Estimation of the Physical Parameters of a CME at High Coronal Heights Using Low-frequency Radio Observations
Measuring the physical parameters of coronal mass ejections (CMEs), particularly their entrained magnetic field, is crucial for understanding their physics and for assessing their geoeffectiveness. At the moment, only remote sensing techniques can probe these quantities in the corona, the region whe...
Saved in:
Published in | The Astrophysical journal Vol. 893; no. 1; pp. 28 - 40 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
10.04.2020
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/ab7fab |
Cover
Abstract | Measuring the physical parameters of coronal mass ejections (CMEs), particularly their entrained magnetic field, is crucial for understanding their physics and for assessing their geoeffectiveness. At the moment, only remote sensing techniques can probe these quantities in the corona, the region where CMEs form and acquire their defining characteristics. Radio observations offer the most direct means for estimating the magnetic field when gyrosynchrotron emission is detected. In this work we measure various CME plasma parameters, including its magnetic field, by modeling the gyrosynchrotron emission from a CME. The dense spectral coverage over a wide frequency range provided by the Murchison Widefield Array (MWA) affords a much better spectral sampling than possible before. The MWA images also provide a much higher imaging dynamic range, enabling us to image these weak emissions. Hence we are able to detect radio emission from a CME at larger distances (∼4.73 R ) than have been reported before. The flux densities reported here are among the lowest measured in similar works. Our ability to make extensive measurements on a slow and otherwise unremarkable CME suggests that with the availability of data from the new-generation instruments like the MWA, it should now be possible to make routine, direct detections of radio counterparts of CMEs. |
---|---|
AbstractList | Measuring the physical parameters of coronal mass ejections (CMEs), particularly their entrained magnetic field, is crucial for understanding their physics and for assessing their geoeffectiveness. At the moment, only remote sensing techniques can probe these quantities in the corona, the region where CMEs form and acquire their defining characteristics. Radio observations offer the most direct means for estimating the magnetic field when gyrosynchrotron emission is detected. In this work we measure various CME plasma parameters, including its magnetic field, by modeling the gyrosynchrotron emission from a CME. The dense spectral coverage over a wide frequency range provided by the Murchison Widefield Array (MWA) affords a much better spectral sampling than possible before. The MWA images also provide a much higher imaging dynamic range, enabling us to image these weak emissions. Hence we are able to detect radio emission from a CME at larger distances (∼4.73 R ) than have been reported before. The flux densities reported here are among the lowest measured in similar works. Our ability to make extensive measurements on a slow and otherwise unremarkable CME suggests that with the availability of data from the new-generation instruments like the MWA, it should now be possible to make routine, direct detections of radio counterparts of CMEs. Measuring the physical parameters of coronal mass ejections (CMEs), particularly their entrained magnetic field, is crucial for understanding their physics and for assessing their geoeffectiveness. At the moment, only remote sensing techniques can probe these quantities in the corona, the region where CMEs form and acquire their defining characteristics. Radio observations offer the most direct means for estimating the magnetic field when gyrosynchrotron emission is detected. In this work we measure various CME plasma parameters, including its magnetic field, by modeling the gyrosynchrotron emission from a CME. The dense spectral coverage over a wide frequency range provided by the Murchison Widefield Array (MWA) affords a much better spectral sampling than possible before. The MWA images also provide a much higher imaging dynamic range, enabling us to image these weak emissions. Hence we are able to detect radio emission from a CME at larger distances (∼4.73 R ⊙ ) than have been reported before. The flux densities reported here are among the lowest measured in similar works. Our ability to make extensive measurements on a slow and otherwise unremarkable CME suggests that with the availability of data from the new-generation instruments like the MWA, it should now be possible to make routine, direct detections of radio counterparts of CMEs. Measuring the physical parameters of coronal mass ejections (CMEs), particularly their entrained magnetic field, is crucial for understanding their physics and for assessing their geoeffectiveness. At the moment, only remote sensing techniques can probe these quantities in the corona, the region where CMEs form and acquire their defining characteristics. Radio observations offer the most direct means for estimating the magnetic field when gyrosynchrotron emission is detected. In this work we measure various CME plasma parameters, including its magnetic field, by modeling the gyrosynchrotron emission from a CME. The dense spectral coverage over a wide frequency range provided by the Murchison Widefield Array (MWA) affords a much better spectral sampling than possible before. The MWA images also provide a much higher imaging dynamic range, enabling us to image these weak emissions. Hence we are able to detect radio emission from a CME at larger distances (∼4.73 R ⊙) than have been reported before. The flux densities reported here are among the lowest measured in similar works. Our ability to make extensive measurements on a slow and otherwise unremarkable CME suggests that with the availability of data from the new-generation instruments like the MWA, it should now be possible to make routine, direct detections of radio counterparts of CMEs. |
Author | Oberoi, Divya Vourlidas, Angelos Mondal, Surajit |
Author_xml | – sequence: 1 givenname: Surajit orcidid: 0000-0002-2325-5298 surname: Mondal fullname: Mondal, Surajit email: surajit@ncra.tifr.res.in organization: National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune-411007, India – sequence: 2 givenname: Divya orcidid: 0000-0002-4768-9058 surname: Oberoi fullname: Oberoi, Divya organization: National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune-411007, India – sequence: 3 givenname: Angelos orcidid: 0000-0002-8164-5948 surname: Vourlidas fullname: Vourlidas, Angelos organization: John Hopkins University Applied Physics Laboratory Laurel , USA |
BookMark | eNp9kMFLwzAUxoMouE3vHgN6tC5p2rQ9yphOmGyIA2_htU22jK2pSabsv7ddRUFkp-Tlfd_L9359dFqZSiJ0RckdS6NkSGOWBhGLkyHkiYL8BPV-nk5RjxASBZwlb-eo79y6LcMs66Ht2Hm9Ba9NhY3CfiXxfLV3uoANnoOFrfTSurYFePQ8xuDxRC9XeGSsqRrNRDaVd3jhdLXEU_MZKCvfd7Iq9vgFSm3wLHfSfhx-cBfoTMHGycvvc4AWD-PX0SSYzh6fRvfToGBJ5oNQkjhKaHNPVVRCCoWiUsZlGXOqKCExkZxmEGe5ZGUchSTjsoScQ8FLHoWKDdB1N7e2pgnjvFibnW3yOhGyNAuTNOS0UZFOVVjjnJVK1LZhYfeCEtFCFS1B0RIUHdTGwv9YCu0Pu3kLenPMeNsZtal_wxyR3_wjh3ot0owJKsJU1KViX1NEmhM |
CitedBy_id | crossref_primary_10_1146_annurev_astro_071221_052744 crossref_primary_10_3389_fspas_2022_1026455 crossref_primary_10_1051_0004_6361_202243169 crossref_primary_10_1051_0004_6361_202244456 crossref_primary_10_1051_0004_6361_202244015 crossref_primary_10_3847_1538_4357_ac2f99 crossref_primary_10_1007_s11207_020_01755_4 crossref_primary_10_1007_s12036_023_09917_z crossref_primary_10_1038_s43586_023_00273_4 crossref_primary_10_1186_s40645_021_00426_7 crossref_primary_10_3389_fspas_2022_841866 crossref_primary_10_3847_1538_4357_acc385 crossref_primary_10_3847_1538_4357_ad43e9 crossref_primary_10_3847_1538_4357_ac1076 crossref_primary_10_3847_1538_4357_ac87fc crossref_primary_10_3389_fspas_2022_1026422 crossref_primary_10_1146_annurev_astro_112420_035022 crossref_primary_10_1007_s11207_023_02170_1 crossref_primary_10_3389_fspas_2020_00057 crossref_primary_10_3389_fspas_2020_551558 crossref_primary_10_3847_1538_4357_ac4bba crossref_primary_10_3389_fspas_2020_00043 crossref_primary_10_1051_0004_6361_202450456 crossref_primary_10_1007_s11207_022_02053_x crossref_primary_10_1029_2020GL091048 crossref_primary_10_3847_1538_4357_abc94b crossref_primary_10_3847_1538_4357_ac6758 crossref_primary_10_3847_1538_4357_abb949 crossref_primary_10_3389_fspas_2020_591075 crossref_primary_10_2478_lpts_2022_0002 crossref_primary_10_3847_1538_4365_acac79 |
Cites_doi | 10.1051/0004-6361/201425388 10.3847/1538-4357/ab23f1 10.1088/0004-637X/782/1/43 10.1007/s11207-019-1502-y 10.1007/s11207-020-1591-7 10.1051/0004-6361/201118608 10.1088/2041-8205/736/1/L17 10.1109/27.902210 10.1088/1674-4527/14/7/003 10.1007/s11207-011-9776-8 10.1007/BF00733434 10.1029/97JA00483 10.1088/0004-637X/758/2/118 10.1088/0004-637X/766/2/130 10.1007/s11207-017-1193-1 10.1086/508011 10.1017/pasa.2012.007 10.1086/186366 10.1088/0004-637X/812/2/119 10.3847/1538-4357/aa72e7 10.1086/150235 10.3847/1538-4357/aaadaf 10.3847/1538-4357/835/2/219 10.1007/BF00733425 10.1088/0004-637X/695/2/L140 10.3847/1538-4357/ab0ae5 10.1007/BFb0106458 10.1088/0004-637X/796/1/56 10.1007/s11207-012-0013-x 10.3847/1538-4357/ab0a01 10.1088/0004-637X/744/1/72 10.1088/0004-637X/760/1/81 10.1086/323421 10.1007/s11207-011-9841-3 10.1109/JPROC.2009.2017564 10.1051/0004-6361/201731368 10.1016/j.jastp.2018.03.018 10.1086/377162 10.1088/0004-637X/721/2/1127 10.1007/s11207-017-1180-6 10.1007/s11207-017-1096-1 |
ContentType | Journal Article |
Copyright | 2020. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Apr 10, 2020 |
Copyright_xml | – notice: 2020. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Apr 10, 2020 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/ab7fab |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Estimation of the Physical Parameters of a CME at High Coronal Heights Using Low-frequency Radio Observations |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_ab7fab apjab7fab |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c379t-2e054713798f4da8acf1ee5dd561f10050e619a59be3d542096edab6ac6d642f3 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Tue Aug 26 13:41:39 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Tue Jul 01 03:24:19 EDT 2025 Thu Jan 07 15:21:05 EST 2021 Wed Aug 21 03:35:00 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-2e054713798f4da8acf1ee5dd561f10050e619a59be3d542096edab6ac6d642f3 |
Notes | AAS20689 The Sun and the Heliosphere ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4768-9058 0000-0002-2325-5298 0000-0002-8164-5948 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/ab7fab/pdf |
PQID | 2389278261 |
PQPubID | 4562441 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_3847_1538_4357_ab7fab crossref_citationtrail_10_3847_1538_4357_ab7fab proquest_journals_2389278261 iop_journals_10_3847_1538_4357_ab7fab |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-10 |
PublicationDateYYYYMMDD | 2020-04-10 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2020 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Oberoi (apjab7fabbib32) 2017; 292 Carley (apjab7fabbib8) 2017; 608 Ramaty (apjab7fabbib37) 1969; 158 Gopalswamy (apjab7fabbib16) 2011; 736 Domingo (apjab7fabbib11) 1995; 162 Mahrous (apjab7fabbib26) 2018; 172 Cunha-Silva (apjab7fabbib10) 2015; 578 Poomvises (apjab7fabbib35) 2012; 758 Ying (apjab7fabbib47) 2018; 856 Bain (apjab7fabbib3) 2014; 782 Ramesh (apjab7fabbib38) 2003; 591 Susino (apjab7fabbib42) 2015; 812 Gopalswamy (apjab7fabbib14) 1992; 390 Lonsdale (apjab7fabbib25) 2009; 97 Plunkett (apjab7fabbib34) 2000; 28 Tun (apjab7fabbib46) 2013; 766 Mondal (apjab7fabbib31) 2019; 875 Raja (apjab7fabbib36) 2014; 796 Takakura (apjab7fabbib43) 1966; 18 Cheng (apjab7fabbib9) 2012; 547 Gary (apjab7fabbib13) 1984; 134 Pesnell (apjab7fabbib33) 2012; 275 Aschwanden (apjab7fabbib2) 2004 Karpen (apjab7fabbib17) 2012; 760 Tingay (apjab7fabbib45) 2013; 30 Mohan (apjab7fabbib30) 2017; 292 Ackermann (apjab7fabbib1) 2017; 835 Tandberg-Hanssen (apjab7fabbib44) 2009 Bastian (apjab7fabbib4) 1997; 102 Kumari (apjab7fabbib22) 2017b; 292 McCauley (apjab7fabbib28) 2019; 294 Kumari (apjab7fabbib21) 2017a; 843 Mohan (apjab7fabbib29) 2019; 875 Laming (apjab7fabbib23) 2019; 879 Cairns (apjab7fabbib7) 2020; 295 Maia (apjab7fabbib27) 2007; 660 Bastian (apjab7fabbib5) 2001; 558 Lemen (apjab7fabbib24) 2012; 275 Klein (apjab7fabbib19) 1984; 141 Kontar (apjab7fabbib20) 2009; 695 Reid (apjab7fabbib40) 2014; 14 Gopalswamy (apjab7fabbib15) 2012; 744 Kerdraon (apjab7fabbib18) 1997; 483 Brueckner (apjab7fabbib6) 1995; 162 Smerd (apjab7fabbib41) 1975; 16 Fleishman (apjab7fabbib12) 2010; 721 Reid (apjab7fabbib39) 2013; 285 |
References_xml | – volume: 578 start-page: A38 year: 2015 ident: apjab7fabbib10 publication-title: A&A doi: 10.1051/0004-6361/201425388 – volume: 879 start-page: 124 year: 2019 ident: apjab7fabbib23 publication-title: ApJ doi: 10.3847/1538-4357/ab23f1 – volume: 782 start-page: 43 year: 2014 ident: apjab7fabbib3 publication-title: ApJ doi: 10.1088/0004-637X/782/1/43 – volume: 294 start-page: 106 year: 2019 ident: apjab7fabbib28 publication-title: SoPh doi: 10.1007/s11207-019-1502-y – volume: 295 start-page: 32 year: 2020 ident: apjab7fabbib7 publication-title: SoPh doi: 10.1007/s11207-020-1591-7 – volume: 547 start-page: A73 year: 2012 ident: apjab7fabbib9 publication-title: A&A doi: 10.1051/0004-6361/201118608 – volume: 736 start-page: L17 year: 2011 ident: apjab7fabbib16 publication-title: ApJL doi: 10.1088/2041-8205/736/1/L17 – volume: 28 start-page: 1807 year: 2000 ident: apjab7fabbib34 publication-title: ITPS doi: 10.1109/27.902210 – volume: 14 start-page: 773 year: 2014 ident: apjab7fabbib40 publication-title: RAA doi: 10.1088/1674-4527/14/7/003 – volume: 275 start-page: 17 year: 2012 ident: apjab7fabbib24 publication-title: SoPh doi: 10.1007/s11207-011-9776-8 – volume: 162 start-page: 357 year: 1995 ident: apjab7fabbib6 publication-title: SoPh doi: 10.1007/BF00733434 – year: 2004 ident: apjab7fabbib2 – volume: 102 start-page: 14031 year: 1997 ident: apjab7fabbib4 publication-title: JGR doi: 10.1029/97JA00483 – volume: 758 start-page: 118 year: 2012 ident: apjab7fabbib35 publication-title: ApJ doi: 10.1088/0004-637X/758/2/118 – volume: 766 start-page: 130 year: 2013 ident: apjab7fabbib46 publication-title: ApJ doi: 10.1088/0004-637X/766/2/130 – volume: 292 start-page: 168 year: 2017 ident: apjab7fabbib30 publication-title: SoPh doi: 10.1007/s11207-017-1193-1 – volume: 660 start-page: 874 year: 2007 ident: apjab7fabbib27 publication-title: ApJ doi: 10.1086/508011 – volume: 30 start-page: e007 year: 2013 ident: apjab7fabbib45 publication-title: PASA doi: 10.1017/pasa.2012.007 – volume: 390 start-page: L37 year: 1992 ident: apjab7fabbib14 publication-title: ApJL doi: 10.1086/186366 – volume: 812 start-page: 119 year: 2015 ident: apjab7fabbib42 publication-title: ApJ doi: 10.1088/0004-637X/812/2/119 – volume: 843 start-page: 10 year: 2017a ident: apjab7fabbib21 publication-title: ApJ doi: 10.3847/1538-4357/aa72e7 – volume: 158 start-page: 753 year: 1969 ident: apjab7fabbib37 publication-title: ApJ doi: 10.1086/150235 – year: 2009 ident: apjab7fabbib44 – volume: 856 start-page: 24 year: 2018 ident: apjab7fabbib47 publication-title: ApJ doi: 10.3847/1538-4357/aaadaf – volume: 835 start-page: 219 year: 2017 ident: apjab7fabbib1 publication-title: ApJ doi: 10.3847/1538-4357/835/2/219 – volume: 162 start-page: 1 year: 1995 ident: apjab7fabbib11 publication-title: SoPh doi: 10.1007/BF00733425 – volume: 695 start-page: L140 year: 2009 ident: apjab7fabbib20 publication-title: ApJL doi: 10.1088/0004-637X/695/2/L140 – volume: 875 start-page: 98 year: 2019 ident: apjab7fabbib29 publication-title: ApJ doi: 10.3847/1538-4357/ab0ae5 – volume: 18 start-page: 57 year: 1966 ident: apjab7fabbib43 publication-title: PASJ – volume: 483 start-page: 192 year: 1997 ident: apjab7fabbib18 doi: 10.1007/BFb0106458 – volume: 796 start-page: 56 year: 2014 ident: apjab7fabbib36 publication-title: ApJ doi: 10.1088/0004-637X/796/1/56 – volume: 285 start-page: 217 year: 2013 ident: apjab7fabbib39 publication-title: SoPh doi: 10.1007/s11207-012-0013-x – volume: 875 start-page: 97 year: 2019 ident: apjab7fabbib31 publication-title: ApJ doi: 10.3847/1538-4357/ab0a01 – volume: 744 start-page: 72 year: 2012 ident: apjab7fabbib15 publication-title: ApJ doi: 10.1088/0004-637X/744/1/72 – volume: 141 start-page: 67 year: 1984 ident: apjab7fabbib19 publication-title: A&A – volume: 760 start-page: 81 year: 2012 ident: apjab7fabbib17 publication-title: ApJ doi: 10.1088/0004-637X/760/1/81 – volume: 558 start-page: L65 year: 2001 ident: apjab7fabbib5 publication-title: ApJL doi: 10.1086/323421 – volume: 134 start-page: 222 year: 1984 ident: apjab7fabbib13 publication-title: A&A – volume: 16 start-page: 23 year: 1975 ident: apjab7fabbib41 publication-title: ApL – volume: 275 start-page: 3 year: 2012 ident: apjab7fabbib33 publication-title: SoPh doi: 10.1007/s11207-011-9841-3 – volume: 97 start-page: 1497 year: 2009 ident: apjab7fabbib25 publication-title: IEEEP doi: 10.1109/JPROC.2009.2017564 – volume: 608 start-page: A137 year: 2017 ident: apjab7fabbib8 publication-title: A&A doi: 10.1051/0004-6361/201731368 – volume: 172 start-page: 75 year: 2018 ident: apjab7fabbib26 publication-title: JASTP doi: 10.1016/j.jastp.2018.03.018 – volume: 591 start-page: L163 year: 2003 ident: apjab7fabbib38 publication-title: ApJL doi: 10.1086/377162 – volume: 721 start-page: 1127 year: 2010 ident: apjab7fabbib12 publication-title: ApJ doi: 10.1088/0004-637X/721/2/1127 – volume: 292 start-page: 161 year: 2017b ident: apjab7fabbib22 publication-title: SoPh doi: 10.1007/s11207-017-1180-6 – volume: 292 start-page: 75 year: 2017 ident: apjab7fabbib32 publication-title: SoPh doi: 10.1007/s11207-017-1096-1 |
SSID | ssj0004299 |
Score | 2.5210361 |
Snippet | Measuring the physical parameters of coronal mass ejections (CMEs), particularly their entrained magnetic field, is crucial for understanding their physics and... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 28 |
SubjectTerms | Active sun Astrophysics Corona Coronal mass ejection Emission measurements Frequency ranges Image detection LF radio Magnetic fields Measuring instruments Parameter estimation Physical properties Plasmas (physics) Radio emission Radio observation Remote sensing Remote sensing techniques Sensing techniques Solar coronal mass ejections Solar magnetic fields |
Title | Estimation of the Physical Parameters of a CME at High Coronal Heights Using Low-frequency Radio Observations |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ab7fab https://www.proquest.com/docview/2389278261 |
Volume | 893 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD70guBLrVXp1rbMgwo-zO4mmdzwqSxb1mLdRSzugzCcuYGXbpYmReqv90wmu6UqRXwJAzmZJGdu3zdz5huAF0khhBqWhhe2GHIR6YgjZpoXWAhEm-rE-hXd8_fZ5EKczdP5BrxZ74Wpll3X36dkEAoOLvTtm3LOB20bpVE-H6DKHapN2PYHV_rq_XY6u90UGZcd9hU8S_J5WKP8aw53xqRNeu8fHXM72pw-gs-r7wxBJt_6143q65-_STj-54_swk6HQtlJMH0MG3axB_sntZ8Xry5v2CvWpsO0R70HD2Yh9QQux9QnhO2OrHKM4CObdUXNZugjvbxcp7-FbHQ-ZtgwH0rCRl4pgWwm7VRszdpQBfau-sHdVYjmvmEf0Hyp2FStJ4rrp3BxOv44mvDuyAauk7xseGwJAhLvzcvCCYMFahdZmxpDMM1FXmzGEmPDtFQ2MamIiUBZgypDnRliQi55BluLamH3gTkVZbG2KCwx0Dgr0eZea98SaVRJomwPBqtCk7rTM_fHanyXxGu8f6X3r_T-lcG_PXi9fmIZtDzusX1JxSa7Bl3fY3d0xw6XXyVBQBnJuJBL43pwuKpJt0YEk8qYoFkWHfzja57Dw9gTfS8yOTyErebq2h4RGmrUcVvr6TpNPv0Cmy0Fbw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZ50NJLSdOWbJukOqSFHtRdW7JsH8Nml23zWkJC9yZG1ghamvUSbyn59x1ZTkJICLkJPJaNRo_vG40-MbYnC6XsoHSiwGIgVFIlAkBXooBCAWBWSQw7uscnenKhfsyyWXfPaXsWpl50U_83Kkah4NiEYXxTzXm_HaO0yud9sLkH2184v8rWM6mzIJ5_Kn_eHYxMyw7_KqFlPov7lI_Wcm9dWqVvP5ic2xVnvMFed1CR78cfe8NWcL7JtvabELyuL6_5F96WY2yi2WQvprH0ll2OaODGM4m89pwwHp92_uBTCOlYQVMzPAI-PB5xWPKQ78GHQc6AbCZtvLThbT4BP6r_CX8VU66v-Rm4XzU_tbfR3OYduxiPzocT0d2rICqZl0uRIuE0Iqd5WXjloIDKJ4iZc4SlfBIUYZBoFWSlRekylRLLQQdWQ6Ud0RUv37O1eT3HLca9TXRaISgkmpjqEjAPgvhIzM5KabHH-jetaqpOdDzcffHHEPkIfjDBDyb4wUQ_9NjX2zcWUXDjCdvP5CjTjbrmCbude3aw-G0Ip5nEpIWh3tNj2zeuvjMiLFOmhJ908uGZn_nEXk4Pxubo-8nhR_YqDcQ8iEIOttna8uov7hB6Wdrdtof-Bzre6L8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+Physical+Parameters+of+a+CME+at+High+Coronal+Heights+Using+Low-frequency+Radio+Observations&rft.jtitle=The+Astrophysical+journal&rft.au=Mondal%2C+Surajit&rft.au=Oberoi%2C+Divya&rft.au=Vourlidas%2C+Angelos&rft.date=2020-04-10&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=893&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fab7fab&rft.externalDocID=apjab7fab |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |