Population Synthesis of Black Hole Binaries with Compact Star Companions
We perform a systematic study of merging black hole (BH) binaries with compact star (CS) companions, including black hole–white dwarf (BH–WD), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) systems. Previous studies have shown that mass transfer stability and common envelope evol...
Saved in:
Published in | The Astrophysical journal Vol. 920; no. 2; pp. 81 - 97 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.10.2021
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We perform a systematic study of merging black hole (BH) binaries with compact star (CS) companions, including black hole–white dwarf (BH–WD), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) systems. Previous studies have shown that mass transfer stability and common envelope evolution can significantly affect the formation of merging BH–CS binaries through isolated binary evolution. With detailed binary evolution simulations, we obtain easy-to-use criteria for the occurrence of the common envelope phase in mass-transferring BH binaries with a nondegenerate donor, and incorporate the criteria into population synthesis calculations. To explore the impact of a possible mass gap between NSs and BHs on the properties of merging BH–CS binary population, we adopt different supernova mechanisms involving the
rapid
,
delayed
, and
stochastic
prescriptions to deal with the compact remnant masses and the natal kicks. Our calculations show that there are ∼10
5
–10
6
BH–CS binaries in the Milky Way, among which dozens are observable by future space-based gravitational wave detectors. We estimate that the local merger rate density of all BH–CS systems is ∼60–200 Gpc
−3
yr
−1
. While there are no low-mass BHs formed via
rapid
supernovae, both
delayed
and
stochastic
prescriptions predict that ∼100%/∼70%/∼30% of merging BH–WD/BH–NS/BH–BH binaries are likely to have BH components within the mass gap. |
---|---|
AbstractList | We perform a systematic study of merging black hole (BH) binaries with compact star (CS) companions, including black hole–white dwarf (BH–WD), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) systems. Previous studies have shown that mass transfer stability and common envelope evolution can significantly affect the formation of merging BH–CS binaries through isolated binary evolution. With detailed binary evolution simulations, we obtain easy-to-use criteria for the occurrence of the common envelope phase in mass-transferring BH binaries with a nondegenerate donor, and incorporate the criteria into population synthesis calculations. To explore the impact of a possible mass gap between NSs and BHs on the properties of merging BH–CS binary population, we adopt different supernova mechanisms involving the rapid, delayed, and stochastic prescriptions to deal with the compact remnant masses and the natal kicks. Our calculations show that there are ∼105–106 BH–CS binaries in the Milky Way, among which dozens are observable by future space-based gravitational wave detectors. We estimate that the local merger rate density of all BH–CS systems is ∼60–200 Gpc−3 yr−1. While there are no low-mass BHs formed via rapid supernovae, both delayed and stochastic prescriptions predict that ∼100%/∼70%/∼30% of merging BH–WD/BH–NS/BH–BH binaries are likely to have BH components within the mass gap. We perform a systematic study of merging black hole (BH) binaries with compact star (CS) companions, including black hole–white dwarf (BH–WD), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) systems. Previous studies have shown that mass transfer stability and common envelope evolution can significantly affect the formation of merging BH–CS binaries through isolated binary evolution. With detailed binary evolution simulations, we obtain easy-to-use criteria for the occurrence of the common envelope phase in mass-transferring BH binaries with a nondegenerate donor, and incorporate the criteria into population synthesis calculations. To explore the impact of a possible mass gap between NSs and BHs on the properties of merging BH–CS binary population, we adopt different supernova mechanisms involving the rapid , delayed , and stochastic prescriptions to deal with the compact remnant masses and the natal kicks. Our calculations show that there are ∼10 5 –10 6 BH–CS binaries in the Milky Way, among which dozens are observable by future space-based gravitational wave detectors. We estimate that the local merger rate density of all BH–CS systems is ∼60–200 Gpc −3 yr −1 . While there are no low-mass BHs formed via rapid supernovae, both delayed and stochastic prescriptions predict that ∼100%/∼70%/∼30% of merging BH–WD/BH–NS/BH–BH binaries are likely to have BH components within the mass gap. |
Author | Shao, Yong Li, Xiang-Dong |
Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0003-2506-6906 surname: Shao fullname: Shao, Yong organization: Nanjing University Key laboratory of Modern Astronomy and Astrophysics , Ministry of Education, Nanjing 210023, People’s Republic of China – sequence: 2 givenname: Xiang-Dong surname: Li fullname: Li, Xiang-Dong organization: Nanjing University Key laboratory of Modern Astronomy and Astrophysics , Ministry of Education, Nanjing 210023, People’s Republic of China |
BookMark | eNp9kM9LwzAUx4NMcJvePQb0aF1-NE1zdEOdMFCYgreQZinL7JqaZMj-e1srCiI75b3w_eTlfUZgULvaAHCO0TXNUz7BjOZJShmfKI05NUdg-HM1AEOEUJpklL-egFEIm64lQgzB_Mk1u0pF62q43NdxbYIN0JVwWin9BueuMnBqa-WtCfDDxjWcuW2jdITLqHzf1C0cTsFxqapgzr7PMXi5u32ezZPF4_3D7GaRaMpFTFJNKCZFvsKEFkxkWCOkVF4wiliWYsUEaQuuSEmNEaIUNOMMp4SWuGAYGToGF_27jXfvOxOi3Lidr9uRkrCcYsQRpm0K9SntXQjelLLxdqv8XmIkO1-ykyM7ObL31SLZH0Tb-CUmemWrQ-BVD1rX_H7mQPzyn7hqNrJdXRKZY9msSvoJ3GuJ8A |
CitedBy_id | crossref_primary_10_1093_mnras_stac1426 crossref_primary_10_1051_0004_6361_202243147 crossref_primary_10_1093_mnras_stac2359 crossref_primary_10_3847_1538_4357_ace348 crossref_primary_10_1093_mnras_stad1630 crossref_primary_10_3847_1538_4357_ad701a crossref_primary_10_1088_1674_4527_ac3125 crossref_primary_10_1016_j_rinp_2024_107568 crossref_primary_10_3847_2041_8213_ac85ad crossref_primary_10_3847_1538_4365_ac5c52 crossref_primary_10_1093_mnras_stae2696 crossref_primary_10_3847_1538_4357_ad90ab crossref_primary_10_1051_0004_6361_202039418 crossref_primary_10_1103_PhysRevD_109_083533 crossref_primary_10_3847_1538_4357_ac573f crossref_primary_10_1093_mnras_stae815 crossref_primary_10_1360_TB_2023_0336 crossref_primary_10_21105_joss_03998 crossref_primary_10_3847_1538_4357_ac375a crossref_primary_10_3847_1538_4357_ac75d3 crossref_primary_10_1093_mnras_stad2812 crossref_primary_10_1103_PhysRevX_13_011048 crossref_primary_10_1093_mnras_stad1449 crossref_primary_10_1088_1538_3873_ad1ba7 crossref_primary_10_1088_1674_4527_ac995e crossref_primary_10_1051_0004_6361_202142322 crossref_primary_10_3847_1538_4357_ad9a65 crossref_primary_10_1093_mnras_stad399 crossref_primary_10_1093_mnras_stac422 crossref_primary_10_1093_mnras_stae2388 crossref_primary_10_1093_mnras_stae683 crossref_primary_10_3847_2041_8213_ada614 crossref_primary_10_1088_1674_4527_ac321f crossref_primary_10_3847_1538_4357_ac5f03 crossref_primary_10_1007_s41114_021_00034_3 crossref_primary_10_3847_1538_4357_ad2fc1 crossref_primary_10_1051_0004_6361_202347971 crossref_primary_10_3847_1538_4357_ac540c crossref_primary_10_3847_1538_4357_acba96 crossref_primary_10_3847_2041_8213_ac3bcd crossref_primary_10_3847_1538_4357_ad4da8 crossref_primary_10_1088_1674_4527_ac4ca4 crossref_primary_10_3847_1538_4357_ad72f0 crossref_primary_10_3847_1538_4357_ac61da crossref_primary_10_3847_2515_5172_ac3d98 crossref_primary_10_3847_1538_4357_adad6b crossref_primary_10_1088_1674_4527_aca94f crossref_primary_10_1051_0004_6361_202450480 crossref_primary_10_1103_PhysRevD_105_063006 crossref_primary_10_3847_1538_4357_ad158e crossref_primary_10_3847_1538_4357_ace890 crossref_primary_10_1093_mnrasl_slac073 crossref_primary_10_3847_1538_4357_ac2610 crossref_primary_10_3847_1538_4357_acb340 crossref_primary_10_1038_s41550_024_02359_9 crossref_primary_10_3847_1538_4357_ac3982 crossref_primary_10_3847_1538_4357_ac8675 |
Cites_doi | 10.3847/1538-4357/abbb37 10.1093/mnras/sty2035 10.1093/mnras/260.3.675 10.1088/0004-637X/741/2/103 10.3847/2041-8213/ac082e 10.1088/0004-637X/755/2/89 10.1088/0264-9381/33/3/035010 10.1093/mnras/stw1219 10.3847/0004-637X/821/1/38 10.1093/mnras/stu824 10.1093/mnras/stw1772 10.1093/mnras/291.4.683 10.1093/mnras/stz2902 10.3847/1538-4365/ab2241 10.1111/j.1365-2966.2005.09087.x 10.1093/mnras/262.3.545 10.3847/1538-4365/ab7919 10.1093/mnrasl/slaa039 10.1103/PhysRevX.9.031040 10.1051/0004-6361/201016113 10.1111/j.1365-2966.2009.14653.x 10.1051/0004-6361/202039804 10.3847/1538-4357/ab8d24 10.1093/mnras/staa3043 10.1111/j.1365-2966.2010.17040.x 10.1088/0004-637X/796/1/37 10.3847/2041-8213/aa991c 10.3847/2041-8213/aa97d5 10.1093/mnras/stw2260 10.1103/PhysRevD.70.122002 10.1051/0004-6361/202038070 10.3847/1538-4357/aac5ec 10.3847/1538-4357/abfe5e 10.1088/0067-0049/220/1/15 10.3847/1538-4357/ab441f 10.1086/311680 10.3847/1538-4357/aab09b 10.1046/j.1365-8711.2000.03606.x 10.1051/0004-6361/202038707 10.1093/mnras/stv619 10.1088/0004-637X/714/2/1217 10.3847/2041-8213/aba74e 10.3847/1538-4357/aadae5 10.1103/PhysRev.131.435 10.1093/mnras/sty1613 10.1086/503626 10.3847/2041-8205/827/2/L40 10.3847/1538-4357/abccc7 10.1093/mnrasl/sly063 10.1051/0004-6361/201935842 10.1088/0264-9381/32/11/115012 10.1088/0004-637X/725/2/1918 10.1093/mnras/187.2.237 10.1086/324686 10.1007/s00159-013-0059-2 10.1086/312496 10.1111/j.1365-2966.2006.10400.x 10.1086/522073 10.1038/nature10365 10.1088/0004-637X/756/1/85 10.3847/1538-4357/ab9d85 10.1111/j.1365-2966.2004.08373.x 10.1051/0004-6361/201628133 10.1051/0004-6361/202039992 10.1088/0067-0049/192/1/3 10.3847/2041-8205/824/1/L8 10.1093/mnras/281.1.257 10.1046/j.1365-8711.2003.06616.x 10.3847/1538-4357/ab4816 10.1086/340435 10.1146/annurev-astro-081811-125615 10.3847/2041-8213/abe949 10.1038/nature18322 10.1093/mnras/stv1869 10.1103/PhysRevLett.116.061102 10.1086/176778 10.1051/0004-6361/201525830 10.1103/PhysRevLett.121.131105 10.1088/0067-0049/208/1/4 10.1051/0004-6361:20010127 10.3847/2041-8213/ab960f 10.1146/annurev-astro-081811-125534 10.1086/184740 10.1088/1361-6382/ab1101 10.3847/1538-4357/aa5729 10.1093/mnrasl/sly014 10.1086/521026 10.1093/mnras/stx1430 10.3847/1538-4357/abe538 10.1103/PhysRevD.102.103002 10.1103/PhysRevD.97.021501 10.1046/j.1365-8711.2002.05038.x 10.1093/mnras/stx2123 10.1093/mnras/staa002 10.1038/ncomms14906 10.1038/nature04364 10.3847/1538-4357/aad09f 10.1103/PhysRevD.100.023015 10.1103/PhysRevD.99.063003 10.1093/mnrasl/slw177 10.1051/0004-6361/201833025 10.3847/2041-8213/ab745a 10.1093/mnras/stab907 10.1093/mnras/stw379 10.3847/0004-637X/831/2/187 10.1093/mnras/stz1453 10.1093/mnras/stx1410 10.1093/mnras/stw1849 10.3847/1538-4365/aa6fb6 10.1093/mnras/stab2032 10.1086/312126 10.1088/0067-0049/213/2/34 10.1038/nature05434 10.3847/1538-4357/835/1/82 10.1093/mnras/sty1999 10.1088/1674-4527/20/10/161 10.3847/1538-4357/abc699 10.1088/0004-637X/717/2/724 10.1111/j.1365-2966.2009.14849.x 10.1093/mnras/stz359 10.3847/1538-4357/ab9b78 10.3847/1538-4357/aa8557 10.3847/2041-8213/ab2336 10.3847/0004-637X/831/2/190 10.1086/378794 10.1086/305614 10.1111/j.1365-2966.2011.19747.x 10.1093/mnras/staa1192 10.3847/1538-4365/aaa5a8 10.1086/133321 10.3847/2041-8213/ab6e70 10.1093/mnras/sty2327 10.1126/science.aau4005 10.1086/161701 10.3847/1538-4357/833/1/108 10.1088/2041-8205/710/1/L11 10.1126/science.1223344 10.3847/2041-8213/ab21d3 10.1088/0264-9381/32/2/024001 10.3847/1538-4357/aaafce 10.1088/0004-637X/716/1/114 10.1051/0004-6361/201117880 10.1093/mnras/stab973 10.1111/j.1365-2966.2004.07479.x 10.1093/mnras/staa2018 10.3847/1538-4365/ab98f6 10.1088/0004-637X/749/1/91 10.1093/mnras/stv990 10.1093/mnras/sty1065 10.1088/0004-637X/717/2/948 10.1093/mnras/stw2786 10.1146/annurev.aa.21.090183.002015 10.3847/1538-4357/aba118 10.1126/science.1233232 10.1093/mnras/stu1022 10.3847/2041-8213/abae66 10.1142/S0217751X2050075X 10.1051/0004-6361/202140520 10.3847/1538-4357/abe40d |
ContentType | Journal Article |
Copyright | 2021. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Oct 01, 2021 |
Copyright_xml | – notice: 2021. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Oct 01, 2021 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/ac173e |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_ac173e apjac173e |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: U1838201 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (NSFC) grantid: 11773015 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (NSFC) grantid: 12041301 funderid: https://doi.org/10.13039/501100001809 – fundername: National Program on Key Research and Development Project grantid: 2016YFA0400803 – fundername: National Natural Science Foundation of China (NSFC) grantid: 11973026 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c379t-4c2312b8d123b5961c00aa8b5305641a5920567a2f3ee99f936751423f1b510e3 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Wed Aug 13 11:35:35 EDT 2025 Thu Apr 24 23:00:43 EDT 2025 Tue Jul 01 03:24:43 EDT 2025 Wed Aug 21 03:32:51 EDT 2024 Tue Oct 19 22:41:11 EDT 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-4c2312b8d123b5961c00aa8b5305641a5920567a2f3ee99f936751423f1b510e3 |
Notes | High-Energy Phenomena and Fundamental Physics AAS32253 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2506-6906 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/ac173e/pdf |
PQID | 2583107013 |
PQPubID | 4562441 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_3847_1538_4357_ac173e iop_journals_10_3847_1538_4357_ac173e proquest_journals_2583107013 crossref_citationtrail_10_3847_1538_4357_ac173e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2021 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Han (apjac173ebib51) 2020a; 891 Nelemans (apjac173ebib100) 2004; 349 Feast (apjac173ebib41) 1997; 291 Rastello (apjac173ebib121) 2020; 497 Eldridge (apjac173ebib38) 2016; 462 Shibata (apjac173ebib137) 2019; 100 Abbott (apjac173ebib7) 2021b; 915 Fryer (apjac173ebib44) 2012; 749 Tauris (apjac173ebib151) 2000; 530 Yamaguchi (apjac173ebib166) 2018; 861 van Haaften (apjac173ebib157) 2012; 537 Brott (apjac173ebib28) 2011; 530 Hamann (apjac173ebib50) 1995; 299 Abbott (apjac173ebib2) 2016; 116 Olejak (apjac173ebib103) 2021; 651 Paxton (apjac173ebib109) 2011; 192 Mapelli (apjac173ebib88) 2018; 479 Tanikawa (apjac173ebib148) 2021; 910 Langer (apjac173ebib77) 2012; 50 Timmes (apjac173ebib153) 1996; 457 Zhou (apjac173ebib168) 2021; 910 Maccarone (apjac173ebib83) 2007; 445 Luo (apjac173ebib82) 2016; 33 Raithel (apjac173ebib120) 2018; 856 Paxton (apjac173ebib111) 2015; 220 Dessart (apjac173ebib33) 2006; 644 Tauris (apjac173ebib149) 2015; 451 Vink (apjac173ebib158) 2001; 369 Belczynski (apjac173ebib23) 2008; 174 Tout (apjac173ebib154) 1996; 281 Shao (apjac173ebib134) 2018; 477 Marchant (apjac173ebib91) 2021; 650 Sipior (apjac173ebib139) 2004; 354 Gompertz (apjac173ebib48) 2020; 895 Tauris (apjac173ebib150) 2018; 121 Abbott (apjac173ebib3) 2019; 9 Antonini (apjac173ebib14) 2016; 831 Mandel (apjac173ebib87) 2020; 499 Shao (apjac173ebib135) 2019; 885 Alsing (apjac173ebib10) 2018; 478 Paczynski (apjac173ebib105) 1976 Pavlovskii (apjac173ebib107) 2015; 449 Abbott (apjac173ebib6) 2020b Begelman (apjac173ebib20) 1979; 187 Kyutoku (apjac173ebib75) 2020; 890 O’Leary (apjac173ebib102) 2009; 395 Jayasinghe (apjac173ebib61) 2021; 504 Zhu (apjac173ebib169) 2021; 917 Hotokezaka (apjac173ebib55) 2016; 831 Lau (apjac173ebib78) 2020; 492 Spera (apjac173ebib143) 2019; 485 Wyrzykowski (apjac173ebib85) 2020; 636 Miller-Jones (apjac173ebib96) 2015; 453 Abt (apjac173ebib8) 1983; 21 Iben (apjac173ebib58) 1993; 105 Barack (apjac173ebib18) 2004; 70 Downing (apjac173ebib37) 2010; 407 Acernese (apjac173ebib9) 2015; 32 Copperwheat (apjac173ebib31) 2016; 462 de Mink (apjac173ebib32) 2016; 460 Giacobbo (apjac173ebib47) 2018; 480 Santoliquido (apjac173ebib128) 2020; 898 Kremer (apjac173ebib72) 2019; 99 Hurley (apjac173ebib57) 2002; 329 Smartt (apjac173ebib140) 2016; 827 Yalinewich (apjac173ebib165) 2018; 481 Voss (apjac173ebib159) 2003; 342 Broekgaarden (apjac173ebib27) 2021 Robitaille (apjac173ebib122) 2010; 710 Bavera (apjac173ebib19) 2021; 647 Moe (apjac173ebib98) 2017; 230 Paczynski (apjac173ebib106) 1986; 308 Klencki (apjac173ebib66) 2021; 645 Lamberts (apjac173ebib76) 2018; 480 Kobulnicky (apjac173ebib68) 2014; 213 Margalit (apjac173ebib92) 2017; 850 Mandel (apjac173ebib86) 2016; 458 Webbink (apjac173ebib161) 1984; 277 Kolb (apjac173ebib70) 1990; 236 Rafelski (apjac173ebib119) 2012; 755 King (apjac173ebib63) 1999; 519 Banerjee (apjac173ebib17) 2020; 102 Fragione (apjac173ebib42) 2019; 490 Nieuwenhuijzen (apjac173ebib101) 1990; 231 Andrews (apjac173ebib12) 2019; 886 Perna (apjac173ebib114) 2019; 878 Kremer (apjac173ebib73) 2020; 247 Ziosi (apjac173ebib170) 2014; 441 Wiktorowicz (apjac173ebib163) 2020; 905 Abbott (apjac173ebib5) 2021a; 913 Breivik (apjac173ebib26) 2020; 898 Abbott (apjac173ebib4) 2020a; 896 Soberman (apjac173ebib142) 1997; 327 Xu (apjac173ebib164) 2010; 716 Farr (apjac173ebib39) 2020; 4 Podsiadlowski (apjac173ebib117) 2002; 565 Amaro-Seoane (apjac173ebib11) 2017 Sana (apjac173ebib127) 2012; 337 Tutukov (apjac173ebib155) 1993; 260 Askar (apjac173ebib15) 2017; 464 Antoniadis (apjac173ebib13) 2013; 340 Mashian (apjac173ebib93) 2017; 470 Dong (apjac173ebib36) 2018; 475 Belczynski (apjac173ebib22) 2016; 534 Silsbee (apjac173ebib138) 2017; 836 Li (apjac173ebib79) 1998; 507 Thompson (apjac173ebib152) 2019; 366 Madau (apjac173ebib84) 2014; 52 Diehl (apjac173ebib35) 2006; 439 Kiel (apjac173ebib62) 2006; 369 Zevin (apjac173ebib167) 2020; 899 Sukhbold (apjac173ebib147) 2016; 821 Smith (apjac173ebib141) 1978; 66 Kremer (apjac173ebib71) 2017; 846 Ivanova (apjac173ebib60) 2013; 21 Robson (apjac173ebib123) 2019; 36 Kobulnicky (apjac173ebib67) 2007; 670 Kroupa (apjac173ebib74) 1993; 262 Shao (apjac173ebib132) 2014; 796 Kinugawa (apjac173ebib64) 2014; 442 Lipunov (apjac173ebib80) 1997; 23 Paxton (apjac173ebib110) 2013; 208 Han (apjac173ebib52) 2020b; 20 Belczynski (apjac173ebib21) 2010; 714 Paxton (apjac173ebib113) 2019; 243 Di Carlo (apjac173ebib34) 2019; 487 Ruiz (apjac173ebib126) 2018; 97 Kolb (apjac173ebib69) 2000; 317 Paxton (apjac173ebib112) 2018; 234 Ge (apjac173ebib46) 2020; 249 Stancliffe (apjac173ebib144) 2009; 396 Aasi (apjac173ebib1) 2015; 32 Chattopadhyay (apjac173ebib29) 2021; 504 Ivanova (apjac173ebib59) 2010; 717 Özel (apjac173ebib104) 2010; 725 Marchant (apjac173ebib90) 2016; 588 Stevenson (apjac173ebib145) 2017; 8 Pavlovskii (apjac173ebib108) 2017; 465 Wang (apjac173ebib160) 2021; 506 Bailyn (apjac173ebib16) 1998; 499 Fragione (apjac173ebib43) 2020; 495 Planck Collaboration (apjac173ebib116) 2016; 594 Shao (apjac173ebib136) 2020; 898 Metzger (apjac173ebib95) 2012; 419 Sberna (apjac173ebib129) 2021; 908 Sesana (apjac173ebib130) 2020; 494 Mapelli (apjac173ebib89) 2017; 472 van den Heuvel (apjac173ebib156) 2017; 471 Huang (apjac173ebib56) 2020; 904 Gould (apjac173ebib49) 2002; 572 Nakar (apjac173ebib99) 2011; 478 McKernan (apjac173ebib94) 2018; 866 Shao (apjac173ebib131) 2012; 756 Rodriguez (apjac173ebib124) 2016; 824 Stone (apjac173ebib146) 2017; 464 Hobbs (apjac173ebib54) 2005; 360 Klencki (apjac173ebib65) 2018; 619 Racusin (apjac173ebib118) 2017; 835 Breivik (apjac173ebib24) 2019; 878 Wen (apjac173ebib162) 2003; 598 Breivik (apjac173ebib25) 2017; 850 Shao (apjac173ebib133) 2016; 833 Ge (apjac173ebib45) 2010; 717 Hoang (apjac173ebib53) 2018; 856 Chen (apjac173ebib30) 2020; 900 Farr (apjac173ebib40) 2011; 741 Liu (apjac173ebib81) 2018; 863 Peters (apjac173ebib115) 1963; 131 Misra (apjac173ebib97) 2020; 642 Ruan (apjac173ebib125) 2020; 35 |
References_xml | – volume: 299 start-page: 151 year: 1995 ident: apjac173ebib50 publication-title: A&A – volume: 904 start-page: 39 year: 2020 ident: apjac173ebib56 publication-title: ApJ doi: 10.3847/1538-4357/abbb37 – volume: 480 start-page: 2704 year: 2018 ident: apjac173ebib76 publication-title: MNRAS doi: 10.1093/mnras/sty2035 – volume: 260 start-page: 675 year: 1993 ident: apjac173ebib155 publication-title: MNRAS doi: 10.1093/mnras/260.3.675 – volume: 741 start-page: 103 year: 2011 ident: apjac173ebib40 publication-title: ApJ doi: 10.1088/0004-637X/741/2/103 – volume: 915 start-page: L5 year: 2021b ident: apjac173ebib7 publication-title: ApJL doi: 10.3847/2041-8213/ac082e – volume: 755 start-page: 89 year: 2012 ident: apjac173ebib119 publication-title: ApJ doi: 10.1088/0004-637X/755/2/89 – volume: 33 year: 2016 ident: apjac173ebib82 publication-title: CQGra doi: 10.1088/0264-9381/33/3/035010 – volume: 460 start-page: 3545 year: 2016 ident: apjac173ebib32 publication-title: MNRAS doi: 10.1093/mnras/stw1219 – volume: 821 start-page: 38 year: 2016 ident: apjac173ebib147 publication-title: ApJ doi: 10.3847/0004-637X/821/1/38 – volume: 441 start-page: 3703 year: 2014 ident: apjac173ebib170 publication-title: MNRAS doi: 10.1093/mnras/stu824 – volume: 462 start-page: 3302 year: 2016 ident: apjac173ebib38 publication-title: MNRAS doi: 10.1093/mnras/stw1772 – volume: 291 start-page: 683 year: 1997 ident: apjac173ebib41 publication-title: MNRAS doi: 10.1093/mnras/291.4.683 – volume: 490 start-page: 4991 year: 2019 ident: apjac173ebib42 publication-title: MNRAS doi: 10.1093/mnras/stz2902 – volume: 243 start-page: 10 year: 2019 ident: apjac173ebib113 publication-title: ApJS doi: 10.3847/1538-4365/ab2241 – volume: 360 start-page: 974 year: 2005 ident: apjac173ebib54 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09087.x – volume: 262 start-page: 545 year: 1993 ident: apjac173ebib74 publication-title: MNRAS doi: 10.1093/mnras/262.3.545 – volume: 247 start-page: 48 year: 2020 ident: apjac173ebib73 publication-title: ApJS doi: 10.3847/1538-4365/ab7919 – volume: 494 start-page: L75 year: 2020 ident: apjac173ebib130 publication-title: MNRAS doi: 10.1093/mnrasl/slaa039 – volume: 9 year: 2019 ident: apjac173ebib3 publication-title: PhRvX doi: 10.1103/PhysRevX.9.031040 – volume: 530 start-page: 115 year: 2011 ident: apjac173ebib28 publication-title: A&A doi: 10.1051/0004-6361/201016113 – volume: 395 start-page: 2127 year: 2009 ident: apjac173ebib102 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14653.x – volume: 647 start-page: 153 year: 2021 ident: apjac173ebib19 publication-title: A&A doi: 10.1051/0004-6361/202039804 – volume: 895 start-page: 58 year: 2020 ident: apjac173ebib48 publication-title: ApJ doi: 10.3847/1538-4357/ab8d24 – volume: 499 start-page: 3214 year: 2020 ident: apjac173ebib87 publication-title: MNRAS doi: 10.1093/mnras/staa3043 – volume: 407 start-page: 1946 year: 2010 ident: apjac173ebib37 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17040.x – volume: 796 start-page: 37 year: 2014 ident: apjac173ebib132 publication-title: ApJ doi: 10.1088/0004-637X/796/1/37 – year: 1976 ident: apjac173ebib105 – volume: 850 start-page: L19 year: 2017 ident: apjac173ebib92 publication-title: ApJL doi: 10.3847/2041-8213/aa991c – volume: 850 start-page: L13 year: 2017 ident: apjac173ebib25 publication-title: ApJL doi: 10.3847/2041-8213/aa97d5 – volume: 464 start-page: 946 year: 2017 ident: apjac173ebib146 publication-title: MNRAS doi: 10.1093/mnras/stw2260 – volume: 70 year: 2004 ident: apjac173ebib18 publication-title: PhRvD doi: 10.1103/PhysRevD.70.122002 – volume: 642 start-page: 174 year: 2020 ident: apjac173ebib97 publication-title: A&A doi: 10.1051/0004-6361/202038070 – volume: 861 start-page: 21 year: 2018 ident: apjac173ebib166 publication-title: ApJ doi: 10.3847/1538-4357/aac5ec – volume: 917 start-page: 24 year: 2021 ident: apjac173ebib169 publication-title: ApJ doi: 10.3847/1538-4357/abfe5e – volume: 220 start-page: 15 year: 2015 ident: apjac173ebib111 publication-title: ApJS doi: 10.1088/0067-0049/220/1/15 – volume: 327 start-page: 620 year: 1997 ident: apjac173ebib142 publication-title: A&A – volume: 886 start-page: 68 year: 2019 ident: apjac173ebib12 publication-title: ApJ doi: 10.3847/1538-4357/ab441f – volume: 507 start-page: L59 year: 1998 ident: apjac173ebib79 publication-title: ApJL doi: 10.1086/311680 – volume: 856 start-page: 35 year: 2018 ident: apjac173ebib120 publication-title: ApJ doi: 10.3847/1538-4357/aab09b – volume: 317 start-page: 438 year: 2000 ident: apjac173ebib69 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03606.x – volume: 645 start-page: 54 year: 2021 ident: apjac173ebib66 publication-title: A&A doi: 10.1051/0004-6361/202038707 – volume: 449 start-page: 4415 year: 2015 ident: apjac173ebib107 publication-title: MNRAS doi: 10.1093/mnras/stv619 – volume: 714 start-page: 1217 year: 2010 ident: apjac173ebib21 publication-title: ApJ doi: 10.1088/0004-637X/714/2/1217 – volume: 899 start-page: L1 year: 2020 ident: apjac173ebib167 publication-title: ApJL doi: 10.3847/2041-8213/aba74e – volume: 866 start-page: 66 year: 2018 ident: apjac173ebib94 publication-title: ApJ doi: 10.3847/1538-4357/aadae5 – volume: 131 start-page: 435 year: 1963 ident: apjac173ebib115 publication-title: PhRv doi: 10.1103/PhysRev.131.435 – volume: 479 start-page: 4391 year: 2018 ident: apjac173ebib88 publication-title: MNRAS doi: 10.1093/mnras/sty1613 – volume: 644 start-page: 1063 year: 2006 ident: apjac173ebib33 publication-title: ApJ doi: 10.1086/503626 – volume: 827 start-page: L40 year: 2016 ident: apjac173ebib140 publication-title: ApJL doi: 10.3847/2041-8205/827/2/L40 – volume: 908 start-page: 1 year: 2021 ident: apjac173ebib129 publication-title: ApJ doi: 10.3847/1538-4357/abccc7 – volume: 477 start-page: L128 year: 2018 ident: apjac173ebib134 publication-title: MNRAS doi: 10.1093/mnrasl/sly063 – volume: 636 start-page: A20 year: 2020 ident: apjac173ebib85 publication-title: A&A doi: 10.1051/0004-6361/201935842 – volume: 32 year: 2015 ident: apjac173ebib1 publication-title: CQGra doi: 10.1088/0264-9381/32/11/115012 – volume: 725 start-page: 1918 year: 2010 ident: apjac173ebib104 publication-title: ApJ doi: 10.1088/0004-637X/725/2/1918 – volume: 187 start-page: 237 year: 1979 ident: apjac173ebib20 publication-title: MNRAS doi: 10.1093/mnras/187.2.237 – volume: 565 start-page: 1107 year: 2002 ident: apjac173ebib117 publication-title: ApJ doi: 10.1086/324686 – volume: 21 start-page: 59 year: 2013 ident: apjac173ebib60 publication-title: A&AR doi: 10.1007/s00159-013-0059-2 – volume: 530 start-page: L93 year: 2000 ident: apjac173ebib151 publication-title: ApJL doi: 10.1086/312496 – volume: 369 start-page: 1152 year: 2006 ident: apjac173ebib62 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10400.x – volume: 236 start-page: 385 year: 1990 ident: apjac173ebib70 publication-title: A&A – volume: 670 start-page: 747 year: 2007 ident: apjac173ebib67 publication-title: ApJ doi: 10.1086/522073 – volume: 478 start-page: 82 year: 2011 ident: apjac173ebib99 publication-title: Natur doi: 10.1038/nature10365 – volume: 756 start-page: 85 year: 2012 ident: apjac173ebib131 publication-title: ApJ doi: 10.1088/0004-637X/756/1/85 – volume: 898 start-page: 71 year: 2020 ident: apjac173ebib26 publication-title: ApJ doi: 10.3847/1538-4357/ab9d85 – volume: 231 start-page: 134 year: 1990 ident: apjac173ebib101 publication-title: A&A – volume: 354 start-page: L49 year: 2004 ident: apjac173ebib139 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.08373.x – volume: 588 start-page: A50 year: 2016 ident: apjac173ebib90 publication-title: A&A doi: 10.1051/0004-6361/201628133 – volume: 650 start-page: A107 year: 2021 ident: apjac173ebib91 publication-title: A&A doi: 10.1051/0004-6361/202039992 – volume: 192 start-page: 3 year: 2011 ident: apjac173ebib109 publication-title: ApJS doi: 10.1088/0067-0049/192/1/3 – volume: 824 start-page: L8 year: 2016 ident: apjac173ebib124 publication-title: ApJL doi: 10.3847/2041-8205/824/1/L8 – volume: 281 start-page: 257 year: 1996 ident: apjac173ebib154 publication-title: MNRAS doi: 10.1093/mnras/281.1.257 – volume: 342 start-page: 1169 year: 2003 ident: apjac173ebib159 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06616.x – volume: 885 start-page: 151 year: 2019 ident: apjac173ebib135 publication-title: ApJ doi: 10.3847/1538-4357/ab4816 – volume: 572 start-page: 944 year: 2002 ident: apjac173ebib49 publication-title: ApJ doi: 10.1086/340435 – volume: 52 start-page: 415 year: 2014 ident: apjac173ebib84 publication-title: ARA&A doi: 10.1146/annurev-astro-081811-125615 – volume: 913 start-page: L7 year: 2021a ident: apjac173ebib5 publication-title: ApJL doi: 10.3847/2041-8213/abe949 – volume: 534 start-page: 512 year: 2016 ident: apjac173ebib22 publication-title: Natur doi: 10.1038/nature18322 – volume: 453 start-page: 3918 year: 2015 ident: apjac173ebib96 publication-title: MNRAS doi: 10.1093/mnras/stv1869 – volume: 116 year: 2016 ident: apjac173ebib2 publication-title: PhRvL doi: 10.1103/PhysRevLett.116.061102 – year: 2021 ident: apjac173ebib27 – volume: 23 start-page: 492 year: 1997 ident: apjac173ebib80 publication-title: AstL – volume: 457 start-page: 834 year: 1996 ident: apjac173ebib153 publication-title: ApJ doi: 10.1086/176778 – year: 2020b ident: apjac173ebib6 – volume: 594 start-page: 13 year: 2016 ident: apjac173ebib116 publication-title: A&A doi: 10.1051/0004-6361/201525830 – volume: 121 year: 2018 ident: apjac173ebib150 publication-title: PhRvL doi: 10.1103/PhysRevLett.121.131105 – volume: 208 start-page: 4 year: 2013 ident: apjac173ebib110 publication-title: ApJS doi: 10.1088/0067-0049/208/1/4 – volume: 369 start-page: 574 year: 2001 ident: apjac173ebib158 publication-title: A&A doi: 10.1051/0004-6361:20010127 – volume: 896 start-page: L44 year: 2020a ident: apjac173ebib4 publication-title: ApJL doi: 10.3847/2041-8213/ab960f – volume: 50 start-page: 107 year: 2012 ident: apjac173ebib77 publication-title: ARA&A doi: 10.1146/annurev-astro-081811-125534 – volume: 308 start-page: L43 year: 1986 ident: apjac173ebib106 publication-title: ApJL doi: 10.1086/184740 – volume: 36 year: 2019 ident: apjac173ebib123 publication-title: CQGra doi: 10.1088/1361-6382/ab1101 – volume: 836 start-page: 39 year: 2017 ident: apjac173ebib138 publication-title: ApJ doi: 10.3847/1538-4357/aa5729 – volume: 475 start-page: L101 year: 2018 ident: apjac173ebib36 publication-title: MNRAS doi: 10.1093/mnrasl/sly014 – volume: 174 start-page: 223 year: 2008 ident: apjac173ebib23 publication-title: ApJS doi: 10.1086/521026 – volume: 471 start-page: 4256 year: 2017 ident: apjac173ebib156 publication-title: MNRAS doi: 10.1093/mnras/stx1430 – volume: 910 start-page: 62 year: 2021 ident: apjac173ebib168 publication-title: ApJ doi: 10.3847/1538-4357/abe538 – volume: 102 year: 2020 ident: apjac173ebib17 publication-title: PhRvD doi: 10.1103/PhysRevD.102.103002 – volume: 97 year: 2018 ident: apjac173ebib126 publication-title: PhRvD doi: 10.1103/PhysRevD.97.021501 – volume: 329 start-page: 897 year: 2002 ident: apjac173ebib57 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05038.x – volume: 472 start-page: 2422 year: 2017 ident: apjac173ebib89 publication-title: MNRAS doi: 10.1093/mnras/stx2123 – volume: 492 start-page: 3061 year: 2020 ident: apjac173ebib78 publication-title: MNRAS doi: 10.1093/mnras/staa002 – volume: 8 start-page: 14906 year: 2017 ident: apjac173ebib145 publication-title: NatCo doi: 10.1038/ncomms14906 – volume: 4 start-page: 65 year: 2020 ident: apjac173ebib39 publication-title: RNAAS – volume: 439 start-page: 45 year: 2006 ident: apjac173ebib35 publication-title: Natur doi: 10.1038/nature04364 – volume: 863 start-page: 68 year: 2018 ident: apjac173ebib81 publication-title: ApJ doi: 10.3847/1538-4357/aad09f – volume: 100 year: 2019 ident: apjac173ebib137 publication-title: PhRvD doi: 10.1103/PhysRevD.100.023015 – volume: 99 year: 2019 ident: apjac173ebib72 publication-title: PhRvD doi: 10.1103/PhysRevD.99.063003 – volume: 464 start-page: L36 year: 2017 ident: apjac173ebib15 publication-title: MNRAS doi: 10.1093/mnrasl/slw177 – volume: 619 start-page: 77 year: 2018 ident: apjac173ebib65 publication-title: A&A doi: 10.1051/0004-6361/201833025 – volume: 891 start-page: L5 year: 2020a ident: apjac173ebib51 publication-title: ApJL doi: 10.3847/2041-8213/ab745a – volume: 504 start-page: 2577 year: 2021 ident: apjac173ebib61 publication-title: MNRAS doi: 10.1093/mnras/stab907 – volume: 458 start-page: 2634 year: 2016 ident: apjac173ebib86 publication-title: MNRAS doi: 10.1093/mnras/stw379 – volume: 831 start-page: 187 year: 2016 ident: apjac173ebib14 publication-title: ApJ doi: 10.3847/0004-637X/831/2/187 – volume: 487 start-page: 2947 year: 2019 ident: apjac173ebib34 publication-title: MNRAS doi: 10.1093/mnras/stz1453 – volume: 470 start-page: 2611 year: 2017 ident: apjac173ebib93 publication-title: MNRAS doi: 10.1093/mnras/stx1410 – volume: 462 start-page: 3528 year: 2016 ident: apjac173ebib31 publication-title: MNRAS doi: 10.1093/mnras/stw1849 – volume: 230 start-page: 15 year: 2017 ident: apjac173ebib98 publication-title: ApJS doi: 10.3847/1538-4365/aa6fb6 – volume: 506 start-page: 4654 year: 2021 ident: apjac173ebib160 publication-title: MNRAS doi: 10.1093/mnras/stab2032 – volume: 519 start-page: L169 year: 1999 ident: apjac173ebib63 publication-title: ApJL doi: 10.1086/312126 – volume: 213 start-page: 34 year: 2014 ident: apjac173ebib68 publication-title: ApJS doi: 10.1088/0067-0049/213/2/34 – volume: 445 start-page: 183 year: 2007 ident: apjac173ebib83 publication-title: Natur doi: 10.1038/nature05434 – volume: 835 start-page: 82 year: 2017 ident: apjac173ebib118 publication-title: ApJ doi: 10.3847/1538-4357/835/1/82 – volume: 480 start-page: 2011 year: 2018 ident: apjac173ebib47 publication-title: MNRAS doi: 10.1093/mnras/sty1999 – volume: 20 start-page: 161 year: 2020b ident: apjac173ebib52 publication-title: RAA doi: 10.1088/1674-4527/20/10/161 – volume: 905 start-page: 134 year: 2020 ident: apjac173ebib163 publication-title: ApJ doi: 10.3847/1538-4357/abc699 – volume: 717 start-page: 724 year: 2010 ident: apjac173ebib45 publication-title: ApJ doi: 10.1088/0004-637X/717/2/724 – volume: 396 start-page: 1699 year: 2009 ident: apjac173ebib144 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14849.x – volume: 485 start-page: 889 year: 2019 ident: apjac173ebib143 publication-title: MNRAS doi: 10.1093/mnras/stz359 – volume: 898 start-page: 152 year: 2020 ident: apjac173ebib128 publication-title: ApJ doi: 10.3847/1538-4357/ab9b78 – volume: 846 start-page: 95 year: 2017 ident: apjac173ebib71 publication-title: ApJ doi: 10.3847/1538-4357/aa8557 – volume: 878 start-page: L1 year: 2019 ident: apjac173ebib114 publication-title: ApJL doi: 10.3847/2041-8213/ab2336 – volume: 831 start-page: 190 year: 2016 ident: apjac173ebib55 publication-title: ApJ doi: 10.3847/0004-637X/831/2/190 – volume: 598 start-page: 419 year: 2003 ident: apjac173ebib162 publication-title: ApJ doi: 10.1086/378794 – volume: 499 start-page: 367 year: 1998 ident: apjac173ebib16 publication-title: ApJ doi: 10.1086/305614 – volume: 419 start-page: 827 year: 2012 ident: apjac173ebib95 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19747.x – volume: 495 start-page: 1061 year: 2020 ident: apjac173ebib43 publication-title: MNRAS doi: 10.1093/mnras/staa1192 – volume: 234 start-page: 34 year: 2018 ident: apjac173ebib112 publication-title: ApJS doi: 10.3847/1538-4365/aaa5a8 – volume: 105 start-page: 1373 year: 1993 ident: apjac173ebib58 publication-title: PASP doi: 10.1086/133321 – volume: 890 start-page: L4 year: 2020 ident: apjac173ebib75 publication-title: ApJL doi: 10.3847/2041-8213/ab6e70 – volume: 481 start-page: 930 year: 2018 ident: apjac173ebib165 publication-title: MNRAS doi: 10.1093/mnras/sty2327 – year: 2017 ident: apjac173ebib11 – volume: 366 start-page: 637 year: 2019 ident: apjac173ebib152 publication-title: Sci doi: 10.1126/science.aau4005 – volume: 277 start-page: 355 year: 1984 ident: apjac173ebib161 publication-title: ApJ doi: 10.1086/161701 – volume: 833 start-page: 108 year: 2016 ident: apjac173ebib133 publication-title: ApJ doi: 10.3847/1538-4357/833/1/108 – volume: 710 start-page: L11 year: 2010 ident: apjac173ebib122 publication-title: ApJL doi: 10.1088/2041-8205/710/1/L11 – volume: 337 start-page: 444 year: 2012 ident: apjac173ebib127 publication-title: Sci doi: 10.1126/science.1223344 – volume: 878 start-page: L4 year: 2019 ident: apjac173ebib24 publication-title: ApJL doi: 10.3847/2041-8213/ab21d3 – volume: 32 year: 2015 ident: apjac173ebib9 publication-title: CQGra doi: 10.1088/0264-9381/32/2/024001 – volume: 856 start-page: 140 year: 2018 ident: apjac173ebib53 publication-title: ApJ doi: 10.3847/1538-4357/aaafce – volume: 716 start-page: 114 year: 2010 ident: apjac173ebib164 publication-title: ApJ doi: 10.1088/0004-637X/716/1/114 – volume: 537 start-page: A104 year: 2012 ident: apjac173ebib157 publication-title: A&A doi: 10.1051/0004-6361/201117880 – volume: 504 start-page: 3682 year: 2021 ident: apjac173ebib29 publication-title: MNRAS doi: 10.1093/mnras/stab973 – volume: 349 start-page: 181 year: 2004 ident: apjac173ebib100 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.07479.x – volume: 497 start-page: 1563 year: 2020 ident: apjac173ebib121 publication-title: MNRAS doi: 10.1093/mnras/staa2018 – volume: 249 start-page: 9 year: 2020 ident: apjac173ebib46 publication-title: ApJS doi: 10.3847/1538-4365/ab98f6 – volume: 749 start-page: 91 year: 2012 ident: apjac173ebib44 publication-title: ApJ doi: 10.1088/0004-637X/749/1/91 – volume: 451 start-page: 2123 year: 2015 ident: apjac173ebib149 publication-title: MNRAS doi: 10.1093/mnras/stv990 – volume: 478 start-page: 1377 year: 2018 ident: apjac173ebib10 publication-title: MNRAS doi: 10.1093/mnras/sty1065 – volume: 717 start-page: 948 year: 2010 ident: apjac173ebib59 publication-title: ApJ doi: 10.1088/0004-637X/717/2/948 – volume: 465 start-page: 2092 year: 2017 ident: apjac173ebib108 publication-title: MNRAS doi: 10.1093/mnras/stw2786 – volume: 21 start-page: 343 year: 1983 ident: apjac173ebib8 publication-title: ARA&A doi: 10.1146/annurev.aa.21.090183.002015 – volume: 898 start-page: 143 year: 2020 ident: apjac173ebib136 publication-title: ApJ doi: 10.3847/1538-4357/aba118 – volume: 340 start-page: 448 year: 2013 ident: apjac173ebib13 publication-title: Sci doi: 10.1126/science.1233232 – volume: 442 start-page: 2963 year: 2014 ident: apjac173ebib64 publication-title: MNRAS doi: 10.1093/mnras/stu1022 – volume: 900 start-page: L8 year: 2020 ident: apjac173ebib30 publication-title: ApJL doi: 10.3847/2041-8213/abae66 – volume: 66 start-page: 65 year: 1978 ident: apjac173ebib141 publication-title: A&A – volume: 35 year: 2020 ident: apjac173ebib125 publication-title: IJMPA doi: 10.1142/S0217751X2050075X – volume: 651 start-page: A100 year: 2021 ident: apjac173ebib103 publication-title: A&A doi: 10.1051/0004-6361/202140520 – volume: 910 start-page: 30 year: 2021 ident: apjac173ebib148 publication-title: ApJ doi: 10.3847/1538-4357/abe40d |
SSID | ssj0004299 |
Score | 2.622597 |
Snippet | We perform a systematic study of merging black hole (BH) binaries with compact star (CS) companions, including black hole–white dwarf (BH–WD), black... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 81 |
SubjectTerms | Astrophysics Binary stars Black holes Compact binary stars Criteria Evolution Gravitational waves Mass transfer Mathematical analysis Milky Way Neutron stars Stars & galaxies Stellar evolution Supernova Supernovae Synthesis White dwarf stars |
Title | Population Synthesis of Black Hole Binaries with Compact Star Companions |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ac173e https://www.proquest.com/docview/2583107013 |
Volume | 920 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_UUuhLa22LZ1X2oQp9yJ3ZzX6EPmmpHIL1wErvobDsbjbgR5PDxAf96zubzZ1oRUpfwgQm2ezsx_xmsjMD8EmKkHHFyUTawiSZUCJRSvAE0akwtswM7dI1HX8X47PsaMqnS_BlEQtTz_qtf4hkTBQcRRjWN8O9dNStUdTycmRcKplfhhdMoeIM0Xsnk_ugSJr32DdLBJPT-I_yyTc80EnL2O5fG3OnbQ7fwK_5d8ZDJpfDm9YO3d2jFI7_2ZFVeN2jULIfWd_Ckq_WYH2_CX7x-vct2SUdHd0ezRq8nETqHYwni4pf5PS2QvjYnDekLknnCSTj-sqTgxDjixY4CU5e0u04riUIa6_jTRWm-ns4O_z24-s46asxJI7JvE0yh1CQWlWgrrM8F6nb2zNGWR6MkCw1PKdISENL5n2elzlDWyRFtFamFhe-Zx9gpaorvw6kYBnzIeRV2SJzLqTAL9FSo7niheAlH8BoPh7a9anKQ8WMK40mSxCdDqLTQXQ6im4AnxdPzGKajmd4d3BEdL9Wm2f4th7wmdmFxj5qqlWqZ0U5gM35JLlnojxUbpMIrDf-sZmP8IqGczLdAcFNWGmvb_wWAp3WbncTGq8n7OcfODfy1Q |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEBUXxKMVW14-ABKHdIkd28mBA6_V8l6Jou7NdRxHKqLJimxV7a_iLzKOwyIEQly4TaTJw5_HM9849hhgUwpXccXIQKaZDiIRiyCOBQ-QnQqd5pGmdbmmi0vRvYlO-7w_AQ_jvTDloHH9P1D0hYI9hG58M_Sl7XqMYpSXbW1CyWx7kOXNqsozO_qPOVu1d3KEHbxFaef452E3aI4VCAyTyTCIDHIamsYZOu2UJyI0u7taxyl3bDoKNU8oClLTnFmbJHnCkFSHSDvyMEULtgyfOwnTnGFowwF0xX49b8SkScO3o0Aw2ff_Rd_86hdxcBLb-ioY1BGuMw9zDTUl-x6IBZiwxSIs71dusrz8OyLbpJb9XEi1CDM9Ly1Btzc-BoxcjwrklNWfipQ5qacHSbe8s-TAbfzFtJy4mV9SuyEzJMh17_1F4ez_K9x8CpbfYKooC7sMJGMRs24fbJxmkTGuLn6O6RtNYp4JnvMWtJ8AU6apX-6O0bhTmMc4iJWDWDmIlYe4BTvjOwa-dsc7ulvYB6oZwNU7emsv9PTgVmEbFVVxqNAQW7D61IvPSpS749wksu3vH3zNBnzpHXXU-cnl2QrMUreOpl5AuApTw_t_dg2J0DBdr42PwO_PtvZHNZcNug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+Synthesis+of+Black+Hole+Binaries+with+Compact+Star+Companions&rft.jtitle=The+Astrophysical+journal&rft.au=Shao%2C+Yong&rft.au=Li%2C+Xiang-Dong&rft.date=2021-10-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=920&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fac173e&rft.externalDocID=apjac173e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |