Cortical oscillations and interareal synchronization as a preparatory activity for postural response

Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 57; no. 9; pp. 1516 - 1528
Main Authors Fujio, Kimiya, Obata, Hiroki, Takeda, Kenta, Kawashima, Noritaka
Format Journal Article
LanguageEnglish
Published France Wiley Subscription Services, Inc 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α‐ and β‐bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ‐band frequency. Furthermore, a reduction in the interareal phase synchrony in the α‐band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses. Cortical involvement is fundamental neural mechanism for a postural response. We revealed that EEG oscillations and interareal synchronization, at θ‐, α‐ and β‐band frequency, are dynamically modulated during the preparatory period when perturbation can be predicted.
AbstractList Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α- and β-bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ-band frequency. Furthermore, a reduction in the interareal phase synchrony in the α-band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses.
Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α‐ and β‐bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ‐band frequency. Furthermore, a reduction in the interareal phase synchrony in the α‐band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses. Cortical involvement is fundamental neural mechanism for a postural response. We revealed that EEG oscillations and interareal synchronization, at θ‐, α‐ and β‐band frequency, are dynamically modulated during the preparatory period when perturbation can be predicted.
Abstract Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α‐ and β‐bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ‐band frequency. Furthermore, a reduction in the interareal phase synchrony in the α‐band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses.
Author Takeda, Kenta
Obata, Hiroki
Fujio, Kimiya
Kawashima, Noritaka
Author_xml – sequence: 1
  givenname: Kimiya
  orcidid: 0000-0001-9898-608X
  surname: Fujio
  fullname: Fujio, Kimiya
  email: fujiokimiya@yahoo.co.jp
  organization: Research Institute of National Rehabilitation Center for Persons with Disabilities
– sequence: 2
  givenname: Hiroki
  surname: Obata
  fullname: Obata, Hiroki
  organization: Kyushu Institute of Technology
– sequence: 3
  givenname: Kenta
  surname: Takeda
  fullname: Takeda, Kenta
  organization: Research Institute of National Rehabilitation Center for Persons with Disabilities
– sequence: 4
  givenname: Noritaka
  surname: Kawashima
  fullname: Kawashima, Noritaka
  organization: Research Institute of National Rehabilitation Center for Persons with Disabilities
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36878880$$D View this record in MEDLINE/PubMed
BookMark eNp1kEFP2zAYhi1UtJZuB_4AisRlOwTs2k6-HlHFNlC1XUDazXKcz5qr1A52sin8ejwKOyDxXfxJ7-NH9ntCZj54JOSU0QuW5xJ3_oLJtayOyIKJipZ5hRlZ0LXkJbDq15ycpLSjlEIl5Acy5xXUAEAXpN2EODijuyIk47pODy74VGjfFs4PGHXEnKXJm98xePf4nBc6E0UfsddRDyFOhTaD--OGqbAhFn1IwxjztYipzzb8SI6t7hJ-ejmX5P7r9d3me7n9-e1mc7UtDa_XVcll2wBvqQBaSyOhspU2WFtAxhkTq2aFnNnGyEYYC62ouaytoaABLdXC8CX5fPD2MTyMmAa1d8lg_pXHMCa1qkFw4LWEjJ6_QXdhjD6_Tq2AggC-Bp6pLwfKxJBSRKv66PY6TopR9a96latXz9Vn9uzFODZ7bP-Tr11n4PIA_HUdTu-b1PXtj4PyCas5kUg
Cites_doi 10.3389/fnhum.2018.00068
10.3389/fnhum.2010.00186
10.1152/jn.00157.2011
10.1016/j.tins.2007.02.001
10.1016/j.jneumeth.2007.03.024
10.14802/jmd.16062
10.1016/j.neulet.2004.10.092
10.1126/science.1128115
10.1016/j.neuroimage.2007.07.011
10.1016/j.tics.2012.10.007
10.1016/0013-4694(89)90180-6
10.1523/JNEUROSCI.1358-12.2012
10.1016/j.neuroimage.2006.06.005
10.1523/JNEUROSCI.4250-04.2005
10.1093/cercor/bht024
10.1016/j.brainresrev.2011.04.002
10.1016/j.tins.2008.09.012
10.1016/j.neuroimage.2016.05.027
10.1016/j.tics.2010.09.001
10.1523/ENEURO.0153-16.2017
10.1016/j.jneumeth.2003.10.009
10.1007/s00221-008-1603-6
10.1523/JNEUROSCI.5199-10.2011
10.1016/j.neuroimage.2005.02.008
10.1371/journal.pone.0158721
10.1523/JNEUROSCI.2794-09.2010
10.3389/fnhum.2019.00004
10.1371/journal.pbio.1001936
10.1162/jocn.2008.21020
10.1016/j.clinph.2008.02.015
10.1523/JNEUROSCI.21-11-03942.2001
10.1016/j.brainres.2009.04.050
10.1016/j.neures.2015.12.002
10.1016/j.conb.2015.03.006
10.1016/j.neubiorev.2015.08.014
10.1016/j.clinph.2017.06.254
10.1016/j.neuroimage.2019.04.001
10.1016/j.clinph.2005.08.033
10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
10.1016/j.neuroimage.2018.12.045
10.1073/pnas.97.26.14748
10.1016/j.tics.2012.05.003
10.1016/j.neubiorev.2015.04.002
10.1073/pnas.1317267111
10.1016/j.neuroimage.2008.07.029
10.1007/s00702-007-0657-0
10.1152/jn.00387.2013
10.1093/cercor/bhu103
10.1007/s00221-012-3232-3
10.1523/JNEUROSCI.2584-04.2004
10.1152/jn.90775.2008
10.1016/j.neuroimage.2015.05.032
10.1097/NPT.0000000000000058
10.1111/j.1469-7793.1998.267bf.x
ContentType Journal Article
Copyright 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
Copyright_xml – notice: 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
8FD
FR3
P64
7X8
DOI 10.1111/ejn.15956
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Chemoreception Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 1528
ExternalDocumentID 10_1111_ejn_15956
36878880
EJN15956
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: JSPS KAKENHI
  funderid: JP17K18370
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c3796-35db83d048075c586f6ace7f8e131142b2e31fbc5b4cf8d47357fc08a8ef0a4c3
IEDL.DBID DR2
ISSN 0953-816X
IngestDate Fri Aug 16 10:21:07 EDT 2024
Thu Oct 10 19:31:17 EDT 2024
Fri Aug 23 03:58:40 EDT 2024
Sat Sep 28 08:13:35 EDT 2024
Sat Aug 24 00:59:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords electroencephalography
phase synchrony
phase-amplitude coupling
event-related desynchronization
postural response
Language English
License 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3796-35db83d048075c586f6ace7f8e131142b2e31fbc5b4cf8d47357fc08a8ef0a4c3
Notes Funding information
Edited by: Shulan Hsieh
This work was supported by JSPS KAKENHI grant number JP17K18370.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9898-608X
PMID 36878880
PQID 2808483983
PQPubID 34057
PageCount 13
ParticipantIDs proquest_miscellaneous_2784383758
proquest_journals_2808483983
crossref_primary_10_1111_ejn_15956
pubmed_primary_36878880
wiley_primary_10_1111_ejn_15956_EJN15956
PublicationCentury 2000
PublicationDate May 2023
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
– name: Chichester
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 14
2017; 4
2005; 375
2006; 32
2019; 13
2015; 33
2004; 24
2014; 24
2012; 16
2016; 104
2007; 30
1998; 512
2005; 26
2007; 37
2005; 25
2004; 134
1989; 72
2000; 97
2008; 119
2019; 29
2011; 67
2019; 196
2010; 4
2014; 12
2010; 30
2017; 128
2009; 1279
2015; 57
2009; 21
2012; 222
2015; 53
2007; 164
2011; 31
1999; 8
2006; 313
2014; 111
2006; 117
2012; 32
2019; 188
2016; 11
2001; 21
2007; 114
2015; 25
2009; 32
2011; 106
2009; 193
2017; 10
2014; 38
2009; 101
2008; 43
2015; 118
2016; 136
2018; 12
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Sadaghiani S. (e_1_2_11_40_1) 2019; 29
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 32
  start-page: 9
  year: 2009
  end-page: 18
  article-title: Low‐frequency neuronal oscillations as instruments of sensory selection
  publication-title: Trends in Neurosciences
– volume: 21
  start-page: 390
  year: 2009
  end-page: 402
  article-title: Oscillatory activity and phase‐amplitude coupling in the human medial frontal cortex during decision making
  publication-title: Journal of Cognitive Neuroscience
– volume: 32
  start-page: 1281
  year: 2006
  end-page: 1289
  article-title: Post‐movement beta rebound is generated in motor cortex: Evidence from neuromagnetic recordings
  publication-title: NeuroImage
– volume: 53
  start-page: 131
  year: 2015
  end-page: 138
  article-title: What startles tell us about control of posture and gait
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 13
  year: 2019
  article-title: Presetting of the corticospinal excitability in the tibialis anterior muscle in relation to prediction of the magnitude and direction of postural perturbations
  publication-title: Frontiers in Human Neuroscience
– volume: 25
  start-page: 3962
  year: 2005
  end-page: 3972
  article-title: Phase synchrony among neuronal oscillations in the human cortex
  publication-title: The Journal of Neuroscience
– volume: 32
  start-page: 14305
  year: 2012
  end-page: 14310
  article-title: Alpha‐band phase synchrony is related to activity in the fronto‐parietal adaptive control network
  publication-title: The Journal of Neuroscience
– volume: 12
  year: 2014
  article-title: Dynamic changes in phase‐amplitude coupling facilitate spatial attention control in fronto‐parietal cortex
  publication-title: PLoS Biology
– volume: 1279
  start-page: 29
  year: 2009
  end-page: 36
  article-title: Cortical activity prior to predictable postural instability: Is there a difference between self‐initiated and externally‐initiated perturbations?
  publication-title: Brain Research
– volume: 72
  start-page: 184
  year: 1989
  end-page: 187
  article-title: Spherical splines for scalp potential and current density mapping
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 111
  start-page: 513
  year: 2014
  end-page: 519
  article-title: Cortical brain states and corticospinal synchronization influence TMS‐evoked motor potentials
  publication-title: Journal of Neurophysiology
– volume: 38
  start-page: 207
  year: 2014
  end-page: 215
  article-title: Effects of amplitude cueing on postural responses and preparatory cortical activity of people with Parkinson disease
  publication-title: Journal of Neurologic Physical Therapy
– volume: 30
  start-page: 4481
  year: 2010
  end-page: 4488
  article-title: Corticospinal beta‐band synchronization entails rhythmic gain modulation
  publication-title: The Journal of Neuroscience
– volume: 164
  start-page: 177
  year: 2007
  end-page: 190
  article-title: Nonparametric statistical testing of EEG‐ and MEG‐data
  publication-title: Journal of Neuroscience Methods
– volume: 193
  start-page: 161
  year: 2009
  end-page: 171
  article-title: Cortical involvement in anticipatory postural reactions in man
  publication-title: Experimental Brain Research
– volume: 375
  start-page: 64
  year: 2005
  end-page: 68
  article-title: Visual discrimination performance is related to decreased alpha amplitude but increased phase locking
  publication-title: Neuroscience Letters
– volume: 101
  start-page: 3294
  year: 2009
  end-page: 3309
  article-title: A feedback model explains the differential scaling of human postural responses to perturbation acceleration and velocity
  publication-title: Journal of Neurophysiology
– volume: 57
  start-page: 142
  year: 2015
  end-page: 155
  article-title: The role of the cerebral cortex in postural responses to externally induced perturbations
  publication-title: Neuroscience and Biobehavioral Reviews
– volume: 4
  start-page: ENEURO.0153
  year: 2017
  end-page: ENEU16.2017
  article-title: Communication between brain areas based on nested oscillations
  publication-title: eNeuro
– volume: 11
  year: 2016
  article-title: The effects of temporal and spatial predictions on stretch reflexes of ankle flexor and extensor muscles while standing
  publication-title: PLoS ONE
– volume: 67
  start-page: 331
  year: 2011
  end-page: 343
  article-title: The role of alpha oscillations in temporal attention
  publication-title: Brain Research Reviews
– volume: 10
  start-page: 1
  year: 2017
  end-page: 17
  article-title: Functional neuroanatomy for posture and gait control
  publication-title: J Mov Disord
– volume: 12
  year: 2018
  article-title: Corticospinal excitability is modulated as a function of postural perturbation predictability
  publication-title: Frontiers in Human Neuroscience
– volume: 25
  start-page: 3077
  year: 2015
  end-page: 3085
  article-title: Delta‐beta coupled oscillations underlie temporal prediction accuracy
  publication-title: Cerebral Cortex
– volume: 196
  start-page: 114
  year: 2019
  end-page: 125
  article-title: Long‐range functional coupling predicts performance: Oscillatory EEG networks in multisensory processing
  publication-title: NeuroImage
– volume: 16
  start-page: 606
  year: 2012
  end-page: 617
  article-title: Alpha‐band oscillations, attention, and controlled access to stored information
  publication-title: Trends in Cognitive Sciences
– volume: 117
  start-page: 369
  year: 2006
  end-page: 380
  article-title: Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: II. Adequacy of low‐density estimates
  publication-title: Clinical Neurophysiology
– volume: 30
  start-page: 150
  year: 2007
  end-page: 158
  article-title: New vistas for alpha‐frequency band oscillations
  publication-title: Trends in Neurosciences
– volume: 14
  start-page: 506
  year: 2010
  end-page: 515
  article-title: The functional role of cross‐frequency coupling
  publication-title: Trends in Cognitive Sciences
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  article-title: EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
– volume: 26
  start-page: 347
  year: 2005
  end-page: 355
  article-title: On the human sensorimotor‐cortex beta rhythm: Sources and modeling
  publication-title: NeuroImage
– volume: 21
  start-page: 3942
  year: 2001
  end-page: 3948
  article-title: Transient interhemispheric neuronal synchrony correlates with object recognition
  publication-title: The Journal of Neuroscience
– volume: 16
  start-page: 390
  year: 2012
  end-page: 398
  article-title: Cortical oscillations and sensory predictions
  publication-title: Trends in Cognitive Sciences
– volume: 4
  year: 2010
  article-title: Shaping functional architecture by oscillatory alpha activity: Gating by inhibition
  publication-title: Frontiers in Human Neuroscience
– volume: 313
  start-page: 1626
  year: 2006
  end-page: 1628
  article-title: High gamma power is phase‐locked to theta oscillations in human neocortex
  publication-title: Science
– volume: 128
  start-page: 2070
  year: 2017
  end-page: 2077
  article-title: The standardized EEG electrode array of the IFCN
  publication-title: Clinical Neurophysiology
– volume: 136
  start-page: 197
  year: 2016
  end-page: 207
  article-title: Beta band modulations underlie action representations for movement planning
  publication-title: NeuroImage
– volume: 114
  start-page: 1339
  year: 2007
  end-page: 1348
  article-title: Cortical control of postural responses
  publication-title: Journal of Neural Transmission (Vienna)
– volume: 29
  start-page: 4143
  year: 2019
  end-page: 4153
  article-title: Lesions to the fronto‐parietal network impact alpha‐band phase synchrony and cognitive control
  publication-title: Cerebral Cortex
– volume: 118
  start-page: 445
  year: 2015
  end-page: 455
  article-title: Neural dynamics in motor preparation: From phase‐mediated global computation to amplitude‐mediated local computation
  publication-title: NeuroImage
– volume: 33
  start-page: 85
  year: 2015
  end-page: 94
  article-title: Feedback control during voluntary motor actions
  publication-title: Current Opinion in Neurobiology
– volume: 111
  start-page: E417
  year: 2014
  end-page: E425
  article-title: Prestimulus oscillatory power and connectivity patterns predispose conscious somatosensory perception
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 31
  start-page: 5197
  year: 2011
  end-page: 5204
  article-title: Top‐down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task
  publication-title: The Journal of Neuroscience
– volume: 37
  start-page: 1465
  year: 2007
  end-page: 1473
  article-title: Prestimulus oscillations predict visual perception performance between and within subjects
  publication-title: NeuroImage
– volume: 24
  start-page: 1708
  year: 2014
  end-page: 1719
  article-title: Now I am ready—now I am not: The influence of pre‐TMS oscillations and corticomuscular coherence on motor‐evoked potentials
  publication-title: Cerebral Cortex
– volume: 104
  start-page: 96
  year: 2016
  end-page: 104
  article-title: Human upright posture control models based on multisensory inputs; in fast and slow dynamics
  publication-title: Neuroscience Research
– volume: 188
  start-page: 557
  year: 2019
  end-page: 571
  article-title: Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands
  publication-title: NeuroImage
– volume: 106
  start-page: 2964
  year: 2011
  end-page: 2972
  article-title: Endogenous modulation of low frequency oscillations by temporal expectations
  publication-title: Journal of Neurophysiology
– volume: 8
  start-page: 194
  year: 1999
  end-page: 208
  article-title: Measuring phase synchrony in brain signals
  publication-title: Human Brain Mapping
– volume: 97
  start-page: 14748
  year: 2000
  end-page: 14753
  article-title: Top‐down processing mediated by interareal synchronization
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 24
  start-page: 10186
  year: 2004
  end-page: 10190
  article-title: Prestimulus oscillations enhance psychophysical performance in humans
  publication-title: The Journal of Neuroscience
– volume: 512
  start-page: 267
  issue: Pt 1
  year: 1998
  end-page: 276
  article-title: Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man
  publication-title: The Journal of Physiology
– volume: 222
  start-page: 455
  year: 2012
  end-page: 470
  article-title: Effects of magnitude and magnitude predictability of postural perturbations on preparatory cortical activity in older adults with and without Parkinson's disease
  publication-title: Experimental Brain Research
– volume: 119
  start-page: 1431
  year: 2008
  end-page: 1442
  article-title: Changes in the activity of the cerebral cortex relate to postural response modification when warned of a perturbation
  publication-title: Clinical Neurophysiology
– volume: 43
  start-page: 329
  year: 2008
  end-page: 336
  article-title: Role of the prefrontal cortex in human balance control
  publication-title: NeuroImage
– ident: e_1_2_11_14_1
  doi: 10.3389/fnhum.2018.00068
– ident: e_1_2_11_22_1
  doi: 10.3389/fnhum.2010.00186
– ident: e_1_2_11_10_1
  doi: 10.1152/jn.00157.2011
– ident: e_1_2_11_36_1
  doi: 10.1016/j.tins.2007.02.001
– ident: e_1_2_11_30_1
  doi: 10.1016/j.jneumeth.2007.03.024
– ident: e_1_2_11_50_1
  doi: 10.14802/jmd.16062
– ident: e_1_2_11_18_1
  doi: 10.1016/j.neulet.2004.10.092
– ident: e_1_2_11_6_1
  doi: 10.1126/science.1128115
– ident: e_1_2_11_16_1
  doi: 10.1016/j.neuroimage.2007.07.011
– ident: e_1_2_11_27_1
  doi: 10.1016/j.tics.2012.10.007
– ident: e_1_2_11_37_1
  doi: 10.1016/0013-4694(89)90180-6
– ident: e_1_2_11_41_1
  doi: 10.1523/JNEUROSCI.1358-12.2012
– ident: e_1_2_11_23_1
  doi: 10.1016/j.neuroimage.2006.06.005
– ident: e_1_2_11_35_1
  doi: 10.1523/JNEUROSCI.4250-04.2005
– ident: e_1_2_11_43_1
  doi: 10.1093/cercor/bht024
– ident: e_1_2_11_17_1
  doi: 10.1016/j.brainresrev.2011.04.002
– ident: e_1_2_11_42_1
  doi: 10.1016/j.tins.2008.09.012
– ident: e_1_2_11_51_1
  doi: 10.1016/j.neuroimage.2016.05.027
– ident: e_1_2_11_7_1
  doi: 10.1016/j.tics.2010.09.001
– ident: e_1_2_11_5_1
  doi: 10.1523/ENEURO.0153-16.2017
– ident: e_1_2_11_11_1
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: e_1_2_11_39_1
  doi: 10.1007/s00221-008-1603-6
– volume: 29
  start-page: 4143
  year: 2019
  ident: e_1_2_11_40_1
  article-title: Lesions to the fronto‐parietal network impact alpha‐band phase synchrony and cognitive control
  publication-title: Cerebral Cortex
  contributor:
    fullname: Sadaghiani S.
– ident: e_1_2_11_15_1
  doi: 10.1523/JNEUROSCI.5199-10.2011
– ident: e_1_2_11_21_1
  doi: 10.1016/j.neuroimage.2005.02.008
– ident: e_1_2_11_12_1
  doi: 10.1371/journal.pone.0158721
– ident: e_1_2_11_52_1
  doi: 10.1523/JNEUROSCI.2794-09.2010
– ident: e_1_2_11_13_1
  doi: 10.3389/fnhum.2019.00004
– ident: e_1_2_11_49_1
  doi: 10.1371/journal.pbio.1001936
– ident: e_1_2_11_9_1
  doi: 10.1162/jocn.2008.21020
– ident: e_1_2_11_19_1
  doi: 10.1016/j.clinph.2008.02.015
– ident: e_1_2_11_32_1
  doi: 10.1523/JNEUROSCI.21-11-03942.2001
– ident: e_1_2_11_33_1
  doi: 10.1016/j.brainres.2009.04.050
– ident: e_1_2_11_8_1
  doi: 10.1016/j.neures.2015.12.002
– ident: e_1_2_11_44_1
  doi: 10.1016/j.conb.2015.03.006
– ident: e_1_2_11_4_1
  doi: 10.1016/j.neubiorev.2015.08.014
– ident: e_1_2_11_45_1
  doi: 10.1016/j.clinph.2017.06.254
– ident: e_1_2_11_54_1
  doi: 10.1016/j.neuroimage.2019.04.001
– ident: e_1_2_11_25_1
  doi: 10.1016/j.clinph.2005.08.033
– ident: e_1_2_11_28_1
  doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
– ident: e_1_2_11_48_1
  doi: 10.1016/j.neuroimage.2018.12.045
– ident: e_1_2_11_53_1
  doi: 10.1073/pnas.97.26.14748
– ident: e_1_2_11_3_1
  doi: 10.1016/j.tics.2012.05.003
– ident: e_1_2_11_34_1
  doi: 10.1016/j.neubiorev.2015.04.002
– ident: e_1_2_11_55_1
  doi: 10.1073/pnas.1317267111
– ident: e_1_2_11_31_1
  doi: 10.1016/j.neuroimage.2008.07.029
– ident: e_1_2_11_20_1
  doi: 10.1007/s00702-007-0657-0
– ident: e_1_2_11_26_1
  doi: 10.1152/jn.00387.2013
– ident: e_1_2_11_2_1
  doi: 10.1093/cercor/bhu103
– ident: e_1_2_11_46_1
  doi: 10.1007/s00221-012-3232-3
– ident: e_1_2_11_29_1
  doi: 10.1523/JNEUROSCI.2584-04.2004
– ident: e_1_2_11_56_1
  doi: 10.1152/jn.90775.2008
– ident: e_1_2_11_24_1
  doi: 10.1016/j.neuroimage.2015.05.032
– ident: e_1_2_11_47_1
  doi: 10.1097/NPT.0000000000000058
– ident: e_1_2_11_38_1
  doi: 10.1111/j.1469-7793.1998.267bf.x
SSID ssj0008645
Score 2.463475
Snippet Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates...
Abstract Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1516
SubjectTerms Central nervous system
Cortical Synchronization - physiology
EEG
Electroencephalography
Electromyography
event‐related desynchronization
Excitability
Humans
Information processing
Oscillations
phase synchrony
phase‐amplitude coupling
postural response
Posture
Predictions
Pyramidal tracts
Sensorimotor system
Sensory integration
Synchronization
Title Cortical oscillations and interareal synchronization as a preparatory activity for postural response
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.15956
https://www.ncbi.nlm.nih.gov/pubmed/36878880
https://www.proquest.com/docview/2808483983
https://search.proquest.com/docview/2784383758
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hLvRSyqukLJWLEOKSVTZOHEec0BaEkMoBgbQHpMivHFpIVtndw_LrmXGSpVBVqnqzFCd2bE_mkZnvAzh2Ns5Tp1CQXG7DRLoolOhlhIY8RZGrWPtysR834uo-uZ6kkzU462thWnyIVcCNJMN_r0nAlZ79JuTuZzVEXZwS3PaIZ5TO9f32FTpKCk9QTHBqOLqYdKhClMWzuvOtLvrDwHxrr3qFc7kJD_1U2zyTX8PFXA_N8zsUx_98l0_wsTNE2Xl7crZgzVXbsHNeoRP-tGQnzKeG-pj7NmyMe1q4HbDjuvHxb0YwmI9dKh1TlWUEPYGTQNOTzZaV8bC7bZUnU9iDTRvnkcbrZsmonoJoKxgazWxazzz8B2vajF23C_eXF3fjq7CjaggNz3IR8tRqya0vUE9NKkUplHFZKR3B-SSxjh0fldqkOjGltMR3nJUmkkq6MlKJ4XuwXtWV2weGGtOOskzpNNYJPiF3Ko8ja5TAFo-SAI76TSumLSJH0XsyuI6FX8cABv12Fp1QzopYEnkAzyUP4NvqMi4f_SNRlasX2CeTBN6KXlQAn9tjsBqFC0kBgyiAU7-Zfx--uLi-8Y0v_971AD4QlX2bTDmA9XmzcIdo8Mz1V3-yXwC_C_1m
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONBLW6CPtJS6qKp6ySrEieNIvaAtaEthDwikvVSRXzkUmqyyu4ftr--MkyzQCglxsxQndmxP5pGZ7wP45Gycp06hILnchol0USjRywgNeYoiV7H25WJnYzG6TE4m6WQNvva1MC0-xCrgRpLhv9ck4BSQviXl7lc1QGWciiewgeLOibjh2_kNeJQUnqKYANVwfDHpcIUoj2d1611t9J-Jeddi9Srn-Dn87CfbZppcDRZzPTB__sFxfOzbvIBnnS3KDtvDswVrrtqGncMK_fDfS_aZ-exQH3bfhs1hzwy3A3ZYNz4EzggJ87rLpmOqsozQJ3AWaH2y2bIyHnm3LfRkCnuwaeM82HjdLBmVVBBzBUO7mU3rmUcAYU2btOtewuXx0cVwFHZsDaHhWS5CnlotufU16qlJpSiFMi4rpSNEnyTWseMHpTapTkwpLVEeZ6WJpJKujFRi-CtYr-rKvQGGStMeZJnSaawTfELuVB5H1iiBLR4lAez3u1ZMW1COondmcB0Lv44B7Pb7WXRyOStiSfwBPJc8gI-ry7h89JtEVa5eYJ9MEn4rOlIBvG7PwWoULiTFDKIAvvjdvH_44uhk7BtvH971A2yOLs5Oi9Pv4x_v4Ckx27e5lbuwPm8W7j3aP3O954_5X3zRAY0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9RAEJ4gJMoLIihWUVdjjC-9lG673YYncnJB1IsxktyDSbO_-iDYXnp3D8df78y2PUBiQnjbpNvudnen88105huA987GeeoUCpLLbZhIF4USrYzQkKUochVrny72bSxOzpLTSTpZg8M-F6blh1g53Egy_PeaBHxqy2tC7n5XA9TFqXgAG4lA5EuI6McVd5QUvkIx8anh8GLS0QpRGM_q1pvK6BbCvAlYvcYZPYZf_VzbQJPzwWKuB-byHxrHe77MNmx1SJQdtUfnCay5agd2jyq0wv8s2QfmY0O9030HHg37unC7YId14x3gjHgwL7pYOqYqy4h7AieB2JPNlpXxvLttmidT2INNG-epxutmySihgupWMETNbFrPPP8Ha9qQXfcUzkbHP4cnYVerITQ8y0XIU6sltz5DPTWpFKVQxmWldMTnk8Q6dvyg1CbViSmlpYLHWWkiqaQrI5UY_gzWq7pyz4GhyrQHWaZ0GusEn5A7lceRNUpgi0dJAO_6TSumLSVH0ZsyuI6FX8cA9vvtLDqpnBWxpOoBPJc8gLery7h89JNEVa5eYJ9MEnsrmlEB7LXHYDUKF5I8BlEAH_1m_n_44vh07Bsv7t71DTz8_mlUfP08_vISNqmsfRtYuQ_r82bhXiH4mevX_pD_BYGwADw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+oscillations+and+interareal+synchronization+as+a+preparatory+activity+for+postural+response&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Fujio%2C+Kimiya&rft.au=Obata%2C+Hiroki&rft.au=Takeda%2C+Kenta&rft.au=Kawashima%2C+Noritaka&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=57&rft.issue=9&rft.spage=1516&rft.epage=1528&rft_id=info:doi/10.1111%2Fejn.15956&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon