bib33) 2017; 7 Namkoong (10.1016/j.mtener.2022.101229_bib76) 2008; 93 Redaelli (10.1016/j.mtener.2022.101229_bib88) 2015; 54 Inoue (10.1016/j.mtener.2022.101229_bib127) 2010; 4 Lai (10.1016/j.mtener.2022.101229_bib41) 2021; 155 Redaelli (10.1016/j.mtener.2022.101229_bib86) 2014; 105 Wu (10.1016/j.mtener.2022.101229_bib14) 2003; 94 Jani (10.1016/j.mtener.2022.101229_bib70) 2007 Huang (10.1016/j.mtener.2022.101229_bib29) 2017; 110 Huang (10.1016/j.mtener.2022.101229_bib31) 2020; 76 Shan (10.1016/j.mtener.2022.101229_bib98) 2017; 56 Dahal (10.1016/j.mtener.2022.101229_bib16) 2010; 97 Namkoong (10.1016/j.mtener.2022.101229_bib65) 2011; 5 M Fabien (10.1016/j.mtener.2022.101229_bib108) 2016; 6 Adaine (10.1016/j.mtener.2022.101229_bib51) 2017; 107 Jeng (10.1016/j.mtener.2022.101229_bib64) 2009; 42 Hestroffer (10.1016/j.mtener.2022.101229_bib118) 2015; 30 Zeng (10.1016/j.mtener.2022.101229_bib80) 2009; 24 Wu (10.1016/j.mtener.2022.101229_bib9) 2002; 80 Wu (10.1016/j.mtener.2022.101229_bib10) 2009; 106 Johnston (10.1016/j.mtener.2022.101229_bib78) 2009; 105 Moses (10.1016/j.mtener.2022.101229_bib143) 2020; 28 Woo (10.1016/j.mtener.2022.101229_bib42) 2018; 18 Prajon (10.1016/j.mtener.2022.101229_bib121) 2016; 12 Enya (10.1016/j.mtener.2022.101229_bib4) 2009; 2 Huang (10.1016/j.mtener.2022.101229_bib30) 2019; 6 Toledo (10.1016/j.mtener.2022.101229_bib43) 2012; 111 Wang (10.1016/j.mtener.2022.101229_bib109) 2016; 108 Fabien (10.1016/j.mtener.2022.101229_bib28) 2014; 130 Chatterjee (10.1016/j.mtener.2022.101229_bib93) 2017; 79 Yao (10.1016/j.mtener.2022.101229_bib59) 2013; 103 Miyoshi (10.1016/j.mtener.2022.101229_bib87) 2017; 129 Bai (10.1016/j.mtener.2022.101229_bib136) 2014; 104 Hrachowina (10.1016/j.mtener.2022.101229_bib94) 2022; 27 Zhao (10.1016/j.mtener.2022.101229_bib17) 2017 Wu (10.1016/j.mtener.2022.101229_bib52) 2018; 119 Cai (10.1016/j.mtener.2022.101229_bib129) 2009; 95 Lang (10.1016/j.mtener.2022.101229_bib131) 2012; 101 Zhao (10.1016/j.mtener.2022.101229_bib96) 2015; 44 Fang (10.1016/j.mtener.2022.101229_bib62) 2016 Nakamura (10.1016/j.mtener.2022.101229_bib1) 1994; 64 Jani (10.1016/j.mtener.2022.101229_bib18) 2007; 91 Clinton (10.1016/j.mtener.2022.101229_bib66) 2017; 136 Belghouthi (10.1016/j.mtener.2022.101229_bib48) 2015; 40 Togashi (10.1016/j.mtener.2022.101229_bib72) 2008; 5 Lin (10.1016/j.mtener.2022.101229_bib91) 2020; 30 Wang (10.1016/j.mtener.2022.101229_bib126) 2018; 26 Mishra (10.1016/j.mtener.2022.101229_bib6) 2008; 96 Liu (10.1016/j.mtener.2022.101229_bib24) 2017; 109 Jiang (10.1016/j.mtener.2022.101229_bib99) 2019; 57 Chang (10.1016/j.mtener.2022.101229_bib56) 2011; 32 Wierer (10.1016/j.mtener.2022.101229_bib89) 2012; 100 Nguyen (10.1016/j.mtener.2022.101229_bib95) 2011; 11 El-Huni (10.1016/j.mtener.2022.101229_bib63) 2017; 8 Yang (10.1016/j.mtener.2022.101229_bib79) 2007; 204 Watanabe (10.1016/j.mtener.2022.101229_bib90) 2012; 51 Kwak (10.1016/j.mtener.2022.101229_bib111) 2011; 1399 Hsu (10.1016/j.mtener.2022.101229_bib44) 2008; 104 Melton (10.1016/j.mtener.2022.101229_bib113) 1997; 178 Fabien (10.1016/j.mtener.2022.101229_bib77) 2015; 425 Baliga (10.1016/j.mtener.2022.101229_bib7) 2013; 28 Sarollahi (10.1016/j.mtener.2022.101229_bib130) 2022; 40 Sayed (10.1016/j.mtener.2022.101229_bib84) 2019; 9 Fabien (10.1016/j.mtener.2022.101229_bib27) 2016; 4 Williams (10.1016/j.mtener.2022.101229_bib141) 2017 Liu (10.1016/j.mtener.2022.101229_bib104) 2017; 109 Young (10.1016/j.mtener.2022.101229_bib112) 2013; 103 Fiorentini (10.1016/j.mtener.2022.101229_bib25) 1999; 60 Yamamoto (10.1016/j.mtener.2022.101229_bib138) 2012; 6 Lien (10.1016/j.mtener.2022.101229_bib34) 2015; 11 Golam Sarwar (10.1016/j.mtener.2022.101229_bib58) 2012; 101 Yamamoto (10.1016/j.mtener.2022.101229_bib73) 2015; 419 Seo (10.1016/j.mtener.2022.101229_bib135) 2012; 20 Cavassilas (10.1016/j.mtener.2022.101229_bib47) 2014; 105 Bi (10.1016/j.mtener.2022.101229_bib103) 2018; 30 Liu (10.1016/j.mtener.2022.101229_bib149) 2011; 110 Branz (10.1016/j.mtener.2022.101229_bib15) 2015; 8 Arteev (10.1016/j.mtener.2022.101229_bib37) 2018; 1135 Bai (10.1016/j.mtener.2022.101229_bib137) 2016; 145 Ho (10.1016/j.mtener.2022.101229_bib38) 2012; 103 Mukhtarova (10.1016/j.mtener.2022.101229_bib85) 2016; 108 Komaki (10.1016/j.mtener.2022.101229_bib71) 2007; 305 Shahmohammadi (10.1016/j.mtener.2022.101229_bib147) 2017; 95 Tran (10.1016/j.mtener.2022.101229_bib119) 2012; 102 Huang (10.1016/j.mtener.2022.101229_bib54) 2018; 113 Shim (10.1016/j.mtener.2022.101229_bib82) 2010; 31 Dahal (10.1016/j.mtener.2022.101229_bib21) 2009; 94 Walterweit (10.1016/j.mtener.2022.101229_bib26) 2000; 406 Fu (10.1016/j.mtener.2022.101229_bib8) 2019; 40 Ning (10.1016/j.mtener.2022.101229_bib114) 1996; 11 Yu (10.1016/j.mtener.2022.101229_bib123) 1999; 17 Zhao (10.1016/j.mtener.2022.101229_bib12) 2014; 105 Miyoshi (10.1016/j.mtener.2022.101229_bib97) 2017; 215 Neufeld (10.1016/j.mtener.2022.101229_bib19) 2008; 93 Islam (10.1016/j.mtener.2022.101229_bib68) 2013; 29 Mori (10.1016/j.mtener.2022.101229_bib140) 2013; 52 Nakamura (10.1016/j.mtener.2022.101229_bib3) 2000 Arif (10.1016/j.mtener.2022.101229_bib102) 2017; 159 Sheng (10.1016/j.mtener.2022.101229_bib150) 2019; 58 Lee (10.1016/j.mtener.2022.101229_bib132) 2010; 94 Chen (10.1016/j.mtener.2022.101229_bib50) 2017; 11 Singh (10.1016/j.mtener.2022.101229_bib75) 1997; 70 Lin (10.1016/j.mtener.2022.101229_bib134) 2011; 32 Lin (10.1016/j.mtener.2022.101229_bib40) 2015; 23 Koukitu (10.1016/j.mtener.2022.101229_bib69) 1998; 189 Caria (10.1016/j.mtener.2022.101229_bib142) 2020 Sang (10.1016/j.mtener.2022.101229_bib105) 2021; 119 Asgari (10.1016/j.mtener.2022.101229_bib46) 2011; 95 Dickerson (10.1016/j.mtener.2022.101229_bib128) 2013; 34 Aseev (10.1016/j.mtener.2022.101229_bib120) 2013; 6 Wang (10.1016/j.mtener.2022.101229_bib122) 2018; 26 Feng (10.1016/j.mtener.2022.101229_bib45) 2010; 108 Mishra (10.1016/j.mtener.2022.101229_bib5) 2022; 90 Vurgaftman (10.1016/j.mtener.2022.101229_bib148) 2003; 94 Lin (10.1016/j.mtener.2022.101229_bib92) 2020; 30 Karpov (10.1016/j.mtener.2022.101229_bib74) 1998; 3 White (10.1016/j.mtener.2022.101229_bib116) 2021; 36 Zhuang (10.1016/j.mtener.2022.101229_bib152) 2021; 29 Misra (10.1016/j.mtener.2022.101229_bib83) 2008 Vadiee (10.1016/j.mtener.2022.101229_bib101) 2018; 11 Neufeld (10.1016/j.mtener.2022.101229_bib124) 2011; 98 Sheu (10.1016/j.mtener.2022.101229_bib139) 2014; 22 Horng (10.1016/j.mtener.2022.101229_bib20) 2009; 30 Li (10.1016/j.mtener.2022.101229_bib151) 2022; 120 Badcock (10.1016/j.mtener.2022.101229_bib145) 2012; 112 Neufeld (10.1016/j.mtener.2022.101229_bib11) 2011; 99 Wang (10.1016/j.mtener.2022.101229_bib55) 2010; 18 Young (10.1016/j.mtener.2022.101229_bib133) 2014; 104 Tan (10.1016/j.mtener.2022.101229_bib67) 2022; 143 Lee (10.1016/j.mtener.2022.101229_bib110) 2011; 98 Kazazis (10.1016/j.mtener.2022.101229_bib36) 2018; 123 Siddharth (10.1016/j.mtener.2022.101229_bib53) 2019; 66 Huang (10.1016/j.mtener.2022.101229_bib35) 2017; 111 Even (10.1016/j.mtener.2022.101229_bib117) 2017; 110 |
References_xml | – volume: 104 year: 2014 ident: bib133 article-title: High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration publication-title: Appl. Phys. Lett. – volume: 11 start-page: 1919 year: 2011 end-page: 1924 ident: bib95 article-title: P-type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111) publication-title: Nano Lett. – volume: 49 year: 2015 ident: bib61 article-title: Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells publication-title: J. Phys. D Appl. Phys. – start-page: 1 year: 2008 end-page: 5 ident: bib83 article-title: Fabrication and Characterization of 2.3eV InGaN Photovoltaic Devices publication-title: 33rd IEEE Photovoltaic Specialists Conference (PVSC), San Diego, United States – volume: 18 start-page: 1558 year: 2018 end-page: 1563 ident: bib42 article-title: Correlation between pit formation and phase separation in thick InGaN film on a Si substrate publication-title: Curr. Appl. Phys. – volume: 70 start-page: 1089 year: 1997 end-page: 1091 ident: bib75 article-title: Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition publication-title: Appl. Phys. Lett. – start-page: 64 year: 2007 end-page: 67 ident: bib70 article-title: Effect of Phase Separation on Performance of III-V Nitride Solar Cells publication-title: Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy – volume: 143 year: 2022 ident: bib67 article-title: Recent advances and challenges in the MOCVD growth of indium gallium nitride: a brief review publication-title: Mater. Sci. Semicond. Process. – volume: 29 start-page: 128 year: 2013 end-page: 136 ident: bib68 article-title: MOVPE growth of In publication-title: J. Mater. Sci. Technol. – volume: 94 start-page: 1259 year: 2010 end-page: 1262 ident: bib132 article-title: Discussion on electrical characteristics of i-In publication-title: Sol. Energy Mater. Sol. Cells – volume: 40 start-page: 1728 year: 2019 end-page: 1731 ident: bib8 article-title: Demonstration of 1.27 kV etch-then-regrow GaN p-n junctions with low leakage for GaN power electronics publication-title: IEEE Electron. Device Lett. – volume: 208 start-page: 928 year: 2011 end-page: 931 ident: bib57 article-title: Effects of polarization charge on the photovoltaic properties of InGaN solar cells publication-title: Phys. Status Solidi A – volume: 6 start-page: 2096 year: 2019 end-page: 2103 ident: bib30 article-title: High-temperature polarization-free III-nitride solar cells with self-cooling effects publication-title: ACS Photon. – volume: 28 start-page: 1167 year: 2020 end-page: 1174 ident: bib143 article-title: InGaN/GaN multi-quantum-well solar cells under high solar concentration and elevated temperatures for hybrid solar thermal-photovoltaic power plants publication-title: Prog. Photovoltaics Res. Appl. – year: 2000 ident: bib3 article-title: The Blue Laser Diode: the Complete Story – start-page: 112800E year: 2020 ident: bib142 article-title: Degradation and recovery of high-periodicity InGaN/GaN MQWs under optical stress in short-circuit condition publication-title: Proc. SPIEL – volume: 29 start-page: 29780 year: 2021 end-page: 29788 ident: bib152 article-title: Improved performance of InGaN-based red light-emitting diodes by micro-hole arrays publication-title: Opt Express – volume: 120 year: 2022 ident: bib151 article-title: Demonstration of ultra-small 5 × 5 publication-title: Appl. Phys. Lett. – volume: 58 year: 2019 ident: bib150 article-title: Intensive luminescence from a thick, indium-rich In publication-title: Jpn. J. Appl. Phys. – volume: 175 start-page: 47 year: 2018 end-page: 51 ident: bib106 article-title: Semi-polar InGaN/GaN multiple quantum well solar cells with spectral response at up to 560 nm publication-title: Sol. Energy Mater. Sol. Cells – volume: 4 start-page: 601 year: 2016 end-page: 606 ident: bib27 article-title: Simulations, Practical limitations, and novel growth technology for InGaN-based solar cells publication-title: IEEE J. Photovoltaics – volume: 129 start-page: 29 year: 2017 end-page: 34 ident: bib87 article-title: Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells publication-title: Solid State Electron. – volume: 26 start-page: A946 year: 2018 end-page: A954 ident: bib126 article-title: Roles of polarization effects in InGaN/GaN solar cells and comparison of p-i-n and n-i-p structures publication-title: Opt Express – volume: 145 start-page: 226 year: 2016 end-page: 230 ident: bib137 article-title: Influence of the ITO current spreading layer on efficiencies of InGaN-based solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 119 start-page: 9 year: 2018 end-page: 18 ident: bib52 article-title: Effects of the unintentional background concentration, indium composition and defect density on the performance of InGaN p-i-n homojunction solar cells publication-title: Superlattices Microstruct. – volume: 66 start-page: 3399 year: 2019 end-page: 3404 ident: bib53 article-title: Analytical study of performance parameters of inGaN/GaN multiple quantum well solar cell publication-title: IEEE Trans. Electron. Dev. – volume: 30 year: 2015 ident: bib118 article-title: Relaxed c-plane InGaN layers for the growth of strain-reduced InGaN quantum wells publication-title: Semicond. Sci. Technol. – volume: 1399 start-page: 179 year: 2011 ident: bib111 article-title: Growth and characterization of AlGaN films on patterned sapphire substrates publication-title: AIP Conf. Proc. – volume: 40 year: 2022 ident: bib130 article-title: Ware Study of simulations of double graded InGaN solar cell structures publication-title: J. Vac. Sci. Technol. B – volume: 94 start-page: 6477 year: 2003 end-page: 6482 ident: bib14 article-title: Superior radiation resistance of In publication-title: J. Appl. Phys. – volume: 93 year: 2008 ident: bib19 article-title: High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap publication-title: Appl. Phys. Lett. – volume: 107 start-page: 267 year: 2017 end-page: 277 ident: bib51 article-title: Effects of structural defects and polarization charges in InGaN-based double-junction solar cell publication-title: Superlattices Microstruct. – volume: 42 year: 2009 ident: bib64 article-title: Temperature dependences of In publication-title: J. Phys. D Appl. Phys. – start-page: 954 year: 2017 end-page: 957 ident: bib17 article-title: InGaN-Based Solar Cells for Space Applications publication-title: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Medford, United States – volume: 103 year: 2013 ident: bib59 article-title: Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells publication-title: Appl. Phys. Lett. – volume: 11 year: 2017 ident: bib50 article-title: Numerical study of InGaN tandem solar cells with intermediate bands publication-title: Phys. Status Solidi Rapid Res. Lett. – volume: 159 start-page: 405 year: 2017 end-page: 411 ident: bib102 article-title: Improving InGaN heterojunction solar cells efficiency using a semibulk absorber publication-title: Sol. Energy Mater. Sol. Cells – volume: 4 start-page: 88 year: 2010 end-page: 90 ident: bib127 article-title: Investigation on the conversion efficiency of InGaN solar cells fabricated on GaN and ZnO substrates publication-title: Phys. Status Solidi Rapid Res. Lett. – volume: 106 year: 2009 ident: bib10 article-title: When group-III nitrides go infrared: new properties and perspectives publication-title: J. Appl. Phys – volume: 109 start-page: 194 year: 2017 end-page: 200 ident: bib104 article-title: Optimization of growth and fabrication techniques to enhance the InGaN/GaN multiple quantum well solar cells performance publication-title: Superlattices Microstruct. – volume: 109 year: 2016 ident: bib13 article-title: Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs publication-title: Appl. Phys. Lett. – volume: 76 year: 2020 ident: bib31 article-title: Anomalous carrier dynamics and localization effects in nonpolar m-plane InGaN/GaN quantum wells at high temperatures publication-title: Nano Energy – start-page: 193 year: 2017 end-page: 195 ident: bib141 article-title: Development of a high-band gap high temperature III-nitride solar cell for integration with concentrated solar power technology publication-title: 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington D.C., United States – volume: 90 start-page: 1022 year: 2022 end-page: 1031 ident: bib5 article-title: AlGaN/GaN HEMTs - an overview of device operation and applications publication-title: Proc. IEEE – volume: 30 year: 2020 ident: bib91 article-title: A novel approach for achieving high-efficiency photoelectrochemical water oxidation in InGaN nanorods grown on Si system: MXene nanosheets as multifunctional interfacial modifier publication-title: Adv. Funct. Mater. – volume: 30 start-page: 83 year: 2018 end-page: 86 ident: bib103 article-title: An InGaN/GaN MQWs solar cell improved by a surficial GaN nanostructure as light traps publication-title: IEEE Photon. Technol. Lett. – volume: 8 start-page: 3083 year: 2015 end-page: 3091 ident: bib15 article-title: Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity publication-title: Energy Environ. Sci. – volume: 215 year: 2017 ident: bib97 article-title: A comparative study of InGaN/GaN multiple-quantum-well solar cells grown on sapphire and AlN template by metalorganic chemical vapor deposition publication-title: Phys. Status Solidi A – volume: 110 year: 2017 ident: bib117 article-title: Enhanced in incorporation in full InGaN heterostructure grown on relaxed InGaN pseudo-substrate publication-title: Appl. Phys. Lett. – volume: 189 start-page: 13 year: 1998 end-page: 18 ident: bib69 article-title: Thermodynamic study on phase separation during MOVPE growth of In publication-title: J. Cryst. Growth – volume: 60 start-page: 8849 year: 1999 ident: bib25 article-title: Effects of macroscopic polarization in III-V nitride multiple quantum wells publication-title: Phys. Rev. B – volume: 6 start-page: 145 year: 2012 end-page: 147 ident: bib138 article-title: Properties of nitride-based photovoltaic cells under concentrated light illumination publication-title: Phys. Status Solidi Rapid Res. Lett. – volume: 95 start-page: 3124 year: 2011 end-page: 3129 ident: bib46 article-title: Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell publication-title: Sol. Energy Mater. Sol. Cells – volume: 30 year: 2020 ident: bib92 article-title: Modulating surface/interface structure of emerging InGaN nanowires for efficient photoelectrochemical water splitting publication-title: Adv. Funct. Mater. – volume: 5 start-page: 86 year: 2011 end-page: 88 ident: bib65 article-title: Effect of III-nitride polarization on V publication-title: Phys. Status Solidi Rapid Res. Lett. – volume: 20 start-page: 991 year: 2012 end-page: 996 ident: bib135 article-title: Efficiency improvement in InGaN-based solar cells by indium tin oxide nano dots covered with ITO films publication-title: Opt Express – volume: 40 start-page: 424 year: 2015 end-page: 428 ident: bib48 article-title: Modeling of polarization charge in N-face InGaN/GaN MQW solar cells publication-title: Mater. Sci. Semicond. Process. – volume: 11 year: 2018 ident: bib101 article-title: InGaN solar cells with regrown GaN homojunction tunnel contacts publication-title: Appl. Phys. Express – volume: 51 start-page: 10ND10 year: 2012 ident: bib90 article-title: Barrier thickness dependence of photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells publication-title: Jpn. J. Appl. Phys. – volume: 130 start-page: 354 year: 2014 end-page: 363 ident: bib28 article-title: Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 101 year: 2012 ident: bib131 article-title: Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells publication-title: Appl. Phys. Lett. – volume: 103 year: 2013 ident: bib146 article-title: Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells publication-title: Appl. Phys. Lett. – volume: 91 year: 2007 ident: bib18 article-title: Design and characterization of GaN/InGaN solar cells publication-title: Appl. Phys. Lett. – volume: 3 start-page: 16 year: 1998 ident: bib74 article-title: Suppression of phase separation in InGaN due to elastic strain publication-title: MRS Internet J. Nitride Semicond. Res. – volume: 52 year: 2013 ident: bib140 article-title: Concentrating properties of nitride-based solar cells using different electrodes publication-title: Jpn. J. Appl. Phys. – volume: 6 start-page: 460 year: 2016 end-page: 464 ident: bib108 article-title: III-Nitride double-heterojunction solar cells with high In-content InGaN absorbing layers: comparison of large-area and small-area devices publication-title: IEEE J. Photovoltaics – volume: 12 start-page: 1117 year: 2016 end-page: 1121 ident: bib121 article-title: Efficiency enhancement of InGaN MQW LED using compositionally step graded InGaN barrier on SiC substrate publication-title: J. Disp. Technol. – volume: 10 start-page: 1221 year: 2017 ident: bib39 article-title: On the hole injection for III-nitride based deep ultraviolet light-emitting diodes publication-title: Materials – volume: 110 year: 2011 ident: bib149 article-title: Temperature-controlled epitaxy of In publication-title: J. Appl. Phys. – volume: 11 start-page: 104 year: 2015 end-page: 109 ident: bib34 article-title: Harsh photovoltaics using InGaN/GaN multiple quantum well schemes publication-title: Nano Energy – volume: 17 start-page: 1742 year: 1999 ident: bib123 article-title: Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures publication-title: J. Vac. Sci. Technol. B – volume: 98 year: 2011 ident: bib22 article-title: High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm publication-title: Appl. Phys. Lett. – volume: 56 year: 2017 ident: bib98 article-title: The performance enhancement of an InGaN/GaN multiple-quantum-well solar cell by superlattice structure publication-title: Jpn. J. Appl. Phys. – volume: 104 year: 2014 ident: bib136 article-title: Efficiency enhancement of InGaN/GaN solar cells with nanostructures publication-title: Appl. Phys. Lett. – volume: 4 year: 2011 ident: bib23 article-title: GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate publication-title: Appl. Phys. Express – volume: 111 year: 2012 ident: bib43 article-title: InGaN solar cell requirements for high-efficiency integrated III-nitride/non-III-nitride tandem photovoltaic devices publication-title: J. Appl. Phys. – volume: 8 year: 2017 ident: bib63 article-title: Modeling of InGaN/Si tandem cells: comparison between 2-contacts/4-contacts publication-title: EPJ Photovoltaics – volume: 5 start-page: 1518 year: 2008 end-page: 1521 ident: bib72 article-title: Experimental and ab-initio studies of temperature dependent InN decomposition in various ambient publication-title: Phys. Status Solidi C – volume: 80 start-page: 3967 year: 2002 end-page: 3969 ident: bib9 article-title: Unusual properties of the fundamental band gap of InN publication-title: Appl. Phys. Lett. – volume: 136 start-page: 3 year: 2017 end-page: 11 ident: bib66 article-title: A Review of the Synthesis of Reduced Defect Density InxGa1−xN for All Indium Compositions publication-title: Solid State Electron. – volume: 216 start-page: 381 year: 1999 end-page: 389 ident: bib125 article-title: Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices publication-title: Phys. Status Solidi B – volume: 7 start-page: 1646 year: 2017 end-page: 1652 ident: bib33 article-title: Refractory In publication-title: IEEE J. Photovoltaics – volume: 23 start-page: A614 year: 2015 end-page: A624 ident: bib40 article-title: Optical design of GaN/In publication-title: Opt Express – volume: 119 year: 2016 ident: bib49 article-title: Analysis of loss mechanisms in InGaN solar cells using a semi-analytical model publication-title: J. Appl. Phys. – volume: 27 year: 2022 ident: bib94 article-title: Realization of axially defined GaInP/InP/InAsP triple-junction photovoltaic nanowires for high-performance solar cells publication-title: Mater. Today Energy – volume: 30 start-page: 724 year: 2009 end-page: 726 ident: bib20 article-title: Improved conversion efficiency of GaN/InGaN thin-film solar cells publication-title: IEEE Electron. Device Lett. – volume: 105 year: 2014 ident: bib86 article-title: Effect of the quantum well thickness on the performance of InGaN photovoltaic cells publication-title: Appl. Phys. Lett. – volume: 94 start-page: 3675 year: 2003 end-page: 3696 ident: bib148 article-title: Band parameters for nitrogen-containing semiconductors publication-title: J. Appl. Phys. – volume: 64 start-page: 1687 year: 1994 end-page: 1689 ident: bib1 article-title: Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes publication-title: Appl. Phys. Lett. – volume: 108 year: 2010 ident: bib45 article-title: Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of p-i-n InGaN single homojunction solar cells publication-title: J. Appl. Phys. – volume: 100 year: 2012 ident: bib89 article-title: Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells publication-title: Appl. Phys. Lett. – volume: 2 year: 2009 ident: bib4 article-title: 531 nm Green lasing of ingan based laser diodes on semi-polar {2021} free-standing GaN substrates publication-title: Appl. Phys. Exp. – volume: 406 start-page: 865 year: 2000 end-page: 868 ident: bib26 article-title: Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes publication-title: Nature – volume: 94 start-page: 478 year: 2010 end-page: 483 ident: bib32 article-title: Finite element simulations of compositionally graded InGaN solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 204 start-page: 4288 year: 2007 end-page: 4291 ident: bib79 article-title: Photovoltaic effects in InGaN structures with p-n junctions publication-title: Phys. Status Solidi A – volume: 108 year: 2016 ident: bib85 article-title: Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness publication-title: Appl. Phys. Lett. – volume: 34 start-page: 363 year: 2013 end-page: 365 ident: bib128 article-title: Polarization-induced electric fields make robust n-GaN/i-InGaN/p-GaN solar cells publication-title: IEEE Electron. Device Lett. – volume: 30 start-page: L1705 year: 1991 ident: bib115 article-title: GaN growth using GaN buffer layer publication-title: Jpn. J. Appl. Phys. – volume: 79 start-page: 1002 year: 2017 end-page: 1015 ident: bib93 article-title: III-nitride nanowires for solar light harvesting: a review publication-title: Renew. Sustain. Energy Rev. – volume: 31 start-page: 1140 year: 2010 end-page: 1142 ident: bib82 article-title: Improved efficiency by using transparent contact layers in InGaN-based p-i-n solar cells publication-title: IEEE Electron. Device Lett. – volume: 1135 year: 2018 ident: bib37 article-title: Investigation of statistical broadening in InGaN alloys publication-title: J. Phys. Conf. Ser. – volume: 6 year: 2013 ident: bib120 article-title: Uniform low-to-high in composition InGaN layers grown on Si publication-title: Appl. Phys. Express – volume: 32 start-page: 937 year: 2011 end-page: 939 ident: bib56 article-title: Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN p-i-n solar cells publication-title: IEEE Electron. Device Lett. – volume: 31 start-page: 32 year: 2010 end-page: 34 ident: bib81 article-title: Design and realization of wide-band-gap (∼ 2.67 eV) InGaN p-n junction solar cell publication-title: IEEE Electron. Device Lett. – volume: 155 year: 2021 ident: bib41 article-title: Theoretical study and optimization of the green InGaN/GaN multiple quantum wells with pre-layer publication-title: Superlattice. Microst. – volume: 99 year: 2011 ident: bib11 article-title: Observation of positive thermal power coefficient in InGaN/GaN quantum well solar cells publication-title: Appl. Phys. Lett. – volume: 18 start-page: 2682 year: 2010 end-page: 2694 ident: bib55 article-title: Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer publication-title: Opt Express – volume: 110 year: 2017 ident: bib29 article-title: Nonpolar and semipolar InGaN/GaN multiple-quantum-well solar cells with improved carrier collection efficiency publication-title: Appl. Phys. Lett. – volume: 44 start-page: 14 year: 2015 end-page: 68 ident: bib96 article-title: III-Nitride nanowire optoelectronics publication-title: Prog. Quant. Electron. – volume: 32 start-page: 1104 year: 2011 end-page: 1106 ident: bib134 article-title: Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays publication-title: IEEE Electron. Device Lett. – volume: 24 year: 2009 ident: bib80 article-title: Substantial photo-response of InGaN p-i-n homojunction solar cells publication-title: Semicond. Sci. Technol. – volume: 112 year: 2012 ident: bib145 article-title: Recombination mechanisms in heteroepitaxial non-polar InGaN/GaN quantum wells publication-title: J. Appl. Phys. – volume: 57 start-page: 300 year: 2019 end-page: 306 ident: bib99 article-title: Enhanced photocurrent in InGaN/GaN MQWs solar cells by coupling plasmonic with piezo-phototronic effect publication-title: Nano Energy – volume: 9 start-page: 402 year: 2019 end-page: 423 ident: bib84 article-title: Quantum well solar cells: principles, recent progress, and potential publication-title: IEEE J. Photovoltaics – volume: 105 year: 2014 ident: bib12 article-title: High 400°C operation temperature blue spectrum concentration solar junction in GaInN/GaN publication-title: Appl. Phys. Lett. – volume: 105 year: 2014 ident: bib47 article-title: Theoretical comparison of multiple quantum wells and thick-layer designs in InGaN/GaN solar cells publication-title: Appl. Phys. Lett. – volume: 97 year: 2010 ident: bib16 article-title: InGaN/GaN multiple quantum well concentrator solar cells publication-title: Appl. Phys. Lett. – volume: 113 year: 2018 ident: bib54 article-title: Energy band engineering of InGaN/GaN multi-quantum-well solar cells via AlGaN electron- and hole-blocking layers publication-title: Appl. Phys. Lett. – volume: 96 start-page: 287 year: 2008 end-page: 305 ident: bib6 article-title: GaN-based RF power devices and amplifiers publication-title: Proc. IEEE – volume: 36 year: 2021 ident: bib116 article-title: MOCVD growth of thick V-pit-free InGaN films on semi-relaxed InGaN substrates publication-title: Semicond. Sci. Technol. – volume: 73 start-page: 1370 year: 1998 end-page: 1372 ident: bib144 article-title: “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells publication-title: Appl. Phys. Lett. – volume: 11 start-page: 9405 year: 2017 end-page: 9412 ident: bib100 article-title: Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezo-phototronic effect publication-title: ACS Nano – volume: 105 year: 2009 ident: bib78 article-title: Microstructural evolution of nonpolar (11-20) GaN grown on (1-102) sapphire using a 3D-2D method publication-title: J. Appl. Phys. – volume: 425 start-page: 115 year: 2015 end-page: 118 ident: bib77 article-title: Low-temperature growth of InGaN films over the entire composition range by MBE publication-title: J. Cryst. Growth – volume: 11 start-page: 580 year: 1996 end-page: 592 ident: bib114 article-title: Growth defects in GaN films on sapphire: the probable origin of threading dislocations publication-title: J. Mater. Res. – volume: 123 year: 2018 ident: bib36 article-title: Optical properties of InGaN thin films in the entire composition range publication-title: J. Appl. Phys. – start-page: 1138 year: 2016 end-page: 1141 ident: bib62 article-title: Simulation of the High Temperature Performance of InGaN Multiple Quantum Well Solar Cells publication-title: IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, United States – volume: 26 start-page: 946 year: 2018 end-page: 954 ident: bib122 article-title: Roles of polarization effects in InGaN/GaN solar cells and comparison of p-i-n and n-i-p structures publication-title: Opt Express – volume: 28 year: 2013 ident: bib7 article-title: Gallium nitride devices for power electronic applications publication-title: Semicond. Sci. Technol. – volume: 98 year: 2011 ident: bib124 article-title: Effect of doping and polarization on carrier collection in InGaN quantum well solar cells publication-title: Appl. Phys. Lett. – volume: 98 year: 2011 ident: bib110 article-title: Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate publication-title: Appl. Phys. Lett. – volume: 103 year: 2013 ident: bib112 article-title: High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates publication-title: Appl. Phys. Lett. – volume: 103 start-page: 194 year: 2012 end-page: 198 ident: bib38 article-title: An efficient light-harvesting scheme using SiO publication-title: Sol. Energy Mater. Sol. Cells – volume: 101 year: 2012 ident: bib58 article-title: Exploiting piezoelectric charge for high performance graded InGaN nanowire solar cells publication-title: Appl. Phys. Lett. – volume: 111 year: 2017 ident: bib35 article-title: Reliability analysis of InGaN/GaN multi-quantum-well solar cells under thermal stress publication-title: Appl. Phys. Lett. – volume: 104 year: 2008 ident: bib44 article-title: Modeling of InGaN/Si tandem solar cells publication-title: J. Appl. Phys. – volume: 305 start-page: 12 year: 2007 end-page: 18 ident: bib71 article-title: Nitrogen supply rate dependence of InGaN growth properties, by RF-MBE publication-title: J. Cryst. Growth – volume: 49 start-page: 17 year: 2013 end-page: 23 ident: bib60 article-title: Simulation of high-efficiency GaN/InGaN p-i-n solar cell with suppressed polarization and barrier effects publication-title: IEEE J. Quant. Electron. – volume: 119 year: 2021 ident: bib105 article-title: Polarization-induced hole doping for long-wavelength In-rich InGaN solar cells publication-title: Appl. Phys. Lett. – volume: 419 start-page: 64 year: 2015 end-page: 68 ident: bib73 article-title: Growth temperature dependent critical thickness for phase separation in thick (∼1 μm) In publication-title: J. Cryst. Growth – volume: 54 year: 2015 ident: bib88 article-title: Effect of the barrier thickness on the performance of multiple-quantum-well InGaN photovoltaic cells publication-title: Jpn. J. Appl. Phys. – volume: 215 year: 2018 ident: bib107 article-title: Study of InGaN/GaN multiple quantum well solar cells with different barrier thicknesses publication-title: Phys. Status Solidi A – volume: 93 start-page: 17 year: 2008 end-page: 20 ident: bib76 article-title: Metal modulation epitaxy growth for extremely high hole concentrations above 10 publication-title: Appl. Phys. Lett. – volume: 102 start-page: 208 year: 2012 end-page: 211 ident: bib119 article-title: Fabrication and characterization of n-In publication-title: Sol. Energy Mater. Sol. Cells – volume: 178 start-page: 168 year: 1997 end-page: 173 ident: bib113 article-title: GaN growth on sapphire publication-title: J. Cryst. Growth – volume: 10 start-page: 246 year: 2018 end-page: 308 ident: bib2 article-title: Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes publication-title: Adv. Opt. Photon – volume: 95 year: 2017 ident: bib147 article-title: Enhancement of Auger recombination induced by carrier localization in InGaN/GaN quantum wells publication-title: Phys. Rev. B – volume: 94 year: 2009 ident: bib21 article-title: InGaN/GaN multiple quantum well solar cells with long operating wavelengths publication-title: Appl. Phys. Lett. – volume: 109 start-page: 194 year: 2017 end-page: 200 ident: bib24 article-title: Optimization of growth and fabrication techniques to enhance the InGaN/GaN multiple quantum well solar cells performance publication-title: Superlattices Microstruct. – volume: 95 year: 2009 ident: bib129 article-title: Fabrication and characterization of InGaN p-i-n homojunction solar cell publication-title: Appl. Phys. Lett. – volume: 22 start-page: 1222 year: 2014 end-page: 1228 ident: bib139 article-title: Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns publication-title: Opt. Express – volume: 108 year: 2016 ident: bib109 article-title: Leak path passivation by in situ Al-N for InGaN solar cells operating at wavelengths up to 570 nm publication-title: Appl. Phys. Lett. – volume: 104 year: 2014 ident: 10.1016/j.mtener.2022.101229_bib133 article-title: High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration publication-title: Appl. Phys. Lett. doi: 10.1063/1.4873117 – volume: 34 start-page: 363 year: 2013 ident: 10.1016/j.mtener.2022.101229_bib128 article-title: Polarization-induced electric fields make robust n-GaN/i-InGaN/p-GaN solar cells publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2012.2237376 – volume: 189 start-page: 13 year: 1998 ident: 10.1016/j.mtener.2022.101229_bib69 article-title: Thermodynamic study on phase separation during MOVPE growth of InxGa1-xN publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(98)00147-X – volume: 23 start-page: A614 year: 2015 ident: 10.1016/j.mtener.2022.101229_bib40 article-title: Optical design of GaN/InxGa1-xN/cSi tandem solar cells with triangular diffraction grating publication-title: Opt Express doi: 10.1364/OE.23.00A614 – volume: 26 start-page: A946 year: 2018 ident: 10.1016/j.mtener.2022.101229_bib126 article-title: Roles of polarization effects in InGaN/GaN solar cells and comparison of p-i-n and n-i-p structures publication-title: Opt Express doi: 10.1364/OE.26.00A946 – volume: 18 start-page: 2682 year: 2010 ident: 10.1016/j.mtener.2022.101229_bib55 article-title: Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer publication-title: Opt Express doi: 10.1364/OE.18.002682 – volume: 175 start-page: 47 year: 2018 ident: 10.1016/j.mtener.2022.101229_bib106 article-title: Semi-polar InGaN/GaN multiple quantum well solar cells with spectral response at up to 560 nm publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.10.005 – volume: 11 start-page: 104 year: 2015 ident: 10.1016/j.mtener.2022.101229_bib34 article-title: Harsh photovoltaics using InGaN/GaN multiple quantum well schemes publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.013 – volume: 49 start-page: 17 year: 2013 ident: 10.1016/j.mtener.2022.101229_bib60 article-title: Simulation of high-efficiency GaN/InGaN p-i-n solar cell with suppressed polarization and barrier effects publication-title: IEEE J. Quant. Electron. doi: 10.1109/JQE.2012.2225601 – volume: 97 year: 2010 ident: 10.1016/j.mtener.2022.101229_bib16 article-title: InGaN/GaN multiple quantum well concentrator solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.3481424 – volume: 94 start-page: 478 year: 2010 ident: 10.1016/j.mtener.2022.101229_bib32 article-title: Finite element simulations of compositionally graded InGaN solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2009.11.010 – volume: 4 start-page: 601 year: 2016 ident: 10.1016/j.mtener.2022.101229_bib27 article-title: Simulations, Practical limitations, and novel growth technology for InGaN-based solar cells publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2013.2292748 – volume: 94 year: 2009 ident: 10.1016/j.mtener.2022.101229_bib21 article-title: InGaN/GaN multiple quantum well solar cells with long operating wavelengths publication-title: Appl. Phys. Lett. doi: 10.1063/1.3081123 – volume: 108 year: 2016 ident: 10.1016/j.mtener.2022.101229_bib109 article-title: Leak path passivation by in situ Al-N for InGaN solar cells operating at wavelengths up to 570 nm publication-title: Appl. Phys. Lett. – volume: 129 start-page: 29 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib87 article-title: Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells publication-title: Solid State Electron. doi: 10.1016/j.sse.2016.12.009 – volume: 6 start-page: 460 year: 2016 ident: 10.1016/j.mtener.2022.101229_bib108 article-title: III-Nitride double-heterojunction solar cells with high In-content InGaN absorbing layers: comparison of large-area and small-area devices publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2015.2504790 – volume: 30 start-page: 83 year: 2018 ident: 10.1016/j.mtener.2022.101229_bib103 article-title: An InGaN/GaN MQWs solar cell improved by a surficial GaN nanostructure as light traps publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2017.2775706 – volume: 111 year: 2012 ident: 10.1016/j.mtener.2022.101229_bib43 article-title: InGaN solar cell requirements for high-efficiency integrated III-nitride/non-III-nitride tandem photovoltaic devices publication-title: J. Appl. Phys. – volume: 40 start-page: 424 year: 2015 ident: 10.1016/j.mtener.2022.101229_bib48 article-title: Modeling of polarization charge in N-face InGaN/GaN MQW solar cells publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2015.07.009 – volume: 204 start-page: 4288 year: 2007 ident: 10.1016/j.mtener.2022.101229_bib79 article-title: Photovoltaic effects in InGaN structures with p-n junctions publication-title: Phys. Status Solidi A doi: 10.1002/pssa.200723202 – volume: 49 year: 2015 ident: 10.1016/j.mtener.2022.101229_bib61 article-title: Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells publication-title: J. Phys. D Appl. Phys. – volume: 27 year: 2022 ident: 10.1016/j.mtener.2022.101229_bib94 article-title: Realization of axially defined GaInP/InP/InAsP triple-junction photovoltaic nanowires for high-performance solar cells publication-title: Mater. Today Energy – volume: 11 start-page: 580 year: 1996 ident: 10.1016/j.mtener.2022.101229_bib114 article-title: Growth defects in GaN films on sapphire: the probable origin of threading dislocations publication-title: J. Mater. Res. doi: 10.1557/JMR.1996.0071 – volume: 419 start-page: 64 year: 2015 ident: 10.1016/j.mtener.2022.101229_bib73 article-title: Growth temperature dependent critical thickness for phase separation in thick (∼1 μm) Inx Ga1-xN (x=0.2-0.4) publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2015.02.100 – volume: 20 start-page: 991 year: 2012 ident: 10.1016/j.mtener.2022.101229_bib135 article-title: Efficiency improvement in InGaN-based solar cells by indium tin oxide nano dots covered with ITO films publication-title: Opt Express doi: 10.1364/OE.20.00A991 – volume: 93 start-page: 17 year: 2008 ident: 10.1016/j.mtener.2022.101229_bib76 article-title: Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN publication-title: Appl. Phys. Lett. doi: 10.1063/1.3005640 – volume: 52 year: 2013 ident: 10.1016/j.mtener.2022.101229_bib140 article-title: Concentrating properties of nitride-based solar cells using different electrodes publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.52.08JH02 – volume: 22 start-page: 1222 year: 2014 ident: 10.1016/j.mtener.2022.101229_bib139 article-title: Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns publication-title: Opt. Express doi: 10.1364/OE.22.0A1222 – start-page: 1138 year: 2016 ident: 10.1016/j.mtener.2022.101229_bib62 article-title: Simulation of the High Temperature Performance of InGaN Multiple Quantum Well Solar Cells – volume: 5 start-page: 1518 year: 2008 ident: 10.1016/j.mtener.2022.101229_bib72 article-title: Experimental and ab-initio studies of temperature dependent InN decomposition in various ambient publication-title: Phys. Status Solidi C doi: 10.1002/pssc.200778434 – volume: 145 start-page: 226 year: 2016 ident: 10.1016/j.mtener.2022.101229_bib137 article-title: Influence of the ITO current spreading layer on efficiencies of InGaN-based solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.10.026 – volume: 30 year: 2020 ident: 10.1016/j.mtener.2022.101229_bib91 article-title: A novel approach for achieving high-efficiency photoelectrochemical water oxidation in InGaN nanorods grown on Si system: MXene nanosheets as multifunctional interfacial modifier publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910479 – volume: 110 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib29 article-title: Nonpolar and semipolar InGaN/GaN multiple-quantum-well solar cells with improved carrier collection efficiency publication-title: Appl. Phys. Lett. doi: 10.1063/1.4980139 – volume: 105 year: 2014 ident: 10.1016/j.mtener.2022.101229_bib86 article-title: Effect of the quantum well thickness on the performance of InGaN photovoltaic cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.4896679 – start-page: 1 year: 2008 ident: 10.1016/j.mtener.2022.101229_bib83 article-title: Fabrication and Characterization of 2.3eV InGaN Photovoltaic Devices – start-page: 64 year: 2007 ident: 10.1016/j.mtener.2022.101229_bib70 article-title: Effect of Phase Separation on Performance of III-V Nitride Solar Cells – volume: 8 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib63 article-title: Modeling of InGaN/Si tandem cells: comparison between 2-contacts/4-contacts publication-title: EPJ Photovoltaics doi: 10.1051/epjpv/2017003 – volume: 80 start-page: 3967 year: 2002 ident: 10.1016/j.mtener.2022.101229_bib9 article-title: Unusual properties of the fundamental band gap of InN publication-title: Appl. Phys. Lett. doi: 10.1063/1.1482786 – volume: 51 start-page: 10ND10 year: 2012 ident: 10.1016/j.mtener.2022.101229_bib90 article-title: Barrier thickness dependence of photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.51.10ND10 – volume: 104 year: 2014 ident: 10.1016/j.mtener.2022.101229_bib136 article-title: Efficiency enhancement of InGaN/GaN solar cells with nanostructures publication-title: Appl. Phys. Lett. doi: 10.1063/1.4864640 – volume: 28 start-page: 1167 year: 2020 ident: 10.1016/j.mtener.2022.101229_bib143 article-title: InGaN/GaN multi-quantum-well solar cells under high solar concentration and elevated temperatures for hybrid solar thermal-photovoltaic power plants publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.3326 – volume: 6 year: 2013 ident: 10.1016/j.mtener.2022.101229_bib120 article-title: Uniform low-to-high in composition InGaN layers grown on Si publication-title: Appl. Phys. Express doi: 10.7567/APEX.6.115503 – volume: 6 start-page: 145 year: 2012 ident: 10.1016/j.mtener.2022.101229_bib138 article-title: Properties of nitride-based photovoltaic cells under concentrated light illumination publication-title: Phys. Status Solidi Rapid Res. Lett. doi: 10.1002/pssr.201206038 – volume: 110 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib149 article-title: Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing publication-title: J. Appl. Phys. doi: 10.1063/1.3668111 – volume: 178 start-page: 168 year: 1997 ident: 10.1016/j.mtener.2022.101229_bib113 article-title: GaN growth on sapphire publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(97)00082-1 – volume: 11 year: 2018 ident: 10.1016/j.mtener.2022.101229_bib101 article-title: InGaN solar cells with regrown GaN homojunction tunnel contacts publication-title: Appl. Phys. Express doi: 10.7567/APEX.11.082304 – volume: 108 year: 2010 ident: 10.1016/j.mtener.2022.101229_bib45 article-title: Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of p-i-n InGaN single homojunction solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.3484040 – volume: 2 year: 2009 ident: 10.1016/j.mtener.2022.101229_bib4 article-title: 531 nm Green lasing of ingan based laser diodes on semi-polar {2021} free-standing GaN substrates publication-title: Appl. Phys. Exp. doi: 10.1143/APEX.2.082101 – volume: 58 year: 2019 ident: 10.1016/j.mtener.2022.101229_bib150 article-title: Intensive luminescence from a thick, indium-rich In0.7Ga0.3N film publication-title: Jpn. J. Appl. Phys. doi: 10.7567/1347-4065/ab1a5b – volume: 66 start-page: 3399 year: 2019 ident: 10.1016/j.mtener.2022.101229_bib53 article-title: Analytical study of performance parameters of inGaN/GaN multiple quantum well solar cell publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/TED.2019.2920934 – volume: 17 start-page: 1742 year: 1999 ident: 10.1016/j.mtener.2022.101229_bib123 article-title: Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures publication-title: J. Vac. Sci. Technol. B – volume: 42 year: 2009 ident: 10.1016/j.mtener.2022.101229_bib64 article-title: Temperature dependences of InxGa1-xN multiple quantum well solar cells publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/42/10/105101 – volume: 90 start-page: 1022 year: 2022 ident: 10.1016/j.mtener.2022.101229_bib5 article-title: AlGaN/GaN HEMTs - an overview of device operation and applications publication-title: Proc. IEEE doi: 10.1109/JPROC.2002.1021567 – volume: 103 year: 2013 ident: 10.1016/j.mtener.2022.101229_bib146 article-title: Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells publication-title: Appl. Phys. Lett. doi: 10.1063/1.4820839 – volume: 155 year: 2021 ident: 10.1016/j.mtener.2022.101229_bib41 article-title: Theoretical study and optimization of the green InGaN/GaN multiple quantum wells with pre-layer publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2021.106906 – volume: 11 start-page: 1919 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib95 article-title: P-type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111) publication-title: Nano Lett. doi: 10.1021/nl104536x – volume: 56 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib98 article-title: The performance enhancement of an InGaN/GaN multiple-quantum-well solar cell by superlattice structure publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.56.110305 – volume: 28 year: 2013 ident: 10.1016/j.mtener.2022.101229_bib7 article-title: Gallium nitride devices for power electronic applications publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/28/7/074011 – volume: 130 start-page: 354 year: 2014 ident: 10.1016/j.mtener.2022.101229_bib28 article-title: Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.07.018 – volume: 1135 year: 2018 ident: 10.1016/j.mtener.2022.101229_bib37 article-title: Investigation of statistical broadening in InGaN alloys publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1135/1/012050 – volume: 3 start-page: 16 year: 1998 ident: 10.1016/j.mtener.2022.101229_bib74 article-title: Suppression of phase separation in InGaN due to elastic strain publication-title: MRS Internet J. Nitride Semicond. Res. doi: 10.1557/S1092578300000880 – start-page: 193 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib141 article-title: Development of a high-band gap high temperature III-nitride solar cell for integration with concentrated solar power technology – volume: 136 start-page: 3 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib66 article-title: A Review of the Synthesis of Reduced Defect Density InxGa1−xN for All Indium Compositions publication-title: Solid State Electron. doi: 10.1016/j.sse.2017.06.020 – volume: 31 start-page: 1140 year: 2010 ident: 10.1016/j.mtener.2022.101229_bib82 article-title: Improved efficiency by using transparent contact layers in InGaN-based p-i-n solar cells publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2010.2058087 – volume: 30 year: 2015 ident: 10.1016/j.mtener.2022.101229_bib118 article-title: Relaxed c-plane InGaN layers for the growth of strain-reduced InGaN quantum wells publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/30/10/105015 – volume: 9 start-page: 402 year: 2019 ident: 10.1016/j.mtener.2022.101229_bib84 article-title: Quantum well solar cells: principles, recent progress, and potential publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2019.2892079 – volume: 54 year: 2015 ident: 10.1016/j.mtener.2022.101229_bib88 article-title: Effect of the barrier thickness on the performance of multiple-quantum-well InGaN photovoltaic cells publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.54.072302 – volume: 40 year: 2022 ident: 10.1016/j.mtener.2022.101229_bib130 article-title: Ware Study of simulations of double graded InGaN solar cell structures publication-title: J. Vac. Sci. Technol. B – volume: 215 year: 2018 ident: 10.1016/j.mtener.2022.101229_bib107 article-title: Study of InGaN/GaN multiple quantum well solar cells with different barrier thicknesses publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201700581 – volume: 102 start-page: 208 year: 2012 ident: 10.1016/j.mtener.2022.101229_bib119 article-title: Fabrication and characterization of n-In0.4Ga0.6N/p-Si solar cell publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2012.03.030 – volume: 119 start-page: 9 year: 2018 ident: 10.1016/j.mtener.2022.101229_bib52 article-title: Effects of the unintentional background concentration, indium composition and defect density on the performance of InGaN p-i-n homojunction solar cells publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2018.04.033 – volume: 103 year: 2013 ident: 10.1016/j.mtener.2022.101229_bib59 article-title: Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.4829443 – volume: 112 year: 2012 ident: 10.1016/j.mtener.2022.101229_bib145 article-title: Recombination mechanisms in heteroepitaxial non-polar InGaN/GaN quantum wells publication-title: J. Appl. Phys. doi: 10.1063/1.4731730 – volume: 26 start-page: 946 year: 2018 ident: 10.1016/j.mtener.2022.101229_bib122 article-title: Roles of polarization effects in InGaN/GaN solar cells and comparison of p-i-n and n-i-p structures publication-title: Opt Express doi: 10.1364/OE.26.00A946 – volume: 110 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib117 article-title: Enhanced in incorporation in full InGaN heterostructure grown on relaxed InGaN pseudo-substrate publication-title: Appl. Phys. Lett. doi: 10.1063/1.4989998 – volume: 96 start-page: 287 year: 2008 ident: 10.1016/j.mtener.2022.101229_bib6 article-title: GaN-based RF power devices and amplifiers publication-title: Proc. IEEE doi: 10.1109/JPROC.2007.911060 – volume: 95 year: 2009 ident: 10.1016/j.mtener.2022.101229_bib129 article-title: Fabrication and characterization of InGaN p-i-n homojunction solar cell publication-title: Appl. Phys. Lett. doi: 10.1063/1.3254215 – volume: 10 start-page: 1221 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib39 article-title: On the hole injection for III-nitride based deep ultraviolet light-emitting diodes publication-title: Materials doi: 10.3390/ma10101221 – volume: 104 year: 2008 ident: 10.1016/j.mtener.2022.101229_bib44 article-title: Modeling of InGaN/Si tandem solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.2952031 – start-page: 954 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib17 article-title: InGaN-Based Solar Cells for Space Applications – volume: 98 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib124 article-title: Effect of doping and polarization on carrier collection in InGaN quantum well solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.3595487 – volume: 29 start-page: 128 year: 2013 ident: 10.1016/j.mtener.2022.101229_bib68 article-title: MOVPE growth of InxGa1-xN (x ∼ 0.4) and fabrication of homo-junction solar cells publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2012.12.005 – volume: 30 start-page: L1705 year: 1991 ident: 10.1016/j.mtener.2022.101229_bib115 article-title: GaN growth using GaN buffer layer publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.30.L1705 – volume: 30 year: 2020 ident: 10.1016/j.mtener.2022.101229_bib92 article-title: Modulating surface/interface structure of emerging InGaN nanowires for efficient photoelectrochemical water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202005677 – volume: 113 year: 2018 ident: 10.1016/j.mtener.2022.101229_bib54 article-title: Energy band engineering of InGaN/GaN multi-quantum-well solar cells via AlGaN electron- and hole-blocking layers publication-title: Appl. Phys. Lett. doi: 10.1063/1.5028530 – volume: 105 year: 2014 ident: 10.1016/j.mtener.2022.101229_bib12 article-title: High 400°C operation temperature blue spectrum concentration solar junction in GaInN/GaN publication-title: Appl. Phys. Lett. doi: 10.1063/1.4904717 – volume: 6 start-page: 2096 year: 2019 ident: 10.1016/j.mtener.2022.101229_bib30 article-title: High-temperature polarization-free III-nitride solar cells with self-cooling effects publication-title: ACS Photon. doi: 10.1021/acsphotonics.9b00655 – volume: 12 start-page: 1117 year: 2016 ident: 10.1016/j.mtener.2022.101229_bib121 article-title: Efficiency enhancement of InGaN MQW LED using compositionally step graded InGaN barrier on SiC substrate publication-title: J. Disp. Technol. doi: 10.1109/JDT.2016.2570814 – volume: 215 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib97 article-title: A comparative study of InGaN/GaN multiple-quantum-well solar cells grown on sapphire and AlN template by metalorganic chemical vapor deposition publication-title: Phys. Status Solidi A – volume: 18 start-page: 1558 year: 2018 ident: 10.1016/j.mtener.2022.101229_bib42 article-title: Correlation between pit formation and phase separation in thick InGaN film on a Si substrate publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2018.10.002 – volume: 95 start-page: 3124 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib46 article-title: Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.07.001 – volume: 119 year: 2021 ident: 10.1016/j.mtener.2022.101229_bib105 article-title: Polarization-induced hole doping for long-wavelength In-rich InGaN solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/5.0071506 – volume: 73 start-page: 1370 year: 1998 ident: 10.1016/j.mtener.2022.101229_bib144 article-title: “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells publication-title: Appl. Phys. Lett. doi: 10.1063/1.122164 – volume: 5 start-page: 86 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib65 article-title: Effect of III-nitride polarization on VOC in p-i-n and MQW solar cells publication-title: Phys. Status Solidi Rapid Res. Lett. doi: 10.1002/pssr.201004512 – volume: 91 year: 2007 ident: 10.1016/j.mtener.2022.101229_bib18 article-title: Design and characterization of GaN/InGaN solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.2793180 – volume: 109 start-page: 194 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib104 article-title: Optimization of growth and fabrication techniques to enhance the InGaN/GaN multiple quantum well solar cells performance publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2017.05.014 – volume: 70 start-page: 1089 year: 1997 ident: 10.1016/j.mtener.2022.101229_bib75 article-title: Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition publication-title: Appl. Phys. Lett. doi: 10.1063/1.118493 – volume: 120 year: 2022 ident: 10.1016/j.mtener.2022.101229_bib151 article-title: Demonstration of ultra-small 5 × 5 μm2 607 nm InGaN amber micro-light-emitting diodes with an external quantum efficiency over 2% publication-title: Appl. Phys. Lett. – volume: 79 start-page: 1002 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib93 article-title: III-nitride nanowires for solar light harvesting: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.136 – volume: 76 year: 2020 ident: 10.1016/j.mtener.2022.101229_bib31 article-title: Anomalous carrier dynamics and localization effects in nonpolar m-plane InGaN/GaN quantum wells at high temperatures publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105013 – volume: 109 year: 2016 ident: 10.1016/j.mtener.2022.101229_bib13 article-title: Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs publication-title: Appl. Phys. Lett. – volume: 10 start-page: 246 year: 2018 ident: 10.1016/j.mtener.2022.101229_bib2 article-title: Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes publication-title: Adv. Opt. Photon doi: 10.1364/AOP.10.000246 – volume: 98 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib22 article-title: High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm publication-title: Appl. Phys. Lett. doi: 10.1063/1.3591976 – volume: 100 year: 2012 ident: 10.1016/j.mtener.2022.101229_bib89 article-title: Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.3695170 – volume: 44 start-page: 14 year: 2015 ident: 10.1016/j.mtener.2022.101229_bib96 article-title: III-Nitride nanowire optoelectronics publication-title: Prog. Quant. Electron. doi: 10.1016/j.pquantelec.2015.11.001 – year: 2000 ident: 10.1016/j.mtener.2022.101229_bib3 – volume: 103 start-page: 194 year: 2012 ident: 10.1016/j.mtener.2022.101229_bib38 article-title: An efficient light-harvesting scheme using SiO2 nanorods for InGaN multiple quantum well solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2012.04.007 – volume: 7 start-page: 1646 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib33 article-title: Refractory InxGa1-xN solar cells for high-temperature applications publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2017.2756057 – volume: 107 start-page: 267 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib51 article-title: Effects of structural defects and polarization charges in InGaN-based double-junction solar cell publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2017.04.025 – volume: 119 year: 2016 ident: 10.1016/j.mtener.2022.101229_bib49 article-title: Analysis of loss mechanisms in InGaN solar cells using a semi-analytical model publication-title: J. Appl. Phys. doi: 10.1063/1.4953006 – volume: 101 year: 2012 ident: 10.1016/j.mtener.2022.101229_bib131 article-title: Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.4765068 – volume: 30 start-page: 724 year: 2009 ident: 10.1016/j.mtener.2022.101229_bib20 article-title: Improved conversion efficiency of GaN/InGaN thin-film solar cells publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2009.2021414 – volume: 208 start-page: 928 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib57 article-title: Effects of polarization charge on the photovoltaic properties of InGaN solar cells publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201026489 – volume: 98 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib110 article-title: Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate publication-title: Appl. Phys. Lett. doi: 10.1063/1.3605244 – volume: 60 start-page: 8849 year: 1999 ident: 10.1016/j.mtener.2022.101229_bib25 article-title: Effects of macroscopic polarization in III-V nitride multiple quantum wells publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.8849 – volume: 305 start-page: 12 year: 2007 ident: 10.1016/j.mtener.2022.101229_bib71 article-title: Nitrogen supply rate dependence of InGaN growth properties, by RF-MBE publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2007.01.044 – volume: 93 year: 2008 ident: 10.1016/j.mtener.2022.101229_bib19 article-title: High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap publication-title: Appl. Phys. Lett. doi: 10.1063/1.2988894 – volume: 406 start-page: 865 year: 2000 ident: 10.1016/j.mtener.2022.101229_bib26 article-title: Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes publication-title: Nature doi: 10.1038/35022529 – volume: 11 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib50 article-title: Numerical study of InGaN tandem solar cells with intermediate bands publication-title: Phys. Status Solidi Rapid Res. Lett. doi: 10.1002/pssr.201600429 – volume: 94 start-page: 1259 year: 2010 ident: 10.1016/j.mtener.2022.101229_bib132 article-title: Discussion on electrical characteristics of i-In0.13Ga0.87N p-i-n photovoltaics by using a single/multi-antireflection layer publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.03.020 – start-page: 112800E year: 2020 ident: 10.1016/j.mtener.2022.101229_bib142 article-title: Degradation and recovery of high-periodicity InGaN/GaN MQWs under optical stress in short-circuit condition publication-title: Proc. SPIEL – volume: 94 start-page: 6477 year: 2003 ident: 10.1016/j.mtener.2022.101229_bib14 article-title: Superior radiation resistance of In1-xGaxN alloys: full-solar-spectrum photovoltaic material system publication-title: J. Appl. Phys. doi: 10.1063/1.1618353 – volume: 105 year: 2014 ident: 10.1016/j.mtener.2022.101229_bib47 article-title: Theoretical comparison of multiple quantum wells and thick-layer designs in InGaN/GaN solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.4893024 – volume: 99 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib11 article-title: Observation of positive thermal power coefficient in InGaN/GaN quantum well solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.3624850 – volume: 109 start-page: 194 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib24 article-title: Optimization of growth and fabrication techniques to enhance the InGaN/GaN multiple quantum well solar cells performance publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2017.05.014 – volume: 11 start-page: 9405 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib100 article-title: Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezo-phototronic effect publication-title: ACS Nano doi: 10.1021/acsnano.7b04935 – volume: 4 start-page: 88 year: 2010 ident: 10.1016/j.mtener.2022.101229_bib127 article-title: Investigation on the conversion efficiency of InGaN solar cells fabricated on GaN and ZnO substrates publication-title: Phys. Status Solidi Rapid Res. Lett. doi: 10.1002/pssr.201004044 – volume: 29 start-page: 29780 year: 2021 ident: 10.1016/j.mtener.2022.101229_bib152 article-title: Improved performance of InGaN-based red light-emitting diodes by micro-hole arrays publication-title: Opt Express doi: 10.1364/OE.435556 – volume: 111 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib35 article-title: Reliability analysis of InGaN/GaN multi-quantum-well solar cells under thermal stress publication-title: Appl. Phys. Lett. doi: 10.1063/1.5006650 – volume: 32 start-page: 937 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib56 article-title: Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN p-i-n solar cells publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2011.2150195 – volume: 1399 start-page: 179 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib111 article-title: Growth and characterization of AlGaN films on patterned sapphire substrates publication-title: AIP Conf. Proc. doi: 10.1063/1.3666314 – volume: 143 year: 2022 ident: 10.1016/j.mtener.2022.101229_bib67 article-title: Recent advances and challenges in the MOCVD growth of indium gallium nitride: a brief review publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2022.106545 – volume: 24 year: 2009 ident: 10.1016/j.mtener.2022.101229_bib80 article-title: Substantial photo-response of InGaN p-i-n homojunction solar cells publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/24/5/055009 – volume: 95 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib147 article-title: Enhancement of Auger recombination induced by carrier localization in InGaN/GaN quantum wells publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.125314 – volume: 32 start-page: 1104 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib134 article-title: Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2011.2158061 – volume: 64 start-page: 1687 year: 1994 ident: 10.1016/j.mtener.2022.101229_bib1 article-title: Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.111832 – volume: 8 start-page: 3083 year: 2015 ident: 10.1016/j.mtener.2022.101229_bib15 article-title: Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01998B – volume: 101 issue: 102 year: 2012 ident: 10.1016/j.mtener.2022.101229_bib58 article-title: Exploiting piezoelectric charge for high performance graded InGaN nanowire solar cells publication-title: Appl. Phys. Lett. – volume: 4 year: 2011 ident: 10.1016/j.mtener.2022.101229_bib23 article-title: GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate publication-title: Appl. Phys. Express doi: 10.1143/APEX.4.021001 – volume: 94 start-page: 3675 year: 2003 ident: 10.1016/j.mtener.2022.101229_bib148 article-title: Band parameters for nitrogen-containing semiconductors publication-title: J. Appl. Phys. doi: 10.1063/1.1600519 – volume: 216 start-page: 381 year: 1999 ident: 10.1016/j.mtener.2022.101229_bib125 article-title: Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices publication-title: Phys. Status Solidi B doi: 10.1002/(SICI)1521-3951(199911)216:1<381::AID-PSSB381>3.0.CO;2-O – volume: 108 year: 2016 ident: 10.1016/j.mtener.2022.101229_bib85 article-title: Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness publication-title: Appl. Phys. Lett. doi: 10.1063/1.4947445 – volume: 106 year: 2009 ident: 10.1016/j.mtener.2022.101229_bib10 article-title: When group-III nitrides go infrared: new properties and perspectives publication-title: J. Appl. Phys. – volume: 31 start-page: 32 year: 2010 ident: 10.1016/j.mtener.2022.101229_bib81 article-title: Design and realization of wide-band-gap (∼ 2.67 eV) InGaN p-n junction solar cell publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2009.2034280 – volume: 57 start-page: 300 year: 2019 ident: 10.1016/j.mtener.2022.101229_bib99 article-title: Enhanced photocurrent in InGaN/GaN MQWs solar cells by coupling plasmonic with piezo-phototronic effect publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.036 – volume: 105 year: 2009 ident: 10.1016/j.mtener.2022.101229_bib78 article-title: Microstructural evolution of nonpolar (11-20) GaN grown on (1-102) sapphire using a 3D-2D method publication-title: J. Appl. Phys. doi: 10.1063/1.3103305 – volume: 159 start-page: 405 year: 2017 ident: 10.1016/j.mtener.2022.101229_bib102 article-title: Improving InGaN heterojunction solar cells efficiency using a semibulk absorber publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.09.030 – volume: 36 year: 2021 ident: 10.1016/j.mtener.2022.101229_bib116 article-title: MOCVD growth of thick V-pit-free InGaN films on semi-relaxed InGaN substrates publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/abc51c – volume: 103 year: 2013 ident: 10.1016/j.mtener.2022.101229_bib112 article-title: High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates publication-title: Appl. Phys. Lett. doi: 10.1063/1.4826483 – volume: 123 year: 2018 ident: 10.1016/j.mtener.2022.101229_bib36 article-title: Optical properties of InGaN thin films in the entire composition range publication-title: J. Appl. Phys. doi: 10.1063/1.5020988 – volume: 425 start-page: 115 year: 2015 ident: 10.1016/j.mtener.2022.101229_bib77 article-title: Low-temperature growth of InGaN films over the entire composition range by MBE publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2015.02.014 – volume: 40 start-page: 1728 year: 2019 ident: 10.1016/j.mtener.2022.101229_bib8 article-title: Demonstration of 1.27 kV etch-then-regrow GaN p-n junctions with low leakage for GaN power electronics publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2019.2941830 |
SSID | ssj0002140215 |
Score | 2.3813186 |
SecondaryResourceType | review_article |
Snippet | III-nitride InGaN material is an ideal candidate for the fabrication of high performance photovoltaic (PV) solar cells, especially for high-temperature... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 101229 |
SubjectTerms | Device engineering Epitaxy growth High temperature performance InGaN-based solar cells |
Title | Toward high efficiency at high temperatures: Recent progress and prospects on InGaN-Based solar cells |
URI | https://dx.doi.org/10.1016/j.mtener.2022.101229 https://www.osti.gov/biblio/1962241 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA5ze9AX8SfOqeTB17A2TdfGtzmcm-Je3GBvJU1SmGg3bP3_vUvboSAMfGzaK-WS3n2X3H1HyG2WhnBLKaa0HzBhrWBKIr225oHRWgvpukS8zAaThXhahssWGTW1MJhWWdv-yqY7a12P9Gtt9jerVf-Vi0EM8FtyzDOIo3iPdHggB7C0O8Pp82S23WrhEERw18sARRjKNEV0LtPro0SGZ4gVOcch7uDmn06qvYb_7of_GR-Rwxo40mH1bcekZfMTst_UFRenxM5dBixFAmJqHTMEllVSVVZDSEJVMygXdxTgIrgb6tKzwNhRlRu8cIWXBV3ndJo_qhm7BydnaIHxL8U9_uKMLMYP89GE1U0UmA4iWTKRpRH3Qut5KbeeSa2JMxNFoDFhslDLgQ157IvM9zM8yQ1hpiRPdaAVHpkBvjgn7Xyd2wtCwxTiC-0F2ktj4atYGQXO3nBttJeFUnRJ0Ggt0TXDODa6eE-aVLK3pNJ1grpOKl13CdtKbSqGjR3PR82EJL9WSgJOYIdkD-cPpZAgV2MmEYiBDUIcc_nv9_bIATahrzZmrki7_Pyy1wBVyvSmXorfQIznbA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7W9aAX8YnrMwevYds02bbeVlF3fezFFbyVNElB0a7Y-v-dSVtREASPTTulTNJ5JN98A3BS5Apvac21CSMunZNcp0SvbURkjTEy9V0i7majyYO8flSPPTjvamEIVtna_same2vdjgxbbQ7fnp6G90KOEgy_U0E4gyROlmCZ2KlUH5bH05vJ7GurRWASIXwvAxLhJNMV0Xmk12tNDM-YKwpBQ8KHm786qf4C_7tv_udyHdbawJGNm2_bgJ4rN2GlqyuutsDNPQKWEQExc54Zgsoqma6bISKhahmUq1OG4SK6G-bhWWjsmC4tXfjCy4otSjYtr_SMn6GTs6yi_JfRHn-1DQ-XF_PzCW-bKHATxWnNZZHHIlAuCHLhAps7mxQ2jlFj0hbKpCOnRBLKIgwLOslVOFOpyE1kNB2ZYXyxA_1yUbpdYCrH_MIEkQnyRIY60Vajs7fCWBMUKpUDiDqtZaZlGKdGFy9ZByV7zhpdZ6TrrNH1APiX1FvDsPHH83E3IdmPlZKhE_hDcp_mj6SIINcQkgjF0AZRHLP37_cew8pkfneb3U5nN_uwSg3pm02aA-jX7x_uEMOWOj9ql-UnL_TqUg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+high+efficiency+at+high+temperatures%3A+Recent+progress+and+prospects+on+InGaN-Based+solar+cells&rft.jtitle=Materials+today+energy&rft.au=Zhao%2C+Yuji&rft.au=Xu%2C+Mingfei&rft.au=Huang%2C+Xuanqi&rft.au=Lebeau%2C+Justin&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=2468-6069&rft.eissn=2468-6069&rft.volume=31&rft_id=info:doi/10.1016%2Fj.mtener.2022.101229&rft.externalDocID=S2468606922002878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-6069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-6069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-6069&client=summon |