The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery
The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled Si powder is investigated by particle size analyzer, SEM, TEM, XPS and XRD as well as the control ones. Its electrode is also investigated b...
Saved in:
Published in | Journal of power sources Vol. 349; pp. 111 - 120 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-7753 1873-2755 |
DOI | 10.1016/j.jpowsour.2017.03.024 |
Cover
Loading…
Abstract | The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled Si powder is investigated by particle size analyzer, SEM, TEM, XPS and XRD as well as the control ones. Its electrode is also investigated by in situ XRD and electrochemical performance. Morphology reveals that combining the high energy mechanical milling and wet milling not only fracture primary Si particles but also form submicro-sized Si aggregates constructed by amorphous and nanocrystalline phases. Moreover, XPS shows that wet milling in ethanol trigger SiOCH2CH3 bonding on Si surface might enhance the SEI formation. In situ XRD analysis shows negative electrode made of submicro-sized Si aggregated powder can effectively suppress formation of crystalline Li15Si4 during lithiation and delithiation due to amorphous and nanocrystalline construction. Thus, the submicro-sized Si powder with synergistic effects combining the high energy mechanical milling and wet milling in ethanol as negative electrode performs better capacity retention.
[Display omitted]
•Submicro-sized Si powder is prepared by combination of HEMM and wet milling.•Submicro-sized Si powder is constructed by amorphous and nanocrystalline phases.•Submicro-sized Si electrode exhibits suppressed formation of crystalline Li15Si4.•Wet milling in ethanol triggers SiOCH2CH3 bonding on Si surface enhance SEI films. |
---|---|
AbstractList | The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled Si powder is investigated by particle size analyzer, SEM, TEM, XPS and XRD as well as the control ones. Its electrode is also investigated by in situ XRD and electrochemical performance. Morphology reveals that combining the high energy mechanical milling and wet milling not only fracture primary Si particles but also form submicro-sized Si aggregates constructed by amorphous and nanocrystalline phases. Moreover, XPS shows that wet milling in ethanol trigger SiOCH2CH3 bonding on Si surface might enhance the SEI formation. In situ XRD analysis shows negative electrode made of submicro-sized Si aggregated powder can effectively suppress formation of crystalline Li15Si4 during lithiation and delithiation due to amorphous and nanocrystalline construction. Thus, the submicro-sized Si powder with synergistic effects combining the high energy mechanical milling and wet milling in ethanol as negative electrode performs better capacity retention.
[Display omitted]
•Submicro-sized Si powder is prepared by combination of HEMM and wet milling.•Submicro-sized Si powder is constructed by amorphous and nanocrystalline phases.•Submicro-sized Si electrode exhibits suppressed formation of crystalline Li15Si4.•Wet milling in ethanol triggers SiOCH2CH3 bonding on Si surface enhance SEI films. |
Author | Chen, Tsan-Yao Yang, Shun-Min Hou, Shang-Chieh Su, Yuh-Fan Huang, Jow-Lay Chang, Chia-Chin Hu, Chih-Wei |
Author_xml | – sequence: 1 givenname: Shang-Chieh surname: Hou fullname: Hou, Shang-Chieh organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan – sequence: 2 givenname: Yuh-Fan surname: Su fullname: Su, Yuh-Fan organization: Department of Greenergy, National University of Tainan, Tainan, 70005, Taiwan – sequence: 3 givenname: Chia-Chin surname: Chang fullname: Chang, Chia-Chin email: ccchang@mai.nutn.edu.tw organization: Department of Greenergy, National University of Tainan, Tainan, 70005, Taiwan – sequence: 4 givenname: Chih-Wei surname: Hu fullname: Hu, Chih-Wei organization: Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan – sequence: 5 givenname: Tsan-Yao surname: Chen fullname: Chen, Tsan-Yao organization: Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan – sequence: 6 givenname: Shun-Min surname: Yang fullname: Yang, Shun-Min organization: Department of Greenergy, National University of Tainan, Tainan, 70005, Taiwan – sequence: 7 givenname: Jow-Lay surname: Huang fullname: Huang, Jow-Lay email: jlh888@mail.ncku.edu.tw organization: Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan |
BookMark | eNqFkMtqwzAQRUVJoenjF4p-wK5kO5YDXbSUviDQRdO1kOVRPMGWgqSm5Df6xVXoY9FNVsMw917mnlMysc4CIZec5Zzx-mqdrzfuI7h3nxeMi5yVOSuqIzLljSizQsxmEzJlpWgyIWblCTkNYc0Y41ywKflc9kDDzoJfYYioKRgDOgbqDNVubNGiXdGYRD2uegp74Y6OoHtlUauBjjgMe4myHf2A-Lc7S1-RWlipiFugMKRU7zqgo4rgUQ2BGufpgLHH95Fi0rcqptPunBybdIaLn3lG3h7ul3dP2eLl8fnudpHp1CVmBmZtBdwIUzVaCEh16rTMVdGCKtQcuG46XTVc6Y4XrRC16UxRt9W81U3R1OUZuf7O1d6F4MFIjTF962z0CgfJmdzzlWv5y1fu-UpWysQ32et_9o3HUfndYePNtxFSuS2Cl0EjWA0d-gRJdg4PRXwBqx-hhg |
CitedBy_id | crossref_primary_10_1007_s10853_018_3164_9 crossref_primary_10_1038_s41598_018_30703_3 crossref_primary_10_1016_j_mtla_2025_102357 crossref_primary_10_1007_s10853_020_05021_7 crossref_primary_10_1038_s41598_018_38112_2 crossref_primary_10_1039_C7NR09599F crossref_primary_10_1039_C7CC02857A crossref_primary_10_1007_s12598_024_02872_w crossref_primary_10_1088_1361_6528_ac2018 crossref_primary_10_1016_j_est_2024_114755 crossref_primary_10_1021_acssuschemeng_8b04039 crossref_primary_10_1016_j_electacta_2021_138522 crossref_primary_10_1021_acsaem_2c00866 crossref_primary_10_1021_acsnano_7b02021 crossref_primary_10_1016_j_arabjc_2022_103784 crossref_primary_10_1016_j_cej_2017_08_061 crossref_primary_10_1002_cssc_201903155 crossref_primary_10_1016_j_cej_2018_07_165 crossref_primary_10_1016_j_jelechem_2024_118845 crossref_primary_10_1063_5_0049790 crossref_primary_10_1039_D4QI00971A crossref_primary_10_1007_s13399_022_02485_2 crossref_primary_10_1016_j_matchemphys_2020_124011 crossref_primary_10_1039_D2TA04371H crossref_primary_10_1002_celc_202001249 crossref_primary_10_1088_1755_1315_252_2_022054 crossref_primary_10_3390_nano11030594 crossref_primary_10_3390_ma14030536 crossref_primary_10_1016_j_electacta_2021_138495 crossref_primary_10_1021_acsomega_1c05689 crossref_primary_10_1149_1945_7111_ac4545 crossref_primary_10_1115_1_4054130 crossref_primary_10_1002_smtd_201900223 crossref_primary_10_1007_s11581_025_06106_6 crossref_primary_10_1016_j_electacta_2021_138413 |
Cites_doi | 10.1039/c1ee01598b 10.1002/aenm.201300394 10.1021/nl3014814 10.1039/C5RA28021D 10.1038/nmat2725 10.1021/acsami.6b03357 10.1149/1.1739217 10.1039/C0EE00281J 10.1016/j.elecom.2005.08.024 10.1039/c2ee22292b 10.1149/1.2409862 10.1039/c0jm04309e 10.1038/nnano.2007.411 10.1021/nl403923s 10.1016/j.jpowsour.2007.05.025 10.1016/j.jpowsour.2004.05.016 10.1021/acs.chemmater.5b01627 10.1149/1.1652421 10.1038/451652a 10.1021/nl902058c 10.1016/j.matchemphys.2007.04.001 10.1103/PhysRevB.38.6084 10.1039/C4CC01728E 10.1016/j.jpowsour.2014.02.109 10.1002/adfm.201200690 10.1021/nl203817r 10.1149/1.2127495 10.1016/j.ssi.2004.02.028 10.1021/am100871y 10.1039/c3ta10883j 10.1039/c1jm10213c 10.1016/j.jpowsour.2013.12.128 10.1021/nn301339g 10.1149/1.1518988 10.1016/S0079-6425(99)00010-9 10.1016/S0026-2714(99)00323-6 10.1016/j.jpowsour.2006.09.084 10.1039/C4RA06678B 10.1039/b923002e 10.1038/nnano.2012.35 10.1149/1.2402112 10.1002/adfm.200600937 10.1016/j.jpowsour.2009.09.073 10.1016/S0167-2738(00)00362-3 10.1021/nn204476h 10.1016/j.jpowsour.2011.05.059 10.1039/c3ee41318g |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpowsour.2017.03.024 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2755 |
EndPage | 120 |
ExternalDocumentID | 10_1016_j_jpowsour_2017_03_024 S0378775317303087 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE SEW SSH T9H VH1 VOH WUQ |
ID | FETCH-LOGICAL-c378t-fe5b4e1f7f48c77e1706f7f9a2bea2a9e1c8dc481acd12b776fdf26b49bc82863 |
IEDL.DBID | .~1 |
ISSN | 0378-7753 |
IngestDate | Tue Jul 01 01:39:59 EDT 2025 Thu Apr 24 23:02:17 EDT 2025 Fri Feb 23 02:28:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion battery Anode Si Wet milling High energy mechanical milling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-fe5b4e1f7f48c77e1706f7f9a2bea2a9e1c8dc481acd12b776fdf26b49bc82863 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jpowsour_2017_03_024 crossref_primary_10_1016_j_jpowsour_2017_03_024 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2017_03_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of power sources |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Obrovac, Christensen (bib44) 2004; 7 Liu, Zhang, Yang, Lemmon, Imhoff, Graff, Li, Hu, Wang, Xiao, Xia, Viswanathan, Baskaran, Sprenkle, Li, Shao, Schwenzer (bib3) 2013; 23 Chan, Peng, Liu, McIlwrath, Zhang, Huggins, Cui (bib13) 2008; 3 Li, Dahn (bib38) 2007; 154 Si, Hanai, Ichikawa, Hirano, Imanishi, Takeda, Yamamoto (bib7) 2010; 195 Szczech, Jin (bib11) 2011; 4 Kim, Kumta (bib17) 2004; 136 Yim, Courtel, Abu-Lebdeh (bib33) 2013; 1 Guo, Mao, Wang (bib37) 2014; 4 Oumellal, Delpuech, Mazouzi, Dupre, Gaubicher, Moreau, Soudan, Lestriez, Guyomard (bib9) 2011; 21 Liu, Wu, McDowell, Yao, Wang, Cui (bib10) 2012; 12 Wu, Chan, Choi, Ryu, Yao, McDowell, Lee, Jackson, Yang, Hu, Cui (bib23) 2012; 7 Yu, Hwa, Kim, Sohn (bib28) 2014; 260 Li, Shi, Li, Yoshitake, Wang (bib42) 2016; 6 Shu, Li, Yang, Shi, Huang (bib20) 2006; 8 Xu, von Cresce (bib8) 2011; 21 Armand, Tarascon (bib1) 2008; 451 Magasinski, Dixon, Hertzberg, Kvit, Ayala, Yushin (bib19) 2010; 9 Gauthier, Mazouzi, Reyter, Lestriez, Moreau, Guyomard, Roue (bib32) 2013; 6 Wang, Gao, Pan, Wang, Liu (bib29) 2014; 256 Zuo, Yin, Hao, Yang, Ma, Gao (bib18) 2007; 104 Li, Huang, Chen, Zhou, Zhang, Yu, Mo, Pei (bib6) 2000; 135 Park, Kim, Joo, Kim, Kim, Ahn, Cui, Cho (bib14) 2009; 9 Misra, Liu, Nelson, Hong, Cui, Toney (bib45) 2012; 6 Pan, Wang, Gao, Chen, Tan, Li (bib22) 2014; 50 Cho (bib15) 2010; 20 Etacheri, Marom, Elazari, Salitra, Aurbach (bib2) 2011; 4 Wang, Kumta (bib34) 2007; 172 Kasavajjula, Wang, Appleby (bib5) 2007; 163 Ge, Lu, Ercius, Rong, Fang, Mecklenburg, Zhou (bib16) 2014; 14 Saint, Morcrette, Larcher, Laffont, Beattie, Peres, Talaga, Couzi, Tarascon (bib40) 2007; 17 Nguyen, Yoon, Seo, Guduru, Lucht (bib43) 2016; 8 Boukamp, Lesh, Huggins (bib4) 1981; 128 Liu, Zhong, Huang, Mao, Zhu, Huang (bib12) 2012; 6 Xu, Vegunta, Flake (bib41) 2011; 196 Schroder, Avarado, Yersak, Li, Dudney, Webb, Meng, Stevenson (bib24) 2015; 27 Wang, Wu, Key, Yang, Grey, Zhu, Graetz (bib46) 2013; 3 Kim, Uono, Sato, Fuse, Ishihara, Senna (bib31) 2004; 172 Schroeder, Adelt, Richter, Naschitzki, Baumer, Freund (bib36) 2000; 40 Hwang, Lee, Kong, Seo, Choi (bib21) 2012; 12 Yoshio, Wang, Fukuda, Umeno, Dimov, Ogumi (bib26) 2002; 149 Himpsel, McFeely, Talebibrahimi, Yarmoff, Hollinger (bib35) 1988; 38 Obrovac, Krause (bib39) 2007; 154 Suryanarayana (bib27) 2001; 46 Han, Yabuuchi, Shimomura, Murase, Yui, Komaba (bib30) 2012; 5 Hatchard, Dahn (bib47) 2004; 151 Magasinski, Zdyrko, Kovalenko, Hertzberg, Burtovyy, Huebner, Fuller, Luzinov, Yushin (bib25) 2010; 2 Oumellal (10.1016/j.jpowsour.2017.03.024_bib9) 2011; 21 Yim (10.1016/j.jpowsour.2017.03.024_bib33) 2013; 1 Nguyen (10.1016/j.jpowsour.2017.03.024_bib43) 2016; 8 Shu (10.1016/j.jpowsour.2017.03.024_bib20) 2006; 8 Chan (10.1016/j.jpowsour.2017.03.024_bib13) 2008; 3 Szczech (10.1016/j.jpowsour.2017.03.024_bib11) 2011; 4 Obrovac (10.1016/j.jpowsour.2017.03.024_bib39) 2007; 154 Liu (10.1016/j.jpowsour.2017.03.024_bib10) 2012; 12 Li (10.1016/j.jpowsour.2017.03.024_bib42) 2016; 6 Zuo (10.1016/j.jpowsour.2017.03.024_bib18) 2007; 104 Armand (10.1016/j.jpowsour.2017.03.024_bib1) 2008; 451 Hwang (10.1016/j.jpowsour.2017.03.024_bib21) 2012; 12 Guo (10.1016/j.jpowsour.2017.03.024_bib37) 2014; 4 Gauthier (10.1016/j.jpowsour.2017.03.024_bib32) 2013; 6 Liu (10.1016/j.jpowsour.2017.03.024_bib3) 2013; 23 Boukamp (10.1016/j.jpowsour.2017.03.024_bib4) 1981; 128 Li (10.1016/j.jpowsour.2017.03.024_bib6) 2000; 135 Si (10.1016/j.jpowsour.2017.03.024_bib7) 2010; 195 Pan (10.1016/j.jpowsour.2017.03.024_bib22) 2014; 50 Suryanarayana (10.1016/j.jpowsour.2017.03.024_bib27) 2001; 46 Wang (10.1016/j.jpowsour.2017.03.024_bib46) 2013; 3 Kim (10.1016/j.jpowsour.2017.03.024_bib31) 2004; 172 Liu (10.1016/j.jpowsour.2017.03.024_bib12) 2012; 6 Saint (10.1016/j.jpowsour.2017.03.024_bib40) 2007; 17 Wu (10.1016/j.jpowsour.2017.03.024_bib23) 2012; 7 Wang (10.1016/j.jpowsour.2017.03.024_bib29) 2014; 256 Yoshio (10.1016/j.jpowsour.2017.03.024_bib26) 2002; 149 Ge (10.1016/j.jpowsour.2017.03.024_bib16) 2014; 14 Wang (10.1016/j.jpowsour.2017.03.024_bib34) 2007; 172 Schroder (10.1016/j.jpowsour.2017.03.024_bib24) 2015; 27 Obrovac (10.1016/j.jpowsour.2017.03.024_bib44) 2004; 7 Xu (10.1016/j.jpowsour.2017.03.024_bib41) 2011; 196 Cho (10.1016/j.jpowsour.2017.03.024_bib15) 2010; 20 Kasavajjula (10.1016/j.jpowsour.2017.03.024_bib5) 2007; 163 Schroeder (10.1016/j.jpowsour.2017.03.024_bib36) 2000; 40 Magasinski (10.1016/j.jpowsour.2017.03.024_bib25) 2010; 2 Magasinski (10.1016/j.jpowsour.2017.03.024_bib19) 2010; 9 Hatchard (10.1016/j.jpowsour.2017.03.024_bib47) 2004; 151 Misra (10.1016/j.jpowsour.2017.03.024_bib45) 2012; 6 Xu (10.1016/j.jpowsour.2017.03.024_bib8) 2011; 21 Yu (10.1016/j.jpowsour.2017.03.024_bib28) 2014; 260 Kim (10.1016/j.jpowsour.2017.03.024_bib17) 2004; 136 Park (10.1016/j.jpowsour.2017.03.024_bib14) 2009; 9 Han (10.1016/j.jpowsour.2017.03.024_bib30) 2012; 5 Himpsel (10.1016/j.jpowsour.2017.03.024_bib35) 1988; 38 Li (10.1016/j.jpowsour.2017.03.024_bib38) 2007; 154 Etacheri (10.1016/j.jpowsour.2017.03.024_bib2) 2011; 4 |
References_xml | – volume: 50 start-page: 5878 year: 2014 end-page: 5880 ident: bib22 article-title: Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries publication-title: Chem. Commun. – volume: 7 start-page: 309 year: 2012 end-page: 314 ident: bib23 article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control publication-title: Nat. Nanotechnol. – volume: 12 start-page: 3315 year: 2012 end-page: 3321 ident: bib10 article-title: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes publication-title: Nano Lett. – volume: 128 start-page: 725 year: 1981 end-page: 729 ident: bib4 article-title: All-solid lithium electrodes with mixed-conductor matrix publication-title: J. Electrochem. Soc. – volume: 14 start-page: 261 year: 2014 end-page: 268 ident: bib16 article-title: Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon publication-title: Nano Lett. – volume: 9 start-page: 3844 year: 2009 end-page: 3847 ident: bib14 article-title: Silicon nanotube battery anodes publication-title: Nano Lett. – volume: 21 start-page: 6201 year: 2011 end-page: 6208 ident: bib9 article-title: The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries publication-title: J. Mater. Chem. – volume: 4 start-page: 56 year: 2011 end-page: 72 ident: bib11 article-title: Nanostructured silicon for high capacity lithium battery anodes publication-title: Energy Environ. Sci. – volume: 8 start-page: 51 year: 2006 end-page: 54 ident: bib20 article-title: Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries publication-title: Electrochem. Commun. – volume: 256 start-page: 190 year: 2014 end-page: 199 ident: bib29 article-title: High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization publication-title: J. Power Sources – volume: 6 start-page: 1522 year: 2012 end-page: 1531 ident: bib12 article-title: Size-dependent fracture of silicon nanoparticles during lithiation publication-title: ACS Nano – volume: 40 start-page: 841 year: 2000 end-page: 844 ident: bib36 article-title: Growth of well-ordered silicon dioxide films on Mo(112) publication-title: Microelectron. Reliab. – volume: 20 start-page: 4009 year: 2010 end-page: 4014 ident: bib15 article-title: Porous Si anode materials for lithium rechargeable batteries publication-title: J. Mater. Chem. – volume: 9 start-page: 353 year: 2010 end-page: 358 ident: bib19 article-title: High-performance lithium-ion anodes using a hierarchical bottom-up approach publication-title: Nat. Mater. – volume: 6 start-page: 34715 year: 2016 end-page: 34723 ident: bib42 article-title: Effect of surface modification on electrochemical performance of nano-sized Si as an anode material for Li-ion batteries publication-title: RSC Adv. – volume: 136 start-page: 145 year: 2004 end-page: 149 ident: bib17 article-title: High capacity Si/C nanocomposite anodes for Li-ion batteries publication-title: J. Power Sources – volume: 12 start-page: 802 year: 2012 end-page: 807 ident: bib21 article-title: Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes publication-title: Nano Lett. – volume: 46 start-page: 1 year: 2001 end-page: 184 ident: bib27 article-title: Mechanical alloying and milling publication-title: Prog. Mater. Sci. – volume: 21 start-page: 9849 year: 2011 end-page: 9864 ident: bib8 article-title: Interfacing electrolytes with electrodes in Li ion batteries publication-title: J. Mater. Chem. – volume: 6 start-page: 2145 year: 2013 end-page: 2155 ident: bib32 article-title: A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries publication-title: Energy Environ. Sci. – volume: 154 start-page: A103 year: 2007 end-page: A108 ident: bib39 article-title: Reversible cycling of crystalline silicon powder publication-title: J. Electrochem. Soc. – volume: 17 start-page: 1765 year: 2007 end-page: 1774 ident: bib40 article-title: Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1324 year: 2013 end-page: 1331 ident: bib46 article-title: Electrochemical reaction of lithium with nanostructured silicon anodes: a study by in-situ synchrotron x-ray diffraction and electron energy-loss spectroscopy publication-title: Adv. Energy Mater. – volume: 3 start-page: 31 year: 2008 end-page: 35 ident: bib13 article-title: High-performance lithium battery anodes using silicon nanowires publication-title: Nat. Nanotechnol. – volume: 2 start-page: 3004 year: 2010 end-page: 3010 ident: bib25 article-title: Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid publication-title: ACS Appl. Mater. Interfaces – volume: 196 start-page: 8583 year: 2011 end-page: 8589 ident: bib41 article-title: Surface-modified silicon nanowire anodes for lithium-ion batteries publication-title: J. Power Sources – volume: 4 start-page: 3243 year: 2011 end-page: 3262 ident: bib2 article-title: Challenges in the development of advanced Li-ion batteries: a review publication-title: Energy Environ. Sci. – volume: 27 start-page: 5531 year: 2015 end-page: 5542 ident: bib24 article-title: The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes publication-title: Chem. Mat. – volume: 5 start-page: 9014 year: 2012 end-page: 9020 ident: bib30 article-title: High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries publication-title: Energy Environ. Sci. – volume: 260 start-page: 174 year: 2014 end-page: 179 ident: bib28 article-title: Characterizations and electrochemical behaviors of milled Si with a degree of amorphization and its composite for Li-ion batteries publication-title: J. Power Sources – volume: 4 start-page: 35717 year: 2014 end-page: 35725 ident: bib37 article-title: Nitrogen-doped carbon coated SiO nanoparticles Co-modified with nitrogen-doped graphene as a superior anode material for lithium-ion batteries publication-title: RSC Adv. – volume: 23 start-page: 929 year: 2013 end-page: 946 ident: bib3 article-title: Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid publication-title: Adv. Funct. Mater. – volume: 195 start-page: 1720 year: 2010 end-page: 1725 ident: bib7 article-title: A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries publication-title: J. Power Sources – volume: 154 start-page: A156 year: 2007 end-page: A161 ident: bib38 article-title: An in situ X-ray diffraction study of the reaction of Li with crystalline Si publication-title: J. Electrochem. Soc. – volume: 7 start-page: A93 year: 2004 end-page: A96 ident: bib44 article-title: Structural changes in silicon anodes during lithium insertion/extraction publication-title: Electrochem. Solid State Lett. – volume: 149 start-page: A1598 year: 2002 end-page: A1603 ident: bib26 article-title: Carbon-coated Si as a lithium-ion battery anode material publication-title: J. Electrochem. Soc. – volume: 163 start-page: 1003 year: 2007 end-page: 1039 ident: bib5 article-title: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells publication-title: J. Power Sources – volume: 6 start-page: 5465 year: 2012 end-page: 5473 ident: bib45 article-title: In situ x-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes publication-title: ACS Nano – volume: 1 start-page: 8234 year: 2013 end-page: 8243 ident: bib33 article-title: A high capacity silicon-graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders publication-title: J. Mater. Chem. A – volume: 451 start-page: 652 year: 2008 end-page: 657 ident: bib1 article-title: Building better batteries publication-title: Nature – volume: 135 start-page: 181 year: 2000 end-page: 191 ident: bib6 article-title: The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature publication-title: Solid State Ion. – volume: 104 start-page: 444 year: 2007 end-page: 447 ident: bib18 article-title: Synthesis and electrochemical performance of Si/Cu and Si/Cu/graphite composite anode publication-title: Mater. Chem. Phys. – volume: 8 start-page: 12211 year: 2016 end-page: 12220 ident: bib43 article-title: Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation publication-title: ACS Appl. Mater. Interfaces – volume: 172 start-page: 650 year: 2007 end-page: 658 ident: bib34 article-title: Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries publication-title: J. Power Sources – volume: 172 start-page: 33 year: 2004 end-page: 37 ident: bib31 article-title: Li-ion battery anode properties of Si-carbon nanocomposites fabricated by high energy multiring-type mill publication-title: Solid State Ion. – volume: 38 start-page: 6084 year: 1988 end-page: 6096 ident: bib35 article-title: Microscopic structure of the SiO2/Si interface publication-title: Phys. Rev. B – volume: 151 start-page: A838 year: 2004 end-page: A842 ident: bib47 article-title: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon publication-title: J. Electrochem. Soc. – volume: 4 start-page: 3243 year: 2011 ident: 10.1016/j.jpowsour.2017.03.024_bib2 article-title: Challenges in the development of advanced Li-ion batteries: a review publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01598b – volume: 3 start-page: 1324 year: 2013 ident: 10.1016/j.jpowsour.2017.03.024_bib46 article-title: Electrochemical reaction of lithium with nanostructured silicon anodes: a study by in-situ synchrotron x-ray diffraction and electron energy-loss spectroscopy publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300394 – volume: 12 start-page: 3315 year: 2012 ident: 10.1016/j.jpowsour.2017.03.024_bib10 article-title: A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes publication-title: Nano Lett. doi: 10.1021/nl3014814 – volume: 6 start-page: 34715 year: 2016 ident: 10.1016/j.jpowsour.2017.03.024_bib42 article-title: Effect of surface modification on electrochemical performance of nano-sized Si as an anode material for Li-ion batteries publication-title: RSC Adv. doi: 10.1039/C5RA28021D – volume: 9 start-page: 353 year: 2010 ident: 10.1016/j.jpowsour.2017.03.024_bib19 article-title: High-performance lithium-ion anodes using a hierarchical bottom-up approach publication-title: Nat. Mater. doi: 10.1038/nmat2725 – volume: 8 start-page: 12211 year: 2016 ident: 10.1016/j.jpowsour.2017.03.024_bib43 article-title: Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03357 – volume: 151 start-page: A838 year: 2004 ident: 10.1016/j.jpowsour.2017.03.024_bib47 article-title: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon publication-title: J. Electrochem. Soc. doi: 10.1149/1.1739217 – volume: 4 start-page: 56 year: 2011 ident: 10.1016/j.jpowsour.2017.03.024_bib11 article-title: Nanostructured silicon for high capacity lithium battery anodes publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00281J – volume: 8 start-page: 51 year: 2006 ident: 10.1016/j.jpowsour.2017.03.024_bib20 article-title: Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2005.08.024 – volume: 5 start-page: 9014 year: 2012 ident: 10.1016/j.jpowsour.2017.03.024_bib30 article-title: High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22292b – volume: 154 start-page: A156 year: 2007 ident: 10.1016/j.jpowsour.2017.03.024_bib38 article-title: An in situ X-ray diffraction study of the reaction of Li with crystalline Si publication-title: J. Electrochem. Soc. doi: 10.1149/1.2409862 – volume: 21 start-page: 9849 year: 2011 ident: 10.1016/j.jpowsour.2017.03.024_bib8 article-title: Interfacing electrolytes with electrodes in Li ion batteries publication-title: J. Mater. Chem. doi: 10.1039/c0jm04309e – volume: 3 start-page: 31 year: 2008 ident: 10.1016/j.jpowsour.2017.03.024_bib13 article-title: High-performance lithium battery anodes using silicon nanowires publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.411 – volume: 14 start-page: 261 year: 2014 ident: 10.1016/j.jpowsour.2017.03.024_bib16 article-title: Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon publication-title: Nano Lett. doi: 10.1021/nl403923s – volume: 172 start-page: 650 year: 2007 ident: 10.1016/j.jpowsour.2017.03.024_bib34 article-title: Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.05.025 – volume: 136 start-page: 145 year: 2004 ident: 10.1016/j.jpowsour.2017.03.024_bib17 article-title: High capacity Si/C nanocomposite anodes for Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.05.016 – volume: 27 start-page: 5531 year: 2015 ident: 10.1016/j.jpowsour.2017.03.024_bib24 article-title: The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes publication-title: Chem. Mat. doi: 10.1021/acs.chemmater.5b01627 – volume: 7 start-page: A93 year: 2004 ident: 10.1016/j.jpowsour.2017.03.024_bib44 article-title: Structural changes in silicon anodes during lithium insertion/extraction publication-title: Electrochem. Solid State Lett. doi: 10.1149/1.1652421 – volume: 451 start-page: 652 year: 2008 ident: 10.1016/j.jpowsour.2017.03.024_bib1 article-title: Building better batteries publication-title: Nature doi: 10.1038/451652a – volume: 9 start-page: 3844 year: 2009 ident: 10.1016/j.jpowsour.2017.03.024_bib14 article-title: Silicon nanotube battery anodes publication-title: Nano Lett. doi: 10.1021/nl902058c – volume: 104 start-page: 444 year: 2007 ident: 10.1016/j.jpowsour.2017.03.024_bib18 article-title: Synthesis and electrochemical performance of Si/Cu and Si/Cu/graphite composite anode publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2007.04.001 – volume: 38 start-page: 6084 year: 1988 ident: 10.1016/j.jpowsour.2017.03.024_bib35 article-title: Microscopic structure of the SiO2/Si interface publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.38.6084 – volume: 50 start-page: 5878 year: 2014 ident: 10.1016/j.jpowsour.2017.03.024_bib22 article-title: Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries publication-title: Chem. Commun. doi: 10.1039/C4CC01728E – volume: 260 start-page: 174 year: 2014 ident: 10.1016/j.jpowsour.2017.03.024_bib28 article-title: Characterizations and electrochemical behaviors of milled Si with a degree of amorphization and its composite for Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.02.109 – volume: 23 start-page: 929 year: 2013 ident: 10.1016/j.jpowsour.2017.03.024_bib3 article-title: Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200690 – volume: 12 start-page: 802 year: 2012 ident: 10.1016/j.jpowsour.2017.03.024_bib21 article-title: Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes publication-title: Nano Lett. doi: 10.1021/nl203817r – volume: 128 start-page: 725 year: 1981 ident: 10.1016/j.jpowsour.2017.03.024_bib4 article-title: All-solid lithium electrodes with mixed-conductor matrix publication-title: J. Electrochem. Soc. doi: 10.1149/1.2127495 – volume: 172 start-page: 33 year: 2004 ident: 10.1016/j.jpowsour.2017.03.024_bib31 article-title: Li-ion battery anode properties of Si-carbon nanocomposites fabricated by high energy multiring-type mill publication-title: Solid State Ion. doi: 10.1016/j.ssi.2004.02.028 – volume: 2 start-page: 3004 year: 2010 ident: 10.1016/j.jpowsour.2017.03.024_bib25 article-title: Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100871y – volume: 1 start-page: 8234 year: 2013 ident: 10.1016/j.jpowsour.2017.03.024_bib33 article-title: A high capacity silicon-graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10883j – volume: 21 start-page: 6201 year: 2011 ident: 10.1016/j.jpowsour.2017.03.024_bib9 article-title: The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries publication-title: J. Mater. Chem. doi: 10.1039/c1jm10213c – volume: 256 start-page: 190 year: 2014 ident: 10.1016/j.jpowsour.2017.03.024_bib29 article-title: High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.12.128 – volume: 6 start-page: 5465 year: 2012 ident: 10.1016/j.jpowsour.2017.03.024_bib45 article-title: In situ x-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes publication-title: ACS Nano doi: 10.1021/nn301339g – volume: 149 start-page: A1598 year: 2002 ident: 10.1016/j.jpowsour.2017.03.024_bib26 article-title: Carbon-coated Si as a lithium-ion battery anode material publication-title: J. Electrochem. Soc. doi: 10.1149/1.1518988 – volume: 46 start-page: 1 year: 2001 ident: 10.1016/j.jpowsour.2017.03.024_bib27 article-title: Mechanical alloying and milling publication-title: Prog. Mater. Sci. doi: 10.1016/S0079-6425(99)00010-9 – volume: 40 start-page: 841 year: 2000 ident: 10.1016/j.jpowsour.2017.03.024_bib36 article-title: Growth of well-ordered silicon dioxide films on Mo(112) publication-title: Microelectron. Reliab. doi: 10.1016/S0026-2714(99)00323-6 – volume: 163 start-page: 1003 year: 2007 ident: 10.1016/j.jpowsour.2017.03.024_bib5 article-title: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.09.084 – volume: 4 start-page: 35717 year: 2014 ident: 10.1016/j.jpowsour.2017.03.024_bib37 article-title: Nitrogen-doped carbon coated SiO nanoparticles Co-modified with nitrogen-doped graphene as a superior anode material for lithium-ion batteries publication-title: RSC Adv. doi: 10.1039/C4RA06678B – volume: 20 start-page: 4009 year: 2010 ident: 10.1016/j.jpowsour.2017.03.024_bib15 article-title: Porous Si anode materials for lithium rechargeable batteries publication-title: J. Mater. Chem. doi: 10.1039/b923002e – volume: 7 start-page: 309 year: 2012 ident: 10.1016/j.jpowsour.2017.03.024_bib23 article-title: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.35 – volume: 154 start-page: A103 year: 2007 ident: 10.1016/j.jpowsour.2017.03.024_bib39 article-title: Reversible cycling of crystalline silicon powder publication-title: J. Electrochem. Soc. doi: 10.1149/1.2402112 – volume: 17 start-page: 1765 year: 2007 ident: 10.1016/j.jpowsour.2017.03.024_bib40 article-title: Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200600937 – volume: 195 start-page: 1720 year: 2010 ident: 10.1016/j.jpowsour.2017.03.024_bib7 article-title: A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.09.073 – volume: 135 start-page: 181 year: 2000 ident: 10.1016/j.jpowsour.2017.03.024_bib6 article-title: The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature publication-title: Solid State Ion. doi: 10.1016/S0167-2738(00)00362-3 – volume: 6 start-page: 1522 year: 2012 ident: 10.1016/j.jpowsour.2017.03.024_bib12 article-title: Size-dependent fracture of silicon nanoparticles during lithiation publication-title: ACS Nano doi: 10.1021/nn204476h – volume: 196 start-page: 8583 year: 2011 ident: 10.1016/j.jpowsour.2017.03.024_bib41 article-title: Surface-modified silicon nanowire anodes for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.05.059 – volume: 6 start-page: 2145 year: 2013 ident: 10.1016/j.jpowsour.2017.03.024_bib32 article-title: A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41318g |
SSID | ssj0001170 |
Score | 2.3937366 |
Snippet | The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111 |
SubjectTerms | Anode High energy mechanical milling Lithium-ion battery Wet milling |
Title | The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery |
URI | https://dx.doi.org/10.1016/j.jpowsour.2017.03.024 |
Volume | 349 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvQgPrG-mIPXtHls8zhKsVRFLyr0FvapLTYt2lK8-CP8xc5sEq0g9OBxk50l2W-yO0nm-4axc6M6Qmh8AJWvIo-r0HhppBLPxiJNZaiD2NHFbu_i_iO_HnQGa6xbc2EorbJa-8s13a3W1ZF2NZvt6XDYvvcjdDaMtgN0UtK1IwY7T8jLWx8_aR5UWcX9ScC3Jeq9xBIetUbTyYI-klOKV-LETkP-9wa1tOn0ttlWFS3CRXlBO2zNFLtsc0lDcI99ItDw9k4UPqe5DFWGBkws4E1JVwACMMwDUiYG47h-MDbE-CWAgOoOURdRaFiY2Xd7UsD9EArz5KTBoaqXow1gjFu6LWDACxjGPw_nY0B8QTqxzvd99ti7fOj2varQgqdwWmaeNR3JTWATy1OVJIYkdbCRiVAaEYrMBCrViqeBUDoIZZLEVtswljyTimjo0QFrFJPCHDLwZca5xTMWh4yUFjzVOJ4KRKqsH6sm69Szm6tKhZyKYbzkdbrZKK9RyQmV3I9yRKXJ2t9201KHY6VFVoOX__KoHDeLFbZH_7A9ZhvUKpMiT1hj9jo3pxi4zOSZ88wztn5xddO_-wLZAfSP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9xADLbocmg5VH2q0JcPvaabx-R1RKhoKbAXQOI2mme7q5JdwSLE3-AXY08mq61UiUOPk4lHie14nMTfZ4BvzpRKWXoATWqKRJjcJU1h6sRXqml0brMqwMVOp9XkQvy8LC-34GDAwnBZZYz9fUwP0ToeGUdtjpez2fgsLcjZKNvOyEmZ1-4ZbDM7VTmC7f2j48l0HZC5uUr4mUAvTCywARSef58vF3f8nZyrvOrAd5qLf-9RG_vO4St4GRNG3O-v6TVsue4N7GzQCL6FB7I13twzii_QLmMs0sCFR7ovHXpAIGV6yOTE6ALcD68cg37ZRsith_gU1Vm8c6v1eNHh2Qw79yuwg2NsmWMdUprbey5SzouUyf-e3V4hmRh14Ou8fwcXhz_ODyZJ7LWQGFLLKvGu1MJlvvaiMXXtmFWHBq3KtVO5al1mGmtEkyljs1zXdeWtzystWm0YiV68h1G36NwHwFS3Qnia8bRkYawSjaX1TKYa49PK7EI5aFeaSETO_TD-yKHibC4Hq0i2ikwLSVbZhfFabtlTcTwp0Q7Gk385laT94gnZvf-Q_QrPJ-enJ_LkaHr8EV7wTF8j-QlGq-tb95nymJX-Ev30ESqj90A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+synergistic+effects+of+combining+the+high+energy+mechanical+milling+and+wet+milling+on+Si+negative+electrode+materials+for+lithium+ion+battery&rft.jtitle=Journal+of+power+sources&rft.au=Hou%2C+Shang-Chieh&rft.au=Su%2C+Yuh-Fan&rft.au=Chang%2C+Chia-Chin&rft.au=Hu%2C+Chih-Wei&rft.date=2017-05-01&rft.issn=0378-7753&rft.volume=349&rft.spage=111&rft.epage=120&rft_id=info:doi/10.1016%2Fj.jpowsour.2017.03.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2017_03_024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |