Development of a Modular Automated System for Maintenance and Differentiation of Adherent Human Pluripotent Stem Cells

Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability....

Full description

Saved in:
Bibliographic Details
Published inSLAS discovery Vol. 22; no. 8; pp. 1016 - 1025
Main Authors Crombie, Duncan E., Daniszewski, Maciej, Liang, Helena H., Kulkarni, Tejal, Li, Fan, Lidgerwood, Grace E., Conquest, Alison, Hernández, Damian, Hung, Sandy S., Gill, Katherine P., De Smit, Elisabeth, Kearns, Lisa S., Clarke, Linda, Sluch, Valentin M., Chamling, Xitiz, Zack, Donald J., Wong, Raymond C. B., Hewitt, Alex W., Pébay, Alice
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.09.2017
Subjects
Online AccessGet full text
ISSN2472-5552
2472-5560
2472-5560
DOI10.1177/2472555217696797

Cover

Loading…
Abstract Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability. To address these issues, we established and optimized protocols to allow for the automated maintenance of reprogrammed somatic cells into iPSCs to enable the large-scale culture and passaging of human pluripotent stem cells (PSCs) using a customized TECAN Freedom EVO. Generation of iPSCs was performed offline by nucleofection followed by selection of TRA-1-60–positive cells using a Miltenyi MultiMACS24 Separator. Pluripotency markers were assessed to confirm pluripotency of the generated iPSCs. Passaging was performed using an enzyme-free dissociation method. Proof of concept of differentiation was obtained by differentiating human PSCs into cells of the retinal lineage. Key advantages of this automated approach are the ability to increase sample size, reduce variability during reprogramming or differentiation, and enable medium- to high-throughput analysis of human PSCs and derivatives. These techniques will become increasingly important with the emergence of clinical trials using stem cells.
AbstractList Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability. To address these issues, we established and optimized protocols to allow for the automated maintenance of reprogrammed somatic cells into iPSCs to enable the large-scale culture and passaging of human pluripotent stem cells (PSCs) using a customized TECAN Freedom EVO. Generation of iPSCs was performed offline by nucleofection followed by selection of TRA-1-60-positive cells using a Miltenyi MultiMACS24 Separator. Pluripotency markers were assessed to confirm pluripotency of the generated iPSCs. Passaging was performed using an enzyme-free dissociation method. Proof of concept of differentiation was obtained by differentiating human PSCs into cells of the retinal lineage. Key advantages of this automated approach are the ability to increase sample size, reduce variability during reprogramming or differentiation, and enable medium- to high-throughput analysis of human PSCs and derivatives. These techniques will become increasingly important with the emergence of clinical trials using stem cells.Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability. To address these issues, we established and optimized protocols to allow for the automated maintenance of reprogrammed somatic cells into iPSCs to enable the large-scale culture and passaging of human pluripotent stem cells (PSCs) using a customized TECAN Freedom EVO. Generation of iPSCs was performed offline by nucleofection followed by selection of TRA-1-60-positive cells using a Miltenyi MultiMACS24 Separator. Pluripotency markers were assessed to confirm pluripotency of the generated iPSCs. Passaging was performed using an enzyme-free dissociation method. Proof of concept of differentiation was obtained by differentiating human PSCs into cells of the retinal lineage. Key advantages of this automated approach are the ability to increase sample size, reduce variability during reprogramming or differentiation, and enable medium- to high-throughput analysis of human PSCs and derivatives. These techniques will become increasingly important with the emergence of clinical trials using stem cells.
Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability. To address these issues, we established and optimized protocols to allow for the automated maintenance of reprogrammed somatic cells into iPSCs to enable the large-scale culture and passaging of human pluripotent stem cells (PSCs) using a customized TECAN Freedom EVO. Generation of iPSCs was performed offline by nucleofection followed by selection of TRA-1-60-positive cells using a Miltenyi MultiMACS24 Separator. Pluripotency markers were assessed to confirm pluripotency of the generated iPSCs. Passaging was performed using an enzyme-free dissociation method. Proof of concept of differentiation was obtained by differentiating human PSCs into cells of the retinal lineage. Key advantages of this automated approach are the ability to increase sample size, reduce variability during reprogramming or differentiation, and enable medium- to high-throughput analysis of human PSCs and derivatives. These techniques will become increasingly important with the emergence of clinical trials using stem cells.
Author Li, Fan
Hernández, Damian
Gill, Katherine P.
De Smit, Elisabeth
Hewitt, Alex W.
Crombie, Duncan E.
Lidgerwood, Grace E.
Liang, Helena H.
Conquest, Alison
Kearns, Lisa S.
Clarke, Linda
Zack, Donald J.
Hung, Sandy S.
Sluch, Valentin M.
Chamling, Xitiz
Wong, Raymond C. B.
Daniszewski, Maciej
Kulkarni, Tejal
Pébay, Alice
Author_xml – sequence: 1
  givenname: Duncan E.
  surname: Crombie
  fullname: Crombie, Duncan E.
– sequence: 2
  givenname: Maciej
  surname: Daniszewski
  fullname: Daniszewski, Maciej
– sequence: 3
  givenname: Helena H.
  surname: Liang
  fullname: Liang, Helena H.
– sequence: 4
  givenname: Tejal
  surname: Kulkarni
  fullname: Kulkarni, Tejal
– sequence: 5
  givenname: Fan
  surname: Li
  fullname: Li, Fan
– sequence: 6
  givenname: Grace E.
  surname: Lidgerwood
  fullname: Lidgerwood, Grace E.
– sequence: 7
  givenname: Alison
  surname: Conquest
  fullname: Conquest, Alison
– sequence: 8
  givenname: Damian
  surname: Hernández
  fullname: Hernández, Damian
– sequence: 9
  givenname: Sandy S.
  surname: Hung
  fullname: Hung, Sandy S.
– sequence: 10
  givenname: Katherine P.
  surname: Gill
  fullname: Gill, Katherine P.
– sequence: 11
  givenname: Elisabeth
  surname: De Smit
  fullname: De Smit, Elisabeth
– sequence: 12
  givenname: Lisa S.
  surname: Kearns
  fullname: Kearns, Lisa S.
– sequence: 13
  givenname: Linda
  surname: Clarke
  fullname: Clarke, Linda
– sequence: 14
  givenname: Valentin M.
  surname: Sluch
  fullname: Sluch, Valentin M.
– sequence: 15
  givenname: Xitiz
  surname: Chamling
  fullname: Chamling, Xitiz
– sequence: 16
  givenname: Donald J.
  surname: Zack
  fullname: Zack, Donald J.
– sequence: 17
  givenname: Raymond C. B.
  surname: Wong
  fullname: Wong, Raymond C. B.
– sequence: 18
  givenname: Alex W.
  surname: Hewitt
  fullname: Hewitt, Alex W.
– sequence: 19
  givenname: Alice
  surname: Pébay
  fullname: Pébay, Alice
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28287872$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1P3DAQxS1Exfe9J-Qjl7SxHcfxcbXQggRqJcrZmjiTYpTYi-0g8d83YaEHJNAcPHr6vafxzCHZ9cEjIV9Z-Y0xpb7zSnEpJWeq1rXSaoccLFIhZV3u_u8l3ycnKT2UZTmDYq49ss8b3qhG8QPydI5POITNiD7T0FOgN6GbBoh0NeUwQsaO3j6njCPtQ6Q34HxGD94iBd_Rc9f3GGevg-yCXxJW3f2LQi-nETz9PUzRbUJelNslZo3DkI7Jlx6GhCev7xG5-3HxZ31ZXP_6ebVeXRdWKJ2LillohQRbWaibVra20S3KtoNeCcFZySXnHECjZUxwWWnBgTPNlFSVbBpxRM62uZsYHidM2Ywu2XkC8BimZFijlORSazGjp6_o1I7YmU10I8Rn87arGai3gI0hpYi9sS6_fDtHcINhpVnuYt7fZTaW74xv2Z9Yiq0lwV80D2GKfl7Tx_w_L92a4w
CitedBy_id crossref_primary_10_1016_j_slast_2023_08_006
crossref_primary_10_1186_s13059_021_02293_3
crossref_primary_10_1177_2472630320972110
crossref_primary_10_3390_cells13110903
crossref_primary_10_1088_1758_5090_adb803
crossref_primary_10_1038_s41467_022_31707_4
crossref_primary_10_1177_2472630320972109
crossref_primary_10_1007_s12015_021_10147_5
crossref_primary_10_1038_s41598_022_12210_8
crossref_primary_10_1016_j_slast_2023_08_002
crossref_primary_10_1016_j_mcn_2020_103523
crossref_primary_10_1063_1_5113719
crossref_primary_10_1038_s41596_023_00912_w
crossref_primary_10_1016_j_stemcr_2019_08_004
crossref_primary_10_3389_fbioe_2020_580352
crossref_primary_10_1016_j_phrs_2024_107111
crossref_primary_10_1016_j_eng_2021_01_001
crossref_primary_10_3390_ph15010062
crossref_primary_10_1155_2019_4568979
crossref_primary_10_3389_fbioe_2024_1459273
crossref_primary_10_1177_2472630317712220
crossref_primary_10_1016_j_preteyeres_2020_100918
crossref_primary_10_3390_cells10020240
crossref_primary_10_1007_s12015_024_10717_3
crossref_primary_10_1242_dmm_049651
crossref_primary_10_1016_j_isci_2018_08_016
crossref_primary_10_3389_fbioe_2020_571777
crossref_primary_10_1002_bies_202400072
crossref_primary_10_1177_2472555218764678
crossref_primary_10_1002_sctm_17_0059
crossref_primary_10_3390_cells11203331
crossref_primary_10_3389_fnano_2023_1264498
crossref_primary_10_1016_j_xgen_2022_100142
Cites_doi 10.1016/j.jala.2007.12.003
10.1016/j.stem.2016.02.006
10.1038/nmeth.3507
10.1155/2016/1718041
10.1007/s12015-015-9636-2
10.1038/srep16595
10.1073/pnas.0601990103
10.1016/j.jbiotec.2008.06.009
10.1371/journal.pone.0065324
10.1038/srep30552
10.1038/nbt.1580
10.1177/2211068213499917
10.1038/nmeth.1591
10.1038/srep16647
10.1016/j.cell.2007.11.019
10.1126/science.1151526
10.1186/1472-6750-13-102
10.18632/aging.100950
10.1016/j.bej.2013.05.008
10.1038/nature06534
ContentType Journal Article
Copyright 2017 Society for Laboratory Automation and Screening
Copyright_xml – notice: 2017 Society for Laboratory Automation and Screening
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1177/2472555217696797
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2472-5560
EndPage 1025
ExternalDocumentID 28287872
10_1177_2472555217696797
10.1177_2472555217696797
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Health and Medical Research Council
  funderid: https://doi.org/10.13039/501100000925
– fundername: Philip Neal bequest
– fundername: Joan and Peter Clemenger Foundation
– fundername: The Ophthalmic Research Institute of Australia
  funderid: https://doi.org/10.13039/501100001108
– fundername: Australian Research Council
  grantid: FT140100047
  funderid: https://doi.org/10.13039/501100000923
GroupedDBID 0R~
53G
AARDL
AAXUO
AAYWO
ABCCA
ABJNI
ACDXX
ACGFS
ACVFH
ADBBV
ADCNI
ADEBD
ADVLN
AERKM
AEUPX
AEWDL
AEXQZ
AFJKZ
AFKRG
AFPUW
AIGII
AITUG
AJUZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ARTOV
EBS
EJD
FDB
GROUPED_DOAJ
M41
O9-
OK1
ROL
SBI
AALRI
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c379t-41cab35ac4ca68b5bc89be5bdaf73321025222aa9ec113254932a219175745883
ISSN 2472-5552
2472-5560
IngestDate Fri Jul 11 02:40:25 EDT 2025
Mon Jul 21 05:58:07 EDT 2025
Thu Apr 24 23:12:44 EDT 2025
Tue Jul 01 02:39:35 EDT 2025
Tue Jun 17 22:30:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords liquid handling
iPSCs
automation
passaging
retinal cell differentiation
human pluripotent stem cells
automated cell culture platform
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c379t-41cab35ac4ca68b5bc89be5bdaf73321025222aa9ec113254932a219175745883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1177/2472555217696797
PMID 28287872
PQID 1877525993
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1877525993
pubmed_primary_28287872
crossref_citationtrail_10_1177_2472555217696797
crossref_primary_10_1177_2472555217696797
sage_journals_10_1177_2472555217696797
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170900
2017-09-00
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 9
  year: 2017
  text: 20170900
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
PublicationTitle SLAS discovery
PublicationTitleAlternate J Biomol Screen
PublicationYear 2017
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Yu, Vodyanik, Smuga-Otto 2007; 318
Conway, Gerger, Balay 2015; 99
Sluch, Davis, Ranganathan 2015; 5
Gill, Hung, Sharov 2016; 6
Konagaya, Ando, Yamauchi 2015; 5
Willmann, Hemeda, Pieper 2013; 8
Lamba, Karl, Ware 2006; 103
Hussain, Moens, Veraitch 2013; 77
Hernandez, Millard, Sivakumaran 2016; 2016
Thomas, Hourd, Williams 2008; 136
Chan, Ratanasirintrawoot, Park 2009; 27
Thomas, Chandra, Hourd 2008; 13
Okita, Matsumura, Sato 2011; 8
Park, Zhao, West 2008; 451
Kami, Watakabe, Yamazaki-Inoue 2013; 13
Paull, Sevilla, Zhou 2015; 12
McCaughey, Liang, Chen 2016; 18
Takahashi, Tanabe, Ohnuki 2007; 131
Lidgerwood, Lim, Crombie 2016; 12
Reichen, Veraitch, Szita 2013; 18
Hung, Van Bergen, Jackson 2016; 8
Hussain (10.1177/2472555217696797_bib8) 2013; 77
Reichen (10.1177/2472555217696797_bib7) 2013; 18
Lamba (10.1177/2472555217696797_bib17) 2006; 103
Chan (10.1177/2472555217696797_bib20) 2009; 27
Konagaya (10.1177/2472555217696797_bib10) 2015; 5
Kami (10.1177/2472555217696797_bib6) 2013; 13
Sluch (10.1177/2472555217696797_bib16) 2015; 5
Lidgerwood (10.1177/2472555217696797_bib19) 2016; 12
Conway (10.1177/2472555217696797_bib11) 2015; 99
Gill (10.1177/2472555217696797_bib18) 2016; 6
Okita (10.1177/2472555217696797_bib14) 2011; 8
Willmann (10.1177/2472555217696797_bib21) 2013; 8
Thomas (10.1177/2472555217696797_bib5) 2008; 136
Hernandez (10.1177/2472555217696797_bib15) 2016; 2016
Yu (10.1177/2472555217696797_bib3) 2007; 318
Thomas (10.1177/2472555217696797_bib4) 2008; 13
Takahashi (10.1177/2472555217696797_bib2) 2007; 131
McCaughey (10.1177/2472555217696797_bib12) 2016; 18
Park (10.1177/2472555217696797_bib1) 2008; 451
Paull (10.1177/2472555217696797_bib9) 2015; 12
Hung (10.1177/2472555217696797_bib13) 2016; 8
References_xml – volume: 451
  start-page: 141
  year: 2008
  end-page: 146
  article-title: Reprogramming of Human Somatic Cells to Pluripotency with Defined Factors
  publication-title: Nature
– volume: 12
  start-page: 179
  year: 2016
  end-page: 188
  article-title: Defined Medium Conditions for the Induction and Expansion of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium
  publication-title: Stem Cell Rev
– volume: 13
  start-page: 152
  year: 2008
  end-page: 158
  article-title: Cell Culture Automation and Quality Engineering: A Necessary Partnership to Develop Optimized Manufacturing Processes for Cell-Based Therapies
  publication-title: J. Assoc. Lab. Autom
– volume: 13
  start-page: 102
  year: 2013
  article-title: Large-Scale Cell Production of Stem Cells for Clinical Application Using the Automated Cell Processing Machine
  publication-title: BMC Biotechnol
– volume: 18
  start-page: 307
  year: 2016
  end-page: 308
  article-title: An Interactive Multimedia Approach to Improving Informed Consent for Induced Pluripotent Stem Cell Research
  publication-title: Cell Stem Cell
– volume: 103
  start-page: 12769
  year: 2006
  end-page: 12774
  article-title: Efficient Generation of Retinal Progenitor Cells from Human Embryonic Stem Cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A
– volume: 8
  start-page: e65324
  year: 2013
  article-title: To Clone or Not to Clone? Induced Pluripotent Stem Cells Can Be Generated in Bulk Culture
  publication-title: PLoS One
– volume: 131
  start-page: 861
  year: 2007
  end-page: 872
  article-title: Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors
  publication-title: Cell
– volume: 8
  start-page: 945
  year: 2016
  end-page: 957
  article-title: Study of Mitochondrial Respiratory Defects on Reprogramming to Human Induced Pluripotent Stem Cells
  publication-title: Aging (Albany NY)
– volume: 136
  start-page: 148
  year: 2008
  end-page: 155
  article-title: Application of Process Quality Engineering Techniques to Improve the Understanding of the In Vitro Processing of Stem Cells for Therapeutic Use
  publication-title: J. Biotechnol
– volume: 18
  start-page: 519
  year: 2013
  end-page: 529
  article-title: Development of a Multiplexed Microfluidic Platform for the Automated Cultivation of Embryonic Stem Cells
  publication-title: J. Lab. Autom
– volume: 2016
  start-page: 1718041
  year: 2016
  article-title: Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells
  publication-title: Stem Cells Int
– volume: 12
  start-page: 885
  year: 2015
  end-page: 892
  article-title: Automated, High-Throughput Derivation, Characterization and Differentiation of Induced Pluripotent Stem Cells
  publication-title: Nat. Methods
– volume: 5
  start-page: 16595
  year: 2015
  article-title: Differentiation of Human ESCs to Retinal Ganglion Cells Using a CRISPR Engineered Reporter Cell Line
  publication-title: Sci. Rep
– volume: 6
  start-page: 30552
  year: 2016
  article-title: Enriched Retinal Ganglion Cells Derived from Human Embryonic Stem Cells
  publication-title: Sci. Rep
– volume: 77
  start-page: 246
  year: 2013
  end-page: 257
  article-title: Reproducible Culture and Differentiation of Mouse Embryonic Stem Cells Using an Automated Microwell Platform
  publication-title: Biochem. Eng. J
– volume: 318
  start-page: 1917
  year: 2007
  end-page: 1920
  article-title: Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells
  publication-title: Science
– volume: 99
  start-page: e52755
  year: 2015
  article-title: Scalable 96-Well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System
  publication-title: J. Vis. Exp
– volume: 8
  start-page: 409
  year: 2011
  end-page: 412
  article-title: A More Efficient Method to Generate Integration-Free Human iPS Cells
  publication-title: Nat. Methods
– volume: 5
  start-page: 16647
  year: 2015
  article-title: Long-Term Maintenance of Human Induced Pluripotent Stem Cells by Automated Cell Culture System
  publication-title: Sci. Rep
– volume: 27
  start-page: 1033
  year: 2009
  end-page: 1037
  article-title: Live Cell Imaging Distinguishes Bona Fide Human iPS Cells from Partially Reprogrammed Cells
  publication-title: Nat. Biotechnol
– volume: 13
  start-page: 152
  year: 2008
  ident: 10.1177/2472555217696797_bib4
  article-title: Cell Culture Automation and Quality Engineering: A Necessary Partnership to Develop Optimized Manufacturing Processes for Cell-Based Therapies
  publication-title: J. Assoc. Lab. Autom.
  doi: 10.1016/j.jala.2007.12.003
– volume: 18
  start-page: 307
  year: 2016
  ident: 10.1177/2472555217696797_bib12
  article-title: An Interactive Multimedia Approach to Improving Informed Consent for Induced Pluripotent Stem Cell Research
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.02.006
– volume: 12
  start-page: 885
  year: 2015
  ident: 10.1177/2472555217696797_bib9
  article-title: Automated, High-Throughput Derivation, Characterization and Differentiation of Induced Pluripotent Stem Cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3507
– volume: 2016
  start-page: 1718041
  year: 2016
  ident: 10.1177/2472555217696797_bib15
  article-title: Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells
  publication-title: Stem Cells Int.
  doi: 10.1155/2016/1718041
– volume: 12
  start-page: 179
  year: 2016
  ident: 10.1177/2472555217696797_bib19
  article-title: Defined Medium Conditions for the Induction and Expansion of Human Pluripotent Stem Cell-Derived Retinal Pigment Epithelium
  publication-title: Stem Cell Rev.
  doi: 10.1007/s12015-015-9636-2
– volume: 5
  start-page: 16595
  year: 2015
  ident: 10.1177/2472555217696797_bib16
  article-title: Differentiation of Human ESCs to Retinal Ganglion Cells Using a CRISPR Engineered Reporter Cell Line
  publication-title: Sci. Rep.
  doi: 10.1038/srep16595
– volume: 103
  start-page: 12769
  year: 2006
  ident: 10.1177/2472555217696797_bib17
  article-title: Efficient Generation of Retinal Progenitor Cells from Human Embryonic Stem Cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0601990103
– volume: 136
  start-page: 148
  year: 2008
  ident: 10.1177/2472555217696797_bib5
  article-title: Application of Process Quality Engineering Techniques to Improve the Understanding of the In Vitro Processing of Stem Cells for Therapeutic Use
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2008.06.009
– volume: 8
  start-page: e65324
  year: 2013
  ident: 10.1177/2472555217696797_bib21
  article-title: To Clone or Not to Clone? Induced Pluripotent Stem Cells Can Be Generated in Bulk Culture
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0065324
– volume: 99
  start-page: e52755
  year: 2015
  ident: 10.1177/2472555217696797_bib11
  article-title: Scalable 96-Well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System
  publication-title: J. Vis. Exp.
– volume: 6
  start-page: 30552
  year: 2016
  ident: 10.1177/2472555217696797_bib18
  article-title: Enriched Retinal Ganglion Cells Derived from Human Embryonic Stem Cells
  publication-title: Sci. Rep.
  doi: 10.1038/srep30552
– volume: 27
  start-page: 1033
  year: 2009
  ident: 10.1177/2472555217696797_bib20
  article-title: Live Cell Imaging Distinguishes Bona Fide Human iPS Cells from Partially Reprogrammed Cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1580
– volume: 18
  start-page: 519
  year: 2013
  ident: 10.1177/2472555217696797_bib7
  article-title: Development of a Multiplexed Microfluidic Platform for the Automated Cultivation of Embryonic Stem Cells
  publication-title: J. Lab. Autom.
  doi: 10.1177/2211068213499917
– volume: 8
  start-page: 409
  year: 2011
  ident: 10.1177/2472555217696797_bib14
  article-title: A More Efficient Method to Generate Integration-Free Human iPS Cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1591
– volume: 5
  start-page: 16647
  year: 2015
  ident: 10.1177/2472555217696797_bib10
  article-title: Long-Term Maintenance of Human Induced Pluripotent Stem Cells by Automated Cell Culture System
  publication-title: Sci. Rep.
  doi: 10.1038/srep16647
– volume: 131
  start-page: 861
  year: 2007
  ident: 10.1177/2472555217696797_bib2
  article-title: Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– volume: 318
  start-page: 1917
  year: 2007
  ident: 10.1177/2472555217696797_bib3
  article-title: Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells
  publication-title: Science
  doi: 10.1126/science.1151526
– volume: 13
  start-page: 102
  year: 2013
  ident: 10.1177/2472555217696797_bib6
  article-title: Large-Scale Cell Production of Stem Cells for Clinical Application Using the Automated Cell Processing Machine
  publication-title: BMC Biotechnol.
  doi: 10.1186/1472-6750-13-102
– volume: 8
  start-page: 945
  year: 2016
  ident: 10.1177/2472555217696797_bib13
  article-title: Study of Mitochondrial Respiratory Defects on Reprogramming to Human Induced Pluripotent Stem Cells
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100950
– volume: 77
  start-page: 246
  year: 2013
  ident: 10.1177/2472555217696797_bib8
  article-title: Reproducible Culture and Differentiation of Mouse Embryonic Stem Cells Using an Automated Microwell Platform
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2013.05.008
– volume: 451
  start-page: 141
  year: 2008
  ident: 10.1177/2472555217696797_bib1
  article-title: Reprogramming of Human Somatic Cells to Pluripotency with Defined Factors
  publication-title: Nature
  doi: 10.1038/nature06534
SSID ssj0001763636
Score 2.209691
Snippet Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug...
SourceID proquest
pubmed
crossref
sage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1016
SubjectTerms Automation
Cell Adhesion
Cell Culture Techniques - methods
Cell Differentiation
Cell Line
Cellular Reprogramming
Fibroblasts - cytology
Humans
Induced Pluripotent Stem Cells - cytology
Retina - cytology
Title Development of a Modular Automated System for Maintenance and Differentiation of Adherent Human Pluripotent Stem Cells
URI https://journals.sagepub.com/doi/full/10.1177/2472555217696797
https://www.ncbi.nlm.nih.gov/pubmed/28287872
https://www.proquest.com/docview/1877525993
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9owFLYYfdnLtPvYTZ40IU1q2saJE_KIWKtqQIcGaLxFtjEaHUumklRqf_3OcUwSGJu6vUTIIg7K-fj8-fhcCHkf-nwRnSgN7DdXji-80IkiFjggFqQQMlgsNPo7hhfB-dT_NOOzRuO6FrWUZ_JI3e7NK_kfq8IY2BWzZP_BsuWkMACfwb5wBQvD9U42rkX8FHmOw3Ruwkq7eZaCFEUxaSo1m2DCocDaEEmZI_DR9kbJlqVs7M6_mRHr2x-tcuCUNMORMU7T06vVuq5nx4PuGA95FEaClt753lX6QxYHHyCQkWdrVQ2S5foWmLVolz0UwC2XZVTQ0nqvzWIoqsSJfr76ji4cgy59ad-LdVbAAriJxrKcxvwQ9r68aCFwpPeMWVJmrAa-To1h0duwn_rN4TNOxjlokjCIgrAI_d2usn3xOT6bDgbx5HQ2uUcOGGwvTprkoNv_8rVfeeeAdgPTX7L8ddUZ9_HuQ7Y1zW8bla0gQaNbJg_JA7vhoN0CPY9IQyePSXtUVCy_OaSTKgFvfUjbdFTVMr95Qq5rEKPpggpqIUZLiNECYhQgRmsQowAxugMxnGEDMWogRmsQowgxaiD2lEzPTie9c8e26nCUF0aZ47tKSI8L5SsRdCSXqhNJzeVcLEIP08QY6HwmRKSV63rolPCYYOgr4CHmSnvPSDNJE_2CUOYHUkVawNoD6lbChpcDawjfhdthRXRb5HjzsmNl69hjO5VV7NrS9bvmaZEP5R0_ixouf_nuu439YiBaPD0TiU7zdex2wpAzDnq-RZ4Xhi1nQ78FrHysRdpo6dhyxPqPj3l5h8e8Iverv9Br0syucv0GFHAm31q4_gKXea3E
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Modular+Automated+System+for+Maintenance+and+Differentiation+of+Adherent+Human+Pluripotent+Stem+Cells&rft.jtitle=SLAS+discovery&rft.au=Crombie%2C+Duncan+E&rft.au=Daniszewski%2C+Maciej&rft.au=Liang%2C+Helena+H&rft.au=Kulkarni%2C+Tejal&rft.date=2017-09-01&rft.issn=2472-5560&rft.eissn=2472-5560&rft.volume=22&rft.issue=8&rft.spage=1016&rft_id=info:doi/10.1177%2F2472555217696797&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-5552&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-5552&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-5552&client=summon