Population Synthesis of Black Hole Binaries with Compact Star Companions

We perform a systematic study of merging black hole (BH) binaries with compact star (CS) companions, including black hole–white dwarf (BH–WD), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) systems. Previous studies have shown that mass transfer stability and common envelope evol...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 920; no. 2; pp. 81 - 97
Main Authors Shao, Yong, Li, Xiang-Dong
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.10.2021
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We perform a systematic study of merging black hole (BH) binaries with compact star (CS) companions, including black hole–white dwarf (BH–WD), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) systems. Previous studies have shown that mass transfer stability and common envelope evolution can significantly affect the formation of merging BH–CS binaries through isolated binary evolution. With detailed binary evolution simulations, we obtain easy-to-use criteria for the occurrence of the common envelope phase in mass-transferring BH binaries with a nondegenerate donor, and incorporate the criteria into population synthesis calculations. To explore the impact of a possible mass gap between NSs and BHs on the properties of merging BH–CS binary population, we adopt different supernova mechanisms involving the rapid , delayed , and stochastic prescriptions to deal with the compact remnant masses and the natal kicks. Our calculations show that there are ∼10 5 –10 6 BH–CS binaries in the Milky Way, among which dozens are observable by future space-based gravitational wave detectors. We estimate that the local merger rate density of all BH–CS systems is ∼60–200 Gpc −3 yr −1 . While there are no low-mass BHs formed via rapid supernovae, both delayed and stochastic prescriptions predict that ∼100%/∼70%/∼30% of merging BH–WD/BH–NS/BH–BH binaries are likely to have BH components within the mass gap.
AbstractList We perform a systematic study of merging black hole (BH) binaries with compact star (CS) companions, including black hole–white dwarf (BH–WD), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) systems. Previous studies have shown that mass transfer stability and common envelope evolution can significantly affect the formation of merging BH–CS binaries through isolated binary evolution. With detailed binary evolution simulations, we obtain easy-to-use criteria for the occurrence of the common envelope phase in mass-transferring BH binaries with a nondegenerate donor, and incorporate the criteria into population synthesis calculations. To explore the impact of a possible mass gap between NSs and BHs on the properties of merging BH–CS binary population, we adopt different supernova mechanisms involving the rapid, delayed, and stochastic prescriptions to deal with the compact remnant masses and the natal kicks. Our calculations show that there are ∼105–106 BH–CS binaries in the Milky Way, among which dozens are observable by future space-based gravitational wave detectors. We estimate that the local merger rate density of all BH–CS systems is ∼60–200 Gpc−3 yr−1. While there are no low-mass BHs formed via rapid supernovae, both delayed and stochastic prescriptions predict that ∼100%/∼70%/∼30% of merging BH–WD/BH–NS/BH–BH binaries are likely to have BH components within the mass gap.
We perform a systematic study of merging black hole (BH) binaries with compact star (CS) companions, including black hole–white dwarf (BH–WD), black hole–neutron star (BH–NS), and black hole–black hole (BH–BH) systems. Previous studies have shown that mass transfer stability and common envelope evolution can significantly affect the formation of merging BH–CS binaries through isolated binary evolution. With detailed binary evolution simulations, we obtain easy-to-use criteria for the occurrence of the common envelope phase in mass-transferring BH binaries with a nondegenerate donor, and incorporate the criteria into population synthesis calculations. To explore the impact of a possible mass gap between NSs and BHs on the properties of merging BH–CS binary population, we adopt different supernova mechanisms involving the rapid , delayed , and stochastic prescriptions to deal with the compact remnant masses and the natal kicks. Our calculations show that there are ∼10 5 –10 6 BH–CS binaries in the Milky Way, among which dozens are observable by future space-based gravitational wave detectors. We estimate that the local merger rate density of all BH–CS systems is ∼60–200 Gpc −3 yr −1 . While there are no low-mass BHs formed via rapid supernovae, both delayed and stochastic prescriptions predict that ∼100%/∼70%/∼30% of merging BH–WD/BH–NS/BH–BH binaries are likely to have BH components within the mass gap.
Author Shao, Yong
Li, Xiang-Dong
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0003-2506-6906
  surname: Shao
  fullname: Shao, Yong
  organization: Nanjing University Key laboratory of Modern Astronomy and Astrophysics , Ministry of Education, Nanjing 210023, People’s Republic of China
– sequence: 2
  givenname: Xiang-Dong
  surname: Li
  fullname: Li, Xiang-Dong
  organization: Nanjing University Key laboratory of Modern Astronomy and Astrophysics , Ministry of Education, Nanjing 210023, People’s Republic of China
BookMark eNp9kM9LwzAUx4NMcJvePQb0aF1-NE1zdEOdMFCYgreQZinL7JqaZMj-e1srCiI75b3w_eTlfUZgULvaAHCO0TXNUz7BjOZJShmfKI05NUdg-HM1AEOEUJpklL-egFEIm64lQgzB_Mk1u0pF62q43NdxbYIN0JVwWin9BueuMnBqa-WtCfDDxjWcuW2jdITLqHzf1C0cTsFxqapgzr7PMXi5u32ezZPF4_3D7GaRaMpFTFJNKCZFvsKEFkxkWCOkVF4wiliWYsUEaQuuSEmNEaIUNOMMp4SWuGAYGToGF_27jXfvOxOi3Lidr9uRkrCcYsQRpm0K9SntXQjelLLxdqv8XmIkO1-ykyM7ObL31SLZH0Tb-CUmemWrQ-BVD1rX_H7mQPzyn7hqNrJdXRKZY9msSvoJ3GuJ8A
CitedBy_id crossref_primary_10_1093_mnras_stac1426
crossref_primary_10_1051_0004_6361_202243147
crossref_primary_10_1093_mnras_stac2359
crossref_primary_10_3847_1538_4357_ace348
crossref_primary_10_1093_mnras_stad1630
crossref_primary_10_3847_1538_4357_ad701a
crossref_primary_10_1088_1674_4527_ac3125
crossref_primary_10_1016_j_rinp_2024_107568
crossref_primary_10_3847_2041_8213_ac85ad
crossref_primary_10_3847_1538_4365_ac5c52
crossref_primary_10_1093_mnras_stae2696
crossref_primary_10_3847_1538_4357_ad90ab
crossref_primary_10_1051_0004_6361_202039418
crossref_primary_10_1103_PhysRevD_109_083533
crossref_primary_10_3847_1538_4357_ac573f
crossref_primary_10_1093_mnras_stae815
crossref_primary_10_1360_TB_2023_0336
crossref_primary_10_21105_joss_03998
crossref_primary_10_3847_1538_4357_ac375a
crossref_primary_10_3847_1538_4357_ac75d3
crossref_primary_10_1093_mnras_stad2812
crossref_primary_10_1103_PhysRevX_13_011048
crossref_primary_10_1093_mnras_stad1449
crossref_primary_10_1088_1538_3873_ad1ba7
crossref_primary_10_1088_1674_4527_ac995e
crossref_primary_10_1051_0004_6361_202142322
crossref_primary_10_3847_1538_4357_ad9a65
crossref_primary_10_1093_mnras_stad399
crossref_primary_10_1093_mnras_stac422
crossref_primary_10_1093_mnras_stae2388
crossref_primary_10_1093_mnras_stae683
crossref_primary_10_3847_2041_8213_ada614
crossref_primary_10_1088_1674_4527_ac321f
crossref_primary_10_3847_1538_4357_ac5f03
crossref_primary_10_1007_s41114_021_00034_3
crossref_primary_10_3847_1538_4357_ad2fc1
crossref_primary_10_1051_0004_6361_202347971
crossref_primary_10_3847_1538_4357_ac540c
crossref_primary_10_3847_1538_4357_acba96
crossref_primary_10_3847_2041_8213_ac3bcd
crossref_primary_10_3847_1538_4357_ad4da8
crossref_primary_10_1088_1674_4527_ac4ca4
crossref_primary_10_3847_1538_4357_ad72f0
crossref_primary_10_3847_1538_4357_ac61da
crossref_primary_10_3847_2515_5172_ac3d98
crossref_primary_10_3847_1538_4357_adad6b
crossref_primary_10_1088_1674_4527_aca94f
crossref_primary_10_1051_0004_6361_202450480
crossref_primary_10_1103_PhysRevD_105_063006
crossref_primary_10_3847_1538_4357_ad158e
crossref_primary_10_3847_1538_4357_ace890
crossref_primary_10_1093_mnrasl_slac073
crossref_primary_10_3847_1538_4357_ac2610
crossref_primary_10_3847_1538_4357_acb340
crossref_primary_10_1038_s41550_024_02359_9
crossref_primary_10_3847_1538_4357_ac3982
crossref_primary_10_3847_1538_4357_ac8675
Cites_doi 10.3847/1538-4357/abbb37
10.1093/mnras/sty2035
10.1093/mnras/260.3.675
10.1088/0004-637X/741/2/103
10.3847/2041-8213/ac082e
10.1088/0004-637X/755/2/89
10.1088/0264-9381/33/3/035010
10.1093/mnras/stw1219
10.3847/0004-637X/821/1/38
10.1093/mnras/stu824
10.1093/mnras/stw1772
10.1093/mnras/291.4.683
10.1093/mnras/stz2902
10.3847/1538-4365/ab2241
10.1111/j.1365-2966.2005.09087.x
10.1093/mnras/262.3.545
10.3847/1538-4365/ab7919
10.1093/mnrasl/slaa039
10.1103/PhysRevX.9.031040
10.1051/0004-6361/201016113
10.1111/j.1365-2966.2009.14653.x
10.1051/0004-6361/202039804
10.3847/1538-4357/ab8d24
10.1093/mnras/staa3043
10.1111/j.1365-2966.2010.17040.x
10.1088/0004-637X/796/1/37
10.3847/2041-8213/aa991c
10.3847/2041-8213/aa97d5
10.1093/mnras/stw2260
10.1103/PhysRevD.70.122002
10.1051/0004-6361/202038070
10.3847/1538-4357/aac5ec
10.3847/1538-4357/abfe5e
10.1088/0067-0049/220/1/15
10.3847/1538-4357/ab441f
10.1086/311680
10.3847/1538-4357/aab09b
10.1046/j.1365-8711.2000.03606.x
10.1051/0004-6361/202038707
10.1093/mnras/stv619
10.1088/0004-637X/714/2/1217
10.3847/2041-8213/aba74e
10.3847/1538-4357/aadae5
10.1103/PhysRev.131.435
10.1093/mnras/sty1613
10.1086/503626
10.3847/2041-8205/827/2/L40
10.3847/1538-4357/abccc7
10.1093/mnrasl/sly063
10.1051/0004-6361/201935842
10.1088/0264-9381/32/11/115012
10.1088/0004-637X/725/2/1918
10.1093/mnras/187.2.237
10.1086/324686
10.1007/s00159-013-0059-2
10.1086/312496
10.1111/j.1365-2966.2006.10400.x
10.1086/522073
10.1038/nature10365
10.1088/0004-637X/756/1/85
10.3847/1538-4357/ab9d85
10.1111/j.1365-2966.2004.08373.x
10.1051/0004-6361/201628133
10.1051/0004-6361/202039992
10.1088/0067-0049/192/1/3
10.3847/2041-8205/824/1/L8
10.1093/mnras/281.1.257
10.1046/j.1365-8711.2003.06616.x
10.3847/1538-4357/ab4816
10.1086/340435
10.1146/annurev-astro-081811-125615
10.3847/2041-8213/abe949
10.1038/nature18322
10.1093/mnras/stv1869
10.1103/PhysRevLett.116.061102
10.1086/176778
10.1051/0004-6361/201525830
10.1103/PhysRevLett.121.131105
10.1088/0067-0049/208/1/4
10.1051/0004-6361:20010127
10.3847/2041-8213/ab960f
10.1146/annurev-astro-081811-125534
10.1086/184740
10.1088/1361-6382/ab1101
10.3847/1538-4357/aa5729
10.1093/mnrasl/sly014
10.1086/521026
10.1093/mnras/stx1430
10.3847/1538-4357/abe538
10.1103/PhysRevD.102.103002
10.1103/PhysRevD.97.021501
10.1046/j.1365-8711.2002.05038.x
10.1093/mnras/stx2123
10.1093/mnras/staa002
10.1038/ncomms14906
10.1038/nature04364
10.3847/1538-4357/aad09f
10.1103/PhysRevD.100.023015
10.1103/PhysRevD.99.063003
10.1093/mnrasl/slw177
10.1051/0004-6361/201833025
10.3847/2041-8213/ab745a
10.1093/mnras/stab907
10.1093/mnras/stw379
10.3847/0004-637X/831/2/187
10.1093/mnras/stz1453
10.1093/mnras/stx1410
10.1093/mnras/stw1849
10.3847/1538-4365/aa6fb6
10.1093/mnras/stab2032
10.1086/312126
10.1088/0067-0049/213/2/34
10.1038/nature05434
10.3847/1538-4357/835/1/82
10.1093/mnras/sty1999
10.1088/1674-4527/20/10/161
10.3847/1538-4357/abc699
10.1088/0004-637X/717/2/724
10.1111/j.1365-2966.2009.14849.x
10.1093/mnras/stz359
10.3847/1538-4357/ab9b78
10.3847/1538-4357/aa8557
10.3847/2041-8213/ab2336
10.3847/0004-637X/831/2/190
10.1086/378794
10.1086/305614
10.1111/j.1365-2966.2011.19747.x
10.1093/mnras/staa1192
10.3847/1538-4365/aaa5a8
10.1086/133321
10.3847/2041-8213/ab6e70
10.1093/mnras/sty2327
10.1126/science.aau4005
10.1086/161701
10.3847/1538-4357/833/1/108
10.1088/2041-8205/710/1/L11
10.1126/science.1223344
10.3847/2041-8213/ab21d3
10.1088/0264-9381/32/2/024001
10.3847/1538-4357/aaafce
10.1088/0004-637X/716/1/114
10.1051/0004-6361/201117880
10.1093/mnras/stab973
10.1111/j.1365-2966.2004.07479.x
10.1093/mnras/staa2018
10.3847/1538-4365/ab98f6
10.1088/0004-637X/749/1/91
10.1093/mnras/stv990
10.1093/mnras/sty1065
10.1088/0004-637X/717/2/948
10.1093/mnras/stw2786
10.1146/annurev.aa.21.090183.002015
10.3847/1538-4357/aba118
10.1126/science.1233232
10.1093/mnras/stu1022
10.3847/2041-8213/abae66
10.1142/S0217751X2050075X
10.1051/0004-6361/202140520
10.3847/1538-4357/abe40d
ContentType Journal Article
Copyright 2021. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Oct 01, 2021
Copyright_xml – notice: 2021. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Oct 01, 2021
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ac173e
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ac173e
apjac173e
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: U1838201
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11773015
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 12041301
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Program on Key Research and Development Project
  grantid: 2016YFA0400803
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 11973026
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c379t-4c2312b8d123b5961c00aa8b5305641a5920567a2f3ee99f936751423f1b510e3
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 13 11:35:35 EDT 2025
Thu Apr 24 23:00:43 EDT 2025
Tue Jul 01 03:24:43 EDT 2025
Wed Aug 21 03:32:51 EDT 2024
Tue Oct 19 22:41:11 EDT 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-4c2312b8d123b5961c00aa8b5305641a5920567a2f3ee99f936751423f1b510e3
Notes High-Energy Phenomena and Fundamental Physics
AAS32253
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2506-6906
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ac173e/pdf
PQID 2583107013
PQPubID 4562441
PageCount 17
ParticipantIDs crossref_primary_10_3847_1538_4357_ac173e
iop_journals_10_3847_1538_4357_ac173e
proquest_journals_2583107013
crossref_citationtrail_10_3847_1538_4357_ac173e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2021
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Han (apjac173ebib51) 2020a; 891
Nelemans (apjac173ebib100) 2004; 349
Feast (apjac173ebib41) 1997; 291
Rastello (apjac173ebib121) 2020; 497
Eldridge (apjac173ebib38) 2016; 462
Shibata (apjac173ebib137) 2019; 100
Abbott (apjac173ebib7) 2021b; 915
Fryer (apjac173ebib44) 2012; 749
Tauris (apjac173ebib151) 2000; 530
Yamaguchi (apjac173ebib166) 2018; 861
van Haaften (apjac173ebib157) 2012; 537
Brott (apjac173ebib28) 2011; 530
Hamann (apjac173ebib50) 1995; 299
Abbott (apjac173ebib2) 2016; 116
Olejak (apjac173ebib103) 2021; 651
Paxton (apjac173ebib109) 2011; 192
Mapelli (apjac173ebib88) 2018; 479
Tanikawa (apjac173ebib148) 2021; 910
Langer (apjac173ebib77) 2012; 50
Timmes (apjac173ebib153) 1996; 457
Zhou (apjac173ebib168) 2021; 910
Maccarone (apjac173ebib83) 2007; 445
Luo (apjac173ebib82) 2016; 33
Raithel (apjac173ebib120) 2018; 856
Paxton (apjac173ebib111) 2015; 220
Dessart (apjac173ebib33) 2006; 644
Tauris (apjac173ebib149) 2015; 451
Vink (apjac173ebib158) 2001; 369
Belczynski (apjac173ebib23) 2008; 174
Tout (apjac173ebib154) 1996; 281
Shao (apjac173ebib134) 2018; 477
Marchant (apjac173ebib91) 2021; 650
Sipior (apjac173ebib139) 2004; 354
Gompertz (apjac173ebib48) 2020; 895
Tauris (apjac173ebib150) 2018; 121
Abbott (apjac173ebib3) 2019; 9
Antonini (apjac173ebib14) 2016; 831
Mandel (apjac173ebib87) 2020; 499
Shao (apjac173ebib135) 2019; 885
Alsing (apjac173ebib10) 2018; 478
Paczynski (apjac173ebib105) 1976
Pavlovskii (apjac173ebib107) 2015; 449
Abbott (apjac173ebib6) 2020b
Begelman (apjac173ebib20) 1979; 187
Kyutoku (apjac173ebib75) 2020; 890
O’Leary (apjac173ebib102) 2009; 395
Jayasinghe (apjac173ebib61) 2021; 504
Zhu (apjac173ebib169) 2021; 917
Hotokezaka (apjac173ebib55) 2016; 831
Lau (apjac173ebib78) 2020; 492
Spera (apjac173ebib143) 2019; 485
Wyrzykowski (apjac173ebib85) 2020; 636
Miller-Jones (apjac173ebib96) 2015; 453
Abt (apjac173ebib8) 1983; 21
Iben (apjac173ebib58) 1993; 105
Barack (apjac173ebib18) 2004; 70
Downing (apjac173ebib37) 2010; 407
Acernese (apjac173ebib9) 2015; 32
Copperwheat (apjac173ebib31) 2016; 462
de Mink (apjac173ebib32) 2016; 460
Giacobbo (apjac173ebib47) 2018; 480
Santoliquido (apjac173ebib128) 2020; 898
Kremer (apjac173ebib72) 2019; 99
Hurley (apjac173ebib57) 2002; 329
Smartt (apjac173ebib140) 2016; 827
Yalinewich (apjac173ebib165) 2018; 481
Voss (apjac173ebib159) 2003; 342
Broekgaarden (apjac173ebib27) 2021
Robitaille (apjac173ebib122) 2010; 710
Bavera (apjac173ebib19) 2021; 647
Moe (apjac173ebib98) 2017; 230
Paczynski (apjac173ebib106) 1986; 308
Klencki (apjac173ebib66) 2021; 645
Lamberts (apjac173ebib76) 2018; 480
Kobulnicky (apjac173ebib68) 2014; 213
Margalit (apjac173ebib92) 2017; 850
Mandel (apjac173ebib86) 2016; 458
Webbink (apjac173ebib161) 1984; 277
Kolb (apjac173ebib70) 1990; 236
Rafelski (apjac173ebib119) 2012; 755
King (apjac173ebib63) 1999; 519
Banerjee (apjac173ebib17) 2020; 102
Fragione (apjac173ebib42) 2019; 490
Nieuwenhuijzen (apjac173ebib101) 1990; 231
Andrews (apjac173ebib12) 2019; 886
Perna (apjac173ebib114) 2019; 878
Kremer (apjac173ebib73) 2020; 247
Ziosi (apjac173ebib170) 2014; 441
Wiktorowicz (apjac173ebib163) 2020; 905
Abbott (apjac173ebib5) 2021a; 913
Breivik (apjac173ebib26) 2020; 898
Abbott (apjac173ebib4) 2020a; 896
Soberman (apjac173ebib142) 1997; 327
Xu (apjac173ebib164) 2010; 716
Farr (apjac173ebib39) 2020; 4
Podsiadlowski (apjac173ebib117) 2002; 565
Amaro-Seoane (apjac173ebib11) 2017
Sana (apjac173ebib127) 2012; 337
Tutukov (apjac173ebib155) 1993; 260
Askar (apjac173ebib15) 2017; 464
Antoniadis (apjac173ebib13) 2013; 340
Mashian (apjac173ebib93) 2017; 470
Dong (apjac173ebib36) 2018; 475
Belczynski (apjac173ebib22) 2016; 534
Silsbee (apjac173ebib138) 2017; 836
Li (apjac173ebib79) 1998; 507
Thompson (apjac173ebib152) 2019; 366
Madau (apjac173ebib84) 2014; 52
Diehl (apjac173ebib35) 2006; 439
Kiel (apjac173ebib62) 2006; 369
Zevin (apjac173ebib167) 2020; 899
Sukhbold (apjac173ebib147) 2016; 821
Smith (apjac173ebib141) 1978; 66
Kremer (apjac173ebib71) 2017; 846
Ivanova (apjac173ebib60) 2013; 21
Robson (apjac173ebib123) 2019; 36
Kobulnicky (apjac173ebib67) 2007; 670
Kroupa (apjac173ebib74) 1993; 262
Shao (apjac173ebib132) 2014; 796
Kinugawa (apjac173ebib64) 2014; 442
Lipunov (apjac173ebib80) 1997; 23
Paxton (apjac173ebib110) 2013; 208
Han (apjac173ebib52) 2020b; 20
Belczynski (apjac173ebib21) 2010; 714
Paxton (apjac173ebib113) 2019; 243
Di Carlo (apjac173ebib34) 2019; 487
Ruiz (apjac173ebib126) 2018; 97
Kolb (apjac173ebib69) 2000; 317
Paxton (apjac173ebib112) 2018; 234
Ge (apjac173ebib46) 2020; 249
Stancliffe (apjac173ebib144) 2009; 396
Aasi (apjac173ebib1) 2015; 32
Chattopadhyay (apjac173ebib29) 2021; 504
Ivanova (apjac173ebib59) 2010; 717
Özel (apjac173ebib104) 2010; 725
Marchant (apjac173ebib90) 2016; 588
Stevenson (apjac173ebib145) 2017; 8
Pavlovskii (apjac173ebib108) 2017; 465
Wang (apjac173ebib160) 2021; 506
Bailyn (apjac173ebib16) 1998; 499
Fragione (apjac173ebib43) 2020; 495
Planck Collaboration (apjac173ebib116) 2016; 594
Shao (apjac173ebib136) 2020; 898
Metzger (apjac173ebib95) 2012; 419
Sberna (apjac173ebib129) 2021; 908
Sesana (apjac173ebib130) 2020; 494
Mapelli (apjac173ebib89) 2017; 472
van den Heuvel (apjac173ebib156) 2017; 471
Huang (apjac173ebib56) 2020; 904
Gould (apjac173ebib49) 2002; 572
Nakar (apjac173ebib99) 2011; 478
McKernan (apjac173ebib94) 2018; 866
Shao (apjac173ebib131) 2012; 756
Rodriguez (apjac173ebib124) 2016; 824
Stone (apjac173ebib146) 2017; 464
Hobbs (apjac173ebib54) 2005; 360
Klencki (apjac173ebib65) 2018; 619
Racusin (apjac173ebib118) 2017; 835
Breivik (apjac173ebib24) 2019; 878
Wen (apjac173ebib162) 2003; 598
Breivik (apjac173ebib25) 2017; 850
Shao (apjac173ebib133) 2016; 833
Ge (apjac173ebib45) 2010; 717
Hoang (apjac173ebib53) 2018; 856
Chen (apjac173ebib30) 2020; 900
Farr (apjac173ebib40) 2011; 741
Liu (apjac173ebib81) 2018; 863
Peters (apjac173ebib115) 1963; 131
Misra (apjac173ebib97) 2020; 642
Ruan (apjac173ebib125) 2020; 35
References_xml – volume: 299
  start-page: 151
  year: 1995
  ident: apjac173ebib50
  publication-title: A&A
– volume: 904
  start-page: 39
  year: 2020
  ident: apjac173ebib56
  publication-title: ApJ
  doi: 10.3847/1538-4357/abbb37
– volume: 480
  start-page: 2704
  year: 2018
  ident: apjac173ebib76
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2035
– volume: 260
  start-page: 675
  year: 1993
  ident: apjac173ebib155
  publication-title: MNRAS
  doi: 10.1093/mnras/260.3.675
– volume: 741
  start-page: 103
  year: 2011
  ident: apjac173ebib40
  publication-title: ApJ
  doi: 10.1088/0004-637X/741/2/103
– volume: 915
  start-page: L5
  year: 2021b
  ident: apjac173ebib7
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac082e
– volume: 755
  start-page: 89
  year: 2012
  ident: apjac173ebib119
  publication-title: ApJ
  doi: 10.1088/0004-637X/755/2/89
– volume: 33
  year: 2016
  ident: apjac173ebib82
  publication-title: CQGra
  doi: 10.1088/0264-9381/33/3/035010
– volume: 460
  start-page: 3545
  year: 2016
  ident: apjac173ebib32
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1219
– volume: 821
  start-page: 38
  year: 2016
  ident: apjac173ebib147
  publication-title: ApJ
  doi: 10.3847/0004-637X/821/1/38
– volume: 441
  start-page: 3703
  year: 2014
  ident: apjac173ebib170
  publication-title: MNRAS
  doi: 10.1093/mnras/stu824
– volume: 462
  start-page: 3302
  year: 2016
  ident: apjac173ebib38
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1772
– volume: 291
  start-page: 683
  year: 1997
  ident: apjac173ebib41
  publication-title: MNRAS
  doi: 10.1093/mnras/291.4.683
– volume: 490
  start-page: 4991
  year: 2019
  ident: apjac173ebib42
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2902
– volume: 243
  start-page: 10
  year: 2019
  ident: apjac173ebib113
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab2241
– volume: 360
  start-page: 974
  year: 2005
  ident: apjac173ebib54
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09087.x
– volume: 262
  start-page: 545
  year: 1993
  ident: apjac173ebib74
  publication-title: MNRAS
  doi: 10.1093/mnras/262.3.545
– volume: 247
  start-page: 48
  year: 2020
  ident: apjac173ebib73
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab7919
– volume: 494
  start-page: L75
  year: 2020
  ident: apjac173ebib130
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slaa039
– volume: 9
  year: 2019
  ident: apjac173ebib3
  publication-title: PhRvX
  doi: 10.1103/PhysRevX.9.031040
– volume: 530
  start-page: 115
  year: 2011
  ident: apjac173ebib28
  publication-title: A&A
  doi: 10.1051/0004-6361/201016113
– volume: 395
  start-page: 2127
  year: 2009
  ident: apjac173ebib102
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14653.x
– volume: 647
  start-page: 153
  year: 2021
  ident: apjac173ebib19
  publication-title: A&A
  doi: 10.1051/0004-6361/202039804
– volume: 895
  start-page: 58
  year: 2020
  ident: apjac173ebib48
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab8d24
– volume: 499
  start-page: 3214
  year: 2020
  ident: apjac173ebib87
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3043
– volume: 407
  start-page: 1946
  year: 2010
  ident: apjac173ebib37
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17040.x
– volume: 796
  start-page: 37
  year: 2014
  ident: apjac173ebib132
  publication-title: ApJ
  doi: 10.1088/0004-637X/796/1/37
– year: 1976
  ident: apjac173ebib105
– volume: 850
  start-page: L19
  year: 2017
  ident: apjac173ebib92
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa991c
– volume: 850
  start-page: L13
  year: 2017
  ident: apjac173ebib25
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa97d5
– volume: 464
  start-page: 946
  year: 2017
  ident: apjac173ebib146
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2260
– volume: 70
  year: 2004
  ident: apjac173ebib18
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.70.122002
– volume: 642
  start-page: 174
  year: 2020
  ident: apjac173ebib97
  publication-title: A&A
  doi: 10.1051/0004-6361/202038070
– volume: 861
  start-page: 21
  year: 2018
  ident: apjac173ebib166
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac5ec
– volume: 917
  start-page: 24
  year: 2021
  ident: apjac173ebib169
  publication-title: ApJ
  doi: 10.3847/1538-4357/abfe5e
– volume: 220
  start-page: 15
  year: 2015
  ident: apjac173ebib111
  publication-title: ApJS
  doi: 10.1088/0067-0049/220/1/15
– volume: 327
  start-page: 620
  year: 1997
  ident: apjac173ebib142
  publication-title: A&A
– volume: 886
  start-page: 68
  year: 2019
  ident: apjac173ebib12
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab441f
– volume: 507
  start-page: L59
  year: 1998
  ident: apjac173ebib79
  publication-title: ApJL
  doi: 10.1086/311680
– volume: 856
  start-page: 35
  year: 2018
  ident: apjac173ebib120
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab09b
– volume: 317
  start-page: 438
  year: 2000
  ident: apjac173ebib69
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03606.x
– volume: 645
  start-page: 54
  year: 2021
  ident: apjac173ebib66
  publication-title: A&A
  doi: 10.1051/0004-6361/202038707
– volume: 449
  start-page: 4415
  year: 2015
  ident: apjac173ebib107
  publication-title: MNRAS
  doi: 10.1093/mnras/stv619
– volume: 714
  start-page: 1217
  year: 2010
  ident: apjac173ebib21
  publication-title: ApJ
  doi: 10.1088/0004-637X/714/2/1217
– volume: 899
  start-page: L1
  year: 2020
  ident: apjac173ebib167
  publication-title: ApJL
  doi: 10.3847/2041-8213/aba74e
– volume: 866
  start-page: 66
  year: 2018
  ident: apjac173ebib94
  publication-title: ApJ
  doi: 10.3847/1538-4357/aadae5
– volume: 131
  start-page: 435
  year: 1963
  ident: apjac173ebib115
  publication-title: PhRv
  doi: 10.1103/PhysRev.131.435
– volume: 479
  start-page: 4391
  year: 2018
  ident: apjac173ebib88
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1613
– volume: 644
  start-page: 1063
  year: 2006
  ident: apjac173ebib33
  publication-title: ApJ
  doi: 10.1086/503626
– volume: 827
  start-page: L40
  year: 2016
  ident: apjac173ebib140
  publication-title: ApJL
  doi: 10.3847/2041-8205/827/2/L40
– volume: 908
  start-page: 1
  year: 2021
  ident: apjac173ebib129
  publication-title: ApJ
  doi: 10.3847/1538-4357/abccc7
– volume: 477
  start-page: L128
  year: 2018
  ident: apjac173ebib134
  publication-title: MNRAS
  doi: 10.1093/mnrasl/sly063
– volume: 636
  start-page: A20
  year: 2020
  ident: apjac173ebib85
  publication-title: A&A
  doi: 10.1051/0004-6361/201935842
– volume: 32
  year: 2015
  ident: apjac173ebib1
  publication-title: CQGra
  doi: 10.1088/0264-9381/32/11/115012
– volume: 725
  start-page: 1918
  year: 2010
  ident: apjac173ebib104
  publication-title: ApJ
  doi: 10.1088/0004-637X/725/2/1918
– volume: 187
  start-page: 237
  year: 1979
  ident: apjac173ebib20
  publication-title: MNRAS
  doi: 10.1093/mnras/187.2.237
– volume: 565
  start-page: 1107
  year: 2002
  ident: apjac173ebib117
  publication-title: ApJ
  doi: 10.1086/324686
– volume: 21
  start-page: 59
  year: 2013
  ident: apjac173ebib60
  publication-title: A&AR
  doi: 10.1007/s00159-013-0059-2
– volume: 530
  start-page: L93
  year: 2000
  ident: apjac173ebib151
  publication-title: ApJL
  doi: 10.1086/312496
– volume: 369
  start-page: 1152
  year: 2006
  ident: apjac173ebib62
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10400.x
– volume: 236
  start-page: 385
  year: 1990
  ident: apjac173ebib70
  publication-title: A&A
– volume: 670
  start-page: 747
  year: 2007
  ident: apjac173ebib67
  publication-title: ApJ
  doi: 10.1086/522073
– volume: 478
  start-page: 82
  year: 2011
  ident: apjac173ebib99
  publication-title: Natur
  doi: 10.1038/nature10365
– volume: 756
  start-page: 85
  year: 2012
  ident: apjac173ebib131
  publication-title: ApJ
  doi: 10.1088/0004-637X/756/1/85
– volume: 898
  start-page: 71
  year: 2020
  ident: apjac173ebib26
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab9d85
– volume: 231
  start-page: 134
  year: 1990
  ident: apjac173ebib101
  publication-title: A&A
– volume: 354
  start-page: L49
  year: 2004
  ident: apjac173ebib139
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08373.x
– volume: 588
  start-page: A50
  year: 2016
  ident: apjac173ebib90
  publication-title: A&A
  doi: 10.1051/0004-6361/201628133
– volume: 650
  start-page: A107
  year: 2021
  ident: apjac173ebib91
  publication-title: A&A
  doi: 10.1051/0004-6361/202039992
– volume: 192
  start-page: 3
  year: 2011
  ident: apjac173ebib109
  publication-title: ApJS
  doi: 10.1088/0067-0049/192/1/3
– volume: 824
  start-page: L8
  year: 2016
  ident: apjac173ebib124
  publication-title: ApJL
  doi: 10.3847/2041-8205/824/1/L8
– volume: 281
  start-page: 257
  year: 1996
  ident: apjac173ebib154
  publication-title: MNRAS
  doi: 10.1093/mnras/281.1.257
– volume: 342
  start-page: 1169
  year: 2003
  ident: apjac173ebib159
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06616.x
– volume: 885
  start-page: 151
  year: 2019
  ident: apjac173ebib135
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab4816
– volume: 572
  start-page: 944
  year: 2002
  ident: apjac173ebib49
  publication-title: ApJ
  doi: 10.1086/340435
– volume: 52
  start-page: 415
  year: 2014
  ident: apjac173ebib84
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081811-125615
– volume: 913
  start-page: L7
  year: 2021a
  ident: apjac173ebib5
  publication-title: ApJL
  doi: 10.3847/2041-8213/abe949
– volume: 534
  start-page: 512
  year: 2016
  ident: apjac173ebib22
  publication-title: Natur
  doi: 10.1038/nature18322
– volume: 453
  start-page: 3918
  year: 2015
  ident: apjac173ebib96
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1869
– volume: 116
  year: 2016
  ident: apjac173ebib2
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.116.061102
– year: 2021
  ident: apjac173ebib27
– volume: 23
  start-page: 492
  year: 1997
  ident: apjac173ebib80
  publication-title: AstL
– volume: 457
  start-page: 834
  year: 1996
  ident: apjac173ebib153
  publication-title: ApJ
  doi: 10.1086/176778
– year: 2020b
  ident: apjac173ebib6
– volume: 594
  start-page: 13
  year: 2016
  ident: apjac173ebib116
  publication-title: A&A
  doi: 10.1051/0004-6361/201525830
– volume: 121
  year: 2018
  ident: apjac173ebib150
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.121.131105
– volume: 208
  start-page: 4
  year: 2013
  ident: apjac173ebib110
  publication-title: ApJS
  doi: 10.1088/0067-0049/208/1/4
– volume: 369
  start-page: 574
  year: 2001
  ident: apjac173ebib158
  publication-title: A&A
  doi: 10.1051/0004-6361:20010127
– volume: 896
  start-page: L44
  year: 2020a
  ident: apjac173ebib4
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab960f
– volume: 50
  start-page: 107
  year: 2012
  ident: apjac173ebib77
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081811-125534
– volume: 308
  start-page: L43
  year: 1986
  ident: apjac173ebib106
  publication-title: ApJL
  doi: 10.1086/184740
– volume: 36
  year: 2019
  ident: apjac173ebib123
  publication-title: CQGra
  doi: 10.1088/1361-6382/ab1101
– volume: 836
  start-page: 39
  year: 2017
  ident: apjac173ebib138
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa5729
– volume: 475
  start-page: L101
  year: 2018
  ident: apjac173ebib36
  publication-title: MNRAS
  doi: 10.1093/mnrasl/sly014
– volume: 174
  start-page: 223
  year: 2008
  ident: apjac173ebib23
  publication-title: ApJS
  doi: 10.1086/521026
– volume: 471
  start-page: 4256
  year: 2017
  ident: apjac173ebib156
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1430
– volume: 910
  start-page: 62
  year: 2021
  ident: apjac173ebib168
  publication-title: ApJ
  doi: 10.3847/1538-4357/abe538
– volume: 102
  year: 2020
  ident: apjac173ebib17
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.102.103002
– volume: 97
  year: 2018
  ident: apjac173ebib126
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.97.021501
– volume: 329
  start-page: 897
  year: 2002
  ident: apjac173ebib57
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05038.x
– volume: 472
  start-page: 2422
  year: 2017
  ident: apjac173ebib89
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2123
– volume: 492
  start-page: 3061
  year: 2020
  ident: apjac173ebib78
  publication-title: MNRAS
  doi: 10.1093/mnras/staa002
– volume: 8
  start-page: 14906
  year: 2017
  ident: apjac173ebib145
  publication-title: NatCo
  doi: 10.1038/ncomms14906
– volume: 4
  start-page: 65
  year: 2020
  ident: apjac173ebib39
  publication-title: RNAAS
– volume: 439
  start-page: 45
  year: 2006
  ident: apjac173ebib35
  publication-title: Natur
  doi: 10.1038/nature04364
– volume: 863
  start-page: 68
  year: 2018
  ident: apjac173ebib81
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad09f
– volume: 100
  year: 2019
  ident: apjac173ebib137
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.100.023015
– volume: 99
  year: 2019
  ident: apjac173ebib72
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.99.063003
– volume: 464
  start-page: L36
  year: 2017
  ident: apjac173ebib15
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slw177
– volume: 619
  start-page: 77
  year: 2018
  ident: apjac173ebib65
  publication-title: A&A
  doi: 10.1051/0004-6361/201833025
– volume: 891
  start-page: L5
  year: 2020a
  ident: apjac173ebib51
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab745a
– volume: 504
  start-page: 2577
  year: 2021
  ident: apjac173ebib61
  publication-title: MNRAS
  doi: 10.1093/mnras/stab907
– volume: 458
  start-page: 2634
  year: 2016
  ident: apjac173ebib86
  publication-title: MNRAS
  doi: 10.1093/mnras/stw379
– volume: 831
  start-page: 187
  year: 2016
  ident: apjac173ebib14
  publication-title: ApJ
  doi: 10.3847/0004-637X/831/2/187
– volume: 487
  start-page: 2947
  year: 2019
  ident: apjac173ebib34
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1453
– volume: 470
  start-page: 2611
  year: 2017
  ident: apjac173ebib93
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1410
– volume: 462
  start-page: 3528
  year: 2016
  ident: apjac173ebib31
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1849
– volume: 230
  start-page: 15
  year: 2017
  ident: apjac173ebib98
  publication-title: ApJS
  doi: 10.3847/1538-4365/aa6fb6
– volume: 506
  start-page: 4654
  year: 2021
  ident: apjac173ebib160
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2032
– volume: 519
  start-page: L169
  year: 1999
  ident: apjac173ebib63
  publication-title: ApJL
  doi: 10.1086/312126
– volume: 213
  start-page: 34
  year: 2014
  ident: apjac173ebib68
  publication-title: ApJS
  doi: 10.1088/0067-0049/213/2/34
– volume: 445
  start-page: 183
  year: 2007
  ident: apjac173ebib83
  publication-title: Natur
  doi: 10.1038/nature05434
– volume: 835
  start-page: 82
  year: 2017
  ident: apjac173ebib118
  publication-title: ApJ
  doi: 10.3847/1538-4357/835/1/82
– volume: 480
  start-page: 2011
  year: 2018
  ident: apjac173ebib47
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1999
– volume: 20
  start-page: 161
  year: 2020b
  ident: apjac173ebib52
  publication-title: RAA
  doi: 10.1088/1674-4527/20/10/161
– volume: 905
  start-page: 134
  year: 2020
  ident: apjac173ebib163
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc699
– volume: 717
  start-page: 724
  year: 2010
  ident: apjac173ebib45
  publication-title: ApJ
  doi: 10.1088/0004-637X/717/2/724
– volume: 396
  start-page: 1699
  year: 2009
  ident: apjac173ebib144
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14849.x
– volume: 485
  start-page: 889
  year: 2019
  ident: apjac173ebib143
  publication-title: MNRAS
  doi: 10.1093/mnras/stz359
– volume: 898
  start-page: 152
  year: 2020
  ident: apjac173ebib128
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab9b78
– volume: 846
  start-page: 95
  year: 2017
  ident: apjac173ebib71
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8557
– volume: 878
  start-page: L1
  year: 2019
  ident: apjac173ebib114
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab2336
– volume: 831
  start-page: 190
  year: 2016
  ident: apjac173ebib55
  publication-title: ApJ
  doi: 10.3847/0004-637X/831/2/190
– volume: 598
  start-page: 419
  year: 2003
  ident: apjac173ebib162
  publication-title: ApJ
  doi: 10.1086/378794
– volume: 499
  start-page: 367
  year: 1998
  ident: apjac173ebib16
  publication-title: ApJ
  doi: 10.1086/305614
– volume: 419
  start-page: 827
  year: 2012
  ident: apjac173ebib95
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19747.x
– volume: 495
  start-page: 1061
  year: 2020
  ident: apjac173ebib43
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1192
– volume: 234
  start-page: 34
  year: 2018
  ident: apjac173ebib112
  publication-title: ApJS
  doi: 10.3847/1538-4365/aaa5a8
– volume: 105
  start-page: 1373
  year: 1993
  ident: apjac173ebib58
  publication-title: PASP
  doi: 10.1086/133321
– volume: 890
  start-page: L4
  year: 2020
  ident: apjac173ebib75
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab6e70
– volume: 481
  start-page: 930
  year: 2018
  ident: apjac173ebib165
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2327
– year: 2017
  ident: apjac173ebib11
– volume: 366
  start-page: 637
  year: 2019
  ident: apjac173ebib152
  publication-title: Sci
  doi: 10.1126/science.aau4005
– volume: 277
  start-page: 355
  year: 1984
  ident: apjac173ebib161
  publication-title: ApJ
  doi: 10.1086/161701
– volume: 833
  start-page: 108
  year: 2016
  ident: apjac173ebib133
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/1/108
– volume: 710
  start-page: L11
  year: 2010
  ident: apjac173ebib122
  publication-title: ApJL
  doi: 10.1088/2041-8205/710/1/L11
– volume: 337
  start-page: 444
  year: 2012
  ident: apjac173ebib127
  publication-title: Sci
  doi: 10.1126/science.1223344
– volume: 878
  start-page: L4
  year: 2019
  ident: apjac173ebib24
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab21d3
– volume: 32
  year: 2015
  ident: apjac173ebib9
  publication-title: CQGra
  doi: 10.1088/0264-9381/32/2/024001
– volume: 856
  start-page: 140
  year: 2018
  ident: apjac173ebib53
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaafce
– volume: 716
  start-page: 114
  year: 2010
  ident: apjac173ebib164
  publication-title: ApJ
  doi: 10.1088/0004-637X/716/1/114
– volume: 537
  start-page: A104
  year: 2012
  ident: apjac173ebib157
  publication-title: A&A
  doi: 10.1051/0004-6361/201117880
– volume: 504
  start-page: 3682
  year: 2021
  ident: apjac173ebib29
  publication-title: MNRAS
  doi: 10.1093/mnras/stab973
– volume: 349
  start-page: 181
  year: 2004
  ident: apjac173ebib100
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07479.x
– volume: 497
  start-page: 1563
  year: 2020
  ident: apjac173ebib121
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2018
– volume: 249
  start-page: 9
  year: 2020
  ident: apjac173ebib46
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab98f6
– volume: 749
  start-page: 91
  year: 2012
  ident: apjac173ebib44
  publication-title: ApJ
  doi: 10.1088/0004-637X/749/1/91
– volume: 451
  start-page: 2123
  year: 2015
  ident: apjac173ebib149
  publication-title: MNRAS
  doi: 10.1093/mnras/stv990
– volume: 478
  start-page: 1377
  year: 2018
  ident: apjac173ebib10
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1065
– volume: 717
  start-page: 948
  year: 2010
  ident: apjac173ebib59
  publication-title: ApJ
  doi: 10.1088/0004-637X/717/2/948
– volume: 465
  start-page: 2092
  year: 2017
  ident: apjac173ebib108
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2786
– volume: 21
  start-page: 343
  year: 1983
  ident: apjac173ebib8
  publication-title: ARA&A
  doi: 10.1146/annurev.aa.21.090183.002015
– volume: 898
  start-page: 143
  year: 2020
  ident: apjac173ebib136
  publication-title: ApJ
  doi: 10.3847/1538-4357/aba118
– volume: 340
  start-page: 448
  year: 2013
  ident: apjac173ebib13
  publication-title: Sci
  doi: 10.1126/science.1233232
– volume: 442
  start-page: 2963
  year: 2014
  ident: apjac173ebib64
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1022
– volume: 900
  start-page: L8
  year: 2020
  ident: apjac173ebib30
  publication-title: ApJL
  doi: 10.3847/2041-8213/abae66
– volume: 66
  start-page: 65
  year: 1978
  ident: apjac173ebib141
  publication-title: A&A
– volume: 35
  year: 2020
  ident: apjac173ebib125
  publication-title: IJMPA
  doi: 10.1142/S0217751X2050075X
– volume: 651
  start-page: A100
  year: 2021
  ident: apjac173ebib103
  publication-title: A&A
  doi: 10.1051/0004-6361/202140520
– volume: 910
  start-page: 30
  year: 2021
  ident: apjac173ebib148
  publication-title: ApJ
  doi: 10.3847/1538-4357/abe40d
SSID ssj0004299
Score 2.622597
Snippet We perform a systematic study of merging black hole (BH) binaries with compact star (CS) companions, including black hole–white dwarf (BH–WD), black...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 81
SubjectTerms Astrophysics
Binary stars
Black holes
Compact binary stars
Criteria
Evolution
Gravitational waves
Mass transfer
Mathematical analysis
Milky Way
Neutron stars
Stars & galaxies
Stellar evolution
Supernova
Supernovae
Synthesis
White dwarf stars
Title Population Synthesis of Black Hole Binaries with Compact Star Companions
URI https://iopscience.iop.org/article/10.3847/1538-4357/ac173e
https://www.proquest.com/docview/2583107013
Volume 920
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_UUuhLa22LZ1X2oQp9yJ3ZzX6EPmmpHIL1wErvobDsbjbgR5PDxAf96zubzZ1oRUpfwgQm2ezsx_xmsjMD8EmKkHHFyUTawiSZUCJRSvAE0akwtswM7dI1HX8X47PsaMqnS_BlEQtTz_qtf4hkTBQcRRjWN8O9dNStUdTycmRcKplfhhdMoeIM0Xsnk_ugSJr32DdLBJPT-I_yyTc80EnL2O5fG3OnbQ7fwK_5d8ZDJpfDm9YO3d2jFI7_2ZFVeN2jULIfWd_Ckq_WYH2_CX7x-vct2SUdHd0ezRq8nETqHYwni4pf5PS2QvjYnDekLknnCSTj-sqTgxDjixY4CU5e0u04riUIa6_jTRWm-ns4O_z24-s46asxJI7JvE0yh1CQWlWgrrM8F6nb2zNGWR6MkCw1PKdISENL5n2elzlDWyRFtFamFhe-Zx9gpaorvw6kYBnzIeRV2SJzLqTAL9FSo7niheAlH8BoPh7a9anKQ8WMK40mSxCdDqLTQXQ6im4AnxdPzGKajmd4d3BEdL9Wm2f4th7wmdmFxj5qqlWqZ0U5gM35JLlnojxUbpMIrDf-sZmP8IqGczLdAcFNWGmvb_wWAp3WbncTGq8n7OcfODfy1Q
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xEBUXxKMVW14-ABKHdIkd28mBA6_V8l6Jou7NdRxHKqLJimxV7a_iLzKOwyIEQly4TaTJw5_HM9849hhgUwpXccXIQKaZDiIRiyCOBQ-QnQqd5pGmdbmmi0vRvYlO-7w_AQ_jvTDloHH9P1D0hYI9hG58M_Sl7XqMYpSXbW1CyWx7kOXNqsozO_qPOVu1d3KEHbxFaef452E3aI4VCAyTyTCIDHIamsYZOu2UJyI0u7taxyl3bDoKNU8oClLTnFmbJHnCkFSHSDvyMEULtgyfOwnTnGFowwF0xX49b8SkScO3o0Aw2ff_Rd_86hdxcBLb-ioY1BGuMw9zDTUl-x6IBZiwxSIs71dusrz8OyLbpJb9XEi1CDM9Ly1Btzc-BoxcjwrklNWfipQ5qacHSbe8s-TAbfzFtJy4mV9SuyEzJMh17_1F4ez_K9x8CpbfYKooC7sMJGMRs24fbJxmkTGuLn6O6RtNYp4JnvMWtJ8AU6apX-6O0bhTmMc4iJWDWDmIlYe4BTvjOwa-dsc7ulvYB6oZwNU7emsv9PTgVmEbFVVxqNAQW7D61IvPSpS749wksu3vH3zNBnzpHXXU-cnl2QrMUreOpl5AuApTw_t_dg2J0DBdr42PwO_PtvZHNZcNug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+Synthesis+of+Black+Hole+Binaries+with+Compact+Star+Companions&rft.jtitle=The+Astrophysical+journal&rft.au=Shao%2C+Yong&rft.au=Li%2C+Xiang-Dong&rft.date=2021-10-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=920&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fac173e&rft.externalDocID=apjac173e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon