Can Offline Testing of Deep Neural Networks Replace Their Online Testing? A Case Study of Automated Driving Systems

We distinguish two general modes of testing for Deep Neural Networks (DNNs): Offline testing where DNNs are tested as individual units based on test datasets obtained without involving the DNNs under test, and online testing where DNNs are embedded into a specific application environment and tested...

Full description

Saved in:
Bibliographic Details
Published inEmpirical software engineering : an international journal Vol. 26; no. 5; p. 90
Main Authors Haq, Fitash Ul, Shin, Donghwan, Nejati, Shiva, Briand, Lionel
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We distinguish two general modes of testing for Deep Neural Networks (DNNs): Offline testing where DNNs are tested as individual units based on test datasets obtained without involving the DNNs under test, and online testing where DNNs are embedded into a specific application environment and tested in a closed-loop mode in interaction with the application environment. Typically, DNNs are subjected to both types of testing during their development life cycle where offline testing is applied immediately after DNN training and online testing follows after offline testing and once a DNN is deployed within a specific application environment. In this paper, we study the relationship between offline and online testing. Our goal is to determine how offline testing and online testing differ or complement one another and if offline testing results can be used to help reduce the cost of online testing? Though these questions are generally relevant to all autonomous systems, we study them in the context of automated driving systems where, as study subjects, we use DNNs automating end-to-end controls of steering functions of self-driving vehicles. Our results show that offline testing is less effective than online testing as many safety violations identified by online testing could not be identified by offline testing, while large prediction errors generated by offline testing always led to severe safety violations detectable by online testing. Further, we cannot exploit offline testing results to reduce the cost of online testing in practice since we are not able to identify specific situations where offline testing could be as accurate as online testing in identifying safety requirement violations.
AbstractList We distinguish two general modes of testing for Deep Neural Networks (DNNs): Offline testing where DNNs are tested as individual units based on test datasets obtained without involving the DNNs under test, and online testing where DNNs are embedded into a specific application environment and tested in a closed-loop mode in interaction with the application environment. Typically, DNNs are subjected to both types of testing during their development life cycle where offline testing is applied immediately after DNN training and online testing follows after offline testing and once a DNN is deployed within a specific application environment. In this paper, we study the relationship between offline and online testing. Our goal is to determine how offline testing and online testing differ or complement one another and if offline testing results can be used to help reduce the cost of online testing? Though these questions are generally relevant to all autonomous systems, we study them in the context of automated driving systems where, as study subjects, we use DNNs automating end-to-end controls of steering functions of self-driving vehicles. Our results show that offline testing is less effective than online testing as many safety violations identified by online testing could not be identified by offline testing, while large prediction errors generated by offline testing always led to severe safety violations detectable by online testing. Further, we cannot exploit offline testing results to reduce the cost of online testing in practice since we are not able to identify specific situations where offline testing could be as accurate as online testing in identifying safety requirement violations.
We distinguish two general modes of testing for Deep Neural Networks (DNNs): Offline testing where DNNs are tested as individual units based on test datasets obtained without involving the DNNs under test, and online testing where DNNs are embedded into a specific application environment and tested in a closed-loop mode in interaction with the application environment. Typically, DNNs are subjected to both types of testing during their development life cycle where offline testing is applied immediately after DNN training and online testing follows after offline testing and once a DNN is deployed within a specific application environment. In this paper, we study the relationship between offline and online testing. Our goal is to determine how offline testing and online testing differ or complement one another and if offline testing results can be used to help reduce the cost of online testing? Though these questions are generally relevant to all autonomous systems, we study them in the context of automated driving systems where, as study subjects, we use DNNs automating end-to-end controls of steering functions of self-driving vehicles. Our results show that offline testing is less effective than online testing as many safety violations identified by online testing could not be identified by offline testing, while large prediction errors generated by offline testing always led to severe safety violations detectable by online testing. Further, we cannot exploit offline testing results to reduce the cost of online testing in practice since we are not able to identify specific situations where offline testing could be as accurate as online testing in identifying safety requirement violations.We distinguish two general modes of testing for Deep Neural Networks (DNNs): Offline testing where DNNs are tested as individual units based on test datasets obtained without involving the DNNs under test, and online testing where DNNs are embedded into a specific application environment and tested in a closed-loop mode in interaction with the application environment. Typically, DNNs are subjected to both types of testing during their development life cycle where offline testing is applied immediately after DNN training and online testing follows after offline testing and once a DNN is deployed within a specific application environment. In this paper, we study the relationship between offline and online testing. Our goal is to determine how offline testing and online testing differ or complement one another and if offline testing results can be used to help reduce the cost of online testing? Though these questions are generally relevant to all autonomous systems, we study them in the context of automated driving systems where, as study subjects, we use DNNs automating end-to-end controls of steering functions of self-driving vehicles. Our results show that offline testing is less effective than online testing as many safety violations identified by online testing could not be identified by offline testing, while large prediction errors generated by offline testing always led to severe safety violations detectable by online testing. Further, we cannot exploit offline testing results to reduce the cost of online testing in practice since we are not able to identify specific situations where offline testing could be as accurate as online testing in identifying safety requirement violations.
ArticleNumber 90
Author Shin, Donghwan
Briand, Lionel
Haq, Fitash Ul
Nejati, Shiva
Author_xml – sequence: 1
  givenname: Fitash Ul
  orcidid: 0000-0003-2253-9085
  surname: Haq
  fullname: Haq, Fitash Ul
  organization: SnT, University of Luxembourg
– sequence: 2
  givenname: Donghwan
  orcidid: 0000-0002-0840-6449
  surname: Shin
  fullname: Shin, Donghwan
  email: donghwan.shin@uni.lu
  organization: SnT, University of Luxembourg
– sequence: 3
  givenname: Shiva
  orcidid: 0000-0002-0281-8231
  surname: Nejati
  fullname: Nejati, Shiva
  organization: SnT, University of Luxembourg, University of Ottawa
– sequence: 4
  givenname: Lionel
  orcidid: 0000-0002-1393-1010
  surname: Briand
  fullname: Briand, Lionel
  organization: SnT, University of Luxembourg, University of Ottawa
BookMark eNp9kclOHDEYhK2IKKwvwKmPXBq8u30JioZVQhkpImfL7fk9mPTYE7sbxNtjMiBBDpzKsusrlVy7aCumCAgdEnxMMFYnhWApeYspabHWHW35F7RDhGKtkkRu1TOrl4wKuY12S7nHGGvFxTe0zYTShGm5g65nNjZz74cQobmFMoa4bJJvzgDWzU-Ysh2qjI8p_ynNL1gP1lXfHYTczON76HQfffV2KHDwqnvo98X57eyqvZlfXs9-3LSOKT22FFO7cIRrIE5xLhaWUcwJs0JI37EeFO0dE0S4Kn3vKfGdVworKXqhes_20PdN7nrqV7BwEMda0qxzWNn8ZJIN5uNLDHdmmR6MplwrimvA0WtATn-n2t6sQnEwDDZCmoqhshOcS8VltXYbq8uplAzeuDDaMaSX5DAYgs3LEmazhKlLmH9LGF5R-h_61vBTiG2gUs1xCdncpynH-p2fUc_GvpwO
CitedBy_id crossref_primary_10_1145_3579642
crossref_primary_10_1145_3638246
crossref_primary_10_3390_s24061963
crossref_primary_10_1002_stvr_1840
crossref_primary_10_1145_3664605
crossref_primary_10_1007_s10664_023_10433_5
crossref_primary_10_1007_s11219_022_09613_1
crossref_primary_10_1007_s10664_024_10458_4
crossref_primary_10_1016_j_simpa_2022_100352
crossref_primary_10_1007_s10664_023_10306_x
crossref_primary_10_1109_TSE_2023_3327575
crossref_primary_10_1002_smr_2591
crossref_primary_10_1145_3569935
crossref_primary_10_1145_3635709
crossref_primary_10_1145_3643671
crossref_primary_10_1007_s10664_024_10515_y
crossref_primary_10_1145_3715105
crossref_primary_10_1109_TSE_2024_3420816
Cites_doi 10.1145/3238147.3238202
10.1109/ICSE.2019.00108
10.1007/978-3-319-89960-2_22
10.1109/TSE.2014.2372785
10.1007/978-3-319-67361-5_40
10.1145/3180155.3180220
10.1109/IVS.2018.8500421
10.1109/TSE.2019.2962027
10.1007/978-3-030-01267-0_15
10.1109/ITSC45102.2020.9294422
10.1109/QRS.2017.25
10.1016/B978-1-55860-377-6.50023-2
10.1145/3293882.3330566
10.1145/3241979
10.1016/j.tra.2016.09.010
10.1016/j.csda.2007.08.015
10.1109/ICASSP.2013.6639344
10.1016/j.patrec.2010.03.014
10.1109/CVPR.2012.6248110
10.1145/3132747.3132785
10.1145/3238147.3238187
10.1109/ICST46399.2020.00019
10.1177/154193120004402026
10.1109/CVPR.2012.6248074
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021, corrected publication 2022.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021, corrected publication 2022
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. corrected publication 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021, corrected publication 2022.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021, corrected publication 2022
DBID C6C
AAYXX
CITATION
7X8
5PM
DOI 10.1007/s10664-021-09982-4
DatabaseName Springer Nature OA Free Journals
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID PMC9249720
10_1007_s10664_021_09982_4
GrantInformation_xml – fundername: Fonds National de la Recherche Luxembourg
  grantid: BRIDGES2020/IS/14711346/FUNTASY
  funderid: https://doi.org/10.13039/501100001866
– fundername: Ministry of Education
  grantid: 2019R1A6A3A03033444
  funderid: https://doi.org/10.13039/501100002701
– fundername: IEE S.A. Luxembourg
– fundername: H2020 European Research Council
  grantid: 694277
  funderid: https://doi.org/10.13039/100010663
– fundername: Canada Research Chairs
  funderid: https://doi.org/10.13039/501100001804
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: https://doi.org/10.13039/501100000038
– fundername: ;
– fundername: ;
  grantid: BRIDGES2020/IS/14711346/FUNTASY
– fundername: ;
  grantid: 694277
– fundername: ;
  grantid: 2019R1A6A3A03033444
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7X8
ABRTQ
5PM
ID FETCH-LOGICAL-c379t-202adc149e1c7445da320413a556f83be72bc3515cbc3bbf21f8f770765b57bf3
IEDL.DBID U2A
ISSN 1382-3256
1573-7616
IngestDate Thu Aug 21 18:02:21 EDT 2025
Fri Jul 11 16:09:18 EDT 2025
Tue Jul 01 03:32:19 EDT 2025
Thu Apr 24 22:59:58 EDT 2025
Fri Feb 21 02:46:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Self-driving Cars
Deep Learning
Testing
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-202adc149e1c7445da320413a556f83be72bc3515cbc3bbf21f8f770765b57bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Communicated by: Miryung Kim
ORCID 0000-0002-0840-6449
0000-0002-0281-8231
0000-0002-1393-1010
0000-0003-2253-9085
OpenAccessLink https://link.springer.com/10.1007/s10664-021-09982-4
PMID 35791396
PQID 2685446746
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9249720
proquest_miscellaneous_2685446746
crossref_citationtrail_10_1007_s10664_021_09982_4
crossref_primary_10_1007_s10664_021_09982_4
springer_journals_10_1007_s10664_021_09982_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2021
Publisher Springer US
Publisher_xml – name: Springer US
References KalraNPaddockSMDriving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?Trans Res Part A Pol Pract20169418219310.1016/j.tra.2016.09.010https://doi.org/10.1016/j.tra.2016.09.010. http://www.sciencedirect.com/science/article/pii/S0965856416302129
Kim J, Feldt R, Yoo S (2019) Guiding deep learning system testing using surprise adequacy. In: Proceedings of the 41st international conference on software engineering, IEEE Press, Piscataway, NJ, USA, ICSE ’19, pp 1039–1049 https://doi.org/10.1109/ICSE.2019.00108
Ma L, Juefei-Xu F, Zhang F, Sun J, Xue M, Li B, Chen C, Su T, Li L, Liu Y, Zhao J, Wang Y (2018) Deepgauge: Multi-granularity testing criteria for deep learning systems. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ACM, New York, NY, USA, ASE, 2018, pp 120–131. https://doi.org/10.1145/3238147.3238202
Dreossi T, Ghosh S, Sangiovanni-Vincentelli A, Seshia SA (2017) Systematic testing of convolutional neural networks for autonomous driving. arXiv:1708.03309
Udacity (2016a) Udacity self-driving car challenge 2: Using deep learning to predict steering angles. https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2, Accessed: 2019-10-11
Gambi A, Mueller M, Fraser G (2019) Automatically testing self-driving cars with search-based procedural content generation. In: Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, ACM, New York, NY, USA, ISSTA, 2019 pp 318–328. https://doi.org/10.1145/3293882.3330566
McGehee DV, Mazzae EN, Baldwin GS (2000) Driver reaction time in crash avoidance research: Validation of a driving simulator study on a test track. In: Proceedings of the human factors and ergonomics society annual meeting 44(20):3–320–3–323 https://doi.org/10.1177/154193120004402026
Zhou H, Li W, Zhu Y, Zhang Y, Yu B, Zhang L, Liu C (2018) Deepbillboard: Systematic physical-world testing of autonomous driving systems. arXiv:1812.10812
Sotiropoulos T, Waeselynck H, Guiochet J, Ingrand F (2017) Can robot navigation bugs be found in simulation? an exploratory study. In: 2017 IEEE International conference on software quality, reliability and security (QRS), pp 150–159 https://doi.org/10.1109/QRS.2017.25
Codevilla F, Lopez AM, Koltun V, Dosovitskiy A (2018) On offline evaluation of vision-based driving models. In: The european conference on computer vision (ECCV)
Pei K, Cao Y, Yang J, Jana S (2017) Deepxplore: Automated whitebox testing of deep learning systems. In: Proceedings of the 26th symposium on operating systems principles, ACM, New York, NY, USA, SOSP ’17, pp 1–18 https://doi.org/10.1145/3132747.3132785
ZhouZQSunLMetamorphic testing of driverless carsCommun ACM2019623616710.1145/3241979https://doi.org/10.1145/3241979
Zhang M, Zhang Y, Zhang L, Liu C, Khurshid S (2018) Deeproad: Gan-based metamorphic testing and input validation framework for autonomous driving systems. In: Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, acm, New York, NY, USA, ASE 2018, pp 132–142. https://doi.org/10.1145/3238147.3238187
Tian Y, Pei K, Jana S, Ray B (2018) Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In: Proceedings of the 40th international conference on software engineering, ACM, New York, NY, USA, ICSE ’18, pp 303–314. https://doi.org/10.1145/3180155.3180220
Haq FU, Shin D, Nejati S, Briand L (2020b) Supporting materials (temporal link for the double-blind review). http://tiny.cc/Experiment-data, Accessed: 2020-07-26
GenuerRPoggiJMTuleau-MalotCVariable selection using random forestsPattern Recognit Lett201031142225223610.1016/j.patrec.2010.03.014https://doi.org/10.1016/j.patrec.2010.03.014. http://www.sciencedirect.com/science/article/pii/S0167865510000954
Group OM (2014) Object constraint language specification. https://www.omg.org/spec/OCL/, Accessed: 2019-10-11
Deng L, Hinton G, Kingsbury B (2013) New types of deep neural network learning for speech recognition and related applications: an overview. In: 2013 IEEE International conference on acoustics, speech and signal processing, pp 8599–8603 https://doi.org/10.1109/ICASSP.2013.6639344
Autumn T (2016) Autumn model. https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/autumn, Accessed: 2019-10-11
Ciresan DC, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. arXiv:1202.2745
TASS International - Siemens Group (2019) Prescan: Simulation of adas and active safety. https://tass.plm.automation.siemens.com, Accessed: 2019-10-11
Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V (2017) CARLA: An open urban driving simulator. In: Proceedings of the 1st annual conference on robot learning, pp 1–16
Haq FU, Shin D, Nejati S, Briand L (2020a) Comparing offline and online testing of deep neural networks: An autonomous car case study. In: 2020 IEEE International conference on software testing, verification and validation, p to appear
BarrETHarmanMMcMinnPShahbazMYooSThe oracle problem in software testing: A surveyIEEE Trans Softw Eng201541550752510.1109/TSE.2014.2372785https://doi.org/10.1109/TSE.2014.2372785
Cohen WW (1995) Fast effective rule induction. In: Prieditis A, Russell S (eds) Machine Learning Proceedings 1995, Morgan Kaufmann, San Francisco (CA), pp 115–123 https://doi.org/10.1016/B978-1-55860-377-6.50023-2. http://www.sciencedirect.com/science/article/pii/B9781558603776500232
Pineau J (2019) Icse 2019 keynote: Building reproducible, reusable, and robust machine learning software. https://2019.icse-conferences.org/details/icse-2019-Plenary-Sessions/20/Building-Reproducible-Reusable-and-Robust-Machine-Learning-Software, Accessed: 2019-10-11
Rong G, Shin BH, Tabatabaee H, Lu Q, Lemke S, Mozeikǒ M, Boise E, Uhm G, Gerow M, Mehta S, Agafonov E, Kim TH, Sterner E, Ushiroda K, Reyes M, Zelenkovsky D, Kim S (2020) Lgsvl simulator: A high fidelity simulator for autonomous driving. In: 2020 IEEE 23rd International conference on intelligent transportation systems (ITSC), pp 1–6 https://doi.org/10.1109/ITSC45102.2020.9294422
Shah S, Dey D, Lovett C, Kapoor A (2018) Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In: Hutter M, Siegwart R (eds) Field and service robotics, springer international publishing, Cham, pp 621–635
Zhang JM, Harman M, Ma L, Liu Y (2020) Machine learning testing: Survey, landscapes and horizons. IEEE Trans Softw Eng 1–1
Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the kitti vision benchmark suite
ESI Group (2019) Esi pro-sivic - 3d simulations of environments and sensors. https://www.esi-group.com/software-solutions/virtual-environment/virtual-systems-controls/esi-pro-sivictm-3d-simulations-environments-and-sensors, Accessed: 2019-10-11
Wicker M, Huang X, Kwiatkowska M (2018) Feature-guided black-box safety testing of deep neural networks. In: Beyer D, Huisman M (eds) Tools and Algorithms for the Construction and Analysis of Systems. Springer International Publishing, Cham, pp 408–426
Chauffeur T (2016) Chauffeur model. https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur, Accessed: 2019-10-11
Pomerleau DA (1989) Alvinn: An autonomous land vehicle in a neural network. In: Advances in neural information processing systems, pp 305–313
Komanda T (2016) Komanda model. https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/komanda, Accessed: 2020-04-14
Tuncali CE, Fainekos G, Ito H, Kapinski J (2018) Simulation-based adversarial test generation for autonomous vehicles with machine learning components. In: 2018 IEEE intelligent vehicles symposium, IV pp 1555–1562. https://doi.org/10.1109/IVS.2018.8500421
Archer KJ, Kimes RV (2008) Empirical characterization of random forest variable importance measures, vol 52. https://doi.org/10.1016/j.csda.2007.08.015. http://www.sciencedirect.com/science/article/pii/S0167947307003076
Majumdar R, Mathur A, Pirron M, Stegner L, Zufferey D (2019) Paracosm: A language and tool for testing autonomous driving systems. arXiv:1902.01084
Udacity (2016b) Udacity self-driving challenge 2, ch2-001 (testing) and ch2-002 (training). https://github.com/udacity/self-driving-car/tree/master/datasets/CH2, Accessed: 2019-10-11
Sutskever I, Vinyals O, Le Q V (2014) Sequence to sequence learning with neural networks. In: Ghahramani Z, Welling M, Cortes C, Lawrence N D, Weinberger K Q (eds) Advances in Neural Information Processing Systems. 27 Curran Associates Inc. pp 3104–3112
9982_CR27
ET Barr (9982_CR3) 2015; 41
9982_CR26
9982_CR29
9982_CR28
9982_CR21
9982_CR20
9982_CR2
9982_CR23
9982_CR22
9982_CR25
9982_CR1
R Genuer (9982_CR14) 2010; 31
9982_CR24
9982_CR6
9982_CR7
9982_CR4
9982_CR5
9982_CR8
9982_CR9
9982_CR16
9982_CR38
9982_CR15
9982_CR37
9982_CR17
9982_CR39
N Kalra (9982_CR18) 2016; 94
ZQ Zhou (9982_CR40) 2019; 62
9982_CR19
9982_CR30
9982_CR10
9982_CR32
9982_CR31
9982_CR12
9982_CR34
9982_CR11
9982_CR33
9982_CR36
9982_CR13
9982_CR35
References_xml – reference: Dosovitskiy A, Ros G, Codevilla F, Lopez A, Koltun V (2017) CARLA: An open urban driving simulator. In: Proceedings of the 1st annual conference on robot learning, pp 1–16
– reference: Shah S, Dey D, Lovett C, Kapoor A (2018) Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In: Hutter M, Siegwart R (eds) Field and service robotics, springer international publishing, Cham, pp 621–635
– reference: Zhang M, Zhang Y, Zhang L, Liu C, Khurshid S (2018) Deeproad: Gan-based metamorphic testing and input validation framework for autonomous driving systems. In: Proceedings of the 33rd ACM/IEEE international conference on automated software engineering, acm, New York, NY, USA, ASE 2018, pp 132–142. https://doi.org/10.1145/3238147.3238187
– reference: Udacity (2016a) Udacity self-driving car challenge 2: Using deep learning to predict steering angles. https://github.com/udacity/self-driving-car/tree/master/challenges/challenge-2, Accessed: 2019-10-11
– reference: TASS International - Siemens Group (2019) Prescan: Simulation of adas and active safety. https://tass.plm.automation.siemens.com, Accessed: 2019-10-11
– reference: Pineau J (2019) Icse 2019 keynote: Building reproducible, reusable, and robust machine learning software. https://2019.icse-conferences.org/details/icse-2019-Plenary-Sessions/20/Building-Reproducible-Reusable-and-Robust-Machine-Learning-Software, Accessed: 2019-10-11
– reference: Rong G, Shin BH, Tabatabaee H, Lu Q, Lemke S, Mozeikǒ M, Boise E, Uhm G, Gerow M, Mehta S, Agafonov E, Kim TH, Sterner E, Ushiroda K, Reyes M, Zelenkovsky D, Kim S (2020) Lgsvl simulator: A high fidelity simulator for autonomous driving. In: 2020 IEEE 23rd International conference on intelligent transportation systems (ITSC), pp 1–6 https://doi.org/10.1109/ITSC45102.2020.9294422
– reference: BarrETHarmanMMcMinnPShahbazMYooSThe oracle problem in software testing: A surveyIEEE Trans Softw Eng201541550752510.1109/TSE.2014.2372785https://doi.org/10.1109/TSE.2014.2372785
– reference: Komanda T (2016) Komanda model. https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/komanda, Accessed: 2020-04-14
– reference: Udacity (2016b) Udacity self-driving challenge 2, ch2-001 (testing) and ch2-002 (training). https://github.com/udacity/self-driving-car/tree/master/datasets/CH2, Accessed: 2019-10-11
– reference: Deng L, Hinton G, Kingsbury B (2013) New types of deep neural network learning for speech recognition and related applications: an overview. In: 2013 IEEE International conference on acoustics, speech and signal processing, pp 8599–8603 https://doi.org/10.1109/ICASSP.2013.6639344
– reference: Group OM (2014) Object constraint language specification. https://www.omg.org/spec/OCL/, Accessed: 2019-10-11
– reference: Sotiropoulos T, Waeselynck H, Guiochet J, Ingrand F (2017) Can robot navigation bugs be found in simulation? an exploratory study. In: 2017 IEEE International conference on software quality, reliability and security (QRS), pp 150–159 https://doi.org/10.1109/QRS.2017.25
– reference: Chauffeur T (2016) Chauffeur model. https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/chauffeur, Accessed: 2019-10-11
– reference: Kim J, Feldt R, Yoo S (2019) Guiding deep learning system testing using surprise adequacy. In: Proceedings of the 41st international conference on software engineering, IEEE Press, Piscataway, NJ, USA, ICSE ’19, pp 1039–1049 https://doi.org/10.1109/ICSE.2019.00108
– reference: Pei K, Cao Y, Yang J, Jana S (2017) Deepxplore: Automated whitebox testing of deep learning systems. In: Proceedings of the 26th symposium on operating systems principles, ACM, New York, NY, USA, SOSP ’17, pp 1–18 https://doi.org/10.1145/3132747.3132785
– reference: Zhou H, Li W, Zhu Y, Zhang Y, Yu B, Zhang L, Liu C (2018) Deepbillboard: Systematic physical-world testing of autonomous driving systems. arXiv:1812.10812
– reference: Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the kitti vision benchmark suite
– reference: ESI Group (2019) Esi pro-sivic - 3d simulations of environments and sensors. https://www.esi-group.com/software-solutions/virtual-environment/virtual-systems-controls/esi-pro-sivictm-3d-simulations-environments-and-sensors, Accessed: 2019-10-11
– reference: Haq FU, Shin D, Nejati S, Briand L (2020b) Supporting materials (temporal link for the double-blind review). http://tiny.cc/Experiment-data, Accessed: 2020-07-26
– reference: Archer KJ, Kimes RV (2008) Empirical characterization of random forest variable importance measures, vol 52. https://doi.org/10.1016/j.csda.2007.08.015. http://www.sciencedirect.com/science/article/pii/S0167947307003076
– reference: KalraNPaddockSMDriving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?Trans Res Part A Pol Pract20169418219310.1016/j.tra.2016.09.010https://doi.org/10.1016/j.tra.2016.09.010. http://www.sciencedirect.com/science/article/pii/S0965856416302129
– reference: ZhouZQSunLMetamorphic testing of driverless carsCommun ACM2019623616710.1145/3241979https://doi.org/10.1145/3241979
– reference: Ma L, Juefei-Xu F, Zhang F, Sun J, Xue M, Li B, Chen C, Su T, Li L, Liu Y, Zhao J, Wang Y (2018) Deepgauge: Multi-granularity testing criteria for deep learning systems. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ACM, New York, NY, USA, ASE, 2018, pp 120–131. https://doi.org/10.1145/3238147.3238202
– reference: Tian Y, Pei K, Jana S, Ray B (2018) Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In: Proceedings of the 40th international conference on software engineering, ACM, New York, NY, USA, ICSE ’18, pp 303–314. https://doi.org/10.1145/3180155.3180220
– reference: Codevilla F, Lopez AM, Koltun V, Dosovitskiy A (2018) On offline evaluation of vision-based driving models. In: The european conference on computer vision (ECCV)
– reference: Haq FU, Shin D, Nejati S, Briand L (2020a) Comparing offline and online testing of deep neural networks: An autonomous car case study. In: 2020 IEEE International conference on software testing, verification and validation, p to appear
– reference: GenuerRPoggiJMTuleau-MalotCVariable selection using random forestsPattern Recognit Lett201031142225223610.1016/j.patrec.2010.03.014https://doi.org/10.1016/j.patrec.2010.03.014. http://www.sciencedirect.com/science/article/pii/S0167865510000954
– reference: Cohen WW (1995) Fast effective rule induction. In: Prieditis A, Russell S (eds) Machine Learning Proceedings 1995, Morgan Kaufmann, San Francisco (CA), pp 115–123 https://doi.org/10.1016/B978-1-55860-377-6.50023-2. http://www.sciencedirect.com/science/article/pii/B9781558603776500232
– reference: Zhang JM, Harman M, Ma L, Liu Y (2020) Machine learning testing: Survey, landscapes and horizons. IEEE Trans Softw Eng 1–1
– reference: Pomerleau DA (1989) Alvinn: An autonomous land vehicle in a neural network. In: Advances in neural information processing systems, pp 305–313
– reference: Tuncali CE, Fainekos G, Ito H, Kapinski J (2018) Simulation-based adversarial test generation for autonomous vehicles with machine learning components. In: 2018 IEEE intelligent vehicles symposium, IV pp 1555–1562. https://doi.org/10.1109/IVS.2018.8500421
– reference: Wicker M, Huang X, Kwiatkowska M (2018) Feature-guided black-box safety testing of deep neural networks. In: Beyer D, Huisman M (eds) Tools and Algorithms for the Construction and Analysis of Systems. Springer International Publishing, Cham, pp 408–426
– reference: Majumdar R, Mathur A, Pirron M, Stegner L, Zufferey D (2019) Paracosm: A language and tool for testing autonomous driving systems. arXiv:1902.01084
– reference: Dreossi T, Ghosh S, Sangiovanni-Vincentelli A, Seshia SA (2017) Systematic testing of convolutional neural networks for autonomous driving. arXiv:1708.03309
– reference: Gambi A, Mueller M, Fraser G (2019) Automatically testing self-driving cars with search-based procedural content generation. In: Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, ACM, New York, NY, USA, ISSTA, 2019 pp 318–328. https://doi.org/10.1145/3293882.3330566
– reference: McGehee DV, Mazzae EN, Baldwin GS (2000) Driver reaction time in crash avoidance research: Validation of a driving simulator study on a test track. In: Proceedings of the human factors and ergonomics society annual meeting 44(20):3–320–3–323 https://doi.org/10.1177/154193120004402026
– reference: Sutskever I, Vinyals O, Le Q V (2014) Sequence to sequence learning with neural networks. In: Ghahramani Z, Welling M, Cortes C, Lawrence N D, Weinberger K Q (eds) Advances in Neural Information Processing Systems. 27 Curran Associates Inc. pp 3104–3112
– reference: Autumn T (2016) Autumn model. https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/autumn, Accessed: 2019-10-11
– reference: Ciresan DC, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. arXiv:1202.2745
– ident: 9982_CR21
  doi: 10.1145/3238147.3238202
– ident: 9982_CR20
– ident: 9982_CR22
– ident: 9982_CR19
  doi: 10.1109/ICSE.2019.00108
– ident: 9982_CR36
  doi: 10.1007/978-3-319-89960-2_22
– volume: 41
  start-page: 507
  issue: 5
  year: 2015
  ident: 9982_CR3
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2014.2372785
– ident: 9982_CR2
– ident: 9982_CR35
– ident: 9982_CR4
– ident: 9982_CR28
  doi: 10.1007/978-3-319-67361-5_40
– ident: 9982_CR39
– ident: 9982_CR34
– ident: 9982_CR32
  doi: 10.1145/3180155.3180220
– ident: 9982_CR30
– ident: 9982_CR11
– ident: 9982_CR33
  doi: 10.1109/IVS.2018.8500421
– ident: 9982_CR25
– ident: 9982_CR37
  doi: 10.1109/TSE.2019.2962027
– ident: 9982_CR6
  doi: 10.1007/978-3-030-01267-0_15
– ident: 9982_CR27
  doi: 10.1109/ITSC45102.2020.9294422
– ident: 9982_CR29
  doi: 10.1109/QRS.2017.25
– ident: 9982_CR7
  doi: 10.1016/B978-1-55860-377-6.50023-2
– ident: 9982_CR12
  doi: 10.1145/3293882.3330566
– volume: 62
  start-page: 61
  issue: 3
  year: 2019
  ident: 9982_CR40
  publication-title: Commun ACM
  doi: 10.1145/3241979
– volume: 94
  start-page: 182
  year: 2016
  ident: 9982_CR18
  publication-title: Trans Res Part A Pol Pract
  doi: 10.1016/j.tra.2016.09.010
– ident: 9982_CR1
  doi: 10.1016/j.csda.2007.08.015
– ident: 9982_CR8
  doi: 10.1109/ICASSP.2013.6639344
– ident: 9982_CR15
– ident: 9982_CR17
– ident: 9982_CR9
– volume: 31
  start-page: 2225
  issue: 14
  year: 2010
  ident: 9982_CR14
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2010.03.014
– ident: 9982_CR5
  doi: 10.1109/CVPR.2012.6248110
– ident: 9982_CR31
– ident: 9982_CR24
  doi: 10.1145/3132747.3132785
– ident: 9982_CR10
– ident: 9982_CR26
– ident: 9982_CR38
  doi: 10.1145/3238147.3238187
– ident: 9982_CR16
  doi: 10.1109/ICST46399.2020.00019
– ident: 9982_CR23
  doi: 10.1177/154193120004402026
– ident: 9982_CR13
  doi: 10.1109/CVPR.2012.6248074
SSID ssj0009745
Score 2.4647117
Snippet We distinguish two general modes of testing for Deep Neural Networks (DNNs): Offline testing where DNNs are tested as individual units based on test datasets...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 90
SubjectTerms Compilers
Computer Science
Interpreters
Programming Languages
Software Engineering/Programming and Operating Systems
Subtitle A Case Study of Automated Driving Systems
Title Can Offline Testing of Deep Neural Networks Replace Their Online Testing?
URI https://link.springer.com/article/10.1007/s10664-021-09982-4
https://www.proquest.com/docview/2685446746
https://pubmed.ncbi.nlm.nih.gov/PMC9249720
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7UXrz4FuujrOBNA8k-k5OU2oeKemlBTyGb7KogabH1_zubR2tFCp5CyO4SZmYz32ZmvgG4EGEkjEyYlwmjPG7xzKpDbbwwMVqkPODUuALnh0c5GPG7Z_FcFYVN62z3OiRZfKl_FLtJyT2XUoCoBnEhX4eGcGd3tOIRbS-odlXRmtiR63kMPXpVKvP3GsvuaIExf2dI_gqTFt6ntwNbFWwk7VLPu7Bm8j3YrlsykGqH7sNtJ8nJk7UOPJKhY9DIX8nYkhtjJsQRceAij2Xm95Qg-HY_0cnQBQtISTpaT7o-gFGvO-wMvKpbgpcyFc3Q3GmSpXjgMUGqOBdZwqiPLioRQtqQaaOoThnClxQvWlsa2NAq5SsptFDaskPYyMe5OQIiLY0E49pPWOQY6XVmMyajLEpZoDPtNyGohRanFZW462jxES9IkJ2gYxR0XAg65k24nM-ZlEQaK0ef17qI0d5dECPJzfhrGlMZCu5apMgmqCUlzZd1jNnLT_L3t4I52x02FcX3v6rVGVdbdrriZY7_N_wENmlpYZ4fnMLG7PPLnCFymekWrIe9fgsa7f7LfRfvOrLTKoz3G72v6C8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvTiW6zPFbxpINlnchKJllbbemmhtyWb7KogabHt_3cnj5YWETzlkOyyzMwy32RmvkHolocRNyKhXsaN9Jh1MasOtfHCxGiesoARAw3Ovb5oD9nLiI8qmhzohVnL30OLmxDMg0ICh2UcGmSbaIu5SBnK92IRLwl2ZTGQGCj1POr8eNUg8_seq05oiSzX6yLXkqOFz2nto90KLOLHUrsHaMPkh2ivHsSAq3t5hDpxkuM3awEy4gHwZuTveGzxkzETDPQbbpN-We89xQ5yw69zPIAUAS6pRutFD8do2HoexG2vmpHgpVRGM2fkJMlSF-aYIJWM8SyhxHeOKeFc2JBqI4lOqQMtqXtobUlgQyulLwXXXGpLT1AjH-fmFGFhScQp035CI-Ch15nNqIiyKKWBzrTfREEtNJVWBOIwx-JLLamPQdDKCVoVglasie4WayYlfcafX9_UulDOyiF1keRmPJ8qIkLOYDCKaCK5oqTFtsCTvfom__wo-LIhxJTEnf--VqeqLur0j8Oc_e_za7TdHvS6qtvpv56jHVJam-cHF6gx-56bS4ddZvqqMNofKizjqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4Fuszgjdd3M1z9ySytbQ-qocWegubbKKCbItt_7_JPvpCCp72sJsQZibMNzsz3wBwTcOIapZgL6Wae8TYmFWGUnthoiVVJCBIuwbn1w5r9chTn_bnuvjzavcqJVn0NDiWpmx8N0zN3VzjG2PEc-UFFuFYjEjWwYaNVPJEbcziGe0uz8cUO6I9D1vvXrbN_L3Homua4c3lasmllGnuiZq7YLuEkPCh0PkeWNPZPtipxjPA8rYegHacZPDNGAckYdexaWQfcGBgQ-shdKQcdpNOUQU-ghaIux_qsOsSB7AgIK0W3R-CXvOxG7e8cnKCpzCPxtb0UZIqG_zoQHFCaJpg5Ft3lVDKTIil5kgqbKGMsg8pDQpMaDj3OaOScmnwEahlg0wfA8gMiigm0k9w5NjpZWpSzKI0UjiQqfTrIKiEJlRJK-6mW3yLGSGyE7Swgha5oAWpg5vpmmFBqrHy66tKF8LavktoJJkeTEYCsZASNy6F1QFfUNJ0W8eevfgm-_rMWbRd4MmRPf9tpU5RXt_RisOc_O_zS7D53miKl3bn-RRsocLYPD84A7Xxz0SfW0Azlhe5zf4C_YPr8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+Offline+Testing+of+Deep+Neural+Networks+Replace+Their+Online+Testing%3F&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Haq%2C+Fitash+Ul&rft.au=Shin%2C+Donghwan&rft.au=Nejati%2C+Shiva&rft.au=Briand%2C+Lionel&rft.date=2021-09-01&rft.pub=Springer+US&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=26&rft.issue=5&rft_id=info:doi/10.1007%2Fs10664-021-09982-4&rft_id=info%3Apmid%2F35791396&rft.externalDocID=PMC9249720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon