Detection of Alzheimer’s Dementia by Using Deep Time–Frequency Feature Extraction

Alzheimer's disease (AD), a neurological condition connected with aging, causes cognitive deterioration and has a substantial influence on a patient's daily activities. One of the most widely used clinical methods for examining how AD affects the brain is the electroencephalogram (EEG). Ha...

Full description

Saved in:
Bibliographic Details
Published inElectrica Vol. 24; no. 1; pp. 109 - 118
Main Authors Karabiber Cura, Ozlem, Ture, H Sabiha, Akan, Aydin
Format Journal Article
LanguageEnglish
Published AVES 01.01.2024
Online AccessGet full text
ISSN2619-9831
2619-9831
DOI10.5152/electrica.2023.23029

Cover

Abstract Alzheimer's disease (AD), a neurological condition connected with aging, causes cognitive deterioration and has a substantial influence on a patient's daily activities. One of the most widely used clinical methods for examining how AD affects the brain is the electroencephalogram (EEG). Handcraft calculating descriptive features for machine learning algorithms requires time and frequently increases computational complexity. Deep networks provide a practical solution to feature extraction compared to handcraft feature extraction. The proposed work employs a time–frequency (TF) representation and a deep feature extraction-based approach to detect EEG segments in control subjects (CS) and AD patients. To create EEG segments' TF representations, high-resolution synchrosqueezing transform (SST) and traditional short-time Fourier transform (STFT) approaches are utilized. For deep feature extraction, SST and STFT magnitudes are used. The collected features are classified using a variety of classifiers to determine the EEG segments of CS and AD patients. In comparison to the SST method, the STFT-based deep feature extraction strategy produced improved classification accuracy between 79.56% and 92.96%. Cite this article as: O. Karabiber Cura, H. S. Ture, A. Akan, "Detection of Alzheimer's dementia by using deep time-frequency feature extraction," Electrica, 24(1), 109-118, 2024.
AbstractList Alzheimer's disease (AD), a neurological condition connected with aging, causes cognitive deterioration and has a substantial influence on a patient's daily activities. One of the most widely used clinical methods for examining how AD affects the brain is the electroencephalogram (EEG). Handcraft calculating descriptive features for machine learning algorithms requires time and frequently increases computational complexity. Deep networks provide a practical solution to feature extraction compared to handcraft feature extraction. The proposed work employs a time–frequency (TF) representation and a deep feature extraction-based approach to detect EEG segments in control subjects (CS) and AD patients. To create EEG segments' TF representations, high-resolution synchrosqueezing transform (SST) and traditional short-time Fourier transform (STFT) approaches are utilized. For deep feature extraction, SST and STFT magnitudes are used. The collected features are classified using a variety of classifiers to determine the EEG segments of CS and AD patients. In comparison to the SST method, the STFT-based deep feature extraction strategy produced improved classification accuracy between 79.56% and 92.96%. Cite this article as: O. Karabiber Cura, H. S. Ture, A. Akan, "Detection of Alzheimer's dementia by using deep time-frequency feature extraction," Electrica, 24(1), 109-118, 2024.
Author Ture, H Sabiha
Karabiber Cura, Ozlem
Akan, Aydin
Author_xml – sequence: 1
  givenname: Ozlem
  surname: Karabiber Cura
  fullname: Karabiber Cura, Ozlem
– sequence: 2
  givenname: H Sabiha
  surname: Ture
  fullname: Ture, H Sabiha
– sequence: 3
  givenname: Aydin
  surname: Akan
  fullname: Akan, Aydin
BookMark eNpNkE1OAjEUgBujiYjcwEUvALZ9M9AuCT9KQuIG1k2nfcWSYQY7QyKuuIMrr8dJHMAQV6_58vrl5Xsgt0VZICFPnPVSnopnzNHWMVjTE0xATwAT6oa0RJ-rrpLAb_-970mnqtaMMSE5YwpaZDnGuvkfyoKWng7zr3cMG4zHw09Fx7jBog6GZnu6rEKxaghu6aJZOB6-pxE_dljYPZ2iqXcR6eSzjubseiR33uQVdv5mmyynk8XotTt_e5mNhvOuhYGquyCVFaq52AGTEiRrqEQvLJgUpeOp8uB95qyzXrkk44kwqXGQmDRliQFok9nF60qz1tsYNibudWmCPoMyrrSJdbA5auGY6LMB59KyBFHJxMoGKQODDBy3jSu5uGwsqyqiv_o406fS-lpan0rrc2n4BXkwd1c
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.5152/electrica.2023.23029
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2619-9831
EndPage 118
ExternalDocumentID oai_doaj_org_article_2d02607118c04ee984c8d029a37b3d1c
10_5152_electrica_2023_23029
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CITATION
EN8
GROUPED_DOAJ
IAO
ITC
M~E
OK1
ID FETCH-LOGICAL-c379t-389c29230d30883803798ef2c3a5e8d159f3ffbdcdcf9d4b142a5ad34a5504a33
IEDL.DBID DOA
ISSN 2619-9831
IngestDate Wed Aug 27 01:24:50 EDT 2025
Thu Aug 14 00:08:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-389c29230d30883803798ef2c3a5e8d159f3ffbdcdcf9d4b142a5ad34a5504a33
OpenAccessLink https://doaj.org/article/2d02607118c04ee984c8d029a37b3d1c
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_2d02607118c04ee984c8d029a37b3d1c
crossref_primary_10_5152_electrica_2023_23029
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Electrica
PublicationYear 2024
Publisher AVES
Publisher_xml – name: AVES
SSID ssj0002810093
Score 2.2425053
Snippet Alzheimer's disease (AD), a neurological condition connected with aging, causes cognitive deterioration and has a substantial influence on a patient's daily...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 109
Title Detection of Alzheimer’s Dementia by Using Deep Time–Frequency Feature Extraction
URI https://doaj.org/article/2d02607118c04ee984c8d029a37b3d1c
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBq6sZOnIyFtqqQYKJSt8jxQxRBWoVUokz9D0z8vf4SznYp3VhYT1HkfLZ8313uvkPoSmrKLdB6UjAWE54wRdLICiISAQFRomlMXaPw_UMyGPK7UTzaGPXlasKCPHAArhVpp3olgAcryo3JUq5SMGWSiYLptnK3L83oRjD17FNGbRerh145cNlRK0yVgQ-_dgPDXf2zZ5W_vmhDst_7lv4e2l2RQtwJi9lHW6Y8QDsbUoGHaNg1ta-aKvHE4s7Lx5MZv5pqufh6w12f4htLXMyxLwEAi5li192xXHz2q1AtPceO7s0qg3vvdRX6GY7QsN97vB2Q1UgEopjIagL0QkXAyahmcD2wlII1NTZSTMYm1cBNLLO20Eorm2nuMjwylppxCZEIl4wdo0Y5Kc0JwhQCGc2jwro_izSSEqhBJrTXcxFRQZuI_ICTT4PyRQ4RgwMzX4OZOzBzD2YT3TgE18863WpvgN3MV7uZ_7Wbp__xkjO0DcviIVFyjhp1NTMXQB3q4tKfkm9OB8Eq
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Alzheimer%E2%80%99s+Dementia+by+Using+Deep+Time%E2%80%93Frequency+Feature+Extraction&rft.jtitle=Electrica&rft.au=Karabiber+Cura%2C+Ozlem&rft.au=Ture%2C+H+Sabiha&rft.au=Akan%2C+Aydin&rft.date=2024-01-01&rft.issn=2619-9831&rft.eissn=2619-9831&rft.volume=24&rft.issue=1&rft.spage=109&rft.epage=118&rft_id=info:doi/10.5152%2Felectrica.2023.23029&rft.externalDBID=n%2Fa&rft.externalDocID=10_5152_electrica_2023_23029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2619-9831&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2619-9831&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2619-9831&client=summon