Toward high efficiency at high temperatures: Recent progress and prospects on InGaN-Based solar cells

III-nitride InGaN material is an ideal candidate for the fabrication of high performance photovoltaic (PV) solar cells, especially for high-temperature applications. Over the past decade, significant efforts have been made to improve the PV performance of InGaN-based solar cells. In this paper, we p...

Full description

Saved in:
Bibliographic Details
Published inMaterials today energy Vol. 31; no. C; p. 101229
Main Authors Zhao, Yuji, Xu, Mingfei, Huang, Xuanqi, Lebeau, Justin, Li, Tao, Wang, Dawei, Fu, Houqiang, Fu, Kai, Wang, Xinqiang, Lin, Jingyu, Jiang, Hongxing
Format Journal Article
LanguageEnglish
Published United Kingdom Elsevier Ltd 01.01.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract III-nitride InGaN material is an ideal candidate for the fabrication of high performance photovoltaic (PV) solar cells, especially for high-temperature applications. Over the past decade, significant efforts have been made to improve the PV performance of InGaN-based solar cells. In this paper, we perform a comprehensive review of the recent developments in InGaN-based solar cells. The topics of discussion include theoretical modeling, material epitaxy, device engineering, and high-temperature measurement. Particularly, we highlight subjects such as substrate technology, and properties that are unique to InGaN materials such as polarization control and their positive thermal coefficient. To date, outstanding high-temperature InGaN-based solar cells with quantum efficiency approaching 80% at 450 °C have been demonstrated. Future innovations in epitaxy science, device engineering, and integration methods are required to further advance the efficiency and expand the applications of InGaN-based solar cells. [Display omitted] •A detailed summary of theoretical modeling of InGaN solar cells.•State-of the-art techniques for InGaN epitaxial growth.•Effective device engineering methods to improve the performance of InGaN solar cells.•High temperature performance of InGaN solar cells including temperature coefficient and carrier dynamics.
AbstractList III-nitride InGaN material is an ideal candidate for the fabrication of high performance photovoltaic (PV) solar cells, especially for high-temperature applications. Over the past decade, significant efforts have been made to improve the PV performance of InGaN-based solar cells. In this paper, we perform a comprehensive review of the recent developments in InGaN-based solar cells. The topics of discussion include theoretical modeling, material epitaxy, device engineering, and high-temperature measurement. Particularly, we highlight subjects such as substrate technology, and properties that are unique to InGaN materials such as polarization control and their positive thermal coefficient. To date, outstanding high-temperature InGaN-based solar cells with quantum efficiency approaching 80% at 450 °C have been demonstrated. Future innovations in epitaxy science, device engineering, and integration methods are required to further advance the efficiency and expand the applications of InGaN-based solar cells. [Display omitted] •A detailed summary of theoretical modeling of InGaN solar cells.•State-of the-art techniques for InGaN epitaxial growth.•Effective device engineering methods to improve the performance of InGaN solar cells.•High temperature performance of InGaN solar cells including temperature coefficient and carrier dynamics.
ArticleNumber 101229
Author Lin, Jingyu
Wang, Dawei
Li, Tao
Wang, Xinqiang
Xu, Mingfei
Fu, Kai
Fu, Houqiang
Jiang, Hongxing
Zhao, Yuji
Lebeau, Justin
Huang, Xuanqi
Author_xml – sequence: 1
  givenname: Yuji
  orcidid: 0000-0001-9199-4159
  surname: Zhao
  fullname: Zhao, Yuji
  email: yuji.zhao@rice.edu
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
– sequence: 2
  givenname: Mingfei
  orcidid: 0000-0002-1717-1290
  surname: Xu
  fullname: Xu, Mingfei
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
– sequence: 3
  givenname: Xuanqi
  surname: Huang
  fullname: Huang, Xuanqi
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
– sequence: 4
  givenname: Justin
  surname: Lebeau
  fullname: Lebeau, Justin
  organization: Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
– sequence: 5
  givenname: Tao
  surname: Li
  fullname: Li, Tao
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
– sequence: 6
  givenname: Dawei
  surname: Wang
  fullname: Wang, Dawei
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
– sequence: 7
  givenname: Houqiang
  surname: Fu
  fullname: Fu, Houqiang
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
– sequence: 8
  givenname: Kai
  surname: Fu
  fullname: Fu, Kai
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005, USA
– sequence: 9
  givenname: Xinqiang
  surname: Wang
  fullname: Wang, Xinqiang
  organization: State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
– sequence: 10
  givenname: Jingyu
  surname: Lin
  fullname: Lin, Jingyu
  organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
– sequence: 11
  givenname: Hongxing
  surname: Jiang
  fullname: Jiang, Hongxing
  organization: Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, USA
BackLink https://www.osti.gov/biblio/1962241$$D View this record in Osti.gov
BookMark eNqFkE9PAyEQxYmpibX6DTwQ71uB7p_Sg4karSaNJqaeCYXB0myhAdT028u6HowHPRCYYd7Lm98xGjjvAKEzSsaU0PpiM94mcBDGjDDWtRjjB2jIynpa1KTmgx_vI3Qa44YQwmiZTzVEsPQfMmi8tq9rDMZYZcGpPZapbyXY7iDI9BYgzvAzKHAJ74J_zXXE0umuiDtQKWLv8IOby8fiWkbQOPpWBqygbeMJOjSyjXD6fY_Qy93t8ua-WDzNH26uFoWaNDwVpVk1jFRAyIoB0SvQU6ObhrBpqU2leA0Vm9LSUGp4NakryWvOVmqiJOGcNOVkhM57Xx-TFVHZBGqtvHM5n6C8Zqykeajsh1ROHgMYsQt2K8NeUCI6pGIjeqSiQyp6pFk2-yXL9jJZ71KQtv1PfNmLIW__bvNv_AIN2oYum_b2b4NPwCeWdw
CitedBy_id crossref_primary_10_1021_acs_iecr_4c01924
crossref_primary_10_1063_5_0241120
crossref_primary_10_1007_s13369_023_08645_4
crossref_primary_10_1038_s41598_023_34637_3
crossref_primary_10_1007_s40820_024_01412_6
crossref_primary_10_1109_TED_2023_3272297
crossref_primary_10_1088_2631_8695_ad5c2d
crossref_primary_10_1007_s11082_024_07459_4
crossref_primary_10_1109_JPHOTOV_2024_3495024
crossref_primary_10_1021_acsami_4c13648
crossref_primary_10_1038_s41598_025_87919_3
crossref_primary_10_1109_LED_2023_3279813
crossref_primary_10_1021_acsaelm_3c01173
crossref_primary_10_1063_5_0232885
crossref_primary_10_1021_acsaelm_4c00404
crossref_primary_10_1049_ntw2_12115
crossref_primary_10_1016_j_joule_2024_08_006
Cites_doi 10.1063/1.4873117
10.1109/LED.2012.2237376
10.1016/S0022-0248(98)00147-X
10.1364/OE.23.00A614
10.1364/OE.26.00A946
10.1364/OE.18.002682
10.1016/j.solmat.2017.10.005
10.1016/j.nanoen.2014.10.013
10.1109/JQE.2012.2225601
10.1063/1.3481424
10.1016/j.solmat.2009.11.010
10.1109/JPHOTOV.2013.2292748
10.1063/1.3081123
10.1016/j.sse.2016.12.009
10.1109/JPHOTOV.2015.2504790
10.1109/LPT.2017.2775706
10.1016/j.mssp.2015.07.009
10.1002/pssa.200723202
10.1557/JMR.1996.0071
10.1016/j.jcrysgro.2015.02.100
10.1364/OE.20.00A991
10.1063/1.3005640
10.7567/JJAP.52.08JH02
10.1364/OE.22.0A1222
10.1002/pssc.200778434
10.1016/j.solmat.2015.10.026
10.1002/adfm.201910479
10.1063/1.4980139
10.1063/1.4896679
10.1051/epjpv/2017003
10.1063/1.1482786
10.1143/JJAP.51.10ND10
10.1063/1.4864640
10.1002/pip.3326
10.7567/APEX.6.115503
10.1002/pssr.201206038
10.1063/1.3668111
10.1016/S0022-0248(97)00082-1
10.7567/APEX.11.082304
10.1063/1.3484040
10.1143/APEX.2.082101
10.7567/1347-4065/ab1a5b
10.1109/TED.2019.2920934
10.1088/0022-3727/42/10/105101
10.1109/JPROC.2002.1021567
10.1063/1.4820839
10.1016/j.spmi.2021.106906
10.1021/nl104536x
10.7567/JJAP.56.110305
10.1088/0268-1242/28/7/074011
10.1016/j.solmat.2014.07.018
10.1088/1742-6596/1135/1/012050
10.1557/S1092578300000880
10.1016/j.sse.2017.06.020
10.1109/LED.2010.2058087
10.1088/0268-1242/30/10/105015
10.1109/JPHOTOV.2019.2892079
10.7567/JJAP.54.072302
10.1002/pssa.201700581
10.1016/j.solmat.2012.03.030
10.1016/j.spmi.2018.04.033
10.1063/1.4829443
10.1063/1.4731730
10.1063/1.4989998
10.1109/JPROC.2007.911060
10.1063/1.3254215
10.3390/ma10101221
10.1063/1.2952031
10.1063/1.3595487
10.1016/j.jmst.2012.12.005
10.1143/JJAP.30.L1705
10.1002/adfm.202005677
10.1063/1.5028530
10.1063/1.4904717
10.1021/acsphotonics.9b00655
10.1109/JDT.2016.2570814
10.1016/j.cap.2018.10.002
10.1016/j.solmat.2011.07.001
10.1063/5.0071506
10.1063/1.122164
10.1002/pssr.201004512
10.1063/1.2793180
10.1016/j.spmi.2017.05.014
10.1063/1.118493
10.1016/j.rser.2017.05.136
10.1016/j.nanoen.2020.105013
10.1364/AOP.10.000246
10.1063/1.3591976
10.1063/1.3695170
10.1016/j.pquantelec.2015.11.001
10.1016/j.solmat.2012.04.007
10.1109/JPHOTOV.2017.2756057
10.1016/j.spmi.2017.04.025
10.1063/1.4953006
10.1063/1.4765068
10.1109/LED.2009.2021414
10.1002/pssa.201026489
10.1063/1.3605244
10.1103/PhysRevB.60.8849
10.1016/j.jcrysgro.2007.01.044
10.1063/1.2988894
10.1038/35022529
10.1002/pssr.201600429
10.1016/j.solmat.2010.03.020
10.1063/1.1618353
10.1063/1.4893024
10.1063/1.3624850
10.1021/acsnano.7b04935
10.1002/pssr.201004044
10.1364/OE.435556
10.1063/1.5006650
10.1109/LED.2011.2150195
10.1063/1.3666314
10.1016/j.mssp.2022.106545
10.1088/0268-1242/24/5/055009
10.1103/PhysRevB.95.125314
10.1109/LED.2011.2158061
10.1063/1.111832
10.1039/C5EE01998B
10.1143/APEX.4.021001
10.1063/1.1600519
10.1002/(SICI)1521-3951(199911)216:1<381::AID-PSSB381>3.0.CO;2-O
10.1063/1.4947445
10.1109/LED.2009.2034280
10.1016/j.nanoen.2018.12.036
10.1063/1.3103305
10.1016/j.solmat.2016.09.030
10.1088/1361-6641/abc51c
10.1063/1.4826483
10.1063/1.5020988
10.1016/j.jcrysgro.2015.02.014
10.1109/LED.2019.2941830
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.mtener.2022.101229
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 2468-6069
ExternalDocumentID 1962241
10_1016_j_mtener_2022_101229
S2468606922002878
GroupedDBID --M
0R~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
M41
O9-
RIG
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
OTOTI
ID FETCH-LOGICAL-c379t-4fb7205e00b2e0dbed8fd770284df5c96e52814f11f95365a9692bc3ca0990743
IEDL.DBID AIKHN
ISSN 2468-6069
IngestDate Mon Dec 25 05:01:13 EST 2023
Thu Apr 24 23:16:09 EDT 2025
Tue Jul 01 03:24:37 EDT 2025
Fri Feb 23 02:38:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Epitaxy growth
High temperature performance
Device engineering
InGaN-based solar cells
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-4fb7205e00b2e0dbed8fd770284df5c96e52814f11f95365a9692bc3ca0990743
Notes USDOE Office of Science (SC), Basic Energy Sciences (BES)
SC0021230
ORCID 0000-0002-1717-1290
0000-0001-9199-4159
0000000191994159
0000000217171290
OpenAccessLink https://www.osti.gov/biblio/1962241
ParticipantIDs osti_scitechconnect_1962241
crossref_primary_10_1016_j_mtener_2022_101229
crossref_citationtrail_10_1016_j_mtener_2022_101229
elsevier_sciencedirect_doi_10_1016_j_mtener_2022_101229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Materials today energy
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Feng, Lai, Chen, Sun, Tu (bib45) 2010; 108
Toledo, Mishra (bib43) 2012; 111
Liu (bib149) 2011; 110
Wu (bib10) 2009; 106
Miyoshi, Tsutsumi, Kabata, Mori, Egawa (bib87) 2017; 129
Ho, Lin, Fu, Lin, Yang, Chan, Lai, He (bib38) 2012; 103
Horng, Lin, Tsai, Chu, Liao, Wu, Lin, Lu (bib20) 2009; 30
Wierer, Koleske, Lee (bib89) 2012; 100
Sarollahi, Zamani-Alavijeh, Allaparthi, Aldawsari, Refaei, Alhelais, Maruf, Mazur, Ware (bib130) 2022; 40
Fabien, Gunning, Doolittle, Fischer, Wei, Xie, Ponce (bib77) 2015; 425
Dahal, Li, Aryal, Lin, Jiang (bib16) 2010; 97
Redaelli (bib86) 2014; 105
Fabien, Moseley, Gunning, Doolittle, Fischer, Wei, Ponce (bib27) 2016; 4
Nakamura (bib115) 1991; 30
Arif (bib102) 2017; 159
Wang, Wang, Chu, Xiao, Wang, Wang (bib126) 2018; 26
Jampana, Melton, Jamil, Faleev, Opila, Ferguson, Honsberg (bib81) 2010; 31
Namkoong, Boland, Bae, Shim, Lee, Jeon, Foe, Latimer, Doolittle (bib65) 2011; 5
Neufeld, Samantha, Farrell, Iza, Keller, Nakamura, DenBaars, Speck, Mishra (bib11) 2011; 99
Branz, Regan, Gerst, Borak, Santori (bib15) 2015; 8
Huang (bib30) 2019; 6
Yamamoto, Hasan, Kodama, Shigekawa, Kuzuhara (bib73) 2015; 419
Tan, Hamzah, Ahmad, Ng, Hassan (bib67) 2022; 143
Baliga (bib7) 2013; 28
Sheu, Chen, Wu, Lee, Chen, Yeh (bib139) 2014; 22
Asgari, Khalili (bib46) 2011; 95
Farrell (bib22) 2011; 98
Nakamura, Pearton, Fasol (bib3) 2000
Hestroffer, Wu, Li, Lund, Keller, Speck, Mishra (bib118) 2015; 30
Ambacher (bib125) 1999; 216
Neufeld (bib124) 2011; 98
Huang, Fu, Chen, Lu, Ding, Zhao (bib49) 2016; 119
Walterweit, Brandt, Trampert, Grahn, Menniger, Ramsteiner, Reiche, Ploog (bib26) 2000; 406
White, Khoury, Wu, Keller, Rozhavskaia, Shotta, Nakaruma, DenBaars (bib116) 2021; 36
Dahal, Pantha, Li, Lin, Jiang (bib21) 2009; 94
Young, Farrell, Hu, Terao, Iza, Keller, DenBaars, Nakamura, Speck (bib112) 2013; 103
Jani, Yu, Trybus, Jampana, Ferguson, Doolittle, Honsberg (bib70) 2007
Shahmohammadi (bib147) 2017; 95
Hsu, Walukiewicz (bib44) 2008; 104
Enya (bib4) 2009; 2
Sheng (bib150) 2019; 58
Chen (bib13) 2016; 109
Aseev (bib120) 2013; 6
Jiang, Jing, Huang, Liu, Du, Liu, Pu, Hu, Wang (bib100) 2017; 11
Zhao, Fu, Wang, Nakamura (bib2) 2018; 10
Watanabe, Yokoyama, Shigekawa, Sugita, Yamamoto (bib90) 2012; 51
Bi, Bacon-Brown, Du, Zhang, Xu, Li, Zhang, Zhan, Hao (bib103) 2018; 30
Mishra, Parikh, Wu (bib5) 2022; 90
Wang, Wang, Chu, Xiao, Wang, Wang (bib122) 2018; 26
Lin, Chiou (bib40) 2015; 23
Marcinkevičius, Kelchner, Kuritzky, Nakamura, DenBaars, Speck (bib146) 2013; 103
Lee, Su, Chuang, Lin, Huang, Cheng, Chang (bib132) 2010; 94
Lin, Wang, Li (bib92) 2020; 30
Zhao, Huang, Fu, Chen, Liu, Montes, Baranowski (bib17) 2017
Wang, Tsai, Huang, Chen, Li, Kiang, Yang (bib55) 2010; 18
Li, Zhang, Xu, Bi, Zhang, Kuo (bib39) 2017; 10
Lang, Young, Farrell, Wu, Speck (bib131) 2012; 101
Neufeld, Toledo, Cruz, Iza, DenBaars, Mishra (bib19) 2008; 93
Singh, Doppalapudi, Moustakas, Romano (bib75) 1997; 70
Belghouthi, Taamalli, Echouchene, Mejri, Belmabrouk (bib48) 2015; 40
Clinton (bib66) 2017; 136
Zhao, Nguyen, Kibria, Mi (bib96) 2015; 44
Bai, Athanasiou, Wang (bib137) 2016; 145
Mishra, Shen, Kazior, Wu (bib6) 2008; 96
Wu, Cheng, Wang (bib52) 2018; 119
Zhuang, Iida, Kirilenko, Ohkawa (bib152) 2021; 29
Fabien, Doolittle (bib28) 2014; 130
Shim, Jeon, Jeong, Lee (bib82) 2010; 31
Sayed, Bedair (bib84) 2019; 9
Melton, Pankove (bib113) 1997; 178
Cho, Gainer, Fischer, Song, Keller, Mishra, DenBaars (bib144) 1998; 73
Cai, Lv, Huang, Wang, Wang, Yang, Zhu, Zhang (bib107) 2018; 215
Vadiee (bib101) 2018; 11
Wu (bib9) 2002; 80
Yu, Dang, Asbeck, Lau, Sullivan (bib123) 1999; 17
Yamamoto (bib138) 2012; 6
Chen, Hung (bib50) 2017; 11
El-Huni, Migan, Alamarguy, Djebbour (bib63) 2017; 8
Williams (bib141) 2017
Jani, Ferguson, Honsberg, Kurtz (bib18) 2007; 91
Huang (bib35) 2017; 111
Johnston, Kappers, Humphreys (bib78) 2009; 105
Chang, Kuo (bib56) 2011; 32
Liu, Wang, Xiao, Wang, Wang, Wang, Ge, Wang (bib104) 2017; 109
Wang, Imai, Kusakabe, Yoshikawa (bib109) 2016; 108
Fiorentini, Bernardini, Sala, Carlo, Lugli (bib25) 1999; 60
Seo, Shim, Choi, Seo, Suh, Lee (bib135) 2012; 20
Arteev, Sakharov, Zavarin, Lundin, Smirnov, Davydov, Yagovkina, Usov, Tsatsulnikov (bib37) 2018; 1135
Siddharth, Garg, Sengar, Bhardwaj, Kumar, Mukherjee (bib53) 2019; 66
Inoue, Katoh, Kobayashi, Ohta, Fujioka (bib127) 2010; 4
Brown, Ager, Walukiewicz, Wu (bib32) 2010; 94
Vurgaftman, Meyer (bib148) 2003; 94
Yang (bib79) 2007; 204
Namkoong, Trybus, Lee, Moseley, Doolittle, Look (bib76) 2008; 93
Koukitu, Seki (bib69) 1998; 189
Adaine, Hamady, Fressengeas (bib51) 2017; 107
Redaelli, Mukhtarova, Ajay, Núñez-Cascajero, Valdueza-Felip, Bleuse, Durand, Eymery, Monroy (bib88) 2015; 54
Bai, Gong, Li, Zhang, Wang (bib106) 2018; 175
Lee, Lee, M Cheng, Yang (bib110) 2011; 98
Mori, Kondo, Yamamoto, Nakao, Iwaya, Takeuchi, Kamiyama, Akasaki, Amano (bib140) 2013; 52
Liu, Wang, Xiao, Wang, Wang, Wang, Ge, Wang (bib24) 2017; 109
Golam Sarwar, Myers (bib58) 2012; 101
Sang, Sumiya, Liao, Koide, Yang, Shen (bib105) 2021; 119
Lee, Honda, Amano (bib61) 2015; 49
Li, Lestradet, Xiao, Li (bib57) 2011; 208
Wu, Walukiewicz, Yu, Shan, Ager (bib14) 2003; 94
Jeng, Lee, Chang (bib64) 2009; 42
Togashi, Kamoshita, Nishizawa, Murakami, Kumagai, Koukitu (bib72) 2008; 5
Nguyen, Zhang, Cui, Han, Fathololoumi, Couillard, Botton, Mi (bib95) 2011; 11
Yao, Tsai, Huang, Lin, Sheu, Lee (bib59) 2013; 103
Kazazis, Papadomanolaki, Androulidaki, Kayambaki, Iliopoulos (bib36) 2018; 123
Huang (bib29) 2017; 110
Huang (bib54) 2018; 113
Kwak, Lee, Kim, Kim, Moon (bib111) 2011; 1399
M Fabien, Maros, Honsberg, Doolittle (bib108) 2016; 6
Karpov (bib74) 1998; 3
Huang (bib31) 2020; 76
Caria (bib142) 2020
Lien, Hsiao, Yang, Tsai, Wei, Lee, He (bib34) 2015; 11
Young, Perl, Farrell, Iza, Keller, Bowers, Nakamura, DenBaars, Speck (bib133) 2014; 104
Lin, Lai, Lin, Lai, He (bib134) 2011; 32
Bai, Yang, Athanasiou, Wang (bib136) 2014; 104
Zeng, Zhang, Sun, Cai, Chen, Yu (bib80) 2009; 24
Shan, Chen, Li, Lin, Xu, Hao, Zhang (bib98) 2017; 56
Prajon, Nirmal, Menokey, Pravin (bib121) 2016; 12
Li (bib151) 2022; 120
Islam, Kaysir, Islam, Hashimoto, Yamamoto (bib68) 2013; 29
Tran (bib119) 2012; 102
Nakamura, Mukai, Senoh (bib1) 1994; 64
Badcock, Hao, Moram, Kappers, Dawson, Oliver, Humphreys (bib145) 2012; 112
Misra, Boney, Medelci, Starikov, Freundlich, Bensaoula (bib83) 2008
Kuwahara (bib23) 2011; 4
Hrachowina, Chen, Barrigón, Wallenberg, Borgström (bib94) 2022; 27
Cai, Zeng, Zhang (bib129) 2009; 95
Dickerson, Pantzas, Ougazzaden, Voss (bib128) 2013; 34
Mukhtarova, Valdueza-Felip, Redaelli, Durand, Bougerol, Monroy, Eymery (bib85) 2016; 108
Williams (bib33) 2017; 7
Cavassilas, Michelini, Bescond (bib47) 2014; 105
Chatterjee, Park, Um, Lee (bib93) 2017; 79
Chang, Yen, Chang, Kuo (bib60) 2013; 49
Even, Laval, Ledoux, Ferret, Ferret, Shotta, Guiot, Levy, Robin, Dussaigne (bib117) 2017; 110
Fu, Fu, Huang, Chen, Yang, Montes, Yang, Zhou, Zhao (bib8) 2019; 40
Fang, McFavilen, Ding, Vasileska, Goodnick (bib62) 2016
Jiang (bib99) 2019; 57
Komaki, Katayama, Onabe, Ozeki, Ikari (bib71) 2007; 305
Ning, Chien, Pirouz, Yang, Khan (bib114) 1996; 11
Lai, Li, Long, Ying, Zheng, Zhang (bib41) 2021; 155
Lin, Yu, Zhang, Gao, Liu, Wang, Li (bib91) 2020; 30
Miyoshi, Ohta, Mori, Egawa (bib97) 2017; 215
Moses, Huang, Zhao, Maur, Katz, Gordon (bib143) 2020; 28
Zhao, Detchprohm, Wetzel (bib12) 2014; 105
Woo, Jo, Kim, Cho, Roh, Lee, Kim, Hahn, Im (bib42) 2018; 18
Ambacher (10.1016/j.mtener.2022.101229_bib125) 1999; 216
Farrell (10.1016/j.mtener.2022.101229_bib22) 2011; 98
Li (10.1016/j.mtener.2022.101229_bib39) 2017; 10
Kuwahara (10.1016/j.mtener.2022.101229_bib23) 2011; 4
Huang (10.1016/j.mtener.2022.101229_bib49) 2016; 119
Zhao (10.1016/j.mtener.2022.101229_bib2) 2018; 10
Lee (10.1016/j.mtener.2022.101229_bib61) 2015; 49
Nakamura (10.1016/j.mtener.2022.101229_bib115) 1991; 30
Chang (10.1016/j.mtener.2022.101229_bib60) 2013; 49
Brown (10.1016/j.mtener.2022.101229_bib32) 2010; 94
Cai (10.1016/j.mtener.2022.101229_bib107) 2018; 215
Cho (10.1016/j.mtener.2022.101229_bib144) 1998; 73
Jampana (10.1016/j.mtener.2022.101229_bib81) 2010; 31
Li (10.1016/j.mtener.2022.101229_bib57) 2011; 208
Bai (10.1016/j.mtener.2022.101229_bib106) 2018; 175
Chen (10.1016/j.mtener.2022.101229_bib13) 2016; 109
Jiang (10.1016/j.mtener.2022.101229_bib100) 2017; 11
Marcinkevičius (10.1016/j.mtener.2022.101229_bib146) 2013; 103
Williams (10.1016/j.mtener.2022.101229_bib33) 2017; 7
Namkoong (10.1016/j.mtener.2022.101229_bib76) 2008; 93
Redaelli (10.1016/j.mtener.2022.101229_bib88) 2015; 54
Inoue (10.1016/j.mtener.2022.101229_bib127) 2010; 4
Lai (10.1016/j.mtener.2022.101229_bib41) 2021; 155
Redaelli (10.1016/j.mtener.2022.101229_bib86) 2014; 105
Wu (10.1016/j.mtener.2022.101229_bib14) 2003; 94
Jani (10.1016/j.mtener.2022.101229_bib70) 2007
Huang (10.1016/j.mtener.2022.101229_bib29) 2017; 110
Huang (10.1016/j.mtener.2022.101229_bib31) 2020; 76
Shan (10.1016/j.mtener.2022.101229_bib98) 2017; 56
Dahal (10.1016/j.mtener.2022.101229_bib16) 2010; 97
Namkoong (10.1016/j.mtener.2022.101229_bib65) 2011; 5
M Fabien (10.1016/j.mtener.2022.101229_bib108) 2016; 6
Adaine (10.1016/j.mtener.2022.101229_bib51) 2017; 107
Jeng (10.1016/j.mtener.2022.101229_bib64) 2009; 42
Hestroffer (10.1016/j.mtener.2022.101229_bib118) 2015; 30
Zeng (10.1016/j.mtener.2022.101229_bib80) 2009; 24
Wu (10.1016/j.mtener.2022.101229_bib9) 2002; 80
Wu (10.1016/j.mtener.2022.101229_bib10) 2009; 106
Johnston (10.1016/j.mtener.2022.101229_bib78) 2009; 105
Moses (10.1016/j.mtener.2022.101229_bib143) 2020; 28
Woo (10.1016/j.mtener.2022.101229_bib42) 2018; 18
Prajon (10.1016/j.mtener.2022.101229_bib121) 2016; 12
Enya (10.1016/j.mtener.2022.101229_bib4) 2009; 2
Huang (10.1016/j.mtener.2022.101229_bib30) 2019; 6
Toledo (10.1016/j.mtener.2022.101229_bib43) 2012; 111
Wang (10.1016/j.mtener.2022.101229_bib109) 2016; 108
Fabien (10.1016/j.mtener.2022.101229_bib28) 2014; 130
Chatterjee (10.1016/j.mtener.2022.101229_bib93) 2017; 79
Yao (10.1016/j.mtener.2022.101229_bib59) 2013; 103
Miyoshi (10.1016/j.mtener.2022.101229_bib87) 2017; 129
Bai (10.1016/j.mtener.2022.101229_bib136) 2014; 104
Hrachowina (10.1016/j.mtener.2022.101229_bib94) 2022; 27
Zhao (10.1016/j.mtener.2022.101229_bib17) 2017
Wu (10.1016/j.mtener.2022.101229_bib52) 2018; 119
Cai (10.1016/j.mtener.2022.101229_bib129) 2009; 95
Lang (10.1016/j.mtener.2022.101229_bib131) 2012; 101
Zhao (10.1016/j.mtener.2022.101229_bib96) 2015; 44
Fang (10.1016/j.mtener.2022.101229_bib62) 2016
Nakamura (10.1016/j.mtener.2022.101229_bib1) 1994; 64
Jani (10.1016/j.mtener.2022.101229_bib18) 2007; 91
Clinton (10.1016/j.mtener.2022.101229_bib66) 2017; 136
Belghouthi (10.1016/j.mtener.2022.101229_bib48) 2015; 40
Togashi (10.1016/j.mtener.2022.101229_bib72) 2008; 5
Lin (10.1016/j.mtener.2022.101229_bib91) 2020; 30
Wang (10.1016/j.mtener.2022.101229_bib126) 2018; 26
Mishra (10.1016/j.mtener.2022.101229_bib6) 2008; 96
Liu (10.1016/j.mtener.2022.101229_bib24) 2017; 109
Jiang (10.1016/j.mtener.2022.101229_bib99) 2019; 57
Chang (10.1016/j.mtener.2022.101229_bib56) 2011; 32
Wierer (10.1016/j.mtener.2022.101229_bib89) 2012; 100
Nguyen (10.1016/j.mtener.2022.101229_bib95) 2011; 11
El-Huni (10.1016/j.mtener.2022.101229_bib63) 2017; 8
Yang (10.1016/j.mtener.2022.101229_bib79) 2007; 204
Watanabe (10.1016/j.mtener.2022.101229_bib90) 2012; 51
Kwak (10.1016/j.mtener.2022.101229_bib111) 2011; 1399
Hsu (10.1016/j.mtener.2022.101229_bib44) 2008; 104
Melton (10.1016/j.mtener.2022.101229_bib113) 1997; 178
Fabien (10.1016/j.mtener.2022.101229_bib77) 2015; 425
Baliga (10.1016/j.mtener.2022.101229_bib7) 2013; 28
Sarollahi (10.1016/j.mtener.2022.101229_bib130) 2022; 40
Sayed (10.1016/j.mtener.2022.101229_bib84) 2019; 9
Fabien (10.1016/j.mtener.2022.101229_bib27) 2016; 4
Williams (10.1016/j.mtener.2022.101229_bib141) 2017
Liu (10.1016/j.mtener.2022.101229_bib104) 2017; 109
Young (10.1016/j.mtener.2022.101229_bib112) 2013; 103
Fiorentini (10.1016/j.mtener.2022.101229_bib25) 1999; 60
Yamamoto (10.1016/j.mtener.2022.101229_bib138) 2012; 6
Lien (10.1016/j.mtener.2022.101229_bib34) 2015; 11
Golam Sarwar (10.1016/j.mtener.2022.101229_bib58) 2012; 101
Yamamoto (10.1016/j.mtener.2022.101229_bib73) 2015; 419
Seo (10.1016/j.mtener.2022.101229_bib135) 2012; 20
Cavassilas (10.1016/j.mtener.2022.101229_bib47) 2014; 105
Bi (10.1016/j.mtener.2022.101229_bib103) 2018; 30
Liu (10.1016/j.mtener.2022.101229_bib149) 2011; 110
Branz (10.1016/j.mtener.2022.101229_bib15) 2015; 8
Arteev (10.1016/j.mtener.2022.101229_bib37) 2018; 1135
Bai (10.1016/j.mtener.2022.101229_bib137) 2016; 145
Ho (10.1016/j.mtener.2022.101229_bib38) 2012; 103
Mukhtarova (10.1016/j.mtener.2022.101229_bib85) 2016; 108
Komaki (10.1016/j.mtener.2022.101229_bib71) 2007; 305
Shahmohammadi (10.1016/j.mtener.2022.101229_bib147) 2017; 95
Tran (10.1016/j.mtener.2022.101229_bib119) 2012; 102
Huang (10.1016/j.mtener.2022.101229_bib54) 2018; 113
Shim (10.1016/j.mtener.2022.101229_bib82) 2010; 31
Dahal (10.1016/j.mtener.2022.101229_bib21) 2009; 94
Walterweit (10.1016/j.mtener.2022.101229_bib26) 2000; 406
Fu (10.1016/j.mtener.2022.101229_bib8) 2019; 40
Ning (10.1016/j.mtener.2022.101229_bib114) 1996; 11
Yu (10.1016/j.mtener.2022.101229_bib123) 1999; 17
Zhao (10.1016/j.mtener.2022.101229_bib12) 2014; 105
Miyoshi (10.1016/j.mtener.2022.101229_bib97) 2017; 215
Neufeld (10.1016/j.mtener.2022.101229_bib19) 2008; 93
Islam (10.1016/j.mtener.2022.101229_bib68) 2013; 29
Mori (10.1016/j.mtener.2022.101229_bib140) 2013; 52
Nakamura (10.1016/j.mtener.2022.101229_bib3) 2000
Arif (10.1016/j.mtener.2022.101229_bib102) 2017; 159
Sheng (10.1016/j.mtener.2022.101229_bib150) 2019; 58
Lee (10.1016/j.mtener.2022.101229_bib132) 2010; 94
Chen (10.1016/j.mtener.2022.101229_bib50) 2017; 11
Singh (10.1016/j.mtener.2022.101229_bib75) 1997; 70
Lin (10.1016/j.mtener.2022.101229_bib134) 2011; 32
Lin (10.1016/j.mtener.2022.101229_bib40) 2015; 23
Koukitu (10.1016/j.mtener.2022.101229_bib69) 1998; 189
Caria (10.1016/j.mtener.2022.101229_bib142) 2020
Sang (10.1016/j.mtener.2022.101229_bib105) 2021; 119
Asgari (10.1016/j.mtener.2022.101229_bib46) 2011; 95
Dickerson (10.1016/j.mtener.2022.101229_bib128) 2013; 34
Aseev (10.1016/j.mtener.2022.101229_bib120) 2013; 6
Wang (10.1016/j.mtener.2022.101229_bib122) 2018; 26
Feng (10.1016/j.mtener.2022.101229_bib45) 2010; 108
Mishra (10.1016/j.mtener.2022.101229_bib5) 2022; 90
Vurgaftman (10.1016/j.mtener.2022.101229_bib148) 2003; 94
Lin (10.1016/j.mtener.2022.101229_bib92) 2020; 30
Karpov (10.1016/j.mtener.2022.101229_bib74) 1998; 3
White (10.1016/j.mtener.2022.101229_bib116) 2021; 36
Zhuang (10.1016/j.mtener.2022.101229_bib152) 2021; 29
Misra (10.1016/j.mtener.2022.101229_bib83) 2008
Vadiee (10.1016/j.mtener.2022.101229_bib101) 2018; 11
Neufeld (10.1016/j.mtener.2022.101229_bib124) 2011; 98
Sheu (10.1016/j.mtener.2022.101229_bib139) 2014; 22
Horng (10.1016/j.mtener.2022.101229_bib20) 2009; 30
Li (10.1016/j.mtener.2022.101229_bib151) 2022; 120
Badcock (10.1016/j.mtener.2022.101229_bib145) 2012; 112
Neufeld (10.1016/j.mtener.2022.101229_bib11) 2011; 99
Wang (10.1016/j.mtener.2022.101229_bib55) 2010; 18
Young (10.1016/j.mtener.2022.101229_bib133) 2014; 104
Tan (10.1016/j.mtener.2022.101229_bib67) 2022; 143
Lee (10.1016/j.mtener.2022.101229_bib110) 2011; 98
Kazazis (10.1016/j.mtener.2022.101229_bib36) 2018; 123
Siddharth (10.1016/j.mtener.2022.101229_bib53) 2019; 66
Huang (10.1016/j.mtener.2022.101229_bib35) 2017; 111
Even (10.1016/j.mtener.2022.101229_bib117) 2017; 110
References_xml – volume: 104
  year: 2014
  ident: bib133
  article-title: High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 1919
  year: 2011
  end-page: 1924
  ident: bib95
  article-title: P-type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111)
  publication-title: Nano Lett.
– volume: 49
  year: 2015
  ident: bib61
  article-title: Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells
  publication-title: J. Phys. D Appl. Phys.
– start-page: 1
  year: 2008
  end-page: 5
  ident: bib83
  article-title: Fabrication and Characterization of 2.3eV InGaN Photovoltaic Devices
  publication-title: 33rd IEEE Photovoltaic Specialists Conference (PVSC), San Diego, United States
– volume: 18
  start-page: 1558
  year: 2018
  end-page: 1563
  ident: bib42
  article-title: Correlation between pit formation and phase separation in thick InGaN film on a Si substrate
  publication-title: Curr. Appl. Phys.
– volume: 70
  start-page: 1089
  year: 1997
  end-page: 1091
  ident: bib75
  article-title: Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition
  publication-title: Appl. Phys. Lett.
– start-page: 64
  year: 2007
  end-page: 67
  ident: bib70
  article-title: Effect of Phase Separation on Performance of III-V Nitride Solar Cells
  publication-title: Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy
– volume: 143
  year: 2022
  ident: bib67
  article-title: Recent advances and challenges in the MOCVD growth of indium gallium nitride: a brief review
  publication-title: Mater. Sci. Semicond. Process.
– volume: 29
  start-page: 128
  year: 2013
  end-page: 136
  ident: bib68
  article-title: MOVPE growth of In
  publication-title: J. Mater. Sci. Technol.
– volume: 94
  start-page: 1259
  year: 2010
  end-page: 1262
  ident: bib132
  article-title: Discussion on electrical characteristics of i-In
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 40
  start-page: 1728
  year: 2019
  end-page: 1731
  ident: bib8
  article-title: Demonstration of 1.27 kV etch-then-regrow GaN p-n junctions with low leakage for GaN power electronics
  publication-title: IEEE Electron. Device Lett.
– volume: 208
  start-page: 928
  year: 2011
  end-page: 931
  ident: bib57
  article-title: Effects of polarization charge on the photovoltaic properties of InGaN solar cells
  publication-title: Phys. Status Solidi A
– volume: 6
  start-page: 2096
  year: 2019
  end-page: 2103
  ident: bib30
  article-title: High-temperature polarization-free III-nitride solar cells with self-cooling effects
  publication-title: ACS Photon.
– volume: 28
  start-page: 1167
  year: 2020
  end-page: 1174
  ident: bib143
  article-title: InGaN/GaN multi-quantum-well solar cells under high solar concentration and elevated temperatures for hybrid solar thermal-photovoltaic power plants
  publication-title: Prog. Photovoltaics Res. Appl.
– year: 2000
  ident: bib3
  article-title: The Blue Laser Diode: the Complete Story
– start-page: 112800E
  year: 2020
  ident: bib142
  article-title: Degradation and recovery of high-periodicity InGaN/GaN MQWs under optical stress in short-circuit condition
  publication-title: Proc. SPIEL
– volume: 29
  start-page: 29780
  year: 2021
  end-page: 29788
  ident: bib152
  article-title: Improved performance of InGaN-based red light-emitting diodes by micro-hole arrays
  publication-title: Opt Express
– volume: 120
  year: 2022
  ident: bib151
  article-title: Demonstration of ultra-small 5 × 5
  publication-title: Appl. Phys. Lett.
– volume: 58
  year: 2019
  ident: bib150
  article-title: Intensive luminescence from a thick, indium-rich In
  publication-title: Jpn. J. Appl. Phys.
– volume: 175
  start-page: 47
  year: 2018
  end-page: 51
  ident: bib106
  article-title: Semi-polar InGaN/GaN multiple quantum well solar cells with spectral response at up to 560 nm
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 4
  start-page: 601
  year: 2016
  end-page: 606
  ident: bib27
  article-title: Simulations, Practical limitations, and novel growth technology for InGaN-based solar cells
  publication-title: IEEE J. Photovoltaics
– volume: 129
  start-page: 29
  year: 2017
  end-page: 34
  ident: bib87
  article-title: Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells
  publication-title: Solid State Electron.
– volume: 26
  start-page: A946
  year: 2018
  end-page: A954
  ident: bib126
  article-title: Roles of polarization effects in InGaN/GaN solar cells and comparison of p-i-n and n-i-p structures
  publication-title: Opt Express
– volume: 145
  start-page: 226
  year: 2016
  end-page: 230
  ident: bib137
  article-title: Influence of the ITO current spreading layer on efficiencies of InGaN-based solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 119
  start-page: 9
  year: 2018
  end-page: 18
  ident: bib52
  article-title: Effects of the unintentional background concentration, indium composition and defect density on the performance of InGaN p-i-n homojunction solar cells
  publication-title: Superlattices Microstruct.
– volume: 66
  start-page: 3399
  year: 2019
  end-page: 3404
  ident: bib53
  article-title: Analytical study of performance parameters of inGaN/GaN multiple quantum well solar cell
  publication-title: IEEE Trans. Electron. Dev.
– volume: 30
  year: 2015
  ident: bib118
  article-title: Relaxed c-plane InGaN layers for the growth of strain-reduced InGaN quantum wells
  publication-title: Semicond. Sci. Technol.
– volume: 1399
  start-page: 179
  year: 2011
  ident: bib111
  article-title: Growth and characterization of AlGaN films on patterned sapphire substrates
  publication-title: AIP Conf. Proc.
– volume: 40
  year: 2022
  ident: bib130
  article-title: Ware Study of simulations of double graded InGaN solar cell structures
  publication-title: J. Vac. Sci. Technol. B
– volume: 94
  start-page: 6477
  year: 2003
  end-page: 6482
  ident: bib14
  article-title: Superior radiation resistance of In
  publication-title: J. Appl. Phys.
– volume: 93
  year: 2008
  ident: bib19
  article-title: High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap
  publication-title: Appl. Phys. Lett.
– volume: 107
  start-page: 267
  year: 2017
  end-page: 277
  ident: bib51
  article-title: Effects of structural defects and polarization charges in InGaN-based double-junction solar cell
  publication-title: Superlattices Microstruct.
– volume: 42
  year: 2009
  ident: bib64
  article-title: Temperature dependences of In
  publication-title: J. Phys. D Appl. Phys.
– start-page: 954
  year: 2017
  end-page: 957
  ident: bib17
  article-title: InGaN-Based Solar Cells for Space Applications
  publication-title: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Medford, United States
– volume: 103
  year: 2013
  ident: bib59
  article-title: Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells
  publication-title: Appl. Phys. Lett.
– volume: 11
  year: 2017
  ident: bib50
  article-title: Numerical study of InGaN tandem solar cells with intermediate bands
  publication-title: Phys. Status Solidi Rapid Res. Lett.
– volume: 159
  start-page: 405
  year: 2017
  end-page: 411
  ident: bib102
  article-title: Improving InGaN heterojunction solar cells efficiency using a semibulk absorber
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 4
  start-page: 88
  year: 2010
  end-page: 90
  ident: bib127
  article-title: Investigation on the conversion efficiency of InGaN solar cells fabricated on GaN and ZnO substrates
  publication-title: Phys. Status Solidi Rapid Res. Lett.
– volume: 106
  year: 2009
  ident: bib10
  article-title: When group-III nitrides go infrared: new properties and perspectives
  publication-title: J. Appl. Phys
– volume: 109
  start-page: 194
  year: 2017
  end-page: 200
  ident: bib104
  article-title: Optimization of growth and fabrication techniques to enhance the InGaN/GaN multiple quantum well solar cells performance
  publication-title: Superlattices Microstruct.
– volume: 109
  year: 2016
  ident: bib13
  article-title: Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs
  publication-title: Appl. Phys. Lett.
– volume: 76
  year: 2020
  ident: bib31
  article-title: Anomalous carrier dynamics and localization effects in nonpolar m-plane InGaN/GaN quantum wells at high temperatures
  publication-title: Nano Energy
– start-page: 193
  year: 2017
  end-page: 195
  ident: bib141
  article-title: Development of a high-band gap high temperature III-nitride solar cell for integration with concentrated solar power technology
  publication-title: 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington D.C., United States
– volume: 90
  start-page: 1022
  year: 2022
  end-page: 1031
  ident: bib5
  article-title: AlGaN/GaN HEMTs - an overview of device operation and applications
  publication-title: Proc. IEEE
– volume: 30
  year: 2020
  ident: bib91
  article-title: A novel approach for achieving high-efficiency photoelectrochemical water oxidation in InGaN nanorods grown on Si system: MXene nanosheets as multifunctional interfacial modifier
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 83
  year: 2018
  end-page: 86
  ident: bib103
  article-title: An InGaN/GaN MQWs solar cell improved by a surficial GaN nanostructure as light traps
  publication-title: IEEE Photon. Technol. Lett.
– volume: 8
  start-page: 3083
  year: 2015
  end-page: 3091
  ident: bib15
  article-title: Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity
  publication-title: Energy Environ. Sci.
– volume: 215
  year: 2017
  ident: bib97
  article-title: A comparative study of InGaN/GaN multiple-quantum-well solar cells grown on sapphire and AlN template by metalorganic chemical vapor deposition
  publication-title: Phys. Status Solidi A
– volume: 110
  year: 2017
  ident: bib117
  article-title: Enhanced in incorporation in full InGaN heterostructure grown on relaxed InGaN pseudo-substrate
  publication-title: Appl. Phys. Lett.
– volume: 189
  start-page: 13
  year: 1998
  end-page: 18
  ident: bib69
  article-title: Thermodynamic study on phase separation during MOVPE growth of In
  publication-title: J. Cryst. Growth
– volume: 60
  start-page: 8849
  year: 1999
  ident: bib25
  article-title: Effects of macroscopic polarization in III-V nitride multiple quantum wells
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 145
  year: 2012
  end-page: 147
  ident: bib138
  article-title: Properties of nitride-based photovoltaic cells under concentrated light illumination
  publication-title: Phys. Status Solidi Rapid Res. Lett.
– volume: 95
  start-page: 3124
  year: 2011
  end-page: 3129
  ident: bib46
  article-title: Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 30
  year: 2020
  ident: bib92
  article-title: Modulating surface/interface structure of emerging InGaN nanowires for efficient photoelectrochemical water splitting
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 86
  year: 2011
  end-page: 88
  ident: bib65
  article-title: Effect of III-nitride polarization on V
  publication-title: Phys. Status Solidi Rapid Res. Lett.
– volume: 20
  start-page: 991
  year: 2012
  end-page: 996
  ident: bib135
  article-title: Efficiency improvement in InGaN-based solar cells by indium tin oxide nano dots covered with ITO films
  publication-title: Opt Express
– volume: 40
  start-page: 424
  year: 2015
  end-page: 428
  ident: bib48
  article-title: Modeling of polarization charge in N-face InGaN/GaN MQW solar cells
  publication-title: Mater. Sci. Semicond. Process.
– volume: 11
  year: 2018
  ident: bib101
  article-title: InGaN solar cells with regrown GaN homojunction tunnel contacts
  publication-title: Appl. Phys. Express
– volume: 51
  start-page: 10ND10
  year: 2012
  ident: bib90
  article-title: Barrier thickness dependence of photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells
  publication-title: Jpn. J. Appl. Phys.
– volume: 130
  start-page: 354
  year: 2014
  end-page: 363
  ident: bib28
  article-title: Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 101
  year: 2012
  ident: bib131
  article-title: Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells
  publication-title: Appl. Phys. Lett.
– volume: 103
  year: 2013
  ident: bib146
  article-title: Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells
  publication-title: Appl. Phys. Lett.
– volume: 91
  year: 2007
  ident: bib18
  article-title: Design and characterization of GaN/InGaN solar cells
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 16
  year: 1998
  ident: bib74
  article-title: Suppression of phase separation in InGaN due to elastic strain
  publication-title: MRS Internet J. Nitride Semicond. Res.
– volume: 52
  year: 2013
  ident: bib140
  article-title: Concentrating properties of nitride-based solar cells using different electrodes
  publication-title: Jpn. J. Appl. Phys.
– volume: 6
  start-page: 460
  year: 2016
  end-page: 464
  ident: bib108
  article-title: III-Nitride double-heterojunction solar cells with high In-content InGaN absorbing layers: comparison of large-area and small-area devices
  publication-title: IEEE J. Photovoltaics
– volume: 12
  start-page: 1117
  year: 2016
  end-page: 1121
  ident: bib121
  article-title: Efficiency enhancement of InGaN MQW LED using compositionally step graded InGaN barrier on SiC substrate
  publication-title: J. Disp. Technol.
– volume: 10
  start-page: 1221
  year: 2017
  ident: bib39
  article-title: On the hole injection for III-nitride based deep ultraviolet light-emitting diodes
  publication-title: Materials
– volume: 110
  year: 2011
  ident: bib149
  article-title: Temperature-controlled epitaxy of In
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 104
  year: 2015
  end-page: 109
  ident: bib34
  article-title: Harsh photovoltaics using InGaN/GaN multiple quantum well schemes
  publication-title: Nano Energy
– volume: 17
  start-page: 1742
  year: 1999
  ident: bib123
  article-title: Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures
  publication-title: J. Vac. Sci. Technol. B
– volume: 98
  year: 2011
  ident: bib22
  article-title: High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm
  publication-title: Appl. Phys. Lett.
– volume: 56
  year: 2017
  ident: bib98
  article-title: The performance enhancement of an InGaN/GaN multiple-quantum-well solar cell by superlattice structure
  publication-title: Jpn. J. Appl. Phys.
– volume: 104
  year: 2014
  ident: bib136
  article-title: Efficiency enhancement of InGaN/GaN solar cells with nanostructures
  publication-title: Appl. Phys. Lett.
– volume: 4
  year: 2011
  ident: bib23
  article-title: GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate
  publication-title: Appl. Phys. Express
– volume: 111
  year: 2012
  ident: bib43
  article-title: InGaN solar cell requirements for high-efficiency integrated III-nitride/non-III-nitride tandem photovoltaic devices
  publication-title: J. Appl. Phys.
– volume: 8
  year: 2017
  ident: bib63
  article-title: Modeling of InGaN/Si tandem cells: comparison between 2-contacts/4-contacts
  publication-title: EPJ Photovoltaics
– volume: 5
  start-page: 1518
  year: 2008
  end-page: 1521
  ident: bib72
  article-title: Experimental and ab-initio studies of temperature dependent InN decomposition in various ambient
  publication-title: Phys. Status Solidi C
– volume: 80
  start-page: 3967
  year: 2002
  end-page: 3969
  ident: bib9
  article-title: Unusual properties of the fundamental band gap of InN
  publication-title: Appl. Phys. Lett.
– volume: 136
  start-page: 3
  year: 2017
  end-page: 11
  ident: bib66
  article-title: A Review of the Synthesis of Reduced Defect Density InxGa1−xN for All Indium Compositions
  publication-title: Solid State Electron.
– volume: 216
  start-page: 381
  year: 1999
  end-page: 389
  ident: bib125
  article-title: Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices
  publication-title: Phys. Status Solidi B
– volume: 7
  start-page: 1646
  year: 2017
  end-page: 1652
  ident: bib33
  article-title: Refractory In
  publication-title: IEEE J. Photovoltaics
– volume: 23
  start-page: A614
  year: 2015
  end-page: A624
  ident: bib40
  article-title: Optical design of GaN/In
  publication-title: Opt Express
– volume: 119
  year: 2016
  ident: bib49
  article-title: Analysis of loss mechanisms in InGaN solar cells using a semi-analytical model
  publication-title: J. Appl. Phys.
– volume: 27
  year: 2022
  ident: bib94
  article-title: Realization of axially defined GaInP/InP/InAsP triple-junction photovoltaic nanowires for high-performance solar cells
  publication-title: Mater. Today Energy
– volume: 30
  start-page: 724
  year: 2009
  end-page: 726
  ident: bib20
  article-title: Improved conversion efficiency of GaN/InGaN thin-film solar cells
  publication-title: IEEE Electron. Device Lett.
– volume: 105
  year: 2014
  ident: bib86
  article-title: Effect of the quantum well thickness on the performance of InGaN photovoltaic cells
  publication-title: Appl. Phys. Lett.
– volume: 94
  start-page: 3675
  year: 2003
  end-page: 3696
  ident: bib148
  article-title: Band parameters for nitrogen-containing semiconductors
  publication-title: J. Appl. Phys.
– volume: 64
  start-page: 1687
  year: 1994
  end-page: 1689
  ident: bib1
  article-title: Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes
  publication-title: Appl. Phys. Lett.
– volume: 108
  year: 2010
  ident: bib45
  article-title: Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of p-i-n InGaN single homojunction solar cells
  publication-title: J. Appl. Phys.
– volume: 100
  year: 2012
  ident: bib89
  article-title: Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells
  publication-title: Appl. Phys. Lett.
– volume: 2
  year: 2009
  ident: bib4
  article-title: 531 nm Green lasing of ingan based laser diodes on semi-polar {2021} free-standing GaN substrates
  publication-title: Appl. Phys. Exp.
– volume: 406
  start-page: 865
  year: 2000
  end-page: 868
  ident: bib26
  article-title: Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes
  publication-title: Nature
– volume: 94
  start-page: 478
  year: 2010
  end-page: 483
  ident: bib32
  article-title: Finite element simulations of compositionally graded InGaN solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 204
  start-page: 4288
  year: 2007
  end-page: 4291
  ident: bib79
  article-title: Photovoltaic effects in InGaN structures with p-n junctions
  publication-title: Phys. Status Solidi A
– volume: 108
  year: 2016
  ident: bib85
  article-title: Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness
  publication-title: Appl. Phys. Lett.
– volume: 34
  start-page: 363
  year: 2013
  end-page: 365
  ident: bib128
  article-title: Polarization-induced electric fields make robust n-GaN/i-InGaN/p-GaN solar cells
  publication-title: IEEE Electron. Device Lett.
– volume: 30
  start-page: L1705
  year: 1991
  ident: bib115
  article-title: GaN growth using GaN buffer layer
  publication-title: Jpn. J. Appl. Phys.
– volume: 79
  start-page: 1002
  year: 2017
  end-page: 1015
  ident: bib93
  article-title: III-nitride nanowires for solar light harvesting: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 31
  start-page: 1140
  year: 2010
  end-page: 1142
  ident: bib82
  article-title: Improved efficiency by using transparent contact layers in InGaN-based p-i-n solar cells
  publication-title: IEEE Electron. Device Lett.
– volume: 1135
  year: 2018
  ident: bib37
  article-title: Investigation of statistical broadening in InGaN alloys
  publication-title: J. Phys. Conf. Ser.
– volume: 6
  year: 2013
  ident: bib120
  article-title: Uniform low-to-high in composition InGaN layers grown on Si
  publication-title: Appl. Phys. Express
– volume: 32
  start-page: 937
  year: 2011
  end-page: 939
  ident: bib56
  article-title: Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN p-i-n solar cells
  publication-title: IEEE Electron. Device Lett.
– volume: 31
  start-page: 32
  year: 2010
  end-page: 34
  ident: bib81
  article-title: Design and realization of wide-band-gap (∼ 2.67 eV) InGaN p-n junction solar cell
  publication-title: IEEE Electron. Device Lett.
– volume: 155
  year: 2021
  ident: bib41
  article-title: Theoretical study and optimization of the green InGaN/GaN multiple quantum wells with pre-layer
  publication-title: Superlattice. Microst.
– volume: 99
  year: 2011
  ident: bib11
  article-title: Observation of positive thermal power coefficient in InGaN/GaN quantum well solar cells
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 2682
  year: 2010
  end-page: 2694
  ident: bib55
  article-title: Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer
  publication-title: Opt Express
– volume: 110
  year: 2017
  ident: bib29
  article-title: Nonpolar and semipolar InGaN/GaN multiple-quantum-well solar cells with improved carrier collection efficiency
  publication-title: Appl. Phys. Lett.
– volume: 44
  start-page: 14
  year: 2015
  end-page: 68
  ident: bib96
  article-title: III-Nitride nanowire optoelectronics
  publication-title: Prog. Quant. Electron.
– volume: 32
  start-page: 1104
  year: 2011
  end-page: 1106
  ident: bib134
  article-title: Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays
  publication-title: IEEE Electron. Device Lett.
– volume: 24
  year: 2009
  ident: bib80
  article-title: Substantial photo-response of InGaN p-i-n homojunction solar cells
  publication-title: Semicond. Sci. Technol.
– volume: 112
  year: 2012
  ident: bib145
  article-title: Recombination mechanisms in heteroepitaxial non-polar InGaN/GaN quantum wells
  publication-title: J. Appl. Phys.
– volume: 57
  start-page: 300
  year: 2019
  end-page: 306
  ident: bib99
  article-title: Enhanced photocurrent in InGaN/GaN MQWs solar cells by coupling plasmonic with piezo-phototronic effect
  publication-title: Nano Energy
– volume: 9
  start-page: 402
  year: 2019
  end-page: 423
  ident: bib84
  article-title: Quantum well solar cells: principles, recent progress, and potential
  publication-title: IEEE J. Photovoltaics
– volume: 105
  year: 2014
  ident: bib12
  article-title: High 400°C operation temperature blue spectrum concentration solar junction in GaInN/GaN
  publication-title: Appl. Phys. Lett.
– volume: 105
  year: 2014
  ident: bib47
  article-title: Theoretical comparison of multiple quantum wells and thick-layer designs in InGaN/GaN solar cells
  publication-title: Appl. Phys. Lett.
– volume: 97
  year: 2010
  ident: bib16
  article-title: InGaN/GaN multiple quantum well concentrator solar cells
  publication-title: Appl. Phys. Lett.
– volume: 113
  year: 2018
  ident: bib54
  article-title: Energy band engineering of InGaN/GaN multi-quantum-well solar cells via AlGaN electron- and hole-blocking layers
  publication-title: Appl. Phys. Lett.
– volume: 96
  start-page: 287
  year: 2008
  end-page: 305
  ident: bib6
  article-title: GaN-based RF power devices and amplifiers
  publication-title: Proc. IEEE
– volume: 36
  year: 2021
  ident: bib116
  article-title: MOCVD growth of thick V-pit-free InGaN films on semi-relaxed InGaN substrates
  publication-title: Semicond. Sci. Technol.
– volume: 73
  start-page: 1370
  year: 1998
  end-page: 1372
  ident: bib144
  article-title: “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 9405
  year: 2017
  end-page: 9412
  ident: bib100
  article-title: Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezo-phototronic effect
  publication-title: ACS Nano
– volume: 105
  year: 2009
  ident: bib78
  article-title: Microstructural evolution of nonpolar (11-20) GaN grown on (1-102) sapphire using a 3D-2D method
  publication-title: J. Appl. Phys.
– volume: 425
  start-page: 115
  year: 2015
  end-page: 118
  ident: bib77
  article-title: Low-temperature growth of InGaN films over the entire composition range by MBE
  publication-title: J. Cryst. Growth
– volume: 11
  start-page: 580
  year: 1996
  end-page: 592
  ident: bib114
  article-title: Growth defects in GaN films on sapphire: the probable origin of threading dislocations
  publication-title: J. Mater. Res.
– volume: 123
  year: 2018
  ident: bib36
  article-title: Optical properties of InGaN thin films in the entire composition range
  publication-title: J. Appl. Phys.
– start-page: 1138
  year: 2016
  end-page: 1141
  ident: bib62
  article-title: Simulation of the High Temperature Performance of InGaN Multiple Quantum Well Solar Cells
  publication-title: IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, United States
– volume: 26
  start-page: 946
  year: 2018
  end-page: 954
  ident: bib122
  article-title: Roles of polarization effects in InGaN/GaN solar cells and comparison of p-i-n and n-i-p structures
  publication-title: Opt Express
– volume: 28
  year: 2013
  ident: bib7
  article-title: Gallium nitride devices for power electronic applications
  publication-title: Semicond. Sci. Technol.
– volume: 98
  year: 2011
  ident: bib124
  article-title: Effect of doping and polarization on carrier collection in InGaN quantum well solar cells
  publication-title: Appl. Phys. Lett.
– volume: 98
  year: 2011
  ident: bib110
  article-title: Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate
  publication-title: Appl. Phys. Lett.
– volume: 103
  year: 2013
  ident: bib112
  article-title: High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates
  publication-title: Appl. Phys. Lett.
– volume: 103
  start-page: 194
  year: 2012
  end-page: 198
  ident: bib38
  article-title: An efficient light-harvesting scheme using SiO
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 101
  year: 2012
  ident: bib58
  article-title: Exploiting piezoelectric charge for high performance graded InGaN nanowire solar cells
  publication-title: Appl. Phys. Lett.
– volume: 111
  year: 2017
  ident: bib35
  article-title: Reliability analysis of InGaN/GaN multi-quantum-well solar cells under thermal stress
  publication-title: Appl. Phys. Lett.
– volume: 104
  year: 2008
  ident: bib44
  article-title: Modeling of InGaN/Si tandem solar cells
  publication-title: J. Appl. Phys.
– volume: 305
  start-page: 12
  year: 2007
  end-page: 18
  ident: bib71
  article-title: Nitrogen supply rate dependence of InGaN growth properties, by RF-MBE
  publication-title: J. Cryst. Growth
– volume: 49
  start-page: 17
  year: 2013
  end-page: 23
  ident: bib60
  article-title: Simulation of high-efficiency GaN/InGaN p-i-n solar cell with suppressed polarization and barrier effects
  publication-title: IEEE J. Quant. Electron.
– volume: 119
  year: 2021
  ident: bib105
  article-title: Polarization-induced hole doping for long-wavelength In-rich InGaN solar cells
  publication-title: Appl. Phys. Lett.
– volume: 419
  start-page: 64
  year: 2015
  end-page: 68
  ident: bib73
  article-title: Growth temperature dependent critical thickness for phase separation in thick (∼1 μm) In
  publication-title: J. Cryst. Growth
– volume: 54
  year: 2015
  ident: bib88
  article-title: Effect of the barrier thickness on the performance of multiple-quantum-well InGaN photovoltaic cells
  publication-title: Jpn. J. Appl. Phys.
– volume: 215
  year: 2018
  ident: bib107
  article-title: Study of InGaN/GaN multiple quantum well solar cells with different barrier thicknesses
  publication-title: Phys. Status Solidi A
– volume: 93
  start-page: 17
  year: 2008
  end-page: 20
  ident: bib76
  article-title: Metal modulation epitaxy growth for extremely high hole concentrations above 10
  publication-title: Appl. Phys. Lett.
– volume: 102
  start-page: 208
  year: 2012
  end-page: 211
  ident: bib119
  article-title: Fabrication and characterization of n-In
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 178
  start-page: 168
  year: 1997
  end-page: 173
  ident: bib113
  article-title: GaN growth on sapphire
  publication-title: J. Cryst. Growth
– volume: 10
  start-page: 246
  year: 2018
  end-page: 308
  ident: bib2
  article-title: Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes
  publication-title: Adv. Opt. Photon
– volume: 95
  year: 2017
  ident: bib147
  article-title: Enhancement of Auger recombination induced by carrier localization in InGaN/GaN quantum wells
  publication-title: Phys. Rev. B
– volume: 94
  year: 2009
  ident: bib21
  article-title: InGaN/GaN multiple quantum well solar cells with long operating wavelengths
  publication-title: Appl. Phys. Lett.
– volume: 109
  start-page: 194
  year: 2017
  end-page: 200
  ident: bib24
  article-title: Optimization of growth and fabrication techniques to enhance the InGaN/GaN multiple quantum well solar cells performance
  publication-title: Superlattices Microstruct.
– volume: 95
  year: 2009
  ident: bib129
  article-title: Fabrication and characterization of InGaN p-i-n homojunction solar cell
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 1222
  year: 2014
  end-page: 1228
  ident: bib139
  article-title: Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns
  publication-title: Opt. Express
– volume: 108
  year: 2016
  ident: bib109
  article-title: Leak path passivation by in situ Al-N for InGaN solar cells operating at wavelengths up to 570 nm
  publication-title: Appl. Phys. Lett.
– volume: 104
  year: 2014
  ident: 10.1016/j.mtener.2022.101229_bib133
  article-title: High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4873117
– volume: 34
  start-page: 363
  year: 2013
  ident: 10.1016/j.mtener.2022.101229_bib128
  article-title: Polarization-induced electric fields make robust n-GaN/i-InGaN/p-GaN solar cells
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2012.2237376
– volume: 189
  start-page: 13
  year: 1998
  ident: 10.1016/j.mtener.2022.101229_bib69
  article-title: Thermodynamic study on phase separation during MOVPE growth of InxGa1-xN
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(98)00147-X
– volume: 23
  start-page: A614
  year: 2015
  ident: 10.1016/j.mtener.2022.101229_bib40
  article-title: Optical design of GaN/InxGa1-xN/cSi tandem solar cells with triangular diffraction grating
  publication-title: Opt Express
  doi: 10.1364/OE.23.00A614
– volume: 26
  start-page: A946
  year: 2018
  ident: 10.1016/j.mtener.2022.101229_bib126
  article-title: Roles of polarization effects in InGaN/GaN solar cells and comparison of p-i-n and n-i-p structures
  publication-title: Opt Express
  doi: 10.1364/OE.26.00A946
– volume: 18
  start-page: 2682
  year: 2010
  ident: 10.1016/j.mtener.2022.101229_bib55
  article-title: Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer
  publication-title: Opt Express
  doi: 10.1364/OE.18.002682
– volume: 175
  start-page: 47
  year: 2018
  ident: 10.1016/j.mtener.2022.101229_bib106
  article-title: Semi-polar InGaN/GaN multiple quantum well solar cells with spectral response at up to 560 nm
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.10.005
– volume: 11
  start-page: 104
  year: 2015
  ident: 10.1016/j.mtener.2022.101229_bib34
  article-title: Harsh photovoltaics using InGaN/GaN multiple quantum well schemes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.10.013
– volume: 49
  start-page: 17
  year: 2013
  ident: 10.1016/j.mtener.2022.101229_bib60
  article-title: Simulation of high-efficiency GaN/InGaN p-i-n solar cell with suppressed polarization and barrier effects
  publication-title: IEEE J. Quant. Electron.
  doi: 10.1109/JQE.2012.2225601
– volume: 97
  year: 2010
  ident: 10.1016/j.mtener.2022.101229_bib16
  article-title: InGaN/GaN multiple quantum well concentrator solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3481424
– volume: 94
  start-page: 478
  year: 2010
  ident: 10.1016/j.mtener.2022.101229_bib32
  article-title: Finite element simulations of compositionally graded InGaN solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2009.11.010
– volume: 4
  start-page: 601
  year: 2016
  ident: 10.1016/j.mtener.2022.101229_bib27
  article-title: Simulations, Practical limitations, and novel growth technology for InGaN-based solar cells
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2013.2292748
– volume: 94
  year: 2009
  ident: 10.1016/j.mtener.2022.101229_bib21
  article-title: InGaN/GaN multiple quantum well solar cells with long operating wavelengths
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3081123
– volume: 108
  year: 2016
  ident: 10.1016/j.mtener.2022.101229_bib109
  article-title: Leak path passivation by in situ Al-N for InGaN solar cells operating at wavelengths up to 570 nm
  publication-title: Appl. Phys. Lett.
– volume: 129
  start-page: 29
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib87
  article-title: Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2016.12.009
– volume: 6
  start-page: 460
  year: 2016
  ident: 10.1016/j.mtener.2022.101229_bib108
  article-title: III-Nitride double-heterojunction solar cells with high In-content InGaN absorbing layers: comparison of large-area and small-area devices
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2015.2504790
– volume: 30
  start-page: 83
  year: 2018
  ident: 10.1016/j.mtener.2022.101229_bib103
  article-title: An InGaN/GaN MQWs solar cell improved by a surficial GaN nanostructure as light traps
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2017.2775706
– volume: 111
  year: 2012
  ident: 10.1016/j.mtener.2022.101229_bib43
  article-title: InGaN solar cell requirements for high-efficiency integrated III-nitride/non-III-nitride tandem photovoltaic devices
  publication-title: J. Appl. Phys.
– volume: 40
  start-page: 424
  year: 2015
  ident: 10.1016/j.mtener.2022.101229_bib48
  article-title: Modeling of polarization charge in N-face InGaN/GaN MQW solar cells
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2015.07.009
– volume: 204
  start-page: 4288
  year: 2007
  ident: 10.1016/j.mtener.2022.101229_bib79
  article-title: Photovoltaic effects in InGaN structures with p-n junctions
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.200723202
– volume: 49
  year: 2015
  ident: 10.1016/j.mtener.2022.101229_bib61
  article-title: Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells
  publication-title: J. Phys. D Appl. Phys.
– volume: 27
  year: 2022
  ident: 10.1016/j.mtener.2022.101229_bib94
  article-title: Realization of axially defined GaInP/InP/InAsP triple-junction photovoltaic nanowires for high-performance solar cells
  publication-title: Mater. Today Energy
– volume: 11
  start-page: 580
  year: 1996
  ident: 10.1016/j.mtener.2022.101229_bib114
  article-title: Growth defects in GaN films on sapphire: the probable origin of threading dislocations
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1996.0071
– volume: 419
  start-page: 64
  year: 2015
  ident: 10.1016/j.mtener.2022.101229_bib73
  article-title: Growth temperature dependent critical thickness for phase separation in thick (∼1 μm) Inx Ga1-xN (x=0.2-0.4)
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2015.02.100
– volume: 20
  start-page: 991
  year: 2012
  ident: 10.1016/j.mtener.2022.101229_bib135
  article-title: Efficiency improvement in InGaN-based solar cells by indium tin oxide nano dots covered with ITO films
  publication-title: Opt Express
  doi: 10.1364/OE.20.00A991
– volume: 93
  start-page: 17
  year: 2008
  ident: 10.1016/j.mtener.2022.101229_bib76
  article-title: Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3005640
– volume: 52
  year: 2013
  ident: 10.1016/j.mtener.2022.101229_bib140
  article-title: Concentrating properties of nitride-based solar cells using different electrodes
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.52.08JH02
– volume: 22
  start-page: 1222
  year: 2014
  ident: 10.1016/j.mtener.2022.101229_bib139
  article-title: Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns
  publication-title: Opt. Express
  doi: 10.1364/OE.22.0A1222
– start-page: 1138
  year: 2016
  ident: 10.1016/j.mtener.2022.101229_bib62
  article-title: Simulation of the High Temperature Performance of InGaN Multiple Quantum Well Solar Cells
– volume: 5
  start-page: 1518
  year: 2008
  ident: 10.1016/j.mtener.2022.101229_bib72
  article-title: Experimental and ab-initio studies of temperature dependent InN decomposition in various ambient
  publication-title: Phys. Status Solidi C
  doi: 10.1002/pssc.200778434
– volume: 145
  start-page: 226
  year: 2016
  ident: 10.1016/j.mtener.2022.101229_bib137
  article-title: Influence of the ITO current spreading layer on efficiencies of InGaN-based solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.10.026
– volume: 30
  year: 2020
  ident: 10.1016/j.mtener.2022.101229_bib91
  article-title: A novel approach for achieving high-efficiency photoelectrochemical water oxidation in InGaN nanorods grown on Si system: MXene nanosheets as multifunctional interfacial modifier
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910479
– volume: 110
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib29
  article-title: Nonpolar and semipolar InGaN/GaN multiple-quantum-well solar cells with improved carrier collection efficiency
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4980139
– volume: 105
  year: 2014
  ident: 10.1016/j.mtener.2022.101229_bib86
  article-title: Effect of the quantum well thickness on the performance of InGaN photovoltaic cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4896679
– start-page: 1
  year: 2008
  ident: 10.1016/j.mtener.2022.101229_bib83
  article-title: Fabrication and Characterization of 2.3eV InGaN Photovoltaic Devices
– start-page: 64
  year: 2007
  ident: 10.1016/j.mtener.2022.101229_bib70
  article-title: Effect of Phase Separation on Performance of III-V Nitride Solar Cells
– volume: 8
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib63
  article-title: Modeling of InGaN/Si tandem cells: comparison between 2-contacts/4-contacts
  publication-title: EPJ Photovoltaics
  doi: 10.1051/epjpv/2017003
– volume: 80
  start-page: 3967
  year: 2002
  ident: 10.1016/j.mtener.2022.101229_bib9
  article-title: Unusual properties of the fundamental band gap of InN
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1482786
– volume: 51
  start-page: 10ND10
  year: 2012
  ident: 10.1016/j.mtener.2022.101229_bib90
  article-title: Barrier thickness dependence of photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.51.10ND10
– volume: 104
  year: 2014
  ident: 10.1016/j.mtener.2022.101229_bib136
  article-title: Efficiency enhancement of InGaN/GaN solar cells with nanostructures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4864640
– volume: 28
  start-page: 1167
  year: 2020
  ident: 10.1016/j.mtener.2022.101229_bib143
  article-title: InGaN/GaN multi-quantum-well solar cells under high solar concentration and elevated temperatures for hybrid solar thermal-photovoltaic power plants
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.3326
– volume: 6
  year: 2013
  ident: 10.1016/j.mtener.2022.101229_bib120
  article-title: Uniform low-to-high in composition InGaN layers grown on Si
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.6.115503
– volume: 6
  start-page: 145
  year: 2012
  ident: 10.1016/j.mtener.2022.101229_bib138
  article-title: Properties of nitride-based photovoltaic cells under concentrated light illumination
  publication-title: Phys. Status Solidi Rapid Res. Lett.
  doi: 10.1002/pssr.201206038
– volume: 110
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib149
  article-title: Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3668111
– volume: 178
  start-page: 168
  year: 1997
  ident: 10.1016/j.mtener.2022.101229_bib113
  article-title: GaN growth on sapphire
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(97)00082-1
– volume: 11
  year: 2018
  ident: 10.1016/j.mtener.2022.101229_bib101
  article-title: InGaN solar cells with regrown GaN homojunction tunnel contacts
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.11.082304
– volume: 108
  year: 2010
  ident: 10.1016/j.mtener.2022.101229_bib45
  article-title: Theoretical simulations of the effects of the indium content, thickness, and defect density of the i-layer on the performance of p-i-n InGaN single homojunction solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3484040
– volume: 2
  year: 2009
  ident: 10.1016/j.mtener.2022.101229_bib4
  article-title: 531 nm Green lasing of ingan based laser diodes on semi-polar {2021} free-standing GaN substrates
  publication-title: Appl. Phys. Exp.
  doi: 10.1143/APEX.2.082101
– volume: 58
  year: 2019
  ident: 10.1016/j.mtener.2022.101229_bib150
  article-title: Intensive luminescence from a thick, indium-rich In0.7Ga0.3N film
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/1347-4065/ab1a5b
– volume: 66
  start-page: 3399
  year: 2019
  ident: 10.1016/j.mtener.2022.101229_bib53
  article-title: Analytical study of performance parameters of inGaN/GaN multiple quantum well solar cell
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2019.2920934
– volume: 17
  start-page: 1742
  year: 1999
  ident: 10.1016/j.mtener.2022.101229_bib123
  article-title: Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures
  publication-title: J. Vac. Sci. Technol. B
– volume: 42
  year: 2009
  ident: 10.1016/j.mtener.2022.101229_bib64
  article-title: Temperature dependences of InxGa1-xN multiple quantum well solar cells
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/42/10/105101
– volume: 90
  start-page: 1022
  year: 2022
  ident: 10.1016/j.mtener.2022.101229_bib5
  article-title: AlGaN/GaN HEMTs - an overview of device operation and applications
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2002.1021567
– volume: 103
  year: 2013
  ident: 10.1016/j.mtener.2022.101229_bib146
  article-title: Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4820839
– volume: 155
  year: 2021
  ident: 10.1016/j.mtener.2022.101229_bib41
  article-title: Theoretical study and optimization of the green InGaN/GaN multiple quantum wells with pre-layer
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2021.106906
– volume: 11
  start-page: 1919
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib95
  article-title: P-type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111)
  publication-title: Nano Lett.
  doi: 10.1021/nl104536x
– volume: 56
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib98
  article-title: The performance enhancement of an InGaN/GaN multiple-quantum-well solar cell by superlattice structure
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.56.110305
– volume: 28
  year: 2013
  ident: 10.1016/j.mtener.2022.101229_bib7
  article-title: Gallium nitride devices for power electronic applications
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/28/7/074011
– volume: 130
  start-page: 354
  year: 2014
  ident: 10.1016/j.mtener.2022.101229_bib28
  article-title: Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.07.018
– volume: 1135
  year: 2018
  ident: 10.1016/j.mtener.2022.101229_bib37
  article-title: Investigation of statistical broadening in InGaN alloys
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1135/1/012050
– volume: 3
  start-page: 16
  year: 1998
  ident: 10.1016/j.mtener.2022.101229_bib74
  article-title: Suppression of phase separation in InGaN due to elastic strain
  publication-title: MRS Internet J. Nitride Semicond. Res.
  doi: 10.1557/S1092578300000880
– start-page: 193
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib141
  article-title: Development of a high-band gap high temperature III-nitride solar cell for integration with concentrated solar power technology
– volume: 136
  start-page: 3
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib66
  article-title: A Review of the Synthesis of Reduced Defect Density InxGa1−xN for All Indium Compositions
  publication-title: Solid State Electron.
  doi: 10.1016/j.sse.2017.06.020
– volume: 31
  start-page: 1140
  year: 2010
  ident: 10.1016/j.mtener.2022.101229_bib82
  article-title: Improved efficiency by using transparent contact layers in InGaN-based p-i-n solar cells
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2010.2058087
– volume: 30
  year: 2015
  ident: 10.1016/j.mtener.2022.101229_bib118
  article-title: Relaxed c-plane InGaN layers for the growth of strain-reduced InGaN quantum wells
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/30/10/105015
– volume: 9
  start-page: 402
  year: 2019
  ident: 10.1016/j.mtener.2022.101229_bib84
  article-title: Quantum well solar cells: principles, recent progress, and potential
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2019.2892079
– volume: 54
  year: 2015
  ident: 10.1016/j.mtener.2022.101229_bib88
  article-title: Effect of the barrier thickness on the performance of multiple-quantum-well InGaN photovoltaic cells
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.54.072302
– volume: 40
  year: 2022
  ident: 10.1016/j.mtener.2022.101229_bib130
  article-title: Ware Study of simulations of double graded InGaN solar cell structures
  publication-title: J. Vac. Sci. Technol. B
– volume: 215
  year: 2018
  ident: 10.1016/j.mtener.2022.101229_bib107
  article-title: Study of InGaN/GaN multiple quantum well solar cells with different barrier thicknesses
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201700581
– volume: 102
  start-page: 208
  year: 2012
  ident: 10.1016/j.mtener.2022.101229_bib119
  article-title: Fabrication and characterization of n-In0.4Ga0.6N/p-Si solar cell
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2012.03.030
– volume: 119
  start-page: 9
  year: 2018
  ident: 10.1016/j.mtener.2022.101229_bib52
  article-title: Effects of the unintentional background concentration, indium composition and defect density on the performance of InGaN p-i-n homojunction solar cells
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2018.04.033
– volume: 103
  year: 2013
  ident: 10.1016/j.mtener.2022.101229_bib59
  article-title: Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4829443
– volume: 112
  year: 2012
  ident: 10.1016/j.mtener.2022.101229_bib145
  article-title: Recombination mechanisms in heteroepitaxial non-polar InGaN/GaN quantum wells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4731730
– volume: 26
  start-page: 946
  year: 2018
  ident: 10.1016/j.mtener.2022.101229_bib122
  article-title: Roles of polarization effects in InGaN/GaN solar cells and comparison of p-i-n and n-i-p structures
  publication-title: Opt Express
  doi: 10.1364/OE.26.00A946
– volume: 110
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib117
  article-title: Enhanced in incorporation in full InGaN heterostructure grown on relaxed InGaN pseudo-substrate
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4989998
– volume: 96
  start-page: 287
  year: 2008
  ident: 10.1016/j.mtener.2022.101229_bib6
  article-title: GaN-based RF power devices and amplifiers
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2007.911060
– volume: 95
  year: 2009
  ident: 10.1016/j.mtener.2022.101229_bib129
  article-title: Fabrication and characterization of InGaN p-i-n homojunction solar cell
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3254215
– volume: 10
  start-page: 1221
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib39
  article-title: On the hole injection for III-nitride based deep ultraviolet light-emitting diodes
  publication-title: Materials
  doi: 10.3390/ma10101221
– volume: 104
  year: 2008
  ident: 10.1016/j.mtener.2022.101229_bib44
  article-title: Modeling of InGaN/Si tandem solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2952031
– start-page: 954
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib17
  article-title: InGaN-Based Solar Cells for Space Applications
– volume: 98
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib124
  article-title: Effect of doping and polarization on carrier collection in InGaN quantum well solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3595487
– volume: 29
  start-page: 128
  year: 2013
  ident: 10.1016/j.mtener.2022.101229_bib68
  article-title: MOVPE growth of InxGa1-xN (x ∼ 0.4) and fabrication of homo-junction solar cells
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2012.12.005
– volume: 30
  start-page: L1705
  year: 1991
  ident: 10.1016/j.mtener.2022.101229_bib115
  article-title: GaN growth using GaN buffer layer
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.30.L1705
– volume: 30
  year: 2020
  ident: 10.1016/j.mtener.2022.101229_bib92
  article-title: Modulating surface/interface structure of emerging InGaN nanowires for efficient photoelectrochemical water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202005677
– volume: 113
  year: 2018
  ident: 10.1016/j.mtener.2022.101229_bib54
  article-title: Energy band engineering of InGaN/GaN multi-quantum-well solar cells via AlGaN electron- and hole-blocking layers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5028530
– volume: 105
  year: 2014
  ident: 10.1016/j.mtener.2022.101229_bib12
  article-title: High 400°C operation temperature blue spectrum concentration solar junction in GaInN/GaN
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4904717
– volume: 6
  start-page: 2096
  year: 2019
  ident: 10.1016/j.mtener.2022.101229_bib30
  article-title: High-temperature polarization-free III-nitride solar cells with self-cooling effects
  publication-title: ACS Photon.
  doi: 10.1021/acsphotonics.9b00655
– volume: 12
  start-page: 1117
  year: 2016
  ident: 10.1016/j.mtener.2022.101229_bib121
  article-title: Efficiency enhancement of InGaN MQW LED using compositionally step graded InGaN barrier on SiC substrate
  publication-title: J. Disp. Technol.
  doi: 10.1109/JDT.2016.2570814
– volume: 215
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib97
  article-title: A comparative study of InGaN/GaN multiple-quantum-well solar cells grown on sapphire and AlN template by metalorganic chemical vapor deposition
  publication-title: Phys. Status Solidi A
– volume: 18
  start-page: 1558
  year: 2018
  ident: 10.1016/j.mtener.2022.101229_bib42
  article-title: Correlation between pit formation and phase separation in thick InGaN film on a Si substrate
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2018.10.002
– volume: 95
  start-page: 3124
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib46
  article-title: Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2011.07.001
– volume: 119
  year: 2021
  ident: 10.1016/j.mtener.2022.101229_bib105
  article-title: Polarization-induced hole doping for long-wavelength In-rich InGaN solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0071506
– volume: 73
  start-page: 1370
  year: 1998
  ident: 10.1016/j.mtener.2022.101229_bib144
  article-title: “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.122164
– volume: 5
  start-page: 86
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib65
  article-title: Effect of III-nitride polarization on VOC in p-i-n and MQW solar cells
  publication-title: Phys. Status Solidi Rapid Res. Lett.
  doi: 10.1002/pssr.201004512
– volume: 91
  year: 2007
  ident: 10.1016/j.mtener.2022.101229_bib18
  article-title: Design and characterization of GaN/InGaN solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2793180
– volume: 109
  start-page: 194
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib104
  article-title: Optimization of growth and fabrication techniques to enhance the InGaN/GaN multiple quantum well solar cells performance
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2017.05.014
– volume: 70
  start-page: 1089
  year: 1997
  ident: 10.1016/j.mtener.2022.101229_bib75
  article-title: Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.118493
– volume: 120
  year: 2022
  ident: 10.1016/j.mtener.2022.101229_bib151
  article-title: Demonstration of ultra-small 5 × 5 μm2 607 nm InGaN amber micro-light-emitting diodes with an external quantum efficiency over 2%
  publication-title: Appl. Phys. Lett.
– volume: 79
  start-page: 1002
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib93
  article-title: III-nitride nanowires for solar light harvesting: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.136
– volume: 76
  year: 2020
  ident: 10.1016/j.mtener.2022.101229_bib31
  article-title: Anomalous carrier dynamics and localization effects in nonpolar m-plane InGaN/GaN quantum wells at high temperatures
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105013
– volume: 109
  year: 2016
  ident: 10.1016/j.mtener.2022.101229_bib13
  article-title: Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 246
  year: 2018
  ident: 10.1016/j.mtener.2022.101229_bib2
  article-title: Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes
  publication-title: Adv. Opt. Photon
  doi: 10.1364/AOP.10.000246
– volume: 98
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib22
  article-title: High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3591976
– volume: 100
  year: 2012
  ident: 10.1016/j.mtener.2022.101229_bib89
  article-title: Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3695170
– volume: 44
  start-page: 14
  year: 2015
  ident: 10.1016/j.mtener.2022.101229_bib96
  article-title: III-Nitride nanowire optoelectronics
  publication-title: Prog. Quant. Electron.
  doi: 10.1016/j.pquantelec.2015.11.001
– year: 2000
  ident: 10.1016/j.mtener.2022.101229_bib3
– volume: 103
  start-page: 194
  year: 2012
  ident: 10.1016/j.mtener.2022.101229_bib38
  article-title: An efficient light-harvesting scheme using SiO2 nanorods for InGaN multiple quantum well solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2012.04.007
– volume: 7
  start-page: 1646
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib33
  article-title: Refractory InxGa1-xN solar cells for high-temperature applications
  publication-title: IEEE J. Photovoltaics
  doi: 10.1109/JPHOTOV.2017.2756057
– volume: 107
  start-page: 267
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib51
  article-title: Effects of structural defects and polarization charges in InGaN-based double-junction solar cell
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2017.04.025
– volume: 119
  year: 2016
  ident: 10.1016/j.mtener.2022.101229_bib49
  article-title: Analysis of loss mechanisms in InGaN solar cells using a semi-analytical model
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4953006
– volume: 101
  year: 2012
  ident: 10.1016/j.mtener.2022.101229_bib131
  article-title: Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4765068
– volume: 30
  start-page: 724
  year: 2009
  ident: 10.1016/j.mtener.2022.101229_bib20
  article-title: Improved conversion efficiency of GaN/InGaN thin-film solar cells
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2009.2021414
– volume: 208
  start-page: 928
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib57
  article-title: Effects of polarization charge on the photovoltaic properties of InGaN solar cells
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201026489
– volume: 98
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib110
  article-title: Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3605244
– volume: 60
  start-page: 8849
  year: 1999
  ident: 10.1016/j.mtener.2022.101229_bib25
  article-title: Effects of macroscopic polarization in III-V nitride multiple quantum wells
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.8849
– volume: 305
  start-page: 12
  year: 2007
  ident: 10.1016/j.mtener.2022.101229_bib71
  article-title: Nitrogen supply rate dependence of InGaN growth properties, by RF-MBE
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2007.01.044
– volume: 93
  year: 2008
  ident: 10.1016/j.mtener.2022.101229_bib19
  article-title: High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2988894
– volume: 406
  start-page: 865
  year: 2000
  ident: 10.1016/j.mtener.2022.101229_bib26
  article-title: Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes
  publication-title: Nature
  doi: 10.1038/35022529
– volume: 11
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib50
  article-title: Numerical study of InGaN tandem solar cells with intermediate bands
  publication-title: Phys. Status Solidi Rapid Res. Lett.
  doi: 10.1002/pssr.201600429
– volume: 94
  start-page: 1259
  year: 2010
  ident: 10.1016/j.mtener.2022.101229_bib132
  article-title: Discussion on electrical characteristics of i-In0.13Ga0.87N p-i-n photovoltaics by using a single/multi-antireflection layer
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.03.020
– start-page: 112800E
  year: 2020
  ident: 10.1016/j.mtener.2022.101229_bib142
  article-title: Degradation and recovery of high-periodicity InGaN/GaN MQWs under optical stress in short-circuit condition
  publication-title: Proc. SPIEL
– volume: 94
  start-page: 6477
  year: 2003
  ident: 10.1016/j.mtener.2022.101229_bib14
  article-title: Superior radiation resistance of In1-xGaxN alloys: full-solar-spectrum photovoltaic material system
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1618353
– volume: 105
  year: 2014
  ident: 10.1016/j.mtener.2022.101229_bib47
  article-title: Theoretical comparison of multiple quantum wells and thick-layer designs in InGaN/GaN solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4893024
– volume: 99
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib11
  article-title: Observation of positive thermal power coefficient in InGaN/GaN quantum well solar cells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3624850
– volume: 109
  start-page: 194
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib24
  article-title: Optimization of growth and fabrication techniques to enhance the InGaN/GaN multiple quantum well solar cells performance
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2017.05.014
– volume: 11
  start-page: 9405
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib100
  article-title: Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezo-phototronic effect
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04935
– volume: 4
  start-page: 88
  year: 2010
  ident: 10.1016/j.mtener.2022.101229_bib127
  article-title: Investigation on the conversion efficiency of InGaN solar cells fabricated on GaN and ZnO substrates
  publication-title: Phys. Status Solidi Rapid Res. Lett.
  doi: 10.1002/pssr.201004044
– volume: 29
  start-page: 29780
  year: 2021
  ident: 10.1016/j.mtener.2022.101229_bib152
  article-title: Improved performance of InGaN-based red light-emitting diodes by micro-hole arrays
  publication-title: Opt Express
  doi: 10.1364/OE.435556
– volume: 111
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib35
  article-title: Reliability analysis of InGaN/GaN multi-quantum-well solar cells under thermal stress
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5006650
– volume: 32
  start-page: 937
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib56
  article-title: Numerical study on the influence of piezoelectric polarization on the performance of p-on-n (0001)-face GaN/InGaN p-i-n solar cells
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2011.2150195
– volume: 1399
  start-page: 179
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib111
  article-title: Growth and characterization of AlGaN films on patterned sapphire substrates
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3666314
– volume: 143
  year: 2022
  ident: 10.1016/j.mtener.2022.101229_bib67
  article-title: Recent advances and challenges in the MOCVD growth of indium gallium nitride: a brief review
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2022.106545
– volume: 24
  year: 2009
  ident: 10.1016/j.mtener.2022.101229_bib80
  article-title: Substantial photo-response of InGaN p-i-n homojunction solar cells
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/24/5/055009
– volume: 95
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib147
  article-title: Enhancement of Auger recombination induced by carrier localization in InGaN/GaN quantum wells
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.125314
– volume: 32
  start-page: 1104
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib134
  article-title: Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2011.2158061
– volume: 64
  start-page: 1687
  year: 1994
  ident: 10.1016/j.mtener.2022.101229_bib1
  article-title: Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.111832
– volume: 8
  start-page: 3083
  year: 2015
  ident: 10.1016/j.mtener.2022.101229_bib15
  article-title: Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01998B
– volume: 101
  issue: 102
  year: 2012
  ident: 10.1016/j.mtener.2022.101229_bib58
  article-title: Exploiting piezoelectric charge for high performance graded InGaN nanowire solar cells
  publication-title: Appl. Phys. Lett.
– volume: 4
  year: 2011
  ident: 10.1016/j.mtener.2022.101229_bib23
  article-title: GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.4.021001
– volume: 94
  start-page: 3675
  year: 2003
  ident: 10.1016/j.mtener.2022.101229_bib148
  article-title: Band parameters for nitrogen-containing semiconductors
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1600519
– volume: 216
  start-page: 381
  year: 1999
  ident: 10.1016/j.mtener.2022.101229_bib125
  article-title: Role of spontaneous and piezoelectric polarization induced effects in group-III nitride based heterostructures and devices
  publication-title: Phys. Status Solidi B
  doi: 10.1002/(SICI)1521-3951(199911)216:1<381::AID-PSSB381>3.0.CO;2-O
– volume: 108
  year: 2016
  ident: 10.1016/j.mtener.2022.101229_bib85
  article-title: Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4947445
– volume: 106
  year: 2009
  ident: 10.1016/j.mtener.2022.101229_bib10
  article-title: When group-III nitrides go infrared: new properties and perspectives
  publication-title: J. Appl. Phys.
– volume: 31
  start-page: 32
  year: 2010
  ident: 10.1016/j.mtener.2022.101229_bib81
  article-title: Design and realization of wide-band-gap (∼ 2.67 eV) InGaN p-n junction solar cell
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2009.2034280
– volume: 57
  start-page: 300
  year: 2019
  ident: 10.1016/j.mtener.2022.101229_bib99
  article-title: Enhanced photocurrent in InGaN/GaN MQWs solar cells by coupling plasmonic with piezo-phototronic effect
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.036
– volume: 105
  year: 2009
  ident: 10.1016/j.mtener.2022.101229_bib78
  article-title: Microstructural evolution of nonpolar (11-20) GaN grown on (1-102) sapphire using a 3D-2D method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3103305
– volume: 159
  start-page: 405
  year: 2017
  ident: 10.1016/j.mtener.2022.101229_bib102
  article-title: Improving InGaN heterojunction solar cells efficiency using a semibulk absorber
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.09.030
– volume: 36
  year: 2021
  ident: 10.1016/j.mtener.2022.101229_bib116
  article-title: MOCVD growth of thick V-pit-free InGaN films on semi-relaxed InGaN substrates
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/abc51c
– volume: 103
  year: 2013
  ident: 10.1016/j.mtener.2022.101229_bib112
  article-title: High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4826483
– volume: 123
  year: 2018
  ident: 10.1016/j.mtener.2022.101229_bib36
  article-title: Optical properties of InGaN thin films in the entire composition range
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5020988
– volume: 425
  start-page: 115
  year: 2015
  ident: 10.1016/j.mtener.2022.101229_bib77
  article-title: Low-temperature growth of InGaN films over the entire composition range by MBE
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2015.02.014
– volume: 40
  start-page: 1728
  year: 2019
  ident: 10.1016/j.mtener.2022.101229_bib8
  article-title: Demonstration of 1.27 kV etch-then-regrow GaN p-n junctions with low leakage for GaN power electronics
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2019.2941830
SSID ssj0002140215
Score 2.3813186
SecondaryResourceType review_article
Snippet III-nitride InGaN material is an ideal candidate for the fabrication of high performance photovoltaic (PV) solar cells, especially for high-temperature...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 101229
SubjectTerms Device engineering
Epitaxy growth
High temperature performance
InGaN-based solar cells
Title Toward high efficiency at high temperatures: Recent progress and prospects on InGaN-Based solar cells
URI https://dx.doi.org/10.1016/j.mtener.2022.101229
https://www.osti.gov/biblio/1962241
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA5ze9AX8SfOqeTB17A2TdfGtzmcm-Je3GBvJU1SmGg3bP3_vUvboSAMfGzaK-WS3n2X3H1HyG2WhnBLKaa0HzBhrWBKIr225oHRWgvpukS8zAaThXhahssWGTW1MJhWWdv-yqY7a12P9Gtt9jerVf-Vi0EM8FtyzDOIo3iPdHggB7C0O8Pp82S23WrhEERw18sARRjKNEV0LtPro0SGZ4gVOcch7uDmn06qvYb_7of_GR-Rwxo40mH1bcekZfMTst_UFRenxM5dBixFAmJqHTMEllVSVVZDSEJVMygXdxTgIrgb6tKzwNhRlRu8cIWXBV3ndJo_qhm7BydnaIHxL8U9_uKMLMYP89GE1U0UmA4iWTKRpRH3Qut5KbeeSa2JMxNFoDFhslDLgQ157IvM9zM8yQ1hpiRPdaAVHpkBvjgn7Xyd2wtCwxTiC-0F2ktj4atYGQXO3nBttJeFUnRJ0Ggt0TXDODa6eE-aVLK3pNJ1grpOKl13CdtKbSqGjR3PR82EJL9WSgJOYIdkD-cPpZAgV2MmEYiBDUIcc_nv9_bIATahrzZmrki7_Pyy1wBVyvSmXorfQIznbA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7W9aAX8YnrMwevYds02bbeVlF3fezFFbyVNElB0a7Y-v-dSVtREASPTTulTNJ5JN98A3BS5Apvac21CSMunZNcp0SvbURkjTEy9V0i7majyYO8flSPPTjvamEIVtna_same2vdjgxbbQ7fnp6G90KOEgy_U0E4gyROlmCZ2KlUH5bH05vJ7GurRWASIXwvAxLhJNMV0Xmk12tNDM-YKwpBQ8KHm786qf4C_7tv_udyHdbawJGNm2_bgJ4rN2GlqyuutsDNPQKWEQExc54Zgsoqma6bISKhahmUq1OG4SK6G-bhWWjsmC4tXfjCy4otSjYtr_SMn6GTs6yi_JfRHn-1DQ-XF_PzCW-bKHATxWnNZZHHIlAuCHLhAps7mxQ2jlFj0hbKpCOnRBLKIgwLOslVOFOpyE1kNB2ZYXyxA_1yUbpdYCrH_MIEkQnyRIY60Vajs7fCWBMUKpUDiDqtZaZlGKdGFy9ZByV7zhpdZ6TrrNH1APiX1FvDsPHH83E3IdmPlZKhE_hDcp_mj6SIINcQkgjF0AZRHLP37_cew8pkfneb3U5nN_uwSg3pm02aA-jX7x_uEMOWOj9ql-UnL_TqUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+high+efficiency+at+high+temperatures%3A+Recent+progress+and+prospects+on+InGaN-Based+solar+cells&rft.jtitle=Materials+today+energy&rft.au=Zhao%2C+Yuji&rft.au=Xu%2C+Mingfei&rft.au=Huang%2C+Xuanqi&rft.au=Lebeau%2C+Justin&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=2468-6069&rft.eissn=2468-6069&rft.volume=31&rft_id=info:doi/10.1016%2Fj.mtener.2022.101229&rft.externalDocID=S2468606922002878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-6069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-6069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-6069&client=summon