The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery

The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled Si powder is investigated by particle size analyzer, SEM, TEM, XPS and XRD as well as the control ones. Its electrode is also investigated b...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 349; pp. 111 - 120
Main Authors Hou, Shang-Chieh, Su, Yuh-Fan, Chang, Chia-Chin, Hu, Chih-Wei, Chen, Tsan-Yao, Yang, Shun-Min, Huang, Jow-Lay
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2017
Subjects
Online AccessGet full text
ISSN0378-7753
1873-2755
DOI10.1016/j.jpowsour.2017.03.024

Cover

Loading…
Abstract The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled Si powder is investigated by particle size analyzer, SEM, TEM, XPS and XRD as well as the control ones. Its electrode is also investigated by in situ XRD and electrochemical performance. Morphology reveals that combining the high energy mechanical milling and wet milling not only fracture primary Si particles but also form submicro-sized Si aggregates constructed by amorphous and nanocrystalline phases. Moreover, XPS shows that wet milling in ethanol trigger SiOCH2CH3 bonding on Si surface might enhance the SEI formation. In situ XRD analysis shows negative electrode made of submicro-sized Si aggregated powder can effectively suppress formation of crystalline Li15Si4 during lithiation and delithiation due to amorphous and nanocrystalline construction. Thus, the submicro-sized Si powder with synergistic effects combining the high energy mechanical milling and wet milling in ethanol as negative electrode performs better capacity retention. [Display omitted] •Submicro-sized Si powder is prepared by combination of HEMM and wet milling.•Submicro-sized Si powder is constructed by amorphous and nanocrystalline phases.•Submicro-sized Si electrode exhibits suppressed formation of crystalline Li15Si4.•Wet milling in ethanol triggers SiOCH2CH3 bonding on Si surface enhance SEI films.
AbstractList The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled Si powder is investigated by particle size analyzer, SEM, TEM, XPS and XRD as well as the control ones. Its electrode is also investigated by in situ XRD and electrochemical performance. Morphology reveals that combining the high energy mechanical milling and wet milling not only fracture primary Si particles but also form submicro-sized Si aggregates constructed by amorphous and nanocrystalline phases. Moreover, XPS shows that wet milling in ethanol trigger SiOCH2CH3 bonding on Si surface might enhance the SEI formation. In situ XRD analysis shows negative electrode made of submicro-sized Si aggregated powder can effectively suppress formation of crystalline Li15Si4 during lithiation and delithiation due to amorphous and nanocrystalline construction. Thus, the submicro-sized Si powder with synergistic effects combining the high energy mechanical milling and wet milling in ethanol as negative electrode performs better capacity retention. [Display omitted] •Submicro-sized Si powder is prepared by combination of HEMM and wet milling.•Submicro-sized Si powder is constructed by amorphous and nanocrystalline phases.•Submicro-sized Si electrode exhibits suppressed formation of crystalline Li15Si4.•Wet milling in ethanol triggers SiOCH2CH3 bonding on Si surface enhance SEI films.
Author Chen, Tsan-Yao
Yang, Shun-Min
Hou, Shang-Chieh
Su, Yuh-Fan
Huang, Jow-Lay
Chang, Chia-Chin
Hu, Chih-Wei
Author_xml – sequence: 1
  givenname: Shang-Chieh
  surname: Hou
  fullname: Hou, Shang-Chieh
  organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
– sequence: 2
  givenname: Yuh-Fan
  surname: Su
  fullname: Su, Yuh-Fan
  organization: Department of Greenergy, National University of Tainan, Tainan, 70005, Taiwan
– sequence: 3
  givenname: Chia-Chin
  surname: Chang
  fullname: Chang, Chia-Chin
  email: ccchang@mai.nutn.edu.tw
  organization: Department of Greenergy, National University of Tainan, Tainan, 70005, Taiwan
– sequence: 4
  givenname: Chih-Wei
  surname: Hu
  fullname: Hu, Chih-Wei
  organization: Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
– sequence: 5
  givenname: Tsan-Yao
  surname: Chen
  fullname: Chen, Tsan-Yao
  organization: Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
– sequence: 6
  givenname: Shun-Min
  surname: Yang
  fullname: Yang, Shun-Min
  organization: Department of Greenergy, National University of Tainan, Tainan, 70005, Taiwan
– sequence: 7
  givenname: Jow-Lay
  surname: Huang
  fullname: Huang, Jow-Lay
  email: jlh888@mail.ncku.edu.tw
  organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
BookMark eNqFkMtqwzAQRUVJoenjF4p-wK5kO5YDXbSUviDQRdO1kOVRPMGWgqSm5Df6xVXoY9FNVsMw917mnlMysc4CIZec5Zzx-mqdrzfuI7h3nxeMi5yVOSuqIzLljSizQsxmEzJlpWgyIWblCTkNYc0Y41ywKflc9kDDzoJfYYioKRgDOgbqDNVubNGiXdGYRD2uegp74Y6OoHtlUauBjjgMe4myHf2A-Lc7S1-RWlipiFugMKRU7zqgo4rgUQ2BGufpgLHH95Fi0rcqptPunBybdIaLn3lG3h7ul3dP2eLl8fnudpHp1CVmBmZtBdwIUzVaCEh16rTMVdGCKtQcuG46XTVc6Y4XrRC16UxRt9W81U3R1OUZuf7O1d6F4MFIjTF962z0CgfJmdzzlWv5y1fu-UpWysQ32et_9o3HUfndYePNtxFSuS2Cl0EjWA0d-gRJdg4PRXwBqx-hhg
CitedBy_id crossref_primary_10_1007_s10853_018_3164_9
crossref_primary_10_1038_s41598_018_30703_3
crossref_primary_10_1016_j_mtla_2025_102357
crossref_primary_10_1007_s10853_020_05021_7
crossref_primary_10_1038_s41598_018_38112_2
crossref_primary_10_1039_C7NR09599F
crossref_primary_10_1039_C7CC02857A
crossref_primary_10_1007_s12598_024_02872_w
crossref_primary_10_1088_1361_6528_ac2018
crossref_primary_10_1016_j_est_2024_114755
crossref_primary_10_1021_acssuschemeng_8b04039
crossref_primary_10_1016_j_electacta_2021_138522
crossref_primary_10_1021_acsaem_2c00866
crossref_primary_10_1021_acsnano_7b02021
crossref_primary_10_1016_j_arabjc_2022_103784
crossref_primary_10_1016_j_cej_2017_08_061
crossref_primary_10_1002_cssc_201903155
crossref_primary_10_1016_j_cej_2018_07_165
crossref_primary_10_1016_j_jelechem_2024_118845
crossref_primary_10_1063_5_0049790
crossref_primary_10_1039_D4QI00971A
crossref_primary_10_1007_s13399_022_02485_2
crossref_primary_10_1016_j_matchemphys_2020_124011
crossref_primary_10_1039_D2TA04371H
crossref_primary_10_1002_celc_202001249
crossref_primary_10_1088_1755_1315_252_2_022054
crossref_primary_10_3390_nano11030594
crossref_primary_10_3390_ma14030536
crossref_primary_10_1016_j_electacta_2021_138495
crossref_primary_10_1021_acsomega_1c05689
crossref_primary_10_1149_1945_7111_ac4545
crossref_primary_10_1115_1_4054130
crossref_primary_10_1002_smtd_201900223
crossref_primary_10_1007_s11581_025_06106_6
crossref_primary_10_1016_j_electacta_2021_138413
Cites_doi 10.1039/c1ee01598b
10.1002/aenm.201300394
10.1021/nl3014814
10.1039/C5RA28021D
10.1038/nmat2725
10.1021/acsami.6b03357
10.1149/1.1739217
10.1039/C0EE00281J
10.1016/j.elecom.2005.08.024
10.1039/c2ee22292b
10.1149/1.2409862
10.1039/c0jm04309e
10.1038/nnano.2007.411
10.1021/nl403923s
10.1016/j.jpowsour.2007.05.025
10.1016/j.jpowsour.2004.05.016
10.1021/acs.chemmater.5b01627
10.1149/1.1652421
10.1038/451652a
10.1021/nl902058c
10.1016/j.matchemphys.2007.04.001
10.1103/PhysRevB.38.6084
10.1039/C4CC01728E
10.1016/j.jpowsour.2014.02.109
10.1002/adfm.201200690
10.1021/nl203817r
10.1149/1.2127495
10.1016/j.ssi.2004.02.028
10.1021/am100871y
10.1039/c3ta10883j
10.1039/c1jm10213c
10.1016/j.jpowsour.2013.12.128
10.1021/nn301339g
10.1149/1.1518988
10.1016/S0079-6425(99)00010-9
10.1016/S0026-2714(99)00323-6
10.1016/j.jpowsour.2006.09.084
10.1039/C4RA06678B
10.1039/b923002e
10.1038/nnano.2012.35
10.1149/1.2402112
10.1002/adfm.200600937
10.1016/j.jpowsour.2009.09.073
10.1016/S0167-2738(00)00362-3
10.1021/nn204476h
10.1016/j.jpowsour.2011.05.059
10.1039/c3ee41318g
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2017.03.024
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2755
EndPage 120
ExternalDocumentID 10_1016_j_jpowsour_2017_03_024
S0378775317303087
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
SEW
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c378t-fe5b4e1f7f48c77e1706f7f9a2bea2a9e1c8dc481acd12b776fdf26b49bc82863
IEDL.DBID .~1
ISSN 0378-7753
IngestDate Tue Jul 01 01:39:59 EDT 2025
Thu Apr 24 23:02:17 EDT 2025
Fri Feb 23 02:28:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Anode
Si
Wet milling
High energy mechanical milling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-fe5b4e1f7f48c77e1706f7f9a2bea2a9e1c8dc481acd12b776fdf26b49bc82863
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_jpowsour_2017_03_024
crossref_primary_10_1016_j_jpowsour_2017_03_024
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2017_03_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of power sources
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Obrovac, Christensen (bib44) 2004; 7
Liu, Zhang, Yang, Lemmon, Imhoff, Graff, Li, Hu, Wang, Xiao, Xia, Viswanathan, Baskaran, Sprenkle, Li, Shao, Schwenzer (bib3) 2013; 23
Chan, Peng, Liu, McIlwrath, Zhang, Huggins, Cui (bib13) 2008; 3
Li, Dahn (bib38) 2007; 154
Si, Hanai, Ichikawa, Hirano, Imanishi, Takeda, Yamamoto (bib7) 2010; 195
Szczech, Jin (bib11) 2011; 4
Kim, Kumta (bib17) 2004; 136
Yim, Courtel, Abu-Lebdeh (bib33) 2013; 1
Guo, Mao, Wang (bib37) 2014; 4
Oumellal, Delpuech, Mazouzi, Dupre, Gaubicher, Moreau, Soudan, Lestriez, Guyomard (bib9) 2011; 21
Liu, Wu, McDowell, Yao, Wang, Cui (bib10) 2012; 12
Wu, Chan, Choi, Ryu, Yao, McDowell, Lee, Jackson, Yang, Hu, Cui (bib23) 2012; 7
Yu, Hwa, Kim, Sohn (bib28) 2014; 260
Li, Shi, Li, Yoshitake, Wang (bib42) 2016; 6
Shu, Li, Yang, Shi, Huang (bib20) 2006; 8
Xu, von Cresce (bib8) 2011; 21
Armand, Tarascon (bib1) 2008; 451
Magasinski, Dixon, Hertzberg, Kvit, Ayala, Yushin (bib19) 2010; 9
Gauthier, Mazouzi, Reyter, Lestriez, Moreau, Guyomard, Roue (bib32) 2013; 6
Wang, Gao, Pan, Wang, Liu (bib29) 2014; 256
Zuo, Yin, Hao, Yang, Ma, Gao (bib18) 2007; 104
Li, Huang, Chen, Zhou, Zhang, Yu, Mo, Pei (bib6) 2000; 135
Park, Kim, Joo, Kim, Kim, Ahn, Cui, Cho (bib14) 2009; 9
Misra, Liu, Nelson, Hong, Cui, Toney (bib45) 2012; 6
Pan, Wang, Gao, Chen, Tan, Li (bib22) 2014; 50
Cho (bib15) 2010; 20
Etacheri, Marom, Elazari, Salitra, Aurbach (bib2) 2011; 4
Wang, Kumta (bib34) 2007; 172
Kasavajjula, Wang, Appleby (bib5) 2007; 163
Ge, Lu, Ercius, Rong, Fang, Mecklenburg, Zhou (bib16) 2014; 14
Saint, Morcrette, Larcher, Laffont, Beattie, Peres, Talaga, Couzi, Tarascon (bib40) 2007; 17
Nguyen, Yoon, Seo, Guduru, Lucht (bib43) 2016; 8
Boukamp, Lesh, Huggins (bib4) 1981; 128
Liu, Zhong, Huang, Mao, Zhu, Huang (bib12) 2012; 6
Xu, Vegunta, Flake (bib41) 2011; 196
Schroder, Avarado, Yersak, Li, Dudney, Webb, Meng, Stevenson (bib24) 2015; 27
Wang, Wu, Key, Yang, Grey, Zhu, Graetz (bib46) 2013; 3
Kim, Uono, Sato, Fuse, Ishihara, Senna (bib31) 2004; 172
Schroeder, Adelt, Richter, Naschitzki, Baumer, Freund (bib36) 2000; 40
Hwang, Lee, Kong, Seo, Choi (bib21) 2012; 12
Yoshio, Wang, Fukuda, Umeno, Dimov, Ogumi (bib26) 2002; 149
Himpsel, McFeely, Talebibrahimi, Yarmoff, Hollinger (bib35) 1988; 38
Obrovac, Krause (bib39) 2007; 154
Suryanarayana (bib27) 2001; 46
Han, Yabuuchi, Shimomura, Murase, Yui, Komaba (bib30) 2012; 5
Hatchard, Dahn (bib47) 2004; 151
Magasinski, Zdyrko, Kovalenko, Hertzberg, Burtovyy, Huebner, Fuller, Luzinov, Yushin (bib25) 2010; 2
Oumellal (10.1016/j.jpowsour.2017.03.024_bib9) 2011; 21
Yim (10.1016/j.jpowsour.2017.03.024_bib33) 2013; 1
Nguyen (10.1016/j.jpowsour.2017.03.024_bib43) 2016; 8
Shu (10.1016/j.jpowsour.2017.03.024_bib20) 2006; 8
Chan (10.1016/j.jpowsour.2017.03.024_bib13) 2008; 3
Szczech (10.1016/j.jpowsour.2017.03.024_bib11) 2011; 4
Obrovac (10.1016/j.jpowsour.2017.03.024_bib39) 2007; 154
Liu (10.1016/j.jpowsour.2017.03.024_bib10) 2012; 12
Li (10.1016/j.jpowsour.2017.03.024_bib42) 2016; 6
Zuo (10.1016/j.jpowsour.2017.03.024_bib18) 2007; 104
Armand (10.1016/j.jpowsour.2017.03.024_bib1) 2008; 451
Hwang (10.1016/j.jpowsour.2017.03.024_bib21) 2012; 12
Guo (10.1016/j.jpowsour.2017.03.024_bib37) 2014; 4
Gauthier (10.1016/j.jpowsour.2017.03.024_bib32) 2013; 6
Liu (10.1016/j.jpowsour.2017.03.024_bib3) 2013; 23
Boukamp (10.1016/j.jpowsour.2017.03.024_bib4) 1981; 128
Li (10.1016/j.jpowsour.2017.03.024_bib6) 2000; 135
Si (10.1016/j.jpowsour.2017.03.024_bib7) 2010; 195
Pan (10.1016/j.jpowsour.2017.03.024_bib22) 2014; 50
Suryanarayana (10.1016/j.jpowsour.2017.03.024_bib27) 2001; 46
Wang (10.1016/j.jpowsour.2017.03.024_bib46) 2013; 3
Kim (10.1016/j.jpowsour.2017.03.024_bib31) 2004; 172
Liu (10.1016/j.jpowsour.2017.03.024_bib12) 2012; 6
Saint (10.1016/j.jpowsour.2017.03.024_bib40) 2007; 17
Wu (10.1016/j.jpowsour.2017.03.024_bib23) 2012; 7
Wang (10.1016/j.jpowsour.2017.03.024_bib29) 2014; 256
Yoshio (10.1016/j.jpowsour.2017.03.024_bib26) 2002; 149
Ge (10.1016/j.jpowsour.2017.03.024_bib16) 2014; 14
Wang (10.1016/j.jpowsour.2017.03.024_bib34) 2007; 172
Schroder (10.1016/j.jpowsour.2017.03.024_bib24) 2015; 27
Obrovac (10.1016/j.jpowsour.2017.03.024_bib44) 2004; 7
Xu (10.1016/j.jpowsour.2017.03.024_bib41) 2011; 196
Cho (10.1016/j.jpowsour.2017.03.024_bib15) 2010; 20
Kasavajjula (10.1016/j.jpowsour.2017.03.024_bib5) 2007; 163
Schroeder (10.1016/j.jpowsour.2017.03.024_bib36) 2000; 40
Magasinski (10.1016/j.jpowsour.2017.03.024_bib25) 2010; 2
Magasinski (10.1016/j.jpowsour.2017.03.024_bib19) 2010; 9
Hatchard (10.1016/j.jpowsour.2017.03.024_bib47) 2004; 151
Misra (10.1016/j.jpowsour.2017.03.024_bib45) 2012; 6
Xu (10.1016/j.jpowsour.2017.03.024_bib8) 2011; 21
Yu (10.1016/j.jpowsour.2017.03.024_bib28) 2014; 260
Kim (10.1016/j.jpowsour.2017.03.024_bib17) 2004; 136
Park (10.1016/j.jpowsour.2017.03.024_bib14) 2009; 9
Han (10.1016/j.jpowsour.2017.03.024_bib30) 2012; 5
Himpsel (10.1016/j.jpowsour.2017.03.024_bib35) 1988; 38
Li (10.1016/j.jpowsour.2017.03.024_bib38) 2007; 154
Etacheri (10.1016/j.jpowsour.2017.03.024_bib2) 2011; 4
References_xml – volume: 50
  start-page: 5878
  year: 2014
  end-page: 5880
  ident: bib22
  article-title: Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries
  publication-title: Chem. Commun.
– volume: 7
  start-page: 309
  year: 2012
  end-page: 314
  ident: bib23
  article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 3315
  year: 2012
  end-page: 3321
  ident: bib10
  article-title: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
  publication-title: Nano Lett.
– volume: 128
  start-page: 725
  year: 1981
  end-page: 729
  ident: bib4
  article-title: All-solid lithium electrodes with mixed-conductor matrix
  publication-title: J. Electrochem. Soc.
– volume: 14
  start-page: 261
  year: 2014
  end-page: 268
  ident: bib16
  article-title: Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon
  publication-title: Nano Lett.
– volume: 9
  start-page: 3844
  year: 2009
  end-page: 3847
  ident: bib14
  article-title: Silicon nanotube battery anodes
  publication-title: Nano Lett.
– volume: 21
  start-page: 6201
  year: 2011
  end-page: 6208
  ident: bib9
  article-title: The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 56
  year: 2011
  end-page: 72
  ident: bib11
  article-title: Nanostructured silicon for high capacity lithium battery anodes
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 51
  year: 2006
  end-page: 54
  ident: bib20
  article-title: Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries
  publication-title: Electrochem. Commun.
– volume: 256
  start-page: 190
  year: 2014
  end-page: 199
  ident: bib29
  article-title: High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization
  publication-title: J. Power Sources
– volume: 6
  start-page: 1522
  year: 2012
  end-page: 1531
  ident: bib12
  article-title: Size-dependent fracture of silicon nanoparticles during lithiation
  publication-title: ACS Nano
– volume: 40
  start-page: 841
  year: 2000
  end-page: 844
  ident: bib36
  article-title: Growth of well-ordered silicon dioxide films on Mo(112)
  publication-title: Microelectron. Reliab.
– volume: 20
  start-page: 4009
  year: 2010
  end-page: 4014
  ident: bib15
  article-title: Porous Si anode materials for lithium rechargeable batteries
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 353
  year: 2010
  end-page: 358
  ident: bib19
  article-title: High-performance lithium-ion anodes using a hierarchical bottom-up approach
  publication-title: Nat. Mater.
– volume: 6
  start-page: 34715
  year: 2016
  end-page: 34723
  ident: bib42
  article-title: Effect of surface modification on electrochemical performance of nano-sized Si as an anode material for Li-ion batteries
  publication-title: RSC Adv.
– volume: 136
  start-page: 145
  year: 2004
  end-page: 149
  ident: bib17
  article-title: High capacity Si/C nanocomposite anodes for Li-ion batteries
  publication-title: J. Power Sources
– volume: 12
  start-page: 802
  year: 2012
  end-page: 807
  ident: bib21
  article-title: Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes
  publication-title: Nano Lett.
– volume: 46
  start-page: 1
  year: 2001
  end-page: 184
  ident: bib27
  article-title: Mechanical alloying and milling
  publication-title: Prog. Mater. Sci.
– volume: 21
  start-page: 9849
  year: 2011
  end-page: 9864
  ident: bib8
  article-title: Interfacing electrolytes with electrodes in Li ion batteries
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 2145
  year: 2013
  end-page: 2155
  ident: bib32
  article-title: A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 154
  start-page: A103
  year: 2007
  end-page: A108
  ident: bib39
  article-title: Reversible cycling of crystalline silicon powder
  publication-title: J. Electrochem. Soc.
– volume: 17
  start-page: 1765
  year: 2007
  end-page: 1774
  ident: bib40
  article-title: Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1324
  year: 2013
  end-page: 1331
  ident: bib46
  article-title: Electrochemical reaction of lithium with nanostructured silicon anodes: a study by in-situ synchrotron x-ray diffraction and electron energy-loss spectroscopy
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 31
  year: 2008
  end-page: 35
  ident: bib13
  article-title: High-performance lithium battery anodes using silicon nanowires
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 3004
  year: 2010
  end-page: 3010
  ident: bib25
  article-title: Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid
  publication-title: ACS Appl. Mater. Interfaces
– volume: 196
  start-page: 8583
  year: 2011
  end-page: 8589
  ident: bib41
  article-title: Surface-modified silicon nanowire anodes for lithium-ion batteries
  publication-title: J. Power Sources
– volume: 4
  start-page: 3243
  year: 2011
  end-page: 3262
  ident: bib2
  article-title: Challenges in the development of advanced Li-ion batteries: a review
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 5531
  year: 2015
  end-page: 5542
  ident: bib24
  article-title: The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes
  publication-title: Chem. Mat.
– volume: 5
  start-page: 9014
  year: 2012
  end-page: 9020
  ident: bib30
  article-title: High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 260
  start-page: 174
  year: 2014
  end-page: 179
  ident: bib28
  article-title: Characterizations and electrochemical behaviors of milled Si with a degree of amorphization and its composite for Li-ion batteries
  publication-title: J. Power Sources
– volume: 4
  start-page: 35717
  year: 2014
  end-page: 35725
  ident: bib37
  article-title: Nitrogen-doped carbon coated SiO nanoparticles Co-modified with nitrogen-doped graphene as a superior anode material for lithium-ion batteries
  publication-title: RSC Adv.
– volume: 23
  start-page: 929
  year: 2013
  end-page: 946
  ident: bib3
  article-title: Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid
  publication-title: Adv. Funct. Mater.
– volume: 195
  start-page: 1720
  year: 2010
  end-page: 1725
  ident: bib7
  article-title: A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries
  publication-title: J. Power Sources
– volume: 154
  start-page: A156
  year: 2007
  end-page: A161
  ident: bib38
  article-title: An in situ X-ray diffraction study of the reaction of Li with crystalline Si
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: A93
  year: 2004
  end-page: A96
  ident: bib44
  article-title: Structural changes in silicon anodes during lithium insertion/extraction
  publication-title: Electrochem. Solid State Lett.
– volume: 149
  start-page: A1598
  year: 2002
  end-page: A1603
  ident: bib26
  article-title: Carbon-coated Si as a lithium-ion battery anode material
  publication-title: J. Electrochem. Soc.
– volume: 163
  start-page: 1003
  year: 2007
  end-page: 1039
  ident: bib5
  article-title: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
  publication-title: J. Power Sources
– volume: 6
  start-page: 5465
  year: 2012
  end-page: 5473
  ident: bib45
  article-title: In situ x-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes
  publication-title: ACS Nano
– volume: 1
  start-page: 8234
  year: 2013
  end-page: 8243
  ident: bib33
  article-title: A high capacity silicon-graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders
  publication-title: J. Mater. Chem. A
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  ident: bib1
  article-title: Building better batteries
  publication-title: Nature
– volume: 135
  start-page: 181
  year: 2000
  end-page: 191
  ident: bib6
  article-title: The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature
  publication-title: Solid State Ion.
– volume: 104
  start-page: 444
  year: 2007
  end-page: 447
  ident: bib18
  article-title: Synthesis and electrochemical performance of Si/Cu and Si/Cu/graphite composite anode
  publication-title: Mater. Chem. Phys.
– volume: 8
  start-page: 12211
  year: 2016
  end-page: 12220
  ident: bib43
  article-title: Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 172
  start-page: 650
  year: 2007
  end-page: 658
  ident: bib34
  article-title: Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries
  publication-title: J. Power Sources
– volume: 172
  start-page: 33
  year: 2004
  end-page: 37
  ident: bib31
  article-title: Li-ion battery anode properties of Si-carbon nanocomposites fabricated by high energy multiring-type mill
  publication-title: Solid State Ion.
– volume: 38
  start-page: 6084
  year: 1988
  end-page: 6096
  ident: bib35
  article-title: Microscopic structure of the SiO2/Si interface
  publication-title: Phys. Rev. B
– volume: 151
  start-page: A838
  year: 2004
  end-page: A842
  ident: bib47
  article-title: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 3243
  year: 2011
  ident: 10.1016/j.jpowsour.2017.03.024_bib2
  article-title: Challenges in the development of advanced Li-ion batteries: a review
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01598b
– volume: 3
  start-page: 1324
  year: 2013
  ident: 10.1016/j.jpowsour.2017.03.024_bib46
  article-title: Electrochemical reaction of lithium with nanostructured silicon anodes: a study by in-situ synchrotron x-ray diffraction and electron energy-loss spectroscopy
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300394
– volume: 12
  start-page: 3315
  year: 2012
  ident: 10.1016/j.jpowsour.2017.03.024_bib10
  article-title: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes
  publication-title: Nano Lett.
  doi: 10.1021/nl3014814
– volume: 6
  start-page: 34715
  year: 2016
  ident: 10.1016/j.jpowsour.2017.03.024_bib42
  article-title: Effect of surface modification on electrochemical performance of nano-sized Si as an anode material for Li-ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C5RA28021D
– volume: 9
  start-page: 353
  year: 2010
  ident: 10.1016/j.jpowsour.2017.03.024_bib19
  article-title: High-performance lithium-ion anodes using a hierarchical bottom-up approach
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2725
– volume: 8
  start-page: 12211
  year: 2016
  ident: 10.1016/j.jpowsour.2017.03.024_bib43
  article-title: Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03357
– volume: 151
  start-page: A838
  year: 2004
  ident: 10.1016/j.jpowsour.2017.03.024_bib47
  article-title: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1739217
– volume: 4
  start-page: 56
  year: 2011
  ident: 10.1016/j.jpowsour.2017.03.024_bib11
  article-title: Nanostructured silicon for high capacity lithium battery anodes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00281J
– volume: 8
  start-page: 51
  year: 2006
  ident: 10.1016/j.jpowsour.2017.03.024_bib20
  article-title: Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2005.08.024
– volume: 5
  start-page: 9014
  year: 2012
  ident: 10.1016/j.jpowsour.2017.03.024_bib30
  article-title: High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22292b
– volume: 154
  start-page: A156
  year: 2007
  ident: 10.1016/j.jpowsour.2017.03.024_bib38
  article-title: An in situ X-ray diffraction study of the reaction of Li with crystalline Si
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2409862
– volume: 21
  start-page: 9849
  year: 2011
  ident: 10.1016/j.jpowsour.2017.03.024_bib8
  article-title: Interfacing electrolytes with electrodes in Li ion batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04309e
– volume: 3
  start-page: 31
  year: 2008
  ident: 10.1016/j.jpowsour.2017.03.024_bib13
  article-title: High-performance lithium battery anodes using silicon nanowires
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.411
– volume: 14
  start-page: 261
  year: 2014
  ident: 10.1016/j.jpowsour.2017.03.024_bib16
  article-title: Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon
  publication-title: Nano Lett.
  doi: 10.1021/nl403923s
– volume: 172
  start-page: 650
  year: 2007
  ident: 10.1016/j.jpowsour.2017.03.024_bib34
  article-title: Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.05.025
– volume: 136
  start-page: 145
  year: 2004
  ident: 10.1016/j.jpowsour.2017.03.024_bib17
  article-title: High capacity Si/C nanocomposite anodes for Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.05.016
– volume: 27
  start-page: 5531
  year: 2015
  ident: 10.1016/j.jpowsour.2017.03.024_bib24
  article-title: The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes
  publication-title: Chem. Mat.
  doi: 10.1021/acs.chemmater.5b01627
– volume: 7
  start-page: A93
  year: 2004
  ident: 10.1016/j.jpowsour.2017.03.024_bib44
  article-title: Structural changes in silicon anodes during lithium insertion/extraction
  publication-title: Electrochem. Solid State Lett.
  doi: 10.1149/1.1652421
– volume: 451
  start-page: 652
  year: 2008
  ident: 10.1016/j.jpowsour.2017.03.024_bib1
  article-title: Building better batteries
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 9
  start-page: 3844
  year: 2009
  ident: 10.1016/j.jpowsour.2017.03.024_bib14
  article-title: Silicon nanotube battery anodes
  publication-title: Nano Lett.
  doi: 10.1021/nl902058c
– volume: 104
  start-page: 444
  year: 2007
  ident: 10.1016/j.jpowsour.2017.03.024_bib18
  article-title: Synthesis and electrochemical performance of Si/Cu and Si/Cu/graphite composite anode
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2007.04.001
– volume: 38
  start-page: 6084
  year: 1988
  ident: 10.1016/j.jpowsour.2017.03.024_bib35
  article-title: Microscopic structure of the SiO2/Si interface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.38.6084
– volume: 50
  start-page: 5878
  year: 2014
  ident: 10.1016/j.jpowsour.2017.03.024_bib22
  article-title: Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01728E
– volume: 260
  start-page: 174
  year: 2014
  ident: 10.1016/j.jpowsour.2017.03.024_bib28
  article-title: Characterizations and electrochemical behaviors of milled Si with a degree of amorphization and its composite for Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.02.109
– volume: 23
  start-page: 929
  year: 2013
  ident: 10.1016/j.jpowsour.2017.03.024_bib3
  article-title: Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200690
– volume: 12
  start-page: 802
  year: 2012
  ident: 10.1016/j.jpowsour.2017.03.024_bib21
  article-title: Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes
  publication-title: Nano Lett.
  doi: 10.1021/nl203817r
– volume: 128
  start-page: 725
  year: 1981
  ident: 10.1016/j.jpowsour.2017.03.024_bib4
  article-title: All-solid lithium electrodes with mixed-conductor matrix
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2127495
– volume: 172
  start-page: 33
  year: 2004
  ident: 10.1016/j.jpowsour.2017.03.024_bib31
  article-title: Li-ion battery anode properties of Si-carbon nanocomposites fabricated by high energy multiring-type mill
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2004.02.028
– volume: 2
  start-page: 3004
  year: 2010
  ident: 10.1016/j.jpowsour.2017.03.024_bib25
  article-title: Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100871y
– volume: 1
  start-page: 8234
  year: 2013
  ident: 10.1016/j.jpowsour.2017.03.024_bib33
  article-title: A high capacity silicon-graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10883j
– volume: 21
  start-page: 6201
  year: 2011
  ident: 10.1016/j.jpowsour.2017.03.024_bib9
  article-title: The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10213c
– volume: 256
  start-page: 190
  year: 2014
  ident: 10.1016/j.jpowsour.2017.03.024_bib29
  article-title: High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.128
– volume: 6
  start-page: 5465
  year: 2012
  ident: 10.1016/j.jpowsour.2017.03.024_bib45
  article-title: In situ x-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes
  publication-title: ACS Nano
  doi: 10.1021/nn301339g
– volume: 149
  start-page: A1598
  year: 2002
  ident: 10.1016/j.jpowsour.2017.03.024_bib26
  article-title: Carbon-coated Si as a lithium-ion battery anode material
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1518988
– volume: 46
  start-page: 1
  year: 2001
  ident: 10.1016/j.jpowsour.2017.03.024_bib27
  article-title: Mechanical alloying and milling
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/S0079-6425(99)00010-9
– volume: 40
  start-page: 841
  year: 2000
  ident: 10.1016/j.jpowsour.2017.03.024_bib36
  article-title: Growth of well-ordered silicon dioxide films on Mo(112)
  publication-title: Microelectron. Reliab.
  doi: 10.1016/S0026-2714(99)00323-6
– volume: 163
  start-page: 1003
  year: 2007
  ident: 10.1016/j.jpowsour.2017.03.024_bib5
  article-title: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.09.084
– volume: 4
  start-page: 35717
  year: 2014
  ident: 10.1016/j.jpowsour.2017.03.024_bib37
  article-title: Nitrogen-doped carbon coated SiO nanoparticles Co-modified with nitrogen-doped graphene as a superior anode material for lithium-ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C4RA06678B
– volume: 20
  start-page: 4009
  year: 2010
  ident: 10.1016/j.jpowsour.2017.03.024_bib15
  article-title: Porous Si anode materials for lithium rechargeable batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/b923002e
– volume: 7
  start-page: 309
  year: 2012
  ident: 10.1016/j.jpowsour.2017.03.024_bib23
  article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.35
– volume: 154
  start-page: A103
  year: 2007
  ident: 10.1016/j.jpowsour.2017.03.024_bib39
  article-title: Reversible cycling of crystalline silicon powder
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2402112
– volume: 17
  start-page: 1765
  year: 2007
  ident: 10.1016/j.jpowsour.2017.03.024_bib40
  article-title: Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200600937
– volume: 195
  start-page: 1720
  year: 2010
  ident: 10.1016/j.jpowsour.2017.03.024_bib7
  article-title: A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.09.073
– volume: 135
  start-page: 181
  year: 2000
  ident: 10.1016/j.jpowsour.2017.03.024_bib6
  article-title: The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(00)00362-3
– volume: 6
  start-page: 1522
  year: 2012
  ident: 10.1016/j.jpowsour.2017.03.024_bib12
  article-title: Size-dependent fracture of silicon nanoparticles during lithiation
  publication-title: ACS Nano
  doi: 10.1021/nn204476h
– volume: 196
  start-page: 8583
  year: 2011
  ident: 10.1016/j.jpowsour.2017.03.024_bib41
  article-title: Surface-modified silicon nanowire anodes for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.05.059
– volume: 6
  start-page: 2145
  year: 2013
  ident: 10.1016/j.jpowsour.2017.03.024_bib32
  article-title: A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41318g
SSID ssj0001170
Score 2.3937366
Snippet The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111
SubjectTerms Anode
High energy mechanical milling
Lithium-ion battery
Wet milling
Title The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery
URI https://dx.doi.org/10.1016/j.jpowsour.2017.03.024
Volume 349
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvQgPrG-mIPXtHls8zhKsVRFLyr0FvapLTYt2lK8-CP8xc5sEq0g9OBxk50l2W-yO0nm-4axc6M6Qmh8AJWvIo-r0HhppBLPxiJNZaiD2NHFbu_i_iO_HnQGa6xbc2EorbJa-8s13a3W1ZF2NZvt6XDYvvcjdDaMtgN0UtK1IwY7T8jLWx8_aR5UWcX9ScC3Jeq9xBIetUbTyYI-klOKV-LETkP-9wa1tOn0ttlWFS3CRXlBO2zNFLtsc0lDcI99ItDw9k4UPqe5DFWGBkws4E1JVwACMMwDUiYG47h-MDbE-CWAgOoOURdRaFiY2Xd7UsD9EArz5KTBoaqXow1gjFu6LWDACxjGPw_nY0B8QTqxzvd99ti7fOj2varQgqdwWmaeNR3JTWATy1OVJIYkdbCRiVAaEYrMBCrViqeBUDoIZZLEVtswljyTimjo0QFrFJPCHDLwZca5xTMWh4yUFjzVOJ4KRKqsH6sm69Szm6tKhZyKYbzkdbrZKK9RyQmV3I9yRKXJ2t9201KHY6VFVoOX__KoHDeLFbZH_7A9ZhvUKpMiT1hj9jo3pxi4zOSZ88wztn5xddO_-wLZAfSP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9xADLbocmg5VH2q0JcPvaabx-R1RKhoKbAXQOI2mme7q5JdwSLE3-AXY08mq61UiUOPk4lHie14nMTfZ4BvzpRKWXoATWqKRJjcJU1h6sRXqml0brMqwMVOp9XkQvy8LC-34GDAwnBZZYz9fUwP0ToeGUdtjpez2fgsLcjZKNvOyEmZ1-4ZbDM7VTmC7f2j48l0HZC5uUr4mUAvTCywARSef58vF3f8nZyrvOrAd5qLf-9RG_vO4St4GRNG3O-v6TVsue4N7GzQCL6FB7I13twzii_QLmMs0sCFR7ovHXpAIGV6yOTE6ALcD68cg37ZRsith_gU1Vm8c6v1eNHh2Qw79yuwg2NsmWMdUprbey5SzouUyf-e3V4hmRh14Ou8fwcXhz_ODyZJ7LWQGFLLKvGu1MJlvvaiMXXtmFWHBq3KtVO5al1mGmtEkyljs1zXdeWtzystWm0YiV68h1G36NwHwFS3Qnia8bRkYawSjaX1TKYa49PK7EI5aFeaSETO_TD-yKHibC4Hq0i2ikwLSVbZhfFabtlTcTwp0Q7Gk385laT94gnZvf-Q_QrPJ-enJ_LkaHr8EV7wTF8j-QlGq-tb95nymJX-Ev30ESqj90A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+synergistic+effects+of+combining+the+high+energy+mechanical+milling+and+wet+milling+on+Si+negative+electrode+materials+for+lithium+ion+battery&rft.jtitle=Journal+of+power+sources&rft.au=Hou%2C+Shang-Chieh&rft.au=Su%2C+Yuh-Fan&rft.au=Chang%2C+Chia-Chin&rft.au=Hu%2C+Chih-Wei&rft.date=2017-05-01&rft.issn=0378-7753&rft.volume=349&rft.spage=111&rft.epage=120&rft_id=info:doi/10.1016%2Fj.jpowsour.2017.03.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2017_03_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon