Fluidic rolling robot using voltage-driven oscillating liquid

Rolling motions have been observed in many animals and insects. In the previous fluidic rolling system, a deformed chamber and long cables were imperative to drive the soft rolling actuators, which required high pressure and a sophisticated controlling strategy. In this study, we propose a soft flui...

Full description

Saved in:
Bibliographic Details
Published inSmart materials and structures Vol. 31; no. 10; pp. 105006 - 105015
Main Authors Mao, Zebing, Asai, Yota, Yamanoi, Akimasa, Seki, Yumeta, Wiranata, Ardi, Minaminosono, Ayato
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.10.2022
Subjects
Online AccessGet full text
ISSN0964-1726
1361-665X
DOI10.1088/1361-665X/ac895a

Cover

Loading…
Abstract Rolling motions have been observed in many animals and insects. In the previous fluidic rolling system, a deformed chamber and long cables were imperative to drive the soft rolling actuators, which required high pressure and a sophisticated controlling strategy. In this study, we propose a soft fluidic roller using a simple structure composed of a bendable and twistable electrohydrodynamic (EHD) pump and a layer of natural latex. To realize the rolling motion, we first optimized the electrode and channel height of the EHD pumps using different patterns and designs. We also examined the output power, efficiency, pressure loss, bending, and twisting performance. Subsequently, the optimized electrodes and channel height were selected to design the power source of the EHD roller. This roller was lightweight (0.7 g) with an amount of liquid (0.6 g). This EHD robot can roll as the EHD liquid oscillates under a duty-controlled voltage realized using a high-voltage circuit. Next,we investigated the influence of frictional forces on rolling performance. Finally, the rolling motion in the liquid was demonstrated. This study extends the EHD pumps to independent soft actuators integrated with a soft power source.
AbstractList Rolling motions have been observed in many animals and insects. In the previous fluidic rolling system, a deformed chamber and long cables were imperative to drive the soft rolling actuators, which required high pressure and a sophisticated controlling strategy. In this study, we propose a soft fluidic roller using a simple structure composed of a bendable and twistable electrohydrodynamic (EHD) pump and a layer of natural latex. To realize the rolling motion, we first optimized the electrode and channel height of the EHD pumps using different patterns and designs. We also examined the output power, efficiency, pressure loss, bending, and twisting performance. Subsequently, the optimized electrodes and channel height were selected to design the power source of the EHD roller. This roller was lightweight (0.7 g) with an amount of liquid (0.6 g). This EHD robot can roll as the EHD liquid oscillates under a duty-controlled voltage realized using a high-voltage circuit. Next,we investigated the influence of frictional forces on rolling performance. Finally, the rolling motion in the liquid was demonstrated. This study extends the EHD pumps to independent soft actuators integrated with a soft power source.
Author Seki, Yumeta
Minaminosono, Ayato
Wiranata, Ardi
Yamanoi, Akimasa
Mao, Zebing
Asai, Yota
Author_xml – sequence: 1
  givenname: Zebing
  orcidid: 0000-0002-2944-7151
  surname: Mao
  fullname: Mao, Zebing
  organization: Tokyo Institute of Technology Department of Mechanical Engineering, 2-12-1 Ookayama Meguro-Ku, Tokyo 152-8550, Japan
– sequence: 2
  givenname: Yota
  surname: Asai
  fullname: Asai, Yota
  organization: Shibaura Institute of Technology Department of Engineering Science and Mechanics, 3-7-5 Toyosu, Koto-Ku, Tokyo 135-8548, Japan
– sequence: 3
  givenname: Akimasa
  surname: Yamanoi
  fullname: Yamanoi, Akimasa
  organization: Shibaura Institute of Technology Department of Engineering Science and Mechanics, 3-7-5 Toyosu, Koto-Ku, Tokyo 135-8548, Japan
– sequence: 4
  givenname: Yumeta
  surname: Seki
  fullname: Seki, Yumeta
  organization: Shibaura Institute of Technology Department of Engineering Science and Mechanics, 3-7-5 Toyosu, Koto-Ku, Tokyo 135-8548, Japan
– sequence: 5
  givenname: Ardi
  surname: Wiranata
  fullname: Wiranata, Ardi
  organization: University of Gadjah Mada Department of Mechanical and Industrial Engineering, Faculty of Engineering, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia
– sequence: 6
  givenname: Ayato
  orcidid: 0000-0002-0717-3727
  surname: Minaminosono
  fullname: Minaminosono, Ayato
  organization: Shibaura Institute of Technology Department of Engineering Science and Mechanics, 3-7-5 Toyosu, Koto-Ku, Tokyo 135-8548, Japan
BookMark eNp9kM1LAzEQxYNUsFXvHnv04NpJY5LtwYMUq0LBi4K3MM1HSUk3NdkW_O_NsuJB1NMMM_N7vDcjMmhiYwm5oHBNoa4nlAlaCcHfJqjrGccjMvweDcgQZuKmonIqTsgo5w0ApTWjQ3K7CHtvvB6nGIJv1qWuYjve564_xNDi2lYm-YNtxjFrHwK23Sr498KdkWOHIdvzr3pKXhf3L_PHavn88DS_W1aayVlbTaHmaJGCESCBS0DDQJtaSu3AobVTgdw4xw3jzPHispYAoFEgdXKl2SkRva5OMedkndK-LUZi0yb0QVFQ3RNUl1h1iVX_hALCD3CX_BbTx3_IZY_4uFObuE9NSabyNitGe4oDCLUzrpxe_XL6p_In61B-JQ
CODEN SMSTER
CitedBy_id crossref_primary_10_54097_q8tczs90
crossref_primary_10_1016_j_birob_2023_100131
crossref_primary_10_1016_j_sna_2023_114840
crossref_primary_10_1016_j_measurement_2024_115299
crossref_primary_10_3390_app13137472
crossref_primary_10_1007_s10047_024_01477_5
crossref_primary_10_1016_j_birob_2023_100139
crossref_primary_10_3390_mi14020321
crossref_primary_10_1016_j_birob_2023_100114
crossref_primary_10_3390_pr11051581
crossref_primary_10_3390_mi13112036
crossref_primary_10_3390_robotics12050128
crossref_primary_10_3390_act11100282
crossref_primary_10_3390_robotics12040100
crossref_primary_10_5194_ms_15_431_2024
crossref_primary_10_1109_LRA_2024_3394219
crossref_primary_10_3390_electronics12010196
crossref_primary_10_3390_machines10111014
crossref_primary_10_1089_soro_2024_0115
crossref_primary_10_3390_electronics14061078
crossref_primary_10_1016_j_sna_2023_114502
crossref_primary_10_3390_biomimetics8060483
crossref_primary_10_3390_mi13101620
crossref_primary_10_3390_mi14010164
crossref_primary_10_1016_j_birob_2024_100146
crossref_primary_10_3390_math12111700
crossref_primary_10_1002_rob_22388
crossref_primary_10_3390_act12010034
crossref_primary_10_3390_mi15030297
crossref_primary_10_34133_cbsystems_0091
crossref_primary_10_1002_app_53276
crossref_primary_10_1177_1045389X241276216
crossref_primary_10_3390_mi14081531
crossref_primary_10_3390_act11100301
crossref_primary_10_1016_j_birob_2023_100127
crossref_primary_10_1088_1361_665X_ad223d
crossref_primary_10_1109_LRA_2025_3528229
crossref_primary_10_1063_5_0213678
crossref_primary_10_3390_su141811143
crossref_primary_10_1016_j_sna_2023_114837
crossref_primary_10_3390_mi14040738
crossref_primary_10_1631_jzus_A2300479
crossref_primary_10_3390_mi14010015
crossref_primary_10_3390_mi14071431
crossref_primary_10_1016_j_sna_2023_114911
crossref_primary_10_3390_machines10111000
crossref_primary_10_3390_mi13101652
Cites_doi 10.1016/j.snb.2019.126669
10.1016/j.sna.2011.10.027
10.1002/adma.201805039
10.1038/s41586-019-1479-6
10.1126/scirobotics.aaw5496
10.1016/j.sna.2014.04.032
10.1016/j.sna.2020.112034
10.1126/scirobotics.abd2971
10.1089/soro.2020.0012
10.1016/j.measurement.2022.111551
10.1016/j.sna.2021.113168
10.1121/10.0005657
10.1002/adma.202003558
10.1631/jzus.A2100468
10.1038/37253
10.1016/j.sna.2019.111702
10.1088/0964-1726/19/12/127001
10.1016/j.eml.2020.100830
10.1038/ncomms3983
10.1002/ange.200800760
10.1002/adma.201600660
10.1038/nature25443
10.1088/1748-3182/6/2/026007
10.1126/scirobotics.aau7557
10.1109/TMECH.2022.3157852
10.1126/scirobotics.aan6357
ContentType Journal Article
Copyright 2022 IOP Publishing Ltd
Copyright_xml – notice: 2022 IOP Publishing Ltd
DBID AAYXX
CITATION
DOI 10.1088/1361-665X/ac895a
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-665X
ExternalDocumentID 10_1088_1361_665X_ac895a
smsac895a
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c379t-2085aea10d6070570ad30cd877cf0faee26a5dff5d353f572687000ca6a1f7bc3
IEDL.DBID IOP
ISSN 0964-1726
IngestDate Thu Apr 24 23:03:22 EDT 2025
Tue Jul 01 03:38:48 EDT 2025
Wed Aug 21 03:35:00 EDT 2024
Wed Jun 07 11:18:56 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-2085aea10d6070570ad30cd877cf0faee26a5dff5d353f572687000ca6a1f7bc3
Notes SMS-113921.R1
ORCID 0000-0002-2944-7151
0000-0002-0717-3727
PageCount 10
ParticipantIDs crossref_citationtrail_10_1088_1361_665X_ac895a
crossref_primary_10_1088_1361_665X_ac895a
iop_journals_10_1088_1361_665X_ac895a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Smart materials and structures
PublicationTitleAbbrev SMS
PublicationTitleAlternate Smart Mater. Struct
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Mao (smsac895abib25) 2019; 296
Mao (smsac895abib27) 2022; 23
Hu (smsac895abib12) 2018; 554
Luo (smsac895abib19) 2022
Ueno (smsac895abib24) 2014; 216
Crossley (smsac895abib4) 2006
Mao (smsac895abib10) 2020; 39
Floyd (smsac895abib7) 2010
Bujard (smsac895abib32) 2021; 6
Gong (smsac895abib20) 2016; 28
Mao (smsac895abib28) 2021; 332
Wu (smsac895abib13) 2018; 30
Zhang (smsac895abib17) 2021; 8
Robertson (smsac895abib22) 2017; 2
Potz (smsac895abib16) 2010; 19
Cacucciolo (smsac895abib26) 2019; 572
Halme (smsac895abib5) 1996
Kim (smsac895abib29) 2012; 174
Huang (smsac895abib14) 2018; 3
Ding (smsac895abib18) 2022; 200
Sugiyama (smsac895abib15)
Preston (smsac895abib21) 2019; 4
Ng (smsac895abib1) 2021; 33
Kong (smsac895abib3) 2021; 150
Zhang (smsac895abib11) 2014; 5
Landa (smsac895abib6) 2015
Lin (smsac895abib8) 2011; 6
Mao (smsac895abib23) 2020; 310
Yamada (smsac895abib9) 2008; 120
Mao (smsac895abib30) 2019; 303
Ramos (smsac895abib31) 2011; vol 530
Brackenbury (smsac895abib2) 1997; 390
References_xml – volume: 296
  start-page: 12 6669
  year: 2019
  ident: smsac895abib25
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2019.126669
– volume: 174
  start-page: 155
  year: 2012
  ident: smsac895abib29
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2011.10.027
– volume: 30
  year: 2018
  ident: smsac895abib13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805039
– volume: 572
  start-page: 516
  year: 2019
  ident: smsac895abib26
  publication-title: Nature
  doi: 10.1038/s41586-019-1479-6
– start-page: 3595
  ident: smsac895abib15
  article-title: Circular/spherical robots for crawling and jumping
– volume: 4
  start-page: 1
  year: 2019
  ident: smsac895abib21
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aaw5496
– volume: 216
  start-page: 36
  year: 2014
  ident: smsac895abib24
  article-title: Micro inchworm robot using electro-conjugate fluid
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2014.04.032
– volume: 310
  year: 2020
  ident: smsac895abib23
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2020.112034
– volume: 6
  start-page: eabd2971
  year: 2021
  ident: smsac895abib32
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.abd2971
– volume: 8
  start-page: 611
  year: 2021
  ident: smsac895abib17
  publication-title: Soft Robot.
  doi: 10.1089/soro.2020.0012
– start-page: 1
  year: 2006
  ident: smsac895abib4
– volume: 200
  year: 2022
  ident: smsac895abib18
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111551
– volume: 332
  year: 2021
  ident: smsac895abib28
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2021.113168
– start-page: 259
  year: 1996
  ident: smsac895abib5
  article-title: Motion control of a spherical mobile robot
– volume: 150
  start-page: 1157
  year: 2021
  ident: smsac895abib3
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0005657
– volume: 33
  year: 2021
  ident: smsac895abib1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003558
– volume: 23
  start-page: 329
  year: 2022
  ident: smsac895abib27
  publication-title: J. Zhejiang Univ.
  doi: 10.1631/jzus.A2100468
– start-page: 498
  year: 2010
  ident: smsac895abib7
  article-title: Impulse based dynamic rolling in the rolling disk biped
– volume: 390
  start-page: 453-453
  year: 1997
  ident: smsac895abib2
  article-title: Caterpillar kinematics
  publication-title: Nature
  doi: 10.1038/37253
– volume: 303
  year: 2019
  ident: smsac895abib30
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2019.111702
– volume: vol 530
  year: 2011
  ident: smsac895abib31
– volume: 19
  year: 2010
  ident: smsac895abib16
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/12/127001
– volume: 39
  year: 2020
  ident: smsac895abib10
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2020.100830
– volume: 5
  start-page: 1
  year: 2014
  ident: smsac895abib11
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3983
– volume: 120
  start-page: 5064
  year: 2008
  ident: smsac895abib9
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200800760
– volume: 28
  start-page: 7533
  year: 2016
  ident: smsac895abib20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600660
– volume: 554
  start-page: 81
  year: 2018
  ident: smsac895abib12
  publication-title: Nature
  doi: 10.1038/nature25443
– start-page: 27
  year: 2015
  ident: smsac895abib6
  article-title: Design and start-up of the spherical robot with internal pendulum
– volume: 6
  year: 2011
  ident: smsac895abib8
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3182/6/2/026007
– volume: 3
  start-page: 7557
  year: 2018
  ident: smsac895abib14
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aau7557
– start-page: 1
  year: 2022
  ident: smsac895abib19
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2022.3157852
– volume: 2
  start-page: 1
  year: 2017
  ident: smsac895abib22
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aan6357
SSID ssj0011831
Score 2.5600255
Snippet Rolling motions have been observed in many animals and insects. In the previous fluidic rolling system, a deformed chamber and long cables were imperative to...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 105006
SubjectTerms bendable
electrohydrodynamic pump
oscillating
soft rolling robot
twistable
Title Fluidic rolling robot using voltage-driven oscillating liquid
URI https://iopscience.iop.org/article/10.1088/1361-665X/ac895a
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5VEfTgW3yzgh48pM02TTbBk4hFBR8HhR6EJU8p1ra224u_3snutliRIp52YSfZ8CWZSciXbxA6kYqIRBKFuVUON5TUWJrEYQ2x0xmqFRPhovDdPb9-bty2WKuCzid3YXr90vVX4bUQCi4gLAlxohZTHmPOWaumjJAMFkcLVHAe8jbcPDxOjhBgrObp8iRvYIjS4zPK32qYiklz8N9vIaa5il7GjSuYJW_VUaar5vOHbuM_W7-GVsqlZ3RRmK6jiutuoOVvgoQbaDEnhJrhJoIOHbVt20SDQrUbnrqXRYEm_xqBS8vAD2E7CL4yCnqYncCpg0-d9geU20LPzauny2tcplrAhiYywyFTp3IqJpaDD2AJUZYSY0WSGE-8cq7OFbPeM0sZ9QzghHlOiFFcxT7Rhm6j-W6v63ZQVDfKaKkFJVbCbtFDd2sNGxcvEwpVkF1UG4OdmlKHPKTD6KT5ebgQaYAoDRClBUS76GxSol9ocMywPQXk03IiDmfYHU_ZDd-HKY0Lcxa4fn3r9_5Y1z5aqodLETnF7wDNZ4ORO4SlSqaP8iH5BW4K4bs
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4anUBwgK2A6AZbJsGBg1unrp34iNgq2A_gQKXegn-iitKWNr3w1_OcpAgQQkg7JVKeneSz_Z4tf_4ewL5UNE0kVURY5UhHSU2kSRzRGDudYVrxNBwU_ncmTnqd333er_KcFmdhxpPK9TfxthQKLiGsCHFpK2YiJkLwfkuZVHLVmli_BB85EyykMDg9v3jcRsD-WqTMk6JDMFIv9ilfq-VZXFrCdz8JM90NuFp8YMkuuWnOc9009y-0G__jDz7BejUFjY5K88_wwY3qsPZEmLAOywUx1Mw2ARt2PrADE01L9W686nEeBbr8dYSuLUd_ROw0-Mwo6GIOA7cOHw0Hd1huC3rdX5fHJ6RKuUAMS2ROQsZO5VRMrUBfwBOqLKPGpkliPPXKubZQ3HrPLePMc4QUxzulRgkV-0Qbtg210XjkdiBqG2W01CmjVuKq0WOza40LGC8ThlXQBrQWgGem0iMPaTGGWbEvnqZZgCkLMGUlTA04fCwxKbU43rA9QPSzakDO3rD78cxudjvLWFya88D5w6b58s66vsPKxc9u9vf07M9XWG2HcxIF628Xavl07vZw9pLrb0UPfQCRTucf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluidic+rolling+robot+using+voltage-driven+oscillating+liquid&rft.jtitle=Smart+materials+and+structures&rft.au=Mao%2C+Zebing&rft.au=Asai%2C+Yota&rft.au=Yamanoi%2C+Akimasa&rft.au=Seki%2C+Yumeta&rft.date=2022-10-01&rft.issn=0964-1726&rft.eissn=1361-665X&rft.volume=31&rft.issue=10&rft.spage=105006&rft_id=info:doi/10.1088%2F1361-665X%2Fac895a&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_665X_ac895a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1726&client=summon