Cortical oscillations and interareal synchronization as a preparatory activity for postural response
Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an...
Saved in:
Published in | The European journal of neuroscience Vol. 57; no. 9; pp. 1516 - 1528 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
France
Wiley Subscription Services, Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α‐ and β‐bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ‐band frequency. Furthermore, a reduction in the interareal phase synchrony in the α‐band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses.
Cortical involvement is fundamental neural mechanism for a postural response. We revealed that EEG oscillations and interareal synchronization, at θ‐, α‐ and β‐band frequency, are dynamically modulated during the preparatory period when perturbation can be predicted. |
---|---|
AbstractList | Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α- and β-bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ-band frequency. Furthermore, a reduction in the interareal phase synchrony in the α-band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses. Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α‐ and β‐bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ‐band frequency. Furthermore, a reduction in the interareal phase synchrony in the α‐band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses. Cortical involvement is fundamental neural mechanism for a postural response. We revealed that EEG oscillations and interareal synchronization, at θ‐, α‐ and β‐band frequency, are dynamically modulated during the preparatory period when perturbation can be predicted. Abstract Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α‐ and β‐bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ‐band frequency. Furthermore, a reduction in the interareal phase synchrony in the α‐band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses. |
Author | Takeda, Kenta Obata, Hiroki Fujio, Kimiya Kawashima, Noritaka |
Author_xml | – sequence: 1 givenname: Kimiya orcidid: 0000-0001-9898-608X surname: Fujio fullname: Fujio, Kimiya email: fujiokimiya@yahoo.co.jp organization: Research Institute of National Rehabilitation Center for Persons with Disabilities – sequence: 2 givenname: Hiroki surname: Obata fullname: Obata, Hiroki organization: Kyushu Institute of Technology – sequence: 3 givenname: Kenta surname: Takeda fullname: Takeda, Kenta organization: Research Institute of National Rehabilitation Center for Persons with Disabilities – sequence: 4 givenname: Noritaka surname: Kawashima fullname: Kawashima, Noritaka organization: Research Institute of National Rehabilitation Center for Persons with Disabilities |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36878880$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEFP2zAYhi1UtJZuB_4AisRlOwTs2k6-HlHFNlC1XUDazXKcz5qr1A52sin8ejwKOyDxXfxJ7-NH9ntCZj54JOSU0QuW5xJ3_oLJtayOyIKJipZ5hRlZ0LXkJbDq15ycpLSjlEIl5Acy5xXUAEAXpN2EODijuyIk47pODy74VGjfFs4PGHXEnKXJm98xePf4nBc6E0UfsddRDyFOhTaD--OGqbAhFn1IwxjztYipzzb8SI6t7hJ-ejmX5P7r9d3me7n9-e1mc7UtDa_XVcll2wBvqQBaSyOhspU2WFtAxhkTq2aFnNnGyEYYC62ouaytoaABLdXC8CX5fPD2MTyMmAa1d8lg_pXHMCa1qkFw4LWEjJ6_QXdhjD6_Tq2AggC-Bp6pLwfKxJBSRKv66PY6TopR9a96latXz9Vn9uzFODZ7bP-Tr11n4PIA_HUdTu-b1PXtj4PyCas5kUg |
Cites_doi | 10.3389/fnhum.2018.00068 10.3389/fnhum.2010.00186 10.1152/jn.00157.2011 10.1016/j.tins.2007.02.001 10.1016/j.jneumeth.2007.03.024 10.14802/jmd.16062 10.1016/j.neulet.2004.10.092 10.1126/science.1128115 10.1016/j.neuroimage.2007.07.011 10.1016/j.tics.2012.10.007 10.1016/0013-4694(89)90180-6 10.1523/JNEUROSCI.1358-12.2012 10.1016/j.neuroimage.2006.06.005 10.1523/JNEUROSCI.4250-04.2005 10.1093/cercor/bht024 10.1016/j.brainresrev.2011.04.002 10.1016/j.tins.2008.09.012 10.1016/j.neuroimage.2016.05.027 10.1016/j.tics.2010.09.001 10.1523/ENEURO.0153-16.2017 10.1016/j.jneumeth.2003.10.009 10.1007/s00221-008-1603-6 10.1523/JNEUROSCI.5199-10.2011 10.1016/j.neuroimage.2005.02.008 10.1371/journal.pone.0158721 10.1523/JNEUROSCI.2794-09.2010 10.3389/fnhum.2019.00004 10.1371/journal.pbio.1001936 10.1162/jocn.2008.21020 10.1016/j.clinph.2008.02.015 10.1523/JNEUROSCI.21-11-03942.2001 10.1016/j.brainres.2009.04.050 10.1016/j.neures.2015.12.002 10.1016/j.conb.2015.03.006 10.1016/j.neubiorev.2015.08.014 10.1016/j.clinph.2017.06.254 10.1016/j.neuroimage.2019.04.001 10.1016/j.clinph.2005.08.033 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C 10.1016/j.neuroimage.2018.12.045 10.1073/pnas.97.26.14748 10.1016/j.tics.2012.05.003 10.1016/j.neubiorev.2015.04.002 10.1073/pnas.1317267111 10.1016/j.neuroimage.2008.07.029 10.1007/s00702-007-0657-0 10.1152/jn.00387.2013 10.1093/cercor/bhu103 10.1007/s00221-012-3232-3 10.1523/JNEUROSCI.2584-04.2004 10.1152/jn.90775.2008 10.1016/j.neuroimage.2015.05.032 10.1097/NPT.0000000000000058 10.1111/j.1469-7793.1998.267bf.x |
ContentType | Journal Article |
Copyright | 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 8FD FR3 P64 7X8 |
DOI | 10.1111/ejn.15956 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Chemoreception Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Chemoreception Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 1528 |
ExternalDocumentID | 10_1111_ejn_15956 36878880 EJN15956 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: JSPS KAKENHI funderid: JP17K18370 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3796-35db83d048075c586f6ace7f8e131142b2e31fbc5b4cf8d47357fc08a8ef0a4c3 |
IEDL.DBID | DR2 |
ISSN | 0953-816X |
IngestDate | Fri Aug 16 10:21:07 EDT 2024 Thu Oct 10 19:31:17 EDT 2024 Fri Aug 23 03:58:40 EDT 2024 Sat Sep 28 08:13:35 EDT 2024 Sat Aug 24 00:59:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | electroencephalography phase synchrony phase-amplitude coupling event-related desynchronization postural response |
Language | English |
License | 2023 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3796-35db83d048075c586f6ace7f8e131142b2e31fbc5b4cf8d47357fc08a8ef0a4c3 |
Notes | Funding information Edited by: Shulan Hsieh This work was supported by JSPS KAKENHI grant number JP17K18370. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9898-608X |
PMID | 36878880 |
PQID | 2808483983 |
PQPubID | 34057 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2784383758 proquest_journals_2808483983 crossref_primary_10_1111_ejn_15956 pubmed_primary_36878880 wiley_primary_10_1111_ejn_15956_EJN15956 |
PublicationCentury | 2000 |
PublicationDate | May 2023 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationPlace | France |
PublicationPlace_xml | – name: France – name: Chichester |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 14 2017; 4 2005; 375 2006; 32 2019; 13 2015; 33 2004; 24 2014; 24 2012; 16 2016; 104 2007; 30 1998; 512 2005; 26 2007; 37 2005; 25 2004; 134 1989; 72 2000; 97 2008; 119 2019; 29 2011; 67 2019; 196 2010; 4 2014; 12 2010; 30 2017; 128 2009; 1279 2015; 57 2009; 21 2012; 222 2015; 53 2007; 164 2011; 31 1999; 8 2006; 313 2014; 111 2006; 117 2012; 32 2019; 188 2016; 11 2001; 21 2007; 114 2015; 25 2009; 32 2011; 106 2009; 193 2017; 10 2014; 38 2009; 101 2008; 43 2015; 118 2016; 136 2018; 12 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Sadaghiani S. (e_1_2_11_40_1) 2019; 29 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 32 start-page: 9 year: 2009 end-page: 18 article-title: Low‐frequency neuronal oscillations as instruments of sensory selection publication-title: Trends in Neurosciences – volume: 21 start-page: 390 year: 2009 end-page: 402 article-title: Oscillatory activity and phase‐amplitude coupling in the human medial frontal cortex during decision making publication-title: Journal of Cognitive Neuroscience – volume: 32 start-page: 1281 year: 2006 end-page: 1289 article-title: Post‐movement beta rebound is generated in motor cortex: Evidence from neuromagnetic recordings publication-title: NeuroImage – volume: 53 start-page: 131 year: 2015 end-page: 138 article-title: What startles tell us about control of posture and gait publication-title: Neuroscience and Biobehavioral Reviews – volume: 13 year: 2019 article-title: Presetting of the corticospinal excitability in the tibialis anterior muscle in relation to prediction of the magnitude and direction of postural perturbations publication-title: Frontiers in Human Neuroscience – volume: 25 start-page: 3962 year: 2005 end-page: 3972 article-title: Phase synchrony among neuronal oscillations in the human cortex publication-title: The Journal of Neuroscience – volume: 32 start-page: 14305 year: 2012 end-page: 14310 article-title: Alpha‐band phase synchrony is related to activity in the fronto‐parietal adaptive control network publication-title: The Journal of Neuroscience – volume: 12 year: 2014 article-title: Dynamic changes in phase‐amplitude coupling facilitate spatial attention control in fronto‐parietal cortex publication-title: PLoS Biology – volume: 1279 start-page: 29 year: 2009 end-page: 36 article-title: Cortical activity prior to predictable postural instability: Is there a difference between self‐initiated and externally‐initiated perturbations? publication-title: Brain Research – volume: 72 start-page: 184 year: 1989 end-page: 187 article-title: Spherical splines for scalp potential and current density mapping publication-title: Electroencephalography and Clinical Neurophysiology – volume: 111 start-page: 513 year: 2014 end-page: 519 article-title: Cortical brain states and corticospinal synchronization influence TMS‐evoked motor potentials publication-title: Journal of Neurophysiology – volume: 38 start-page: 207 year: 2014 end-page: 215 article-title: Effects of amplitude cueing on postural responses and preparatory cortical activity of people with Parkinson disease publication-title: Journal of Neurologic Physical Therapy – volume: 30 start-page: 4481 year: 2010 end-page: 4488 article-title: Corticospinal beta‐band synchronization entails rhythmic gain modulation publication-title: The Journal of Neuroscience – volume: 164 start-page: 177 year: 2007 end-page: 190 article-title: Nonparametric statistical testing of EEG‐ and MEG‐data publication-title: Journal of Neuroscience Methods – volume: 193 start-page: 161 year: 2009 end-page: 171 article-title: Cortical involvement in anticipatory postural reactions in man publication-title: Experimental Brain Research – volume: 375 start-page: 64 year: 2005 end-page: 68 article-title: Visual discrimination performance is related to decreased alpha amplitude but increased phase locking publication-title: Neuroscience Letters – volume: 101 start-page: 3294 year: 2009 end-page: 3309 article-title: A feedback model explains the differential scaling of human postural responses to perturbation acceleration and velocity publication-title: Journal of Neurophysiology – volume: 57 start-page: 142 year: 2015 end-page: 155 article-title: The role of the cerebral cortex in postural responses to externally induced perturbations publication-title: Neuroscience and Biobehavioral Reviews – volume: 4 start-page: ENEURO.0153 year: 2017 end-page: ENEU16.2017 article-title: Communication between brain areas based on nested oscillations publication-title: eNeuro – volume: 11 year: 2016 article-title: The effects of temporal and spatial predictions on stretch reflexes of ankle flexor and extensor muscles while standing publication-title: PLoS ONE – volume: 67 start-page: 331 year: 2011 end-page: 343 article-title: The role of alpha oscillations in temporal attention publication-title: Brain Research Reviews – volume: 10 start-page: 1 year: 2017 end-page: 17 article-title: Functional neuroanatomy for posture and gait control publication-title: J Mov Disord – volume: 12 year: 2018 article-title: Corticospinal excitability is modulated as a function of postural perturbation predictability publication-title: Frontiers in Human Neuroscience – volume: 25 start-page: 3077 year: 2015 end-page: 3085 article-title: Delta‐beta coupled oscillations underlie temporal prediction accuracy publication-title: Cerebral Cortex – volume: 196 start-page: 114 year: 2019 end-page: 125 article-title: Long‐range functional coupling predicts performance: Oscillatory EEG networks in multisensory processing publication-title: NeuroImage – volume: 16 start-page: 606 year: 2012 end-page: 617 article-title: Alpha‐band oscillations, attention, and controlled access to stored information publication-title: Trends in Cognitive Sciences – volume: 117 start-page: 369 year: 2006 end-page: 380 article-title: Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: II. Adequacy of low‐density estimates publication-title: Clinical Neurophysiology – volume: 30 start-page: 150 year: 2007 end-page: 158 article-title: New vistas for alpha‐frequency band oscillations publication-title: Trends in Neurosciences – volume: 14 start-page: 506 year: 2010 end-page: 515 article-title: The functional role of cross‐frequency coupling publication-title: Trends in Cognitive Sciences – volume: 134 start-page: 9 year: 2004 end-page: 21 article-title: EEGLAB: An open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis publication-title: Journal of Neuroscience Methods – volume: 26 start-page: 347 year: 2005 end-page: 355 article-title: On the human sensorimotor‐cortex beta rhythm: Sources and modeling publication-title: NeuroImage – volume: 21 start-page: 3942 year: 2001 end-page: 3948 article-title: Transient interhemispheric neuronal synchrony correlates with object recognition publication-title: The Journal of Neuroscience – volume: 16 start-page: 390 year: 2012 end-page: 398 article-title: Cortical oscillations and sensory predictions publication-title: Trends in Cognitive Sciences – volume: 4 year: 2010 article-title: Shaping functional architecture by oscillatory alpha activity: Gating by inhibition publication-title: Frontiers in Human Neuroscience – volume: 313 start-page: 1626 year: 2006 end-page: 1628 article-title: High gamma power is phase‐locked to theta oscillations in human neocortex publication-title: Science – volume: 128 start-page: 2070 year: 2017 end-page: 2077 article-title: The standardized EEG electrode array of the IFCN publication-title: Clinical Neurophysiology – volume: 136 start-page: 197 year: 2016 end-page: 207 article-title: Beta band modulations underlie action representations for movement planning publication-title: NeuroImage – volume: 114 start-page: 1339 year: 2007 end-page: 1348 article-title: Cortical control of postural responses publication-title: Journal of Neural Transmission (Vienna) – volume: 29 start-page: 4143 year: 2019 end-page: 4153 article-title: Lesions to the fronto‐parietal network impact alpha‐band phase synchrony and cognitive control publication-title: Cerebral Cortex – volume: 118 start-page: 445 year: 2015 end-page: 455 article-title: Neural dynamics in motor preparation: From phase‐mediated global computation to amplitude‐mediated local computation publication-title: NeuroImage – volume: 33 start-page: 85 year: 2015 end-page: 94 article-title: Feedback control during voluntary motor actions publication-title: Current Opinion in Neurobiology – volume: 111 start-page: E417 year: 2014 end-page: E425 article-title: Prestimulus oscillatory power and connectivity patterns predispose conscious somatosensory perception publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 31 start-page: 5197 year: 2011 end-page: 5204 article-title: Top‐down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task publication-title: The Journal of Neuroscience – volume: 37 start-page: 1465 year: 2007 end-page: 1473 article-title: Prestimulus oscillations predict visual perception performance between and within subjects publication-title: NeuroImage – volume: 24 start-page: 1708 year: 2014 end-page: 1719 article-title: Now I am ready—now I am not: The influence of pre‐TMS oscillations and corticomuscular coherence on motor‐evoked potentials publication-title: Cerebral Cortex – volume: 104 start-page: 96 year: 2016 end-page: 104 article-title: Human upright posture control models based on multisensory inputs; in fast and slow dynamics publication-title: Neuroscience Research – volume: 188 start-page: 557 year: 2019 end-page: 571 article-title: Cortical dynamics during preparation and execution of reactive balance responses with distinct postural demands publication-title: NeuroImage – volume: 106 start-page: 2964 year: 2011 end-page: 2972 article-title: Endogenous modulation of low frequency oscillations by temporal expectations publication-title: Journal of Neurophysiology – volume: 8 start-page: 194 year: 1999 end-page: 208 article-title: Measuring phase synchrony in brain signals publication-title: Human Brain Mapping – volume: 97 start-page: 14748 year: 2000 end-page: 14753 article-title: Top‐down processing mediated by interareal synchronization publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 24 start-page: 10186 year: 2004 end-page: 10190 article-title: Prestimulus oscillations enhance psychophysical performance in humans publication-title: The Journal of Neuroscience – volume: 512 start-page: 267 issue: Pt 1 year: 1998 end-page: 276 article-title: Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man publication-title: The Journal of Physiology – volume: 222 start-page: 455 year: 2012 end-page: 470 article-title: Effects of magnitude and magnitude predictability of postural perturbations on preparatory cortical activity in older adults with and without Parkinson's disease publication-title: Experimental Brain Research – volume: 119 start-page: 1431 year: 2008 end-page: 1442 article-title: Changes in the activity of the cerebral cortex relate to postural response modification when warned of a perturbation publication-title: Clinical Neurophysiology – volume: 43 start-page: 329 year: 2008 end-page: 336 article-title: Role of the prefrontal cortex in human balance control publication-title: NeuroImage – ident: e_1_2_11_14_1 doi: 10.3389/fnhum.2018.00068 – ident: e_1_2_11_22_1 doi: 10.3389/fnhum.2010.00186 – ident: e_1_2_11_10_1 doi: 10.1152/jn.00157.2011 – ident: e_1_2_11_36_1 doi: 10.1016/j.tins.2007.02.001 – ident: e_1_2_11_30_1 doi: 10.1016/j.jneumeth.2007.03.024 – ident: e_1_2_11_50_1 doi: 10.14802/jmd.16062 – ident: e_1_2_11_18_1 doi: 10.1016/j.neulet.2004.10.092 – ident: e_1_2_11_6_1 doi: 10.1126/science.1128115 – ident: e_1_2_11_16_1 doi: 10.1016/j.neuroimage.2007.07.011 – ident: e_1_2_11_27_1 doi: 10.1016/j.tics.2012.10.007 – ident: e_1_2_11_37_1 doi: 10.1016/0013-4694(89)90180-6 – ident: e_1_2_11_41_1 doi: 10.1523/JNEUROSCI.1358-12.2012 – ident: e_1_2_11_23_1 doi: 10.1016/j.neuroimage.2006.06.005 – ident: e_1_2_11_35_1 doi: 10.1523/JNEUROSCI.4250-04.2005 – ident: e_1_2_11_43_1 doi: 10.1093/cercor/bht024 – ident: e_1_2_11_17_1 doi: 10.1016/j.brainresrev.2011.04.002 – ident: e_1_2_11_42_1 doi: 10.1016/j.tins.2008.09.012 – ident: e_1_2_11_51_1 doi: 10.1016/j.neuroimage.2016.05.027 – ident: e_1_2_11_7_1 doi: 10.1016/j.tics.2010.09.001 – ident: e_1_2_11_5_1 doi: 10.1523/ENEURO.0153-16.2017 – ident: e_1_2_11_11_1 doi: 10.1016/j.jneumeth.2003.10.009 – ident: e_1_2_11_39_1 doi: 10.1007/s00221-008-1603-6 – volume: 29 start-page: 4143 year: 2019 ident: e_1_2_11_40_1 article-title: Lesions to the fronto‐parietal network impact alpha‐band phase synchrony and cognitive control publication-title: Cerebral Cortex contributor: fullname: Sadaghiani S. – ident: e_1_2_11_15_1 doi: 10.1523/JNEUROSCI.5199-10.2011 – ident: e_1_2_11_21_1 doi: 10.1016/j.neuroimage.2005.02.008 – ident: e_1_2_11_12_1 doi: 10.1371/journal.pone.0158721 – ident: e_1_2_11_52_1 doi: 10.1523/JNEUROSCI.2794-09.2010 – ident: e_1_2_11_13_1 doi: 10.3389/fnhum.2019.00004 – ident: e_1_2_11_49_1 doi: 10.1371/journal.pbio.1001936 – ident: e_1_2_11_9_1 doi: 10.1162/jocn.2008.21020 – ident: e_1_2_11_19_1 doi: 10.1016/j.clinph.2008.02.015 – ident: e_1_2_11_32_1 doi: 10.1523/JNEUROSCI.21-11-03942.2001 – ident: e_1_2_11_33_1 doi: 10.1016/j.brainres.2009.04.050 – ident: e_1_2_11_8_1 doi: 10.1016/j.neures.2015.12.002 – ident: e_1_2_11_44_1 doi: 10.1016/j.conb.2015.03.006 – ident: e_1_2_11_4_1 doi: 10.1016/j.neubiorev.2015.08.014 – ident: e_1_2_11_45_1 doi: 10.1016/j.clinph.2017.06.254 – ident: e_1_2_11_54_1 doi: 10.1016/j.neuroimage.2019.04.001 – ident: e_1_2_11_25_1 doi: 10.1016/j.clinph.2005.08.033 – ident: e_1_2_11_28_1 doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C – ident: e_1_2_11_48_1 doi: 10.1016/j.neuroimage.2018.12.045 – ident: e_1_2_11_53_1 doi: 10.1073/pnas.97.26.14748 – ident: e_1_2_11_3_1 doi: 10.1016/j.tics.2012.05.003 – ident: e_1_2_11_34_1 doi: 10.1016/j.neubiorev.2015.04.002 – ident: e_1_2_11_55_1 doi: 10.1073/pnas.1317267111 – ident: e_1_2_11_31_1 doi: 10.1016/j.neuroimage.2008.07.029 – ident: e_1_2_11_20_1 doi: 10.1007/s00702-007-0657-0 – ident: e_1_2_11_26_1 doi: 10.1152/jn.00387.2013 – ident: e_1_2_11_2_1 doi: 10.1093/cercor/bhu103 – ident: e_1_2_11_46_1 doi: 10.1007/s00221-012-3232-3 – ident: e_1_2_11_29_1 doi: 10.1523/JNEUROSCI.2584-04.2004 – ident: e_1_2_11_56_1 doi: 10.1152/jn.90775.2008 – ident: e_1_2_11_24_1 doi: 10.1016/j.neuroimage.2015.05.032 – ident: e_1_2_11_47_1 doi: 10.1097/NPT.0000000000000058 – ident: e_1_2_11_38_1 doi: 10.1111/j.1469-7793.1998.267bf.x |
SSID | ssj0008645 |
Score | 2.463475 |
Snippet | Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates... Abstract Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1516 |
SubjectTerms | Central nervous system Cortical Synchronization - physiology EEG Electroencephalography Electromyography event‐related desynchronization Excitability Humans Information processing Oscillations phase synchrony phase‐amplitude coupling postural response Posture Predictions Pyramidal tracts Sensorimotor system Sensory integration Synchronization |
Title | Cortical oscillations and interareal synchronization as a preparatory activity for postural response |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.15956 https://www.ncbi.nlm.nih.gov/pubmed/36878880 https://www.proquest.com/docview/2808483983 https://search.proquest.com/docview/2784383758 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hLvRSyqukLJWLEOKSVTZOHEec0BaEkMoBgbQHpMivHFpIVtndw_LrmXGSpVBVqnqzFCd2bE_mkZnvAzh2Ns5Tp1CQXG7DRLoolOhlhIY8RZGrWPtysR834uo-uZ6kkzU462thWnyIVcCNJMN_r0nAlZ79JuTuZzVEXZwS3PaIZ5TO9f32FTpKCk9QTHBqOLqYdKhClMWzuvOtLvrDwHxrr3qFc7kJD_1U2zyTX8PFXA_N8zsUx_98l0_wsTNE2Xl7crZgzVXbsHNeoRP-tGQnzKeG-pj7NmyMe1q4HbDjuvHxb0YwmI9dKh1TlWUEPYGTQNOTzZaV8bC7bZUnU9iDTRvnkcbrZsmonoJoKxgazWxazzz8B2vajF23C_eXF3fjq7CjaggNz3IR8tRqya0vUE9NKkUplHFZKR3B-SSxjh0fldqkOjGltMR3nJUmkkq6MlKJ4XuwXtWV2weGGtOOskzpNNYJPiF3Ko8ja5TAFo-SAI76TSumLSJH0XsyuI6FX8cABv12Fp1QzopYEnkAzyUP4NvqMi4f_SNRlasX2CeTBN6KXlQAn9tjsBqFC0kBgyiAU7-Zfx--uLi-8Y0v_971AD4QlX2bTDmA9XmzcIdo8Mz1V3-yXwC_C_1m |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONBLW6CPtJS6qKp6ySrEieNIvaAtaEthDwikvVSRXzkUmqyyu4ftr--MkyzQCglxsxQndmxP5pGZ7wP45Gycp06hILnchol0USjRywgNeYoiV7H25WJnYzG6TE4m6WQNvva1MC0-xCrgRpLhv9ck4BSQviXl7lc1QGWciiewgeLOibjh2_kNeJQUnqKYANVwfDHpcIUoj2d1611t9J-Jeddi9Srn-Dn87CfbZppcDRZzPTB__sFxfOzbvIBnnS3KDtvDswVrrtqGncMK_fDfS_aZ-exQH3bfhs1hzwy3A3ZYNz4EzggJ87rLpmOqsozQJ3AWaH2y2bIyHnm3LfRkCnuwaeM82HjdLBmVVBBzBUO7mU3rmUcAYU2btOtewuXx0cVwFHZsDaHhWS5CnlotufU16qlJpSiFMi4rpSNEnyTWseMHpTapTkwpLVEeZ6WJpJKujFRi-CtYr-rKvQGGStMeZJnSaawTfELuVB5H1iiBLR4lAez3u1ZMW1COondmcB0Lv44B7Pb7WXRyOStiSfwBPJc8gI-ry7h89JtEVa5eYJ9MEn4rOlIBvG7PwWoULiTFDKIAvvjdvH_44uhk7BtvH971A2yOLs5Oi9Pv4x_v4Ckx27e5lbuwPm8W7j3aP3O954_5X3zRAY0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9RAEJ4gJMoLIihWUVdjjC-9lG673YYncnJB1IsxktyDSbO_-iDYXnp3D8df78y2PUBiQnjbpNvudnen88105huA987GeeoUCpLLbZhIF4USrYzQkKUochVrny72bSxOzpLTSTpZg8M-F6blh1g53Egy_PeaBHxqy2tC7n5XA9TFqXgAG4lA5EuI6McVd5QUvkIx8anh8GLS0QpRGM_q1pvK6BbCvAlYvcYZPYZf_VzbQJPzwWKuB-byHxrHe77MNmx1SJQdtUfnCay5agd2jyq0wv8s2QfmY0O9030HHg37unC7YId14x3gjHgwL7pYOqYqy4h7AieB2JPNlpXxvLttmidT2INNG-epxutmySihgupWMETNbFrPPP8Ha9qQXfcUzkbHP4cnYVerITQ8y0XIU6sltz5DPTWpFKVQxmWldMTnk8Q6dvyg1CbViSmlpYLHWWkiqaQrI5UY_gzWq7pyz4GhyrQHWaZ0GusEn5A7lceRNUpgi0dJAO_6TSumLSVH0ZsyuI6FX8cA9vvtLDqpnBWxpOoBPJc8gLery7h89JNEVa5eYJ9MEnsrmlEB7LXHYDUKF5I8BlEAH_1m_n_44vh07Bsv7t71DTz8_mlUfP08_vISNqmsfRtYuQ_r82bhXiH4mevX_pD_BYGwADw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortical+oscillations+and+interareal+synchronization+as+a+preparatory+activity+for+postural+response&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Fujio%2C+Kimiya&rft.au=Obata%2C+Hiroki&rft.au=Takeda%2C+Kenta&rft.au=Kawashima%2C+Noritaka&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=57&rft.issue=9&rft.spage=1516&rft.epage=1528&rft_id=info:doi/10.1111%2Fejn.15956&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |