Development of a Modular Automated System for Maintenance and Differentiation of Adherent Human Pluripotent Stem Cells
Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability....
Saved in:
Published in | SLAS discovery Vol. 22; no. 8; pp. 1016 - 1025 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.09.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2472-5552 2472-5560 2472-5560 |
DOI | 10.1177/2472555217696797 |
Cover
Loading…
Abstract | Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability. To address these issues, we established and optimized protocols to allow for the automated maintenance of reprogrammed somatic cells into iPSCs to enable the large-scale culture and passaging of human pluripotent stem cells (PSCs) using a customized TECAN Freedom EVO. Generation of iPSCs was performed offline by nucleofection followed by selection of TRA-1-60–positive cells using a Miltenyi MultiMACS24 Separator. Pluripotency markers were assessed to confirm pluripotency of the generated iPSCs. Passaging was performed using an enzyme-free dissociation method. Proof of concept of differentiation was obtained by differentiating human PSCs into cells of the retinal lineage. Key advantages of this automated approach are the ability to increase sample size, reduce variability during reprogramming or differentiation, and enable medium- to high-throughput analysis of human PSCs and derivatives. These techniques will become increasingly important with the emergence of clinical trials using stem cells. |
---|---|
AbstractList | Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability. To address these issues, we established and optimized protocols to allow for the automated maintenance of reprogrammed somatic cells into iPSCs to enable the large-scale culture and passaging of human pluripotent stem cells (PSCs) using a customized TECAN Freedom EVO. Generation of iPSCs was performed offline by nucleofection followed by selection of TRA-1-60-positive cells using a Miltenyi MultiMACS24 Separator. Pluripotency markers were assessed to confirm pluripotency of the generated iPSCs. Passaging was performed using an enzyme-free dissociation method. Proof of concept of differentiation was obtained by differentiating human PSCs into cells of the retinal lineage. Key advantages of this automated approach are the ability to increase sample size, reduce variability during reprogramming or differentiation, and enable medium- to high-throughput analysis of human PSCs and derivatives. These techniques will become increasingly important with the emergence of clinical trials using stem cells.Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability. To address these issues, we established and optimized protocols to allow for the automated maintenance of reprogrammed somatic cells into iPSCs to enable the large-scale culture and passaging of human pluripotent stem cells (PSCs) using a customized TECAN Freedom EVO. Generation of iPSCs was performed offline by nucleofection followed by selection of TRA-1-60-positive cells using a Miltenyi MultiMACS24 Separator. Pluripotency markers were assessed to confirm pluripotency of the generated iPSCs. Passaging was performed using an enzyme-free dissociation method. Proof of concept of differentiation was obtained by differentiating human PSCs into cells of the retinal lineage. Key advantages of this automated approach are the ability to increase sample size, reduce variability during reprogramming or differentiation, and enable medium- to high-throughput analysis of human PSCs and derivatives. These techniques will become increasingly important with the emergence of clinical trials using stem cells. Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability. To address these issues, we established and optimized protocols to allow for the automated maintenance of reprogrammed somatic cells into iPSCs to enable the large-scale culture and passaging of human pluripotent stem cells (PSCs) using a customized TECAN Freedom EVO. Generation of iPSCs was performed offline by nucleofection followed by selection of TRA-1-60-positive cells using a Miltenyi MultiMACS24 Separator. Pluripotency markers were assessed to confirm pluripotency of the generated iPSCs. Passaging was performed using an enzyme-free dissociation method. Proof of concept of differentiation was obtained by differentiating human PSCs into cells of the retinal lineage. Key advantages of this automated approach are the ability to increase sample size, reduce variability during reprogramming or differentiation, and enable medium- to high-throughput analysis of human PSCs and derivatives. These techniques will become increasingly important with the emergence of clinical trials using stem cells. |
Author | Li, Fan Hernández, Damian Gill, Katherine P. De Smit, Elisabeth Hewitt, Alex W. Crombie, Duncan E. Lidgerwood, Grace E. Liang, Helena H. Conquest, Alison Kearns, Lisa S. Clarke, Linda Zack, Donald J. Hung, Sandy S. Sluch, Valentin M. Chamling, Xitiz Wong, Raymond C. B. Daniszewski, Maciej Kulkarni, Tejal Pébay, Alice |
Author_xml | – sequence: 1 givenname: Duncan E. surname: Crombie fullname: Crombie, Duncan E. – sequence: 2 givenname: Maciej surname: Daniszewski fullname: Daniszewski, Maciej – sequence: 3 givenname: Helena H. surname: Liang fullname: Liang, Helena H. – sequence: 4 givenname: Tejal surname: Kulkarni fullname: Kulkarni, Tejal – sequence: 5 givenname: Fan surname: Li fullname: Li, Fan – sequence: 6 givenname: Grace E. surname: Lidgerwood fullname: Lidgerwood, Grace E. – sequence: 7 givenname: Alison surname: Conquest fullname: Conquest, Alison – sequence: 8 givenname: Damian surname: Hernández fullname: Hernández, Damian – sequence: 9 givenname: Sandy S. surname: Hung fullname: Hung, Sandy S. – sequence: 10 givenname: Katherine P. surname: Gill fullname: Gill, Katherine P. – sequence: 11 givenname: Elisabeth surname: De Smit fullname: De Smit, Elisabeth – sequence: 12 givenname: Lisa S. surname: Kearns fullname: Kearns, Lisa S. – sequence: 13 givenname: Linda surname: Clarke fullname: Clarke, Linda – sequence: 14 givenname: Valentin M. surname: Sluch fullname: Sluch, Valentin M. – sequence: 15 givenname: Xitiz surname: Chamling fullname: Chamling, Xitiz – sequence: 16 givenname: Donald J. surname: Zack fullname: Zack, Donald J. – sequence: 17 givenname: Raymond C. B. surname: Wong fullname: Wong, Raymond C. B. – sequence: 18 givenname: Alex W. surname: Hewitt fullname: Hewitt, Alex W. – sequence: 19 givenname: Alice surname: Pébay fullname: Pébay, Alice |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28287872$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1P3DAQxS1Exfe9J-Qjl7SxHcfxcbXQggRqJcrZmjiTYpTYi-0g8d83YaEHJNAcPHr6vafxzCHZ9cEjIV9Z-Y0xpb7zSnEpJWeq1rXSaoccLFIhZV3u_u8l3ycnKT2UZTmDYq49ss8b3qhG8QPydI5POITNiD7T0FOgN6GbBoh0NeUwQsaO3j6njCPtQ6Q34HxGD94iBd_Rc9f3GGevg-yCXxJW3f2LQi-nETz9PUzRbUJelNslZo3DkI7Jlx6GhCev7xG5-3HxZ31ZXP_6ebVeXRdWKJ2LillohQRbWaibVra20S3KtoNeCcFZySXnHECjZUxwWWnBgTPNlFSVbBpxRM62uZsYHidM2Ywu2XkC8BimZFijlORSazGjp6_o1I7YmU10I8Rn87arGai3gI0hpYi9sS6_fDtHcINhpVnuYt7fZTaW74xv2Z9Yiq0lwV80D2GKfl7Tx_w_L92a4w |
CitedBy_id | crossref_primary_10_1016_j_slast_2023_08_006 crossref_primary_10_1186_s13059_021_02293_3 crossref_primary_10_1177_2472630320972110 crossref_primary_10_3390_cells13110903 crossref_primary_10_1088_1758_5090_adb803 crossref_primary_10_1038_s41467_022_31707_4 crossref_primary_10_1177_2472630320972109 crossref_primary_10_1007_s12015_021_10147_5 crossref_primary_10_1038_s41598_022_12210_8 crossref_primary_10_1016_j_slast_2023_08_002 crossref_primary_10_1016_j_mcn_2020_103523 crossref_primary_10_1063_1_5113719 crossref_primary_10_1038_s41596_023_00912_w crossref_primary_10_1016_j_stemcr_2019_08_004 crossref_primary_10_3389_fbioe_2020_580352 crossref_primary_10_1016_j_phrs_2024_107111 crossref_primary_10_1016_j_eng_2021_01_001 crossref_primary_10_3390_ph15010062 crossref_primary_10_1155_2019_4568979 crossref_primary_10_3389_fbioe_2024_1459273 crossref_primary_10_1177_2472630317712220 crossref_primary_10_1016_j_preteyeres_2020_100918 crossref_primary_10_3390_cells10020240 crossref_primary_10_1007_s12015_024_10717_3 crossref_primary_10_1242_dmm_049651 crossref_primary_10_1016_j_isci_2018_08_016 crossref_primary_10_3389_fbioe_2020_571777 crossref_primary_10_1002_bies_202400072 crossref_primary_10_1177_2472555218764678 crossref_primary_10_1002_sctm_17_0059 crossref_primary_10_3390_cells11203331 crossref_primary_10_3389_fnano_2023_1264498 crossref_primary_10_1016_j_xgen_2022_100142 |
Cites_doi | 10.1016/j.jala.2007.12.003 10.1016/j.stem.2016.02.006 10.1038/nmeth.3507 10.1155/2016/1718041 10.1007/s12015-015-9636-2 10.1038/srep16595 10.1073/pnas.0601990103 10.1016/j.jbiotec.2008.06.009 10.1371/journal.pone.0065324 10.1038/srep30552 10.1038/nbt.1580 10.1177/2211068213499917 10.1038/nmeth.1591 10.1038/srep16647 10.1016/j.cell.2007.11.019 10.1126/science.1151526 10.1186/1472-6750-13-102 10.18632/aging.100950 10.1016/j.bej.2013.05.008 10.1038/nature06534 |
ContentType | Journal Article |
Copyright | 2017 Society for Laboratory Automation and Screening |
Copyright_xml | – notice: 2017 Society for Laboratory Automation and Screening |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1177/2472555217696797 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2472-5560 |
EndPage | 1025 |
ExternalDocumentID | 28287872 10_1177_2472555217696797 10.1177_2472555217696797 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Health and Medical Research Council funderid: https://doi.org/10.13039/501100000925 – fundername: Philip Neal bequest – fundername: Joan and Peter Clemenger Foundation – fundername: The Ophthalmic Research Institute of Australia funderid: https://doi.org/10.13039/501100001108 – fundername: Australian Research Council grantid: FT140100047 funderid: https://doi.org/10.13039/501100000923 |
GroupedDBID | 0R~ 53G AARDL AAXUO AAYWO ABCCA ABJNI ACDXX ACGFS ACVFH ADBBV ADCNI ADEBD ADVLN AERKM AEUPX AEWDL AEXQZ AFJKZ AFKRG AFPUW AIGII AITUG AJUZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP ARTOV EBS EJD FDB GROUPED_DOAJ M41 O9- OK1 ROL SBI AALRI AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c379t-41cab35ac4ca68b5bc89be5bdaf73321025222aa9ec113254932a219175745883 |
ISSN | 2472-5552 2472-5560 |
IngestDate | Fri Jul 11 02:40:25 EDT 2025 Mon Jul 21 05:58:07 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Tue Jul 01 02:39:35 EDT 2025 Tue Jun 17 22:30:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | liquid handling iPSCs automation passaging retinal cell differentiation human pluripotent stem cells automated cell culture platform |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c379t-41cab35ac4ca68b5bc89be5bdaf73321025222aa9ec113254932a219175745883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://journals.sagepub.com/doi/pdf/10.1177/2472555217696797 |
PMID | 28287872 |
PQID | 1877525993 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1877525993 pubmed_primary_28287872 crossref_citationtrail_10_1177_2472555217696797 crossref_primary_10_1177_2472555217696797 sage_journals_10_1177_2472555217696797 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170900 2017-09-00 20170901 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 9 year: 2017 text: 20170900 |
PublicationDecade | 2010 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: United States |
PublicationTitle | SLAS discovery |
PublicationTitleAlternate | J Biomol Screen |
PublicationYear | 2017 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Yu, Vodyanik, Smuga-Otto 2007; 318 Conway, Gerger, Balay 2015; 99 Sluch, Davis, Ranganathan 2015; 5 Gill, Hung, Sharov 2016; 6 Konagaya, Ando, Yamauchi 2015; 5 Willmann, Hemeda, Pieper 2013; 8 Lamba, Karl, Ware 2006; 103 Hussain, Moens, Veraitch 2013; 77 Hernandez, Millard, Sivakumaran 2016; 2016 Thomas, Hourd, Williams 2008; 136 Chan, Ratanasirintrawoot, Park 2009; 27 Thomas, Chandra, Hourd 2008; 13 Okita, Matsumura, Sato 2011; 8 Park, Zhao, West 2008; 451 Kami, Watakabe, Yamazaki-Inoue 2013; 13 Paull, Sevilla, Zhou 2015; 12 McCaughey, Liang, Chen 2016; 18 Takahashi, Tanabe, Ohnuki 2007; 131 Lidgerwood, Lim, Crombie 2016; 12 Reichen, Veraitch, Szita 2013; 18 Hung, Van Bergen, Jackson 2016; 8 Hussain (10.1177/2472555217696797_bib8) 2013; 77 Reichen (10.1177/2472555217696797_bib7) 2013; 18 Lamba (10.1177/2472555217696797_bib17) 2006; 103 Chan (10.1177/2472555217696797_bib20) 2009; 27 Konagaya (10.1177/2472555217696797_bib10) 2015; 5 Kami (10.1177/2472555217696797_bib6) 2013; 13 Sluch (10.1177/2472555217696797_bib16) 2015; 5 Lidgerwood (10.1177/2472555217696797_bib19) 2016; 12 Conway (10.1177/2472555217696797_bib11) 2015; 99 Gill (10.1177/2472555217696797_bib18) 2016; 6 Okita (10.1177/2472555217696797_bib14) 2011; 8 Willmann (10.1177/2472555217696797_bib21) 2013; 8 Thomas (10.1177/2472555217696797_bib5) 2008; 136 Hernandez (10.1177/2472555217696797_bib15) 2016; 2016 Yu (10.1177/2472555217696797_bib3) 2007; 318 Thomas (10.1177/2472555217696797_bib4) 2008; 13 Takahashi (10.1177/2472555217696797_bib2) 2007; 131 McCaughey (10.1177/2472555217696797_bib12) 2016; 18 Park (10.1177/2472555217696797_bib1) 2008; 451 Paull (10.1177/2472555217696797_bib9) 2015; 12 Hung (10.1177/2472555217696797_bib13) 2016; 8 |
References_xml | – volume: 451 start-page: 141 year: 2008 end-page: 146 article-title: Reprogramming of Human Somatic Cells to Pluripotency with Defined Factors publication-title: Nature – volume: 12 start-page: 179 year: 2016 end-page: 188 article-title: Defined Medium Conditions for the Induction and Expansion of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium publication-title: Stem Cell Rev – volume: 13 start-page: 152 year: 2008 end-page: 158 article-title: Cell Culture Automation and Quality Engineering: A Necessary Partnership to Develop Optimized Manufacturing Processes for Cell-Based Therapies publication-title: J. Assoc. Lab. Autom – volume: 13 start-page: 102 year: 2013 article-title: Large-Scale Cell Production of Stem Cells for Clinical Application Using the Automated Cell Processing Machine publication-title: BMC Biotechnol – volume: 18 start-page: 307 year: 2016 end-page: 308 article-title: An Interactive Multimedia Approach to Improving Informed Consent for Induced Pluripotent Stem Cell Research publication-title: Cell Stem Cell – volume: 103 start-page: 12769 year: 2006 end-page: 12774 article-title: Efficient Generation of Retinal Progenitor Cells from Human Embryonic Stem Cells publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 8 start-page: e65324 year: 2013 article-title: To Clone or Not to Clone? Induced Pluripotent Stem Cells Can Be Generated in Bulk Culture publication-title: PLoS One – volume: 131 start-page: 861 year: 2007 end-page: 872 article-title: Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors publication-title: Cell – volume: 8 start-page: 945 year: 2016 end-page: 957 article-title: Study of Mitochondrial Respiratory Defects on Reprogramming to Human Induced Pluripotent Stem Cells publication-title: Aging (Albany NY) – volume: 136 start-page: 148 year: 2008 end-page: 155 article-title: Application of Process Quality Engineering Techniques to Improve the Understanding of the In Vitro Processing of Stem Cells for Therapeutic Use publication-title: J. Biotechnol – volume: 18 start-page: 519 year: 2013 end-page: 529 article-title: Development of a Multiplexed Microfluidic Platform for the Automated Cultivation of Embryonic Stem Cells publication-title: J. Lab. Autom – volume: 2016 start-page: 1718041 year: 2016 article-title: Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells publication-title: Stem Cells Int – volume: 12 start-page: 885 year: 2015 end-page: 892 article-title: Automated, High-Throughput Derivation, Characterization and Differentiation of Induced Pluripotent Stem Cells publication-title: Nat. Methods – volume: 5 start-page: 16595 year: 2015 article-title: Differentiation of Human ESCs to Retinal Ganglion Cells Using a CRISPR Engineered Reporter Cell Line publication-title: Sci. Rep – volume: 6 start-page: 30552 year: 2016 article-title: Enriched Retinal Ganglion Cells Derived from Human Embryonic Stem Cells publication-title: Sci. Rep – volume: 77 start-page: 246 year: 2013 end-page: 257 article-title: Reproducible Culture and Differentiation of Mouse Embryonic Stem Cells Using an Automated Microwell Platform publication-title: Biochem. Eng. J – volume: 318 start-page: 1917 year: 2007 end-page: 1920 article-title: Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells publication-title: Science – volume: 99 start-page: e52755 year: 2015 article-title: Scalable 96-Well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System publication-title: J. Vis. Exp – volume: 8 start-page: 409 year: 2011 end-page: 412 article-title: A More Efficient Method to Generate Integration-Free Human iPS Cells publication-title: Nat. Methods – volume: 5 start-page: 16647 year: 2015 article-title: Long-Term Maintenance of Human Induced Pluripotent Stem Cells by Automated Cell Culture System publication-title: Sci. Rep – volume: 27 start-page: 1033 year: 2009 end-page: 1037 article-title: Live Cell Imaging Distinguishes Bona Fide Human iPS Cells from Partially Reprogrammed Cells publication-title: Nat. Biotechnol – volume: 13 start-page: 152 year: 2008 ident: 10.1177/2472555217696797_bib4 article-title: Cell Culture Automation and Quality Engineering: A Necessary Partnership to Develop Optimized Manufacturing Processes for Cell-Based Therapies publication-title: J. Assoc. Lab. Autom. doi: 10.1016/j.jala.2007.12.003 – volume: 18 start-page: 307 year: 2016 ident: 10.1177/2472555217696797_bib12 article-title: An Interactive Multimedia Approach to Improving Informed Consent for Induced Pluripotent Stem Cell Research publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.02.006 – volume: 12 start-page: 885 year: 2015 ident: 10.1177/2472555217696797_bib9 article-title: Automated, High-Throughput Derivation, Characterization and Differentiation of Induced Pluripotent Stem Cells publication-title: Nat. Methods doi: 10.1038/nmeth.3507 – volume: 2016 start-page: 1718041 year: 2016 ident: 10.1177/2472555217696797_bib15 article-title: Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells publication-title: Stem Cells Int. doi: 10.1155/2016/1718041 – volume: 12 start-page: 179 year: 2016 ident: 10.1177/2472555217696797_bib19 article-title: Defined Medium Conditions for the Induction and Expansion of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium publication-title: Stem Cell Rev. doi: 10.1007/s12015-015-9636-2 – volume: 5 start-page: 16595 year: 2015 ident: 10.1177/2472555217696797_bib16 article-title: Differentiation of Human ESCs to Retinal Ganglion Cells Using a CRISPR Engineered Reporter Cell Line publication-title: Sci. Rep. doi: 10.1038/srep16595 – volume: 103 start-page: 12769 year: 2006 ident: 10.1177/2472555217696797_bib17 article-title: Efficient Generation of Retinal Progenitor Cells from Human Embryonic Stem Cells publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0601990103 – volume: 136 start-page: 148 year: 2008 ident: 10.1177/2472555217696797_bib5 article-title: Application of Process Quality Engineering Techniques to Improve the Understanding of the In Vitro Processing of Stem Cells for Therapeutic Use publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2008.06.009 – volume: 8 start-page: e65324 year: 2013 ident: 10.1177/2472555217696797_bib21 article-title: To Clone or Not to Clone? Induced Pluripotent Stem Cells Can Be Generated in Bulk Culture publication-title: PLoS One doi: 10.1371/journal.pone.0065324 – volume: 99 start-page: e52755 year: 2015 ident: 10.1177/2472555217696797_bib11 article-title: Scalable 96-Well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System publication-title: J. Vis. Exp. – volume: 6 start-page: 30552 year: 2016 ident: 10.1177/2472555217696797_bib18 article-title: Enriched Retinal Ganglion Cells Derived from Human Embryonic Stem Cells publication-title: Sci. Rep. doi: 10.1038/srep30552 – volume: 27 start-page: 1033 year: 2009 ident: 10.1177/2472555217696797_bib20 article-title: Live Cell Imaging Distinguishes Bona Fide Human iPS Cells from Partially Reprogrammed Cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1580 – volume: 18 start-page: 519 year: 2013 ident: 10.1177/2472555217696797_bib7 article-title: Development of a Multiplexed Microfluidic Platform for the Automated Cultivation of Embryonic Stem Cells publication-title: J. Lab. Autom. doi: 10.1177/2211068213499917 – volume: 8 start-page: 409 year: 2011 ident: 10.1177/2472555217696797_bib14 article-title: A More Efficient Method to Generate Integration-Free Human iPS Cells publication-title: Nat. Methods doi: 10.1038/nmeth.1591 – volume: 5 start-page: 16647 year: 2015 ident: 10.1177/2472555217696797_bib10 article-title: Long-Term Maintenance of Human Induced Pluripotent Stem Cells by Automated Cell Culture System publication-title: Sci. Rep. doi: 10.1038/srep16647 – volume: 131 start-page: 861 year: 2007 ident: 10.1177/2472555217696797_bib2 article-title: Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – volume: 318 start-page: 1917 year: 2007 ident: 10.1177/2472555217696797_bib3 article-title: Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells publication-title: Science doi: 10.1126/science.1151526 – volume: 13 start-page: 102 year: 2013 ident: 10.1177/2472555217696797_bib6 article-title: Large-Scale Cell Production of Stem Cells for Clinical Application Using the Automated Cell Processing Machine publication-title: BMC Biotechnol. doi: 10.1186/1472-6750-13-102 – volume: 8 start-page: 945 year: 2016 ident: 10.1177/2472555217696797_bib13 article-title: Study of Mitochondrial Respiratory Defects on Reprogramming to Human Induced Pluripotent Stem Cells publication-title: Aging (Albany NY) doi: 10.18632/aging.100950 – volume: 77 start-page: 246 year: 2013 ident: 10.1177/2472555217696797_bib8 article-title: Reproducible Culture and Differentiation of Mouse Embryonic Stem Cells Using an Automated Microwell Platform publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2013.05.008 – volume: 451 start-page: 141 year: 2008 ident: 10.1177/2472555217696797_bib1 article-title: Reprogramming of Human Somatic Cells to Pluripotency with Defined Factors publication-title: Nature doi: 10.1038/nature06534 |
SSID | ssj0001763636 |
Score | 2.209691 |
Snippet | Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug... |
SourceID | proquest pubmed crossref sage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1016 |
SubjectTerms | Automation Cell Adhesion Cell Culture Techniques - methods Cell Differentiation Cell Line Cellular Reprogramming Fibroblasts - cytology Humans Induced Pluripotent Stem Cells - cytology Retina - cytology |
Title | Development of a Modular Automated System for Maintenance and Differentiation of Adherent Human Pluripotent Stem Cells |
URI | https://journals.sagepub.com/doi/full/10.1177/2472555217696797 https://www.ncbi.nlm.nih.gov/pubmed/28287872 https://www.proquest.com/docview/1877525993 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9owFLYYfdnLtPvYTZ40IU1q2saJE_KIWKtqQIcGaLxFtjEaHUumklRqf_3OcUwSGJu6vUTIIg7K-fj8-fhcCHkf-nwRnSgN7DdXji-80IkiFjggFqQQMlgsNPo7hhfB-dT_NOOzRuO6FrWUZ_JI3e7NK_kfq8IY2BWzZP_BsuWkMACfwb5wBQvD9U42rkX8FHmOw3Ruwkq7eZaCFEUxaSo1m2DCocDaEEmZI_DR9kbJlqVs7M6_mRHr2x-tcuCUNMORMU7T06vVuq5nx4PuGA95FEaClt753lX6QxYHHyCQkWdrVQ2S5foWmLVolz0UwC2XZVTQ0nqvzWIoqsSJfr76ji4cgy59ad-LdVbAAriJxrKcxvwQ9r68aCFwpPeMWVJmrAa-To1h0duwn_rN4TNOxjlokjCIgrAI_d2usn3xOT6bDgbx5HQ2uUcOGGwvTprkoNv_8rVfeeeAdgPTX7L8ddUZ9_HuQ7Y1zW8bla0gQaNbJg_JA7vhoN0CPY9IQyePSXtUVCy_OaSTKgFvfUjbdFTVMr95Qq5rEKPpggpqIUZLiNECYhQgRmsQowAxugMxnGEDMWogRmsQowgxaiD2lEzPTie9c8e26nCUF0aZ47tKSI8L5SsRdCSXqhNJzeVcLEIP08QY6HwmRKSV63rolPCYYOgr4CHmSnvPSDNJE_2CUOYHUkVawNoD6lbChpcDawjfhdthRXRb5HjzsmNl69hjO5VV7NrS9bvmaZEP5R0_ixouf_nuu439YiBaPD0TiU7zdex2wpAzDnq-RZ4Xhi1nQ78FrHysRdpo6dhyxPqPj3l5h8e8Iverv9Br0syucv0GFHAm31q4_gKXea3E |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Modular+Automated+System+for+Maintenance+and+Differentiation+of+Adherent+Human+Pluripotent+Stem+Cells&rft.jtitle=SLAS+discovery&rft.au=Crombie%2C+Duncan+E&rft.au=Daniszewski%2C+Maciej&rft.au=Liang%2C+Helena+H&rft.au=Kulkarni%2C+Tejal&rft.date=2017-09-01&rft.issn=2472-5560&rft.eissn=2472-5560&rft.volume=22&rft.issue=8&rft.spage=1016&rft_id=info:doi/10.1177%2F2472555217696797&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-5552&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-5552&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-5552&client=summon |