A magnetic continuum in the cobalt-based honeycomb magnet BaCo2(AsO4)2
Quantum spin liquids (QSLs) are topologically ordered states of matter that host fractionalized excitations. A particular route towards a QSL is via strongly bond-dependent interactions on the hexagonal lattice. A number of Ru- and Ir-based candidate Kitaev QSL materials have been pursued, but all h...
Saved in:
Published in | Nature materials Vol. 22; no. 1; pp. 58 - 63 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2023
Nature Publishing Group Springer Nature |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantum spin liquids (QSLs) are topologically ordered states of matter that host fractionalized excitations. A particular route towards a QSL is via strongly bond-dependent interactions on the hexagonal lattice. A number of Ru- and Ir-based candidate Kitaev QSL materials have been pursued, but all have appreciable non-Kitaev interactions. Using time-domain terahertz spectroscopy, we observed a broad magnetic continuum over a wide range of temperatures and fields in the honeycomb cobalt-based magnet BaCo
2
(AsO
4
)
2
, which has been proposed to be a more ideal version of a Kitaev QSL. Applying an in-plane magnetic field of ~0.5 T suppresses the magnetic order, and at higher fields, applying the field gives rise to a spin-polarized state. Under a 4 T magnetic field that was oriented principally out of plane, a broad magnetic continuum was observed that may be consistent with a field-induced QSL. Our results indicate BaCo
2
(AsO
4
)
2
is a promising QSL candidate.
The authors present time-domain terahertz spectroscopy measurements on BaCo
2
(AsO
4
)
2
, a promising 3
d
transition-metal-based quantum spin liquid candidate. |
---|---|
AbstractList | Quantum spin liquids (QSLs) are topologically ordered states of matter that host fractionalized excitations. A particular route towards a QSL is via strongly bond-dependent interactions on the hexagonal lattice. A number of Ru- and Ir-based candidate Kitaev QSL materials have been pursued, but all have appreciable non-Kitaev interactions. Using time-domain terahertz spectroscopy, we observed a broad magnetic continuum over a wide range of temperatures and fields in the honeycomb cobalt-based magnet BaCo2(AsO4)2, which has been proposed to be a more ideal version of a Kitaev QSL. Applying an in-plane magnetic field of ~0.5 T suppresses the magnetic order, and at higher fields, applying the field gives rise to a spin-polarized state. Under a 4 T magnetic field that was oriented principally out of plane, a broad magnetic continuum was observed that may be consistent with a field-induced QSL. Our results indicate BaCo2(AsO4)2 is a promising QSL candidate.The authors present time-domain terahertz spectroscopy measurements on BaCo2(AsO4)2, a promising 3d transition-metal-based quantum spin liquid candidate. Not provided. Quantum spin liquids (QSLs) are topologically ordered states of matter that host fractionalized excitations. A particular route towards a QSL is via strongly bond-dependent interactions on the hexagonal lattice. A number of Ru- and Ir-based candidate Kitaev QSL materials have been pursued, but all have appreciable non-Kitaev interactions. Using time-domain terahertz spectroscopy, we observed a broad magnetic continuum over a wide range of temperatures and fields in the honeycomb cobalt-based magnet BaCo 2 (AsO 4 ) 2 , which has been proposed to be a more ideal version of a Kitaev QSL. Applying an in-plane magnetic field of ~0.5 T suppresses the magnetic order, and at higher fields, applying the field gives rise to a spin-polarized state. Under a 4 T magnetic field that was oriented principally out of plane, a broad magnetic continuum was observed that may be consistent with a field-induced QSL. Our results indicate BaCo 2 (AsO 4 ) 2 is a promising QSL candidate. The authors present time-domain terahertz spectroscopy measurements on BaCo 2 (AsO 4 ) 2 , a promising 3 d transition-metal-based quantum spin liquid candidate. Quantum spin liquids (QSLs) are topologically ordered states of matter that host fractionalized excitations. A particular route towards a QSL is via strongly bond-dependent interactions on the hexagonal lattice. A number of Ru- and Ir-based candidate Kitaev QSL materials have been pursued, but all have appreciable non-Kitaev interactions. Using time-domain terahertz spectroscopy, we observed a broad magnetic continuum over a wide range of temperatures and fields in the honeycomb cobalt-based magnet BaCo2(AsO4)2, which has been proposed to be a more ideal version of a Kitaev QSL. Applying an in-plane magnetic field of ~0.5 T suppresses the magnetic order, and at higher fields, applying the field gives rise to a spin-polarized state. Under a 4 T magnetic field that was oriented principally out of plane, a broad magnetic continuum was observed that may be consistent with a field-induced QSL. Our results indicate BaCo2(AsO4)2 is a promising QSL candidate.Quantum spin liquids (QSLs) are topologically ordered states of matter that host fractionalized excitations. A particular route towards a QSL is via strongly bond-dependent interactions on the hexagonal lattice. A number of Ru- and Ir-based candidate Kitaev QSL materials have been pursued, but all have appreciable non-Kitaev interactions. Using time-domain terahertz spectroscopy, we observed a broad magnetic continuum over a wide range of temperatures and fields in the honeycomb cobalt-based magnet BaCo2(AsO4)2, which has been proposed to be a more ideal version of a Kitaev QSL. Applying an in-plane magnetic field of ~0.5 T suppresses the magnetic order, and at higher fields, applying the field gives rise to a spin-polarized state. Under a 4 T magnetic field that was oriented principally out of plane, a broad magnetic continuum was observed that may be consistent with a field-induced QSL. Our results indicate BaCo2(AsO4)2 is a promising QSL candidate. |
Author | Armitage, N. P. Xu, Yuanyuan Drichko, N. Broholm, C. Zhang, Xinshu Cava, R. J. Halloran, T. Zhong, Ruidan |
Author_xml | – sequence: 1 givenname: Xinshu surname: Zhang fullname: Zhang, Xinshu organization: Institute for Quantum Matter, Department of Physics and Astronomy, Johns Hopkins University – sequence: 2 givenname: Yuanyuan surname: Xu fullname: Xu, Yuanyuan organization: Institute for Quantum Matter, Department of Physics and Astronomy, Johns Hopkins University – sequence: 3 givenname: T. orcidid: 0000-0001-5284-2339 surname: Halloran fullname: Halloran, T. organization: Institute for Quantum Matter, Department of Physics and Astronomy, Johns Hopkins University – sequence: 4 givenname: Ruidan surname: Zhong fullname: Zhong, Ruidan organization: Department of Chemistry, Princeton University – sequence: 5 givenname: C. orcidid: 0000-0002-1569-9892 surname: Broholm fullname: Broholm, C. organization: Institute for Quantum Matter, Department of Physics and Astronomy, Johns Hopkins University, NIST Center for Neutron Research, National Institute of Standards and Technology, Department of Materials Science and Engineering, Johns Hopkins University – sequence: 6 givenname: R. J. surname: Cava fullname: Cava, R. J. organization: Department of Chemistry, Princeton University – sequence: 7 givenname: N. surname: Drichko fullname: Drichko, N. organization: Institute for Quantum Matter, Department of Physics and Astronomy, Johns Hopkins University – sequence: 8 givenname: N. P. orcidid: 0000-0001-7568-2059 surname: Armitage fullname: Armitage, N. P. email: npa@jhu.edu organization: Institute for Quantum Matter, Department of Physics and Astronomy, Johns Hopkins University, Canadian Institute for Advanced Research |
BackLink | https://www.osti.gov/biblio/2421157$$D View this record in Osti.gov |
BookMark | eNp9kMtKxDAUhoMoeH0BV0U3uqieXNsux8EbDMxG1yFNEyfSJtqki3l7ox0QXLhKCN-X85__GO374A1C5xhuMND6NjLMBS2BkBIwA1riPXSEWSVKJgTs7-4YE3KIjmN8ByCYc3GEHhbFoN68SU4XOvjk_DQNhfNF2pj80Ko-la2Kpis2eeJWh6HdCcWdWgZytYhrdk1O0YFVfTRnu_MEvT7cvyyfytX68Xm5WJWaVk0qMcNEV03bmcYyylprW62hsqxmpAEulOnAklo3nagN5Z0QVnHWgAXG61pYeoIu5n9DTE5G7ZLRm5zbG50kYQRjXmXoaoY-xvA5mZjk4KI2fa-8CVOUpKIN5FqAZ_TyD_oeptHnFTIloKJAK5EpMlN6DDGOxsqP0Q1q3EoM8rt_Ofcvc__yp3-Js1T_kXJalVwueVSu_1-lsxrzHP9mxt9U_1hfWxiYjQ |
CitedBy_id | crossref_primary_10_1103_PhysRevLett_131_146702 crossref_primary_10_1103_PhysRevB_109_094423 crossref_primary_10_1103_PhysRevB_108_064433 crossref_primary_10_1103_PhysRevB_108_174422 crossref_primary_10_1088_0256_307X_42_2_027303 crossref_primary_10_1103_PhysRevLett_132_066701 crossref_primary_10_1038_s41535_024_00713_8 crossref_primary_10_1038_s41535_024_00715_6 crossref_primary_10_1103_PhysRevB_108_L140406 crossref_primary_10_1103_PhysRevB_110_L140407 crossref_primary_10_1103_PhysRevMaterials_7_024402 crossref_primary_10_1038_s41535_025_00728_9 crossref_primary_10_1088_1361_6633_ad208d crossref_primary_10_1103_PhysRevB_108_024431 crossref_primary_10_1103_PhysRevB_111_014417 crossref_primary_10_1016_j_xinn_2024_100769 crossref_primary_10_1103_PhysRevB_111_L100402 crossref_primary_10_1103_PhysRevMaterials_8_084408 crossref_primary_10_1103_PhysRevB_108_174432 crossref_primary_10_3389_fmats_2024_1362744 crossref_primary_10_1038_s43246_024_00594_1 crossref_primary_10_1038_s41467_024_51146_7 crossref_primary_10_1016_j_physrep_2023_09_008 crossref_primary_10_1038_s41586_024_08091_8 crossref_primary_10_1103_PhysRevB_108_L180406 crossref_primary_10_1103_PhysRevB_107_054420 crossref_primary_10_1103_PhysRevB_108_L180405 crossref_primary_10_1126_sciadv_adn8694 crossref_primary_10_1103_PhysRevB_109_075104 crossref_primary_10_1103_PhysRevLett_133_126505 crossref_primary_10_1103_PhysRevB_110_235118 crossref_primary_10_1103_PhysRevResearch_5_L022045 crossref_primary_10_1038_s41598_025_86302_6 crossref_primary_10_1103_PhysRevLett_131_076701 crossref_primary_10_1038_s41467_025_56652_w |
Cites_doi | 10.1103/PhysRevB.97.014407 10.1073/pnas.1821406116 10.1088/1361-648X/ac2d5d 10.1103/PhysRevLett.114.147201 10.1103/PhysRevB.100.165123 10.1103/PhysRevB.91.144420 10.1038/nmat4604 10.1103/PhysRevB.93.134423 10.1103/PhysRevResearch.2.033011 10.1103/PhysRevB.102.224411 10.1038/s41467-021-25567-7 10.1103/PhysRevB.100.100403 10.1038/srep37925 10.1103/PhysRevLett.119.227208 10.1126/science.aay0668 10.1103/PhysRevB.97.014408 10.1016/0025-5408(73)90167-0 10.1038/s41567-021-01208-0 10.1103/PhysRevLett.120.077203 10.1016/j.heliyon.2018.e00507 10.1103/PhysRevLett.119.227202 10.1038/s41467-019-08459-9 10.1103/PhysRevB.104.144408 10.1103/PhysRevLett.118.107203 10.1103/PhysRevLett.117.157203 10.1038/s41586-018-0274-0 10.1126/science.aay5551 10.1038/s41567-021-01243-x 10.1103/PhysRevB.104.134425 10.1038/nphys3322 10.1038/s41567-020-1028-0 10.1126/science.aah6015 10.1038/s41467-021-24257-8 10.1103/PhysRevB.90.041112 10.1038/s41467-017-01177-0 10.1038/s41535-018-0079-2 10.1038/nphys4264 10.1103/PhysRevB.101.140410 10.1103/PhysRevLett.119.227201 10.1016/j.aop.2005.10.005 10.1038/s41467-019-10405-8 10.1038/s41567-020-0874-0 10.1103/PhysRevLett.125.047201 10.1038/s42254-019-0038-2 10.1016/0378-4363(77)90635-0 10.1038/nature08917 10.1103/PhysRevLett.112.207203 10.1126/sciadv.aay6953 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
CorporateAuthor | Johns Hopkins Univ., Baltimore, MD (United States) |
CorporateAuthor_xml | – name: Johns Hopkins Univ., Baltimore, MD (United States) |
DBID | AAYXX CITATION 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 OTOTI |
DOI | 10.1038/s41563-022-01403-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1476-4660 |
EndPage | 63 |
ExternalDocumentID | 2421157 10_1038_s41563_022_01403_1 |
GrantInformation_xml | – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0019331; DE-SC0019331; DE-SC0019331; DE-SC0019331; DE-SC0019331; DE-SC0019331; DE-SC0019331; DE-SC0019331 funderid: https://doi.org/10.13039/100000015 |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7SR 7XB 8BQ 8FD 8FK JG9 K9. NFIDA PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 AADEA AAEXX ABEEJ ABVXF ADZGE AGEZK OTOTI |
ID | FETCH-LOGICAL-c379t-1412c79bde9f434bffbcc07f48429056aed0f28c9d68e35d66fa5490f045886f3 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Mon Aug 12 05:47:36 EDT 2024 Fri Jul 11 06:19:21 EDT 2025 Tue Aug 12 07:27:50 EDT 2025 Thu Apr 24 22:54:03 EDT 2025 Tue Jul 01 02:14:03 EDT 2025 Fri Feb 21 02:40:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-1412c79bde9f434bffbcc07f48429056aed0f28c9d68e35d66fa5490f045886f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC) SC0019331 |
ORCID | 0000-0001-5284-2339 0000-0002-1569-9892 0000-0001-7568-2059 0000000215699892 0000000152842339 0000000175682059 |
PQID | 2760730376 |
PQPubID | 27576 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_2421157 proquest_miscellaneous_2739066005 proquest_journals_2760730376 crossref_primary_10_1038_s41563_022_01403_1 crossref_citationtrail_10_1038_s41563_022_01403_1 springer_journals_10_1038_s41563_022_01403_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nat. Mater |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Springer Nature |
References | Little (CR30) 2017; 119 Regnault, Burlet, Mignod (CR39) 1977; 86 Kasahara (CR13) 2018; 559 Sears (CR16) 2015; 91 Banerjee (CR9) 2017; 356 Zheng (CR11) 2017; 119 Takagi (CR5) 2019; 1 Do (CR29) 2017; 13 Yoshitake, Nasu, Motome (CR35) 2016; 117 Zhong, Gao, Ong, Cava (CR25) 2020; 6 Sandilands, Tian, Plumb, Kim (CR36) 2015; 114 Modic (CR49) 2021; 17 Chun (CR6) 2015; 11 Yokoi (CR14) 2021; 373 Kim, Kim, Park (CR22) 2021; 34 Broholm (CR2) 2020; 367 Regnault, Boullier, Lorenzo (CR40) 2018; 4 Vivanco, Trump, Brown, McQueen (CR23) 2020; 102 Plumb (CR8) 2014; 90 Banerjee (CR7) 2016; 15 Maksimov, Chernyshev (CR44) 2020; 2 Reschke (CR31) 2019; 100 Sears (CR15) 2020; 16 Kitaev (CR4) 2006; 321 Balents (CR1) 2010; 464 Liu, Chaloupka, Khaliullin (CR20) 2020; 125 Banerjee (CR12) 2018; 3 Liu, Khaliullin (CR18) 2018; 97 Patela, Trivedia (CR46) 2019; 116 Zhang (CR33) 2018; 8 Li (CR17) 2021; 12 Sano, Kato, Motome (CR19) 2018; 97 Lin (CR24) 2021; 12 Jiang, Devereaux, Jiang (CR48) 2019; 100 Knolle, Kovrizhin, Chalker, Moessner (CR34) 2014; 112 Shi (CR26) 2021; 104 Gordon, Catuneanu, Sørensen, Kee (CR43) 2019; 10 Hickey, Trebst (CR47) 2019; 10 Das (CR27) 2021; 104 Winter (CR38) 2018; 120 Ran (CR45) 2017; 118 Morris (CR21) 2021; 17 Czajka (CR41) 2021; 17 Anderson (CR3) 1973; 8 Cao (CR28) 2016; 93 Winter (CR37) 2017; 8 Yadav (CR42) 2016; 6 Wang (CR10) 2017; 119 Sahasrabudhe (CR32) 2020; 101 LP Regnault (1403_CR40) 2018; 4 K Ran (1403_CR45) 2017; 118 PW Anderson (1403_CR3) 1973; 8 A Sahasrabudhe (1403_CR32) 2020; 101 S Das (1403_CR27) 2021; 104 T Yokoi (1403_CR14) 2021; 373 C Kim (1403_CR22) 2021; 34 YF Jiang (1403_CR48) 2019; 100 HK Vivanco (1403_CR23) 2020; 102 G Lin (1403_CR24) 2021; 12 CM Morris (1403_CR21) 2021; 17 X Zhang (1403_CR33) 2018; 8 J Yoshitake (1403_CR35) 2016; 117 H Liu (1403_CR18) 2018; 97 R Yadav (1403_CR42) 2016; 6 A Banerjee (1403_CR12) 2018; 3 R Zhong (1403_CR25) 2020; 6 KW Plumb (1403_CR8) 2014; 90 A Banerjee (1403_CR7) 2016; 15 C Broholm (1403_CR2) 2020; 367 A Banerjee (1403_CR9) 2017; 356 L Balents (1403_CR1) 2010; 464 ND Patela (1403_CR46) 2019; 116 SH Chun (1403_CR6) 2015; 11 J Knolle (1403_CR34) 2014; 112 Z Wang (1403_CR10) 2017; 119 JS Gordon (1403_CR43) 2019; 10 SH Do (1403_CR29) 2017; 13 PA Maksimov (1403_CR44) 2020; 2 H Liu (1403_CR20) 2020; 125 SM Winter (1403_CR37) 2017; 8 R Sano (1403_CR19) 2018; 97 A Kitaev (1403_CR4) 2006; 321 C Hickey (1403_CR47) 2019; 10 H Takagi (1403_CR5) 2019; 1 P Czajka (1403_CR41) 2021; 17 KA Modic (1403_CR49) 2021; 17 JA Sears (1403_CR16) 2015; 91 LJ Sandilands (1403_CR36) 2015; 114 JA Sears (1403_CR15) 2020; 16 A Little (1403_CR30) 2017; 119 LP Regnault (1403_CR39) 1977; 86 S Reschke (1403_CR31) 2019; 100 J Zheng (1403_CR11) 2017; 119 LY Shi (1403_CR26) 2021; 104 HB Cao (1403_CR28) 2016; 93 SM Winter (1403_CR38) 2018; 120 Y Kasahara (1403_CR13) 2018; 559 H Li (1403_CR17) 2021; 12 |
References_xml | – volume: 97 start-page: 014407 year: 2018 ident: CR18 article-title: Pseudospin exchange interactions in cobalt compounds: possible realization of the Kitaev model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.014407 – volume: 116 start-page: 12199 year: 2019 end-page: 12203 ident: CR46 article-title: Magnetic field-induced intermediate quantum spin liquid with a spinon Fermi surface publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821406116 – volume: 34 start-page: 023001 year: 2021 ident: CR22 article-title: Spin-orbital entangled state and realization of Kitaev physics in 3 cobalt compounds: a progress report publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ac2d5d – volume: 114 start-page: 147201 year: 2015 ident: CR36 article-title: Scattering continuum and possible fractionalized excitations in –RuCl publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.147201 – volume: 100 start-page: 165123 year: 2019 ident: CR48 article-title: Field-induced quantum spin liquid in the Kitaev-Heisenberg model and its relation to –RuCl publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.165123 – volume: 91 start-page: 144420 year: 2015 ident: CR16 article-title: Magnetic order in –RuCl : a honeycomb-lattice quantum magnet with strong spin-orbit coupling publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.144420 – volume: 15 start-page: 733 year: 2016 end-page: 740 ident: CR7 article-title: Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet publication-title: Nat. Mater. doi: 10.1038/nmat4604 – volume: 93 start-page: 134423 year: 2016 ident: CR28 article-title: Low-temperature crystal and magnetic structure of –RuCl publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.134423 – volume: 2 start-page: 033011 year: 2020 ident: CR44 article-title: Rethinking –RuCl publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033011 – volume: 102 start-page: 224411 year: 2020 ident: CR23 article-title: Competing antiferromagnetic-ferromagnetic states in a Kitaev honeycomb magnet publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.224411 – volume: 12 year: 2021 ident: CR24 article-title: Field-induced quantum spin disordered state in spin-1/2 honeycomb magnet Na Co TeO with small Kitaev interaction publication-title: Nat. Commun. doi: 10.1038/s41467-021-25567-7 – volume: 100 start-page: 100403(R) year: 2019 ident: CR31 article-title: Terahertz excitations in –RuCl : Majorana fermions and rigid-plane shear and compression modes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.100403 – volume: 6 year: 2016 ident: CR42 article-title: Kitaev exchange and field-induced quantum spin-liquid states in honeycomb -RuCl publication-title: Sci. Rep. doi: 10.1038/srep37925 – volume: 119 start-page: 227208 year: 2017 ident: CR11 article-title: Gapless spin excitations in the field-induced quantum spin liquid phase of –RuCl publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.227208 – volume: 367 start-page: eaay0668 year: 2020 ident: CR2 article-title: Quantum spin liquids publication-title: Science doi: 10.1126/science.aay0668 – volume: 97 start-page: 014408 year: 2018 ident: CR19 article-title: Kitaev-Heisenberg Hamiltonian for high-spin Mott insulators publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.014408 – volume: 8 start-page: 153 year: 1973 end-page: 160 ident: CR3 article-title: Resonating valence bonds: a new kind of insulator publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(73)90167-0 – volume: 17 start-page: 832 year: 2021 end-page: 836 ident: CR21 article-title: Duality and domain wall dynamics in a twisted Kitaev chain publication-title: Nat. Phys. doi: 10.1038/s41567-021-01208-0 – volume: 120 start-page: 077203 year: 2018 ident: CR38 article-title: Probing –RuCl beyond magnetic order: effects of temperature and magnetic field publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.077203 – volume: 4 start-page: e00507 year: 2018 ident: CR40 article-title: Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo (AsO ) frustrated honeycomb-lattice magnet publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00507 – volume: 119 start-page: 227202 year: 2017 ident: CR10 article-title: Magnetic excitations and continuum of a possibly field-induced quantum spin liquid in –RuCl publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.227202 – volume: 10 year: 2019 ident: CR47 article-title: Emergence of a field-driven (1) spin liquid in the Kitaev honeycomb model publication-title: Nat. Commun. doi: 10.1038/s41467-019-08459-9 – volume: 104 start-page: 144408 year: 2021 ident: CR26 article-title: Magnetic excitations of the field-induced states in BaCo (AsO ) probed by time-domain terahertz spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.144408 – volume: 118 start-page: 107203 year: 2017 ident: CR45 article-title: Spin wave excitations evidencing the Kitaev interaction in single crystalline –RuCl publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.107203 – volume: 117 start-page: 157203 year: 2016 ident: CR35 article-title: Fractional spin fluctuations as a precursor of quantum spin liquids: Majorana dynamical mean-field study for the Kitaev model publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.157203 – volume: 559 start-page: 227 year: 2018 end-page: 231 ident: CR13 article-title: Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid publication-title: Nature doi: 10.1038/s41586-018-0274-0 – volume: 373 start-page: 568 year: 2021 end-page: 572 ident: CR14 article-title: Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate α-RuCl publication-title: Science doi: 10.1126/science.aay5551 – volume: 17 start-page: 915 year: 2021 end-page: 919 ident: CR41 article-title: Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl publication-title: Nat. Phys. doi: 10.1038/s41567-021-01243-x – volume: 104 start-page: 134425 year: 2021 ident: CR27 article-title: XY magnetism, Kitaev exchange, and long-range frustration in the = 1/2 honeycomb cobaltates publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.134425 – volume: 11 start-page: 462 year: 2015 end-page: 466 ident: CR6 article-title: Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na IrO publication-title: Nat. Phys. doi: 10.1038/nphys3322 – volume: 17 start-page: 240 year: 2021 end-page: 244 ident: CR49 article-title: Scale-invariant magnetic anisotropy in α-RuCl at high magnetic fields publication-title: Nat. Phys. doi: 10.1038/s41567-020-1028-0 – volume: 356 start-page: 1055 year: 2017 end-page: 1059 ident: CR9 article-title: Neutron scattering in the proximate quantum spin liquid α-RuCl publication-title: Science doi: 10.1126/science.aah6015 – volume: 12 year: 2021 ident: CR17 article-title: Identification of magnetic interactions and high-field quantum spin liquid in -RuCl publication-title: Nat. Commun. doi: 10.1038/s41467-021-24257-8 – volume: 90 start-page: 041112 year: 2014 ident: CR8 article-title: –RuCl : a spin-orbit assisted Mott insulator on a honeycomb lattice publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.041112 – volume: 8 year: 2017 ident: CR37 article-title: Breakdown of magnons in a strongly spin-orbital coupled magnet publication-title: Nat. Commun. doi: 10.1038/s41467-017-01177-0 – volume: 8 start-page: 031001 year: 2018 ident: CR33 article-title: Hierarchy of exchange interactions in the triangular-lattice spin liquid YbMgGaO publication-title: Phys. Rev. X – volume: 3 year: 2018 ident: CR12 article-title: Excitations in the field-induced quantum spin liquid state of α-RuCl publication-title: npj Quantum Mater. doi: 10.1038/s41535-018-0079-2 – volume: 13 start-page: 1079 year: 2017 end-page: 1084 ident: CR29 article-title: Majorana fermions in the Kitaev quantum spin system α-RuCl publication-title: Nat. Phys. doi: 10.1038/nphys4264 – volume: 101 start-page: 140410 year: 2020 ident: CR32 article-title: High-field quantum disordered state in –RuCl : spin flips, bound states, and multiparticle continuum publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.140410 – volume: 119 start-page: 227201 year: 2017 ident: CR30 article-title: Antiferromagnetic resonance and terahertz continuum in α–RuCl publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.227201 – volume: 321 start-page: 2 year: 2006 end-page: 111 ident: CR4 article-title: Anyons in an exactly solved model and beyond publication-title: Ann. Phys. doi: 10.1016/j.aop.2005.10.005 – volume: 10 year: 2019 ident: CR43 article-title: Theory of the field-revealed Kitaev spin liquid publication-title: Nat. Commun. doi: 10.1038/s41467-019-10405-8 – volume: 16 start-page: 837 year: 2020 end-page: 840 ident: CR15 article-title: Ferromagnetic Kitaev interaction and the origin of large magnetic anisotropy in α-RuCl publication-title: Nat. Phys. doi: 10.1038/s41567-020-0874-0 – volume: 125 start-page: 047201 year: 2020 ident: CR20 article-title: Kitaev spin liquid in 3 transition metal compounds publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.047201 – volume: 1 start-page: 264 year: 2019 end-page: 280 ident: CR5 article-title: Concept and realization of Kitaev quantum spin liquids publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0038-2 – volume: 86 start-page: 660 year: 1977 end-page: 662 ident: CR39 article-title: Magnetic ordering in a planar - model: BaCo (AsO ) publication-title: Phys. B doi: 10.1016/0378-4363(77)90635-0 – volume: 464 start-page: 199 year: 2010 end-page: 208 ident: CR1 article-title: Spin liquids in frustrated magnets publication-title: Nature doi: 10.1038/nature08917 – volume: 112 start-page: 207203 year: 2014 ident: CR34 article-title: Dynamics of a two-dimensional quantum spin liquid: signatures of emergent Majorana fermions and fluxes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.207203 – volume: 6 start-page: eaay6953 year: 2020 ident: CR25 article-title: Weak-field induced nonmagnetic state in a Co-based honeycomb publication-title: Sci. Adv. doi: 10.1126/sciadv.aay6953 – volume: 125 start-page: 047201 year: 2020 ident: 1403_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.047201 – volume: 114 start-page: 147201 year: 2015 ident: 1403_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.147201 – volume: 104 start-page: 144408 year: 2021 ident: 1403_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.144408 – volume: 91 start-page: 144420 year: 2015 ident: 1403_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.144420 – volume: 13 start-page: 1079 year: 2017 ident: 1403_CR29 publication-title: Nat. Phys. doi: 10.1038/nphys4264 – volume: 100 start-page: 165123 year: 2019 ident: 1403_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.165123 – volume: 321 start-page: 2 year: 2006 ident: 1403_CR4 publication-title: Ann. Phys. doi: 10.1016/j.aop.2005.10.005 – volume: 464 start-page: 199 year: 2010 ident: 1403_CR1 publication-title: Nature doi: 10.1038/nature08917 – volume: 97 start-page: 014407 year: 2018 ident: 1403_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.014407 – volume: 8 year: 2017 ident: 1403_CR37 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01177-0 – volume: 102 start-page: 224411 year: 2020 ident: 1403_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.224411 – volume: 117 start-page: 157203 year: 2016 ident: 1403_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.157203 – volume: 120 start-page: 077203 year: 2018 ident: 1403_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.077203 – volume: 4 start-page: e00507 year: 2018 ident: 1403_CR40 publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00507 – volume: 116 start-page: 12199 year: 2019 ident: 1403_CR46 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1821406116 – volume: 1 start-page: 264 year: 2019 ident: 1403_CR5 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0038-2 – volume: 112 start-page: 207203 year: 2014 ident: 1403_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.207203 – volume: 119 start-page: 227208 year: 2017 ident: 1403_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.227208 – volume: 16 start-page: 837 year: 2020 ident: 1403_CR15 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0874-0 – volume: 100 start-page: 100403(R) year: 2019 ident: 1403_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.100403 – volume: 93 start-page: 134423 year: 2016 ident: 1403_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.134423 – volume: 2 start-page: 033011 year: 2020 ident: 1403_CR44 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033011 – volume: 101 start-page: 140410 year: 2020 ident: 1403_CR32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.140410 – volume: 6 start-page: eaay6953 year: 2020 ident: 1403_CR25 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay6953 – volume: 119 start-page: 227202 year: 2017 ident: 1403_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.227202 – volume: 12 year: 2021 ident: 1403_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25567-7 – volume: 118 start-page: 107203 year: 2017 ident: 1403_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.107203 – volume: 356 start-page: 1055 year: 2017 ident: 1403_CR9 publication-title: Science doi: 10.1126/science.aah6015 – volume: 6 year: 2016 ident: 1403_CR42 publication-title: Sci. Rep. doi: 10.1038/srep37925 – volume: 10 year: 2019 ident: 1403_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08459-9 – volume: 367 start-page: eaay0668 year: 2020 ident: 1403_CR2 publication-title: Science doi: 10.1126/science.aay0668 – volume: 559 start-page: 227 year: 2018 ident: 1403_CR13 publication-title: Nature doi: 10.1038/s41586-018-0274-0 – volume: 104 start-page: 134425 year: 2021 ident: 1403_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.134425 – volume: 17 start-page: 915 year: 2021 ident: 1403_CR41 publication-title: Nat. Phys. doi: 10.1038/s41567-021-01243-x – volume: 86 start-page: 660 year: 1977 ident: 1403_CR39 publication-title: Phys. B doi: 10.1016/0378-4363(77)90635-0 – volume: 8 start-page: 153 year: 1973 ident: 1403_CR3 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(73)90167-0 – volume: 34 start-page: 023001 year: 2021 ident: 1403_CR22 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ac2d5d – volume: 90 start-page: 041112 year: 2014 ident: 1403_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.041112 – volume: 373 start-page: 568 year: 2021 ident: 1403_CR14 publication-title: Science doi: 10.1126/science.aay5551 – volume: 8 start-page: 031001 year: 2018 ident: 1403_CR33 publication-title: Phys. Rev. X – volume: 15 start-page: 733 year: 2016 ident: 1403_CR7 publication-title: Nat. Mater. doi: 10.1038/nmat4604 – volume: 17 start-page: 832 year: 2021 ident: 1403_CR21 publication-title: Nat. Phys. doi: 10.1038/s41567-021-01208-0 – volume: 12 year: 2021 ident: 1403_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24257-8 – volume: 119 start-page: 227201 year: 2017 ident: 1403_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.227201 – volume: 3 year: 2018 ident: 1403_CR12 publication-title: npj Quantum Mater. doi: 10.1038/s41535-018-0079-2 – volume: 10 year: 2019 ident: 1403_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10405-8 – volume: 97 start-page: 014408 year: 2018 ident: 1403_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.014408 – volume: 17 start-page: 240 year: 2021 ident: 1403_CR49 publication-title: Nat. Phys. doi: 10.1038/s41567-020-1028-0 – volume: 11 start-page: 462 year: 2015 ident: 1403_CR6 publication-title: Nat. Phys. doi: 10.1038/nphys3322 |
SSID | ssj0021556 |
Score | 2.565521 |
Snippet | Quantum spin liquids (QSLs) are topologically ordered states of matter that host fractionalized excitations. A particular route towards a QSL is via strongly... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 58 |
SubjectTerms | 639/766/119/2795 639/766/119/997 Biomaterials Chemistry Chemistry and Materials Science Cobalt Condensed Matter Physics Hexagonal lattice Magnetic fields Materials Science Nanotechnology Optical and Electronic Materials Physics Spectroscopy Spectrum analysis Spin liquid Time domain analysis Transition metals |
Title | A magnetic continuum in the cobalt-based honeycomb magnet BaCo2(AsO4)2 |
URI | https://link.springer.com/article/10.1038/s41563-022-01403-1 https://www.proquest.com/docview/2760730376 https://www.proquest.com/docview/2739066005 https://www.osti.gov/biblio/2421157 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gIHVF4itFRB4gACq4ntxMkJ7VYNFRILQlTam2U7canUJqWbPfTfdybxdmml9pJISRwn48d88wb44JIS2SyKJdYLy6SzGTPCSyacIi1_gwiCAoV_zPOjY_l9kS2Cwm0Z3CrXe-KwUdedIx35Plc5zUZcD18v_jGqGkXW1VBC4zFsUeoyculSi43AhbxyjC5SOUNcwUPQTCKK_SUJLmTBJMcESf5ZtxjTpMMFdgt03rGTDuyn2oZnATfG03Ggn8Ojpn0BT__LJvgSqml8bk5aikqMyQP9tF2tzuPTNkaMhxesOesZMa06_tu1zRX-tg0N4pk56PjH6fKn_MRfwXF1-OfgiIUyCcwJVfYslSl3qrR1U3oppPXeOpcoLwvkNYhvTFMnnheurPOiEVmd596gVJj4IUo19-I1TFrs9w3EHltbgzIhz6zMyqbM07T2KfcKBRsuTATpmkbahRziVMriTA-2bFHoka4a6aoHuuo0gs83bS7GDBoPPr1DpNfI_ymJrSNvH9drMlynmYpgdz0iOqy1pd7MjAje39zGVUKmD9M23YqeESWCK9xyIviyHsnNK-7_nrcP97gDT6j-_KiT2YVJf7lq3iFK6e3eMBXxWFTf9mBrWs1mczzPDue_fl8DYTriBw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QA9oPJSQ1swEkggiJrYzsMHhJbCsqUPLq3Umxs7NlRqk8Jmhfqn-I3M5LGlSPTWaxLb0Xge33hmPAAvbKTQzKJbYrwwobQmCQvhZShsRqf8DhEEFQrv7afTQ_nlKDlagt9DLQylVQ46sVXUZW3pjHyTZylxI8rD-_MfIXWNoujq0EKjY4sdd_ELXbbZu-2PuL8vOZ98Otiahn1XgdCKTDVhLGNuM2VKp7wU0nhvrI0yL3NUzQgHCldGnudWlWnuRFKmqS_QiYp8W9SZeoHz3oLbUghFEpVPPi8cPLTNXTVTloaIY3hfpBOJfHNGjhJFTCkRQlI-2BVDOKpRoK-A3H_isq25m6zAvR6nsnHHWPdhyVUPYPmv2wsfwmTMzopvFVVBMsp4P6nm8zN2UjHElPjAFKdNSEayZN_ryl0gmU0_gH0otmr-ajz7Kl_zR3B4IwR8DKMK110F5nG0KdAH5YmRiXIqjePSx9xn6EhxUQQQDzTStr-znFpnnOo2di5y3dFVI111S1cdB_BmMea8u7Hj2q_XiPQa8QZdmmspu8g2mgLlcZIFsD7siO5le6YvOTGA54vXKJUUaikqV8_pG6EQzKGKC-DtsJOXU_z_f55cv-IzuDM92NvVu9v7O2twlyPi6s6D1mHU_Jy7DURIjXnasiWD45uWgz_RnxsK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRUL0gMpLDW0hSCCBwNrEduLkgNDSsmopFA5U2psbOzZUapPCZoX61_h1zOTRpUj01msS29F4Ht94ZjwAz2yUo5lFt8R4YZi0JmGF8JIJq-iU3yGCoELhTwfp7qH8MEtmK_B7qIWhtMpBJ7aKuqwtnZGPuUqJG1Eexr5Pi_iyM3179oNRBymKtA7tNDoW2Xfnv9B9m7_Z28G9fs759P3X7V3WdxhgVqi8YbGMuVW5KV3upZDGe2NtpLzMUE0jNChcGXme2bxMMyeSMk19gQ5V5NsCz9QLnPcG3FQiiUnG1Gzp7KGd7iqbVMoQ0_C-YCcS2XhOThNFTykpQlJu2CWjOKpRuC8B3n9itK3pm67BnR6zhpOOye7CiqvuwepfNxneh-kkPC2-VVQRGVL2-3G1WJyGx1WI-BIfmOKkYWQwy_B7XblzJLnpB4Tviu2av5jMP8uX_AEcXgsBH8KownXXIfQ42hToj_LEyCR3eRrHpY-5V-hUcVEEEA800ra_v5zaaJzoNo4uMt3RVSNddUtXHQfw6mLMWXd7x5VfbxDpNWIPukDXUqaRbTQFzeNEBbA57Iju5Xyul1wZwNOL1yihFHYpKlcv6BuRI7BDdRfA62Enl1P8_38eXb3iE7iFEqA_7h3sb8BtjuCrOxrahFHzc-G2ECw15nHLlSEcXbcY_AEgdR83 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+magnetic+continuum+in+the+cobalt-based+honeycomb+magnet+BaCo2%28AsO4%292&rft.jtitle=Nature+materials&rft.au=Zhang%2C+Xinshu&rft.au=Xu%2C+Yuanyuan&rft.au=Halloran%2C+T.&rft.au=Zhong%2C+Ruidan&rft.date=2023-01-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=22&rft.issue=1&rft.spage=58&rft.epage=63&rft_id=info:doi/10.1038%2Fs41563-022-01403-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41563_022_01403_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |