Detection of Alzheimer’s Dementia by Using Deep Time–Frequency Feature Extraction
Alzheimer's disease (AD), a neurological condition connected with aging, causes cognitive deterioration and has a substantial influence on a patient's daily activities. One of the most widely used clinical methods for examining how AD affects the brain is the electroencephalogram (EEG). Ha...
Saved in:
Published in | Electrica Vol. 24; no. 1; pp. 109 - 118 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AVES
01.01.2024
|
Online Access | Get full text |
ISSN | 2619-9831 2619-9831 |
DOI | 10.5152/electrica.2023.23029 |
Cover
Abstract | Alzheimer's disease (AD), a neurological condition connected with aging, causes cognitive deterioration and has a substantial influence on a patient's daily activities. One of the most widely used clinical methods for examining how AD affects the brain is the electroencephalogram (EEG). Handcraft calculating descriptive features for machine learning algorithms requires time and frequently increases computational complexity. Deep networks provide a practical solution to feature extraction compared to handcraft feature extraction. The proposed work employs a time–frequency (TF) representation and a deep feature extraction-based approach to detect EEG segments in control subjects (CS) and AD patients. To create EEG segments' TF representations, high-resolution synchrosqueezing transform (SST) and traditional short-time Fourier transform (STFT) approaches are utilized. For deep feature extraction, SST and STFT magnitudes are used. The collected features are classified using a variety of classifiers to determine the EEG segments of CS and AD patients. In comparison to the SST method, the STFT-based deep feature extraction strategy produced improved classification accuracy between 79.56% and 92.96%. Cite this article as: O. Karabiber Cura, H. S. Ture, A. Akan, "Detection of Alzheimer's dementia by using deep time-frequency feature extraction," Electrica, 24(1), 109-118, 2024. |
---|---|
AbstractList | Alzheimer's disease (AD), a neurological condition connected with aging, causes cognitive deterioration and has a substantial influence on a patient's daily activities. One of the most widely used clinical methods for examining how AD affects the brain is the electroencephalogram (EEG). Handcraft calculating descriptive features for machine learning algorithms requires time and frequently increases computational complexity. Deep networks provide a practical solution to feature extraction compared to handcraft feature extraction. The proposed work employs a time–frequency (TF) representation and a deep feature extraction-based approach to detect EEG segments in control subjects (CS) and AD patients. To create EEG segments' TF representations, high-resolution synchrosqueezing transform (SST) and traditional short-time Fourier transform (STFT) approaches are utilized. For deep feature extraction, SST and STFT magnitudes are used. The collected features are classified using a variety of classifiers to determine the EEG segments of CS and AD patients. In comparison to the SST method, the STFT-based deep feature extraction strategy produced improved classification accuracy between 79.56% and 92.96%. Cite this article as: O. Karabiber Cura, H. S. Ture, A. Akan, "Detection of Alzheimer's dementia by using deep time-frequency feature extraction," Electrica, 24(1), 109-118, 2024. |
Author | Ture, H Sabiha Karabiber Cura, Ozlem Akan, Aydin |
Author_xml | – sequence: 1 givenname: Ozlem surname: Karabiber Cura fullname: Karabiber Cura, Ozlem – sequence: 2 givenname: H Sabiha surname: Ture fullname: Ture, H Sabiha – sequence: 3 givenname: Aydin surname: Akan fullname: Akan, Aydin |
BookMark | eNpNkE1OAjEUgBujiYjcwEUvALZ9M9AuCT9KQuIG1k2nfcWSYQY7QyKuuIMrr8dJHMAQV6_58vrl5Xsgt0VZICFPnPVSnopnzNHWMVjTE0xATwAT6oa0RJ-rrpLAb_-970mnqtaMMSE5YwpaZDnGuvkfyoKWng7zr3cMG4zHw09Fx7jBog6GZnu6rEKxaghu6aJZOB6-pxE_dljYPZ2iqXcR6eSzjubseiR33uQVdv5mmyynk8XotTt_e5mNhvOuhYGquyCVFaq52AGTEiRrqEQvLJgUpeOp8uB95qyzXrkk44kwqXGQmDRliQFok9nF60qz1tsYNibudWmCPoMyrrSJdbA5auGY6LMB59KyBFHJxMoGKQODDBy3jSu5uGwsqyqiv_o406fS-lpan0rrc2n4BXkwd1c |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.5152/electrica.2023.23029 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2619-9831 |
EndPage | 118 |
ExternalDocumentID | oai_doaj_org_article_2d02607118c04ee984c8d029a37b3d1c 10_5152_electrica_2023_23029 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS ARCSS CITATION EN8 GROUPED_DOAJ IAO ITC M~E OK1 |
ID | FETCH-LOGICAL-c379t-389c29230d30883803798ef2c3a5e8d159f3ffbdcdcf9d4b142a5ad34a5504a33 |
IEDL.DBID | DOA |
ISSN | 2619-9831 |
IngestDate | Wed Aug 27 01:24:50 EDT 2025 Thu Aug 14 00:08:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-389c29230d30883803798ef2c3a5e8d159f3ffbdcdcf9d4b142a5ad34a5504a33 |
OpenAccessLink | https://doaj.org/article/2d02607118c04ee984c8d029a37b3d1c |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2d02607118c04ee984c8d029a37b3d1c crossref_primary_10_5152_electrica_2023_23029 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Electrica |
PublicationYear | 2024 |
Publisher | AVES |
Publisher_xml | – name: AVES |
SSID | ssj0002810093 |
Score | 2.2425053 |
Snippet | Alzheimer's disease (AD), a neurological condition connected with aging, causes cognitive deterioration and has a substantial influence on a patient's daily... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 109 |
Title | Detection of Alzheimer’s Dementia by Using Deep Time–Frequency Feature Extraction |
URI | https://doaj.org/article/2d02607118c04ee984c8d029a37b3d1c |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBq6sZOnIyFtqqQYKJSt8jxQxRBWoVUokz9D0z8vf4SznYp3VhYT1HkfLZ8313uvkPoSmrKLdB6UjAWE54wRdLICiISAQFRomlMXaPw_UMyGPK7UTzaGPXlasKCPHAArhVpp3olgAcryo3JUq5SMGWSiYLptnK3L83oRjD17FNGbRerh145cNlRK0yVgQ-_dgPDXf2zZ5W_vmhDst_7lv4e2l2RQtwJi9lHW6Y8QDsbUoGHaNg1ta-aKvHE4s7Lx5MZv5pqufh6w12f4htLXMyxLwEAi5li192xXHz2q1AtPceO7s0qg3vvdRX6GY7QsN97vB2Q1UgEopjIagL0QkXAyahmcD2wlII1NTZSTMYm1cBNLLO20Eorm2nuMjwylppxCZEIl4wdo0Y5Kc0JwhQCGc2jwro_izSSEqhBJrTXcxFRQZuI_ICTT4PyRQ4RgwMzX4OZOzBzD2YT3TgE18863WpvgN3MV7uZ_7Wbp__xkjO0DcviIVFyjhp1NTMXQB3q4tKfkm9OB8Eq |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Alzheimer%E2%80%99s+Dementia+by+Using+Deep+Time%E2%80%93Frequency+Feature+Extraction&rft.jtitle=Electrica&rft.au=Karabiber+Cura%2C+Ozlem&rft.au=Ture%2C+H+Sabiha&rft.au=Akan%2C+Aydin&rft.date=2024-01-01&rft.issn=2619-9831&rft.eissn=2619-9831&rft.volume=24&rft.issue=1&rft.spage=109&rft.epage=118&rft_id=info:doi/10.5152%2Felectrica.2023.23029&rft.externalDBID=n%2Fa&rft.externalDocID=10_5152_electrica_2023_23029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2619-9831&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2619-9831&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2619-9831&client=summon |