Dynamical effects in the integrated X‐ray scattering intensity from imperfect crystals in Bragg diffraction geometry. I. Semi‐dynamical model

The analytical expressions for the coherent and diffuse components of the integrated reflection coefficient are considered in the case of asymmetric Bragg diffraction geometry for a single crystal of arbitrary thickness, which contains randomly distributed Coulomb‐type defects. The possibility to ch...

Full description

Saved in:
Bibliographic Details
Published inActa crystallographica. Section A, Foundations and advances Vol. 76; no. 1; pp. 45 - 54
Main Authors Molodkin, V. B., Olikhovskii, S. I., Dmitriev, S. V., Nizkova, A. I., Lizunov, V. V.
Format Journal Article
LanguageEnglish
Published 5 Abbey Square, Chester, Cheshire CH1 2HU, England International Union of Crystallography 01.01.2020
Subjects
Online AccessGet full text
ISSN2053-2733
2053-2733
DOI10.1107/S2053273319014281

Cover

Loading…
Abstract The analytical expressions for the coherent and diffuse components of the integrated reflection coefficient are considered in the case of asymmetric Bragg diffraction geometry for a single crystal of arbitrary thickness, which contains randomly distributed Coulomb‐type defects. The possibility to choose the combinations of diffraction conditions optimal for characterizing defects of several types by accounting for dynamical effects in the integrated coherent and diffuse scattering intensities, i.e. primary extinction and anomalous absorption, has been analysed based on the statistical dynamical theory of X‐ray diffraction by imperfect crystals. The measured integrated reflectivity dependencies of the imperfect silicon crystal on azimuthal angle were fitted to determine the diffraction parameters characterizing defects in the sample using the proposed formulas in semi‐dynamical and semi‐kinematical approaches. The sensitivity of the integrated X‐ray diffraction intensity to different Coulomb‐type defects in real crystals is the subject of theoretical research in the case of Bragg diffraction geometry. The diffraction parameters characterizing defects in the test sample of silicon are determined using the proposed approximate formulas.
AbstractList The analytical expressions for the coherent and diffuse components of the integrated reflection coefficient are considered in the case of asymmetric Bragg diffraction geometry for a single crystal of arbitrary thickness, which contains randomly distributed Coulomb-type defects. The possibility to choose the combinations of diffraction conditions optimal for characterizing defects of several types by accounting for dynamical effects in the integrated coherent and diffuse scattering intensities, i.e. primary extinction and anomalous absorption, has been analysed based on the statistical dynamical theory of X-ray diffraction by imperfect crystals. The measured integrated reflectivity dependencies of the imperfect silicon crystal on azimuthal angle were fitted to determine the diffraction parameters characterizing defects in the sample using the proposed formulas in semi-dynamical and semi-kinematical approaches.The analytical expressions for the coherent and diffuse components of the integrated reflection coefficient are considered in the case of asymmetric Bragg diffraction geometry for a single crystal of arbitrary thickness, which contains randomly distributed Coulomb-type defects. The possibility to choose the combinations of diffraction conditions optimal for characterizing defects of several types by accounting for dynamical effects in the integrated coherent and diffuse scattering intensities, i.e. primary extinction and anomalous absorption, has been analysed based on the statistical dynamical theory of X-ray diffraction by imperfect crystals. The measured integrated reflectivity dependencies of the imperfect silicon crystal on azimuthal angle were fitted to determine the diffraction parameters characterizing defects in the sample using the proposed formulas in semi-dynamical and semi-kinematical approaches.
The analytical expressions for the coherent and diffuse components of the integrated reflection coefficient are considered in the case of asymmetric Bragg diffraction geometry for a single crystal of arbitrary thickness, which contains randomly distributed Coulomb-type defects. The possibility to choose the combinations of diffraction conditions optimal for characterizing defects of several types by accounting for dynamical effects in the integrated coherent and diffuse scattering intensities, i.e. primary extinction and anomalous absorption, has been analysed based on the statistical dynamical theory of X-ray diffraction by imperfect crystals. The measured integrated reflectivity dependencies of the imperfect silicon crystal on azimuthal angle were fitted to determine the diffraction parameters characterizing defects in the sample using the proposed formulas in semi-dynamical and semi-kinematical approaches.
The analytical expressions for the coherent and diffuse components of the integrated reflection coefficient are considered in the case of asymmetric Bragg diffraction geometry for a single crystal of arbitrary thickness, which contains randomly distributed Coulomb‐type defects. The possibility to choose the combinations of diffraction conditions optimal for characterizing defects of several types by accounting for dynamical effects in the integrated coherent and diffuse scattering intensities, i.e. primary extinction and anomalous absorption, has been analysed based on the statistical dynamical theory of X‐ray diffraction by imperfect crystals. The measured integrated reflectivity dependencies of the imperfect silicon crystal on azimuthal angle were fitted to determine the diffraction parameters characterizing defects in the sample using the proposed formulas in semi‐dynamical and semi‐kinematical approaches. The sensitivity of the integrated X‐ray diffraction intensity to different Coulomb‐type defects in real crystals is the subject of theoretical research in the case of Bragg diffraction geometry. The diffraction parameters characterizing defects in the test sample of silicon are determined using the proposed approximate formulas.
The analytical expressions for the coherent and diffuse components of the integrated reflection coefficient are considered in the case of asymmetric Bragg diffraction geometry for a single crystal of arbitrary thickness, which contains randomly distributed Coulomb-type defects. The possibility to choose the combinations of diffraction conditions optimal for characterizing defects of several types by accounting for dynamical effects in the integrated coherent and diffuse scattering intensities, i.e. primary extinction and anomalous absorption, has been analysed based on the statistical dynamical theory of X-ray diffraction by imperfect crystals. The measured integrated reflectivity dependencies of the imperfect silicon crystal on azimuthal angle were fitted to determine the diffraction parameters characterizing defects in the sample using the proposed formulas in semi-dynamical and semi-kinematical approaches.
Author Nizkova, A. I.
Dmitriev, S. V.
Olikhovskii, S. I.
Lizunov, V. V.
Molodkin, V. B.
Author_xml – sequence: 1
  givenname: V. B.
  surname: Molodkin
  fullname: Molodkin, V. B.
  organization: G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Boulevard, Kyiv, UA-03142, Ukraine
– sequence: 2
  givenname: S. I.
  surname: Olikhovskii
  fullname: Olikhovskii, S. I.
  email: olikhovsky@meta.ua
  organization: G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Boulevard, Kyiv, UA-03142, Ukraine
– sequence: 3
  givenname: S. V.
  surname: Dmitriev
  fullname: Dmitriev, S. V.
  organization: G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Boulevard, Kyiv, UA-03142, Ukraine
– sequence: 4
  givenname: A. I.
  surname: Nizkova
  fullname: Nizkova, A. I.
  organization: G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Boulevard, Kyiv, UA-03142, Ukraine
– sequence: 5
  givenname: V. V.
  surname: Lizunov
  fullname: Lizunov, V. V.
  organization: G. V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Boulevard, Kyiv, UA-03142, Ukraine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31908348$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhq2qiJbSB-gF-djLLnacxPFxW6BUrMShIMHJmjjj4CpOFtsrlBuPQF-RJyHptlUFEj3N6Pf__RrPvCD7_dAjISecLTln8vVVxgqRSSG4YjzPKr5HDmdpMWv7j_oDchzjNWNswoqsZM_JwcxUIq8Oyc2bsQfvDHQUrUWTInU9Td9wKgnbAAkb-uX3z18BRhoNpITB9e3tax9dGqkNg6fObzDMODVhjAm625izAG1LG2dtAJPc0NMWB48pjEt6uaRX6N2U3DxM4IcGu5fkmZ14PL6rR-Tzu7efzt8v1h8vLs9X64URUskFFrKoRaFybkuOUtVgZVOXtlHMWF7OelWWdQNgcqGMMUraopIVVhwU5EwckdNd7iYM37cYk_YuGuw66HHYRp0JkWelUCWfrK_urNvaY6M3wXkIo75f42SQO4MJQ4wBrTYuwfzjFMB1mjM930z_c7OJ5H-R9-H_Y9SO-eE6HJ8G9OrrKlt_KFguxR8fRqun
CitedBy_id crossref_primary_10_15407_spqeo24_01_005
crossref_primary_10_15407_ufm_24_03_593
crossref_primary_10_15407_ufm_24_03_470
crossref_primary_10_1107_S2053273321005775
crossref_primary_10_15407_spqeo26_04_415
crossref_primary_10_15407_ufm_24_03_530
crossref_primary_10_15407_spqeo26_01_017
crossref_primary_10_15407_ufm_25_01_114
ContentType Journal Article
Copyright International Union of Crystallography, 2020
Copyright_xml – notice: International Union of Crystallography, 2020
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1107/S2053273319014281
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2053-2733
EndPage 54
ExternalDocumentID 31908348
10_1107_S2053273319014281
AYA2LK5047
Genre article
Journal Article
GrantInformation_xml – fundername: National Academy of Sciences of Ukraine
  grantid: III-12-18
GroupedDBID .GA
10A
1OC
3SF
50Z
52M
52O
52U
52W
7PT
8UM
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ATUGU
BDRZF
BFHJK
BMXJE
BROTX
BRXPI
BY8
D-F
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
G-S
G.N
GODZA
HGLYW
LATKE
LEEKS
LH4
LITHE
LOXES
LP7
LUTES
LW6
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
QB0
RCJ
SUPJJ
TUS
WIH
WIK
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7X8
ID FETCH-LOGICAL-c3797-e575b35941f61e79baf7db6fd90cf16941f866bdaac439ccc97f5878e81a9a403
IEDL.DBID DR2
ISSN 2053-2733
IngestDate Fri Jul 11 11:20:53 EDT 2025
Thu Apr 03 06:52:38 EDT 2025
Tue Jul 01 01:16:13 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Wed Jan 22 16:35:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords extinction
Borrmann effect
diffuse scattering
dynamical X-ray diffraction theory
Coulomb-type defects
Bragg diffraction geometry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3797-e575b35941f61e79baf7db6fd90cf16941f866bdaac439ccc97f5878e81a9a403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7702-1091
0000-0002-3264-0219
0000-0001-8328-9564
0000-0002-7164-3367
PMID 31908348
PQID 2334263961
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2334263961
pubmed_primary_31908348
crossref_citationtrail_10_1107_S2053273319014281
crossref_primary_10_1107_S2053273319014281
wiley_primary_10_1107_S2053273319014281_AYA2LK5047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-01
2020-Jan-01
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace 5 Abbey Square, Chester, Cheshire CH1 2HU, England
PublicationPlace_xml – name: 5 Abbey Square, Chester, Cheshire CH1 2HU, England
– name: United States
PublicationTitle Acta crystallographica. Section A, Foundations and advances
PublicationTitleAlternate Acta Crystallogr A Found Adv
PublicationYear 2020
Publisher International Union of Crystallography
Publisher_xml – name: International Union of Crystallography
SSID ssj0001105260
Score 2.293237
Snippet The analytical expressions for the coherent and diffuse components of the integrated reflection coefficient are considered in the case of asymmetric Bragg...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 45
SubjectTerms Borrmann effect
Bragg diffraction geometry
Coulomb‐type defects
diffuse scattering
dynamical X‐ray diffraction theory
extinction
Title Dynamical effects in the integrated X‐ray scattering intensity from imperfect crystals in Bragg diffraction geometry. I. Semi‐dynamical model
URI https://onlinelibrary.wiley.com/doi/abs/10.1107%2FS2053273319014281
https://www.ncbi.nlm.nih.gov/pubmed/31908348
https://www.proquest.com/docview/2334263961
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnuBQoLy20MpInJCyJM7D9nEpVG15HCiVtqfIntirVdssSncP5cRPgL_IL-mMk01pVwIJzpmZOMmM_WXs-Yaxl1kFkDiVRjjviShTUGDM5XlU5NY5WoKgoNrhj5-K_ePscJyP19jusham5YfoE24UGWG-pgA3tutCEvb1jwQ1NaCWg7QTKEL5NZ3ZImD0WVznWRJiNKFUC8lTJUrabW6imdcrRm4uTyuY8yaEDWvQ3j1WLUffHj05HS7mdgjfbhE7_ufj3WcbHUblo9apHrA1V2-yu78xFz5kP9-2nexRrDsRwqc1RzDJe_6Jio9_ff_RmEt-AYHEExXD1ZqOgXCqa-FTBO0NqXNoLhGnngUzbxozmXBq3dK0ZRd84mbnbo7Pwg-G_MidT9Fy1Y8gdPN5xI733n3Z3Y-67g4RpFLLyCFQtGmus8QXiZPaGi-pJrDSMfiE6mu9KgpbGQMImgBAS58rqZxKjDZZnD5m6_Wsdk8Zx1mrstqbRDnIoBJWSq8tAkWvwINxAxYvP2oJHfU5deA4K8MvUCzLlbc9YK96la8t78efhF8sPaXE6KQtF1O72eKiFGlKjPi6QJknrQv15khdpZkaMBEc4e_3KUcnI_HhfR5ncutflJ6xO4LSBSGD9Jytz5uF20ZMNbc7IWiuAOQXFbs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq9lA40PIqWygYiRNSlsR52D4ufWhLtz3QVlpOkT2xVyvaLEp3D-2JnwB_sb-kHiebPlYCCc7xTOzEY3-e8XxDyIekAIiMiAO37rEgEZA5m0vTIEu1MbgFQYa5w4dHWf80-TJMh0tkZ54LU_NDtA43tAy_XqOBo0O6tnIf2D9mWNUAaw5iKJBh_vUKVvb2B6uv7NbTEiGnCTpbUABzUeImvOn0fFrQcn-DWkCd90Gs34X21oiZ97--fPK9O5vqLlw9oHb83wGukycNTKW9el49JUumfEYe3yEvfE5-79TF7F2z5lIIHZfU4UnaUlAUdHj981elLukFeB5PJ-iflngThGJqCx073F6hOIXq0kHVM6_mc6VGI4rVW6o684KOzOTcTN1g6H6XHpvzsdNctD3wBX1ekNO93ZPtftAUeAgg5pIHxmFFHacyiWwWGS61shzTAgsZgo0wxdaKLNOFUuBwEwBIblPBhRGRkioJ45dkuZyU5hWhbuEqtLQqEgYSKJjm3ErtsKIVYEGZDgnnfzWHhv0ci3Cc5f4UFPJ84Wt3yMdW5EdN_fGnxu_nUyV3BopRF1WayewiZ3GMpPgyc2026jnUqkNxESeiQ5ifCX9_T9771mODgzRM-Oa_CL0jq_2Tw0E-2D86eE0eMfQeeIfSG7I8rWZmy0GsqX7rLegGPSoZ1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiE4tLy75WUkTkhZEsfx47h0WbW0VIhSaTlFfq5WtNkq3T2UEz8B_mJ_ST1ONlBWAgnO8UycZMb-MuP5BqGX1BqTOZEnYd0jCRWGBZ8rioQV2jnYggyD2uH3h2z3mL4bF-M1tLOshWn4IbqAG3hGXK_Bwc-sb5w85vWPCDQ1gJaDkAkkUH59g7JUgGkPP5KfgZYMKE0g1gICUIqSt9nNoOf1ipbr-9MK6LyOYeMmNNpEdjn95uzJl_5irvvm62_Mjv_5fHfQRgtS8aCxqrtozVX30O1fqAvvox_DppV9GNYeCcHTCgc0iTsCCovHl9--1-oCn5vI4hkE49UKzoFgKGzB04DaaxDHpr4IQPUkqnlTq8kEQ--Wuqm7wBM3O3Xz8Cx4r4-P3Ok0aLbdDGI7nwfoePT2085u0rZ3SEzOJU9cQIo6LyTNPMscl1p5DkWBVqbGZ1Bg6wVj2iplAmoyxkjuC8GFE5mSiqb5Q7RezSq3hXBYtqyWXmXCGWos0Zx7qQNS9MJ4o1wPpcuPWpqW-xxacJyU8R8o5eXK2-6hV53IWUP88afBL5aWUgb3hJyLqtxscV6SPAdKfMnCmEeNCXXqQFzkVPQQiYbw9_uUg88DcrBfpJRv_4vQc3Tzw3BUHuwd7j9GtwiEDmI06Qlan9cL9zTgq7l-Fv3nCu7PGI4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+effects+in+the+integrated+X%E2%80%90ray+scattering+intensity+from+imperfect+crystals+in+Bragg+diffraction+geometry.+I.+Semi%E2%80%90dynamical+model&rft.jtitle=Acta+crystallographica.+Section+A%2C+Foundations+and+advances&rft.au=Molodkin%2C+V.+B.&rft.au=Olikhovskii%2C+S.+I.&rft.au=Dmitriev%2C+S.+V.&rft.au=Nizkova%2C+A.+I.&rft.date=2020-01-01&rft.pub=International+Union+of+Crystallography&rft.issn=2053-2733&rft.eissn=2053-2733&rft.volume=76&rft.issue=1&rft.spage=45&rft.epage=54&rft_id=info:doi/10.1107%2FS2053273319014281&rft.externalDBID=10.1107%252FS2053273319014281&rft.externalDocID=AYA2LK5047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2053-2733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2053-2733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2053-2733&client=summon