Investigation of a cost-effective strategy for polymer electrolyte membrane fuel cells: High power density operation

Polymer electrolyte membrane (PEM) fuel cell technology needs to overcome the cost barrier in order to compete with the internal combustion engines (ICEs) for transportation application. A viable approach is to raise fuel cell's power output without increasing its size and Pt loading in the cat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 46; no. 71; pp. 35448 - 35458
Main Authors Zhou, Jieyang, Seo, Bongjin, Wang, Zhe, Wang, Yun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 14.10.2021
Subjects
Online AccessGet full text
ISSN0360-3199
DOI10.1016/j.ijhydene.2021.08.103

Cover

Loading…
Abstract Polymer electrolyte membrane (PEM) fuel cell technology needs to overcome the cost barrier in order to compete with the internal combustion engines (ICEs) for transportation application. A viable approach is to raise fuel cell's power output without increasing its size and Pt loading in the catalyst layers (CLs). In this strategy, the cost per kW power output can be proportionally reduced due to the increased power density. This paper examines this strategy by exploring several important aspects that influence fuel cell performance under high power or current density using a three-dimensional (3-D) fuel cell model. It is shown that local CLs may be subject to low oxygen concentration under a high current density of 2 A/cm2, causing low reaction rate near the outlet, especially under the land. Additionally, the oxygen reduction reaction (ORR) rate may be subject to a large through-plane variation under 2 A/cm2, raising ohmic voltage loss in the CL. Two additional cases are investigated to improve fuel cell performance under 2 A/cm2: one has a 5 times thinner CL with the same ORR kinetics per membrane electrode assembly (MEA) area and the other has a 5 times thinner CL with 5 times higher ORR kinetics. The results show the output voltage is raised approximately from 0.5 V to 0.554 V in the former CL case and further to 0.606 V for the latter CL. To enable high-efficiency operation (e.g. >50%), thinner CLs with high ORR kinetics and GDLs with better transport properties are one research and development (R&D) direction. •Fuel cell operation may subject to oxygen starvation near cathode outlet @ 2.0 A/cm2.•The oxygen reduction reaction (ORR) rate subjects to large spatial variations in all the three dimensions @ 2.0 A/cm2.•GDLs with better transport properties are desirable for high current density operation.•Thinner catalyst layers with high ORR kinetics are desirable for high current density operation.
AbstractList Polymer electrolyte membrane (PEM) fuel cell technology needs to overcome the cost barrier in order to compete with the internal combustion engines (ICEs) for transportation application. A viable approach is to raise fuel cell's power output without increasing its size and Pt loading in the catalyst layers (CLs). In this strategy, the cost per kW power output can be proportionally reduced due to the increased power density. This paper examines this strategy by exploring several important aspects that influence fuel cell performance under high power or current density using a three-dimensional (3-D) fuel cell model. It is shown that local CLs may be subject to low oxygen concentration under a high current density of 2 A/cm2, causing low reaction rate near the outlet, especially under the land. Additionally, the oxygen reduction reaction (ORR) rate may be subject to a large through-plane variation under 2 A/cm2, raising ohmic voltage loss in the CL. Two additional cases are investigated to improve fuel cell performance under 2 A/cm2: one has a 5 times thinner CL with the same ORR kinetics per membrane electrode assembly (MEA) area and the other has a 5 times thinner CL with 5 times higher ORR kinetics. The results show the output voltage is raised approximately from 0.5 V to 0.554 V in the former CL case and further to 0.606 V for the latter CL. To enable high-efficiency operation (e.g. >50%), thinner CLs with high ORR kinetics and GDLs with better transport properties are one research and development (R&D) direction. •Fuel cell operation may subject to oxygen starvation near cathode outlet @ 2.0 A/cm2.•The oxygen reduction reaction (ORR) rate subjects to large spatial variations in all the three dimensions @ 2.0 A/cm2.•GDLs with better transport properties are desirable for high current density operation.•Thinner catalyst layers with high ORR kinetics are desirable for high current density operation.
Author Wang, Zhe
Wang, Yun
Zhou, Jieyang
Seo, Bongjin
Author_xml – sequence: 1
  givenname: Jieyang
  surname: Zhou
  fullname: Zhou, Jieyang
  organization: Renewable Energy Resources Lab (RERL), Department of Mechanical and Aerospace Engineering, The University of California, Irvine, CA, 92697-3975, USA
– sequence: 2
  givenname: Bongjin
  surname: Seo
  fullname: Seo, Bongjin
  organization: Renewable Energy Resources Lab (RERL), Department of Mechanical and Aerospace Engineering, The University of California, Irvine, CA, 92697-3975, USA
– sequence: 3
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  email: zhewang@tsinghua.edu.cn
  organization: State Key Lab of Power Systems, International Joint Laboratory on Low Carbon Clean Energy, Innovation, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
– sequence: 4
  givenname: Yun
  surname: Wang
  fullname: Wang, Yun
  email: yunw@uci.edu
  organization: Renewable Energy Resources Lab (RERL), Department of Mechanical and Aerospace Engineering, The University of California, Irvine, CA, 92697-3975, USA
BookMark eNqFUEFOwzAQ9KFItIUvIH8gwY7TJEYcQBXQSpW4wNlynHXrKIkr2xTl97gtXLj0tNrdmd2ZmaHJYAdA6I6SlBJa3LepaXdjAwOkGcloSqo4ZxM0JawgCaOcX6OZ9y0htCQ5n6KwHg7gg9nKYOyArcYSK-tDAlqDCuYA2AcnA2xHrK3De9uNPTgMXdy62ATAPfS1kwNg_QUdVtB1_gGvzHYX0d8RG-V4E0Zs9-BOb27QlZadh9vfOkefry8fy1WyeX9bL583iWJlFRINrIacctmwumS04BmtKXBFZcahkHnOdFXSJi8gg2wBlBYlXSw04znPMklqNkeP57vKWe8daKFMOCmIlkwnKBHH1EQr_lITx9QEqeKcRXrxj753ppduvEx8OhMhmjsYcMIrA4OCxrgYm2isuXTiB2zVkow
CitedBy_id crossref_primary_10_1039_D2EE00790H
crossref_primary_10_1016_j_nxener_2024_100202
crossref_primary_10_1016_j_ijhydene_2022_01_182
crossref_primary_10_1016_j_renene_2024_120600
crossref_primary_10_1016_j_enss_2024_09_002
crossref_primary_10_1016_j_ijhydene_2022_02_131
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123209
crossref_primary_10_1016_j_ijhydene_2023_12_118
crossref_primary_10_1149_1945_7111_ad13da
crossref_primary_10_1557_s43578_021_00417_w
crossref_primary_10_1039_D1TA10346F
Cites_doi 10.1016/j.enconman.2020.113579
10.1016/j.ijhydene.2013.10.041
10.1016/j.ijhydene.2013.11.103
10.1016/j.ijheatmasstransfer.2016.11.045
10.1115/1.3008043
10.1016/j.ijhydene.2021.03.166
10.1002/fuce.201100100
10.1002/nme.4317
10.1016/j.egyai.2020.100014
10.1007/s10973-019-08354-x
10.1149/2.015111jes
10.1016/j.ijhydene.2015.01.035
10.1016/j.apenergy.2017.01.056
10.1016/j.jpowsour.2012.07.043
10.1615/InterfacPhenomHeatTransfer.2016014779
10.1016/j.apenergy.2016.02.132
10.1016/j.jpowsour.2008.07.007
10.1016/j.jpowsour.2015.08.092
10.1016/j.ijhydene.2015.02.097
10.1016/j.ijheatmasstransfer.2019.119294
10.1016/j.ijhydene.2019.07.231
10.1016/j.jpowsour.2020.228427
10.1002/er.6116
10.1016/j.pecs.2017.10.003
10.1007/s10409-013-0037-y
10.1149/1.2988763
10.1149/1.2734076
10.1016/j.ces.2011.04.016
10.1016/j.jpowsour.2016.03.045
10.1016/j.egyai.2020.100045
10.1016/j.ijheatmasstransfer.2012.12.016
10.1016/j.ijhydene.2014.08.126
10.20964/2020.05.15
10.1016/j.apenergy.2015.12.075
10.1016/j.mattod.2019.06.005
10.1149/1.3056057
10.1016/j.ijhydene.2020.12.076
10.1016/j.jpowsour.2011.07.076
10.1016/j.electacta.2010.06.053
10.1016/j.electacta.2010.08.070
10.1016/j.ijthermalsci.2019.106045
ContentType Journal Article
Copyright 2021 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2021 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2021.08.103
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 35458
ExternalDocumentID 10_1016_j_ijhydene_2021_08_103
S0360319921032985
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSH
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SEW
T9H
WUQ
ID FETCH-LOGICAL-c378t-fe3be419ad3b7316921b1e9c1a29e6a443f871d46e2e25e1167155f394922a0b3
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Thu Apr 24 23:02:23 EDT 2025
Tue Jul 01 05:11:56 EDT 2025
Sat Apr 12 15:21:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 71
Keywords Model
Cost effective
Spatial variation
High current density
Polymer electrolyte fuel cell
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-fe3be419ad3b7316921b1e9c1a29e6a443f871d46e2e25e1167155f394922a0b3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_ijhydene_2021_08_103
crossref_primary_10_1016_j_ijhydene_2021_08_103
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2021_08_103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-14
PublicationDateYYYYMMDD 2021-10-14
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-14
  day: 14
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rasheed, Ehteshami, Chan (bib41) 2014; 39
Carrere, Prat (bib31) 2019; 145
Verma, Pitchumani (bib47) 2014; 39
Wang, Feng (bib21) 2009; 156
Qin, Hassanizadeh (bib34) 2015; 40
Molaeimanesh, Akbari (bib19) 2015; 40
Markötter, Manke, Kuhn, Arlt, Kardjilov, Hentschel, Banhart (bib33) 2012; 219
Wang, Ruiz Diaz, Chen, Wang, Adroher (bib1) 2020; 32
Ge, Chevalier, Lee, Yip, Banerjee, George, Kotaka (bib25) 2017; 107
Liu, Guo, Ye, Ma (bib40) 2015; 3
Lin, Hu, Wisely, Gu, Cai, Litster, Kara (bib15) 2021; 3
Chen, Niu, Li, Jiao, Wang (bib35) 2021; 46
Wang (bib43) 2008; 185
Thomas, Maranzana, Didierjean, Dillet, Lottin (bib27) 2012; 12
Liu, Peng, Lou, Wen (bib16) 2015; 299
Park, Oh, Lee, Min, Lee, Jyoung (bib11) 2016; 171
Gabbasa, Sopian (bib23) 2012
Afshari (bib28) 2020; 139
Sun (bib30) 2012; 91
Jiao, Jiao, Du (bib42) 2021; 45
Wang, Chen (bib44) 2011; 158
Cho, Oh, Park, Min, Lee, Jyoung (bib36) 2014; 39
Wang, Wang (bib37) 2007; 154
Niblett, Mularczyk, Niasar, Eller, Holmes (bib29) 2020; 471
Wang, Chen (bib45) 2011; 66
Benner, Mortazavi, Santamaria (bib24) 2019
Wang, Yuan, Martinez, Hong, Xu, Bockmiller (bib6) 2021; 100011
Wang, Chen (bib46) 2016; 315
Luo, Jiao (bib13) 2018; 64
Wang, Chen (bib10) 2013
Wang, Zhang, Wang, Xuan, Jiao (bib12) 2020
Zhang, Wu, Wang, Yin, Jiao (bib17) 2020; 150
Wang, Gundevia (bib39) 2013; 60
Wang, Feng (bib20) 2008; 155
Zhu, Wang, Sui, Gao (bib48) 2021; 46
Demuren, Edwards (bib9) 2020
bib7
Wang, Seo, Wang, Zamel, Jiao, Adroher (bib4) 2020; 1
Wu (bib3) 2016; 165
Ma, Zhang, Yang, Zhuge, Shuai (bib18) 2021; 227
Kulikovsky (bib22) 2010; 55
Adroher, Wang (bib32) 2011; 196
Kandlikar, Lu (bib26) 2009; 6
Song, Zhang, Ling, Han, Yong, Sun, Chen (bib2) 2019; 45
Tabuchi, Shiomi, Aoki, Kubo, Shinohara (bib38) 2010; 56
Li, Wei, Zhang, Qi, Yang, Shen (bib14) 2020; 15
Song, Meng (bib8) 2013; 29
Wei, Smith, Sohn (bib5) 2017; 191
Markötter (10.1016/j.ijhydene.2021.08.103_bib33) 2012; 219
Afshari (10.1016/j.ijhydene.2021.08.103_bib28) 2020; 139
Chen (10.1016/j.ijhydene.2021.08.103_bib35) 2021; 46
Wang (10.1016/j.ijhydene.2021.08.103_bib39) 2013; 60
Zhu (10.1016/j.ijhydene.2021.08.103_bib48) 2021; 46
Wang (10.1016/j.ijhydene.2021.08.103_bib6) 2021; 100011
Wang (10.1016/j.ijhydene.2021.08.103_bib20) 2008; 155
Park (10.1016/j.ijhydene.2021.08.103_bib11) 2016; 171
Lin (10.1016/j.ijhydene.2021.08.103_bib15) 2021; 3
Wu (10.1016/j.ijhydene.2021.08.103_bib3) 2016; 165
Wei (10.1016/j.ijhydene.2021.08.103_bib5) 2017; 191
Sun (10.1016/j.ijhydene.2021.08.103_bib30) 2012; 91
Cho (10.1016/j.ijhydene.2021.08.103_bib36) 2014; 39
Wang (10.1016/j.ijhydene.2021.08.103_bib1) 2020; 32
Tabuchi (10.1016/j.ijhydene.2021.08.103_bib38) 2010; 56
Liu (10.1016/j.ijhydene.2021.08.103_bib40) 2015; 3
Wang (10.1016/j.ijhydene.2021.08.103_bib12) 2020
Kulikovsky (10.1016/j.ijhydene.2021.08.103_bib22) 2010; 55
Song (10.1016/j.ijhydene.2021.08.103_bib2) 2019; 45
Qin (10.1016/j.ijhydene.2021.08.103_bib34) 2015; 40
Li (10.1016/j.ijhydene.2021.08.103_bib14) 2020; 15
Ma (10.1016/j.ijhydene.2021.08.103_bib18) 2021; 227
Gabbasa (10.1016/j.ijhydene.2021.08.103_bib23) 2012
Song (10.1016/j.ijhydene.2021.08.103_bib8) 2013; 29
Demuren (10.1016/j.ijhydene.2021.08.103_bib9) 2020
Ge (10.1016/j.ijhydene.2021.08.103_bib25) 2017; 107
Wang (10.1016/j.ijhydene.2021.08.103_bib21) 2009; 156
Wang (10.1016/j.ijhydene.2021.08.103_bib45) 2011; 66
Wang (10.1016/j.ijhydene.2021.08.103_bib46) 2016; 315
Molaeimanesh (10.1016/j.ijhydene.2021.08.103_bib19) 2015; 40
Rasheed (10.1016/j.ijhydene.2021.08.103_bib41) 2014; 39
Benner (10.1016/j.ijhydene.2021.08.103_bib24) 2019
Kandlikar (10.1016/j.ijhydene.2021.08.103_bib26) 2009; 6
Verma (10.1016/j.ijhydene.2021.08.103_bib47) 2014; 39
Jiao (10.1016/j.ijhydene.2021.08.103_bib42) 2021; 45
Wang (10.1016/j.ijhydene.2021.08.103_bib43) 2008; 185
Luo (10.1016/j.ijhydene.2021.08.103_bib13) 2018; 64
Adroher (10.1016/j.ijhydene.2021.08.103_bib32) 2011; 196
Wang (10.1016/j.ijhydene.2021.08.103_bib4) 2020; 1
Wang (10.1016/j.ijhydene.2021.08.103_bib44) 2011; 158
Wang (10.1016/j.ijhydene.2021.08.103_bib10) 2013
Zhang (10.1016/j.ijhydene.2021.08.103_bib17) 2020; 150
Liu (10.1016/j.ijhydene.2021.08.103_bib16) 2015; 299
Carrere (10.1016/j.ijhydene.2021.08.103_bib31) 2019; 145
Wang (10.1016/j.ijhydene.2021.08.103_bib37) 2007; 154
Niblett (10.1016/j.ijhydene.2021.08.103_bib29) 2020; 471
Thomas (10.1016/j.ijhydene.2021.08.103_bib27) 2012; 12
References_xml – volume: 3
  start-page: 259
  year: 2015
  end-page: 301
  ident: bib40
  article-title: Interfacial phenomena and heat transfer in proton exchange membrane fuel cells
  publication-title: Interfacial Phenom Heat Transf
– volume: 45
  start-page: 4466
  year: 2021
  end-page: 4478
  ident: bib42
  article-title: Vapor condensation in reconstructed gas diffusion layers of proton exchange membrane fuel cell
  publication-title: Int J Energy Res
– volume: 191
  start-page: 346
  year: 2017
  end-page: 357
  ident: bib5
  article-title: Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US
  publication-title: Appl Energy
– volume: 154
  start-page: B636
  year: 2007
  ident: bib37
  article-title: Two-phase transients of polymer electrolyte fuel cells
  publication-title: J Electrochem Soc
– volume: 6
  year: 2009
  ident: bib26
  article-title: Fundamental research needs in combined water and thermal management within a proton exchange membrane fuel cell stack under normal and cold-start conditions
  publication-title: J Fuel Cell Sci Technol
– volume: 60
  start-page: 134
  year: 2013
  end-page: 142
  ident: bib39
  article-title: Measurement of thermal conductivity and heat pipe effect in hydrophilic and hydrophobic carbon papers
  publication-title: Int J Heat Mass Tran
– volume: 171
  start-page: 200
  year: 2016
  end-page: 212
  ident: bib11
  article-title: Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance
  publication-title: Appl Energy
– volume: 299
  start-page: 85
  year: 2015
  end-page: 96
  ident: bib16
  article-title: Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: a review
  publication-title: J Power Sources
– volume: 3
  start-page: 100045
  year: 2021
  ident: bib15
  article-title: Prediction of high frequency resistance in polymer electrolyte membrane fuel cells using long short term memory based model
  publication-title: Energy and AI
– volume: 219
  start-page: 120
  year: 2012
  end-page: 125
  ident: bib33
  article-title: Neutron tomographic investigations of water distributions in polymer electrolyte membrane fuel cell stacks
  publication-title: J Power Sources
– volume: 29
  start-page: 318
  year: 2013
  end-page: 334
  ident: bib8
  article-title: Numerical modeling and simulation of PEM fuel cells: progress and perspective
  publication-title: Acta Mech Sin
– start-page: 163
  year: 2012
  end-page: 168
  ident: bib23
  article-title: Review of the electrodes layer for unitized regenerative proton exchange membrane fuel cells
  publication-title: Adv Environ Biol Biomedicine
– volume: 46
  start-page: 8640
  year: 2021
  end-page: 8671
  ident: bib35
  article-title: Recent progress of gas diffusion layer in proton exchange membrane fuel cell: two-phase flow and material properties
  publication-title: Int J Hydrogen Energy
– volume: 100011
  year: 2021
  ident: bib6
  article-title: Polymer electrolyte membrane fuel cell and hydrogen station network for automobiles: status, technology, and perspectives
  publication-title: Advances in Applied Energy
– volume: 1
  start-page: 100014
  year: 2020
  ident: bib4
  article-title: Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology
  publication-title: Energy AI
– volume: 227
  start-page: 113579
  year: 2021
  ident: bib18
  article-title: Impact of gas diffusion layer spatial variation properties on water management and performance of PEM fuel cells
  publication-title: Energy Convers Manag
– volume: 185
  start-page: 261
  year: 2008
  end-page: 271
  ident: bib43
  article-title: Modeling of two-phase transport in the diffusion media of polymer electrolyte fuel cells
  publication-title: J Power Sources
– volume: 15
  start-page: 4138
  year: 2020
  end-page: 4147
  ident: bib14
  article-title: Numerical investigation on the impact of membrane thickness on transport phenomena in PEM fuel cells
  publication-title: Int J Electrochem Sci
– volume: 32
  start-page: 178
  year: 2020
  end-page: 203
  ident: bib1
  article-title: Materials, technological status, and fundamentals of PEM fuel cells – a review
  publication-title: Mater Today
– volume: 139
  start-page: 2423
  year: 2020
  end-page: 2434
  ident: bib28
  article-title: Computational analysis of heat transfer in a PEM fuel cell with metal foam as a flow field
  publication-title: J Therm Anal Calorim
– volume: 165
  start-page: 81
  year: 2016
  end-page: 106
  ident: bib3
  article-title: A review of recent development: transport and performance modeling of PEM fuel cells
  publication-title: Appl Energy
– start-page: 513
  year: 2020
  end-page: 547
  ident: bib9
  article-title: “Modeling proton exchange membrane fuel cells—a review,” 50 Years of CFD in engineering sciences
– volume: 12
  start-page: 212
  year: 2012
  end-page: 224
  ident: bib27
  article-title: Thermal effect on water transport in proton exchange membrane fuel cell
  publication-title: Fuel Cell
– year: 2013
  ident: bib10
  article-title: PEM fuel cells: thermal and water management fundamentals
– volume: 196
  start-page: 9544
  year: 2011
  end-page: 9551
  ident: bib32
  article-title: Ex situ and modeling study of two-phase flow in a single channel of polymer electrolyte membrane fuel cells
  publication-title: J Power Sources
– year: 2019
  ident: bib24
  article-title: Numerical simulation of droplet emergence and growth from gas diffusion layers (GDLs) in proton exchange membrane (PEM) fuel cell flow channels
– volume: 91
  start-page: 1115
  year: 2012
  end-page: 1136
  ident: bib30
  article-title: A domain decomposition method for a two-phase transport model of polymer electrolyte fuel cell containing micro-porous layer
  publication-title: Int J Numer Methods Eng
– volume: 66
  start-page: 3557
  year: 2011
  end-page: 3567
  ident: bib45
  article-title: Elucidating two-phase transport in a polymer electrolyte fuel cell, Part 1: characterizing flow regimes with a dimensionless group
  publication-title: Chem Eng Sci
– volume: 107
  start-page: 418
  year: 2017
  end-page: 431
  ident: bib25
  article-title: Non-isothermal two-phase transport in a polymer electrolyte membrane fuel cell with crack-free microporous layers
  publication-title: Int J Heat Mass Tran
– volume: 150
  start-page: 119294
  year: 2020
  ident: bib17
  article-title: Investigation of current density spatial distribution in PEM fuel cells using a comprehensively validated multi-phase non-isothermal model
  publication-title: Int J Heat Mass Tran
– volume: 156
  start-page: B403
  year: 2009
  ident: bib21
  article-title: Analysis of the reaction rates in the cathode electrode of polymer electrolyte fuel cells: II. Dual-layer electrodes
  publication-title: J Electrochem Soc
– volume: 39
  start-page: 459
  year: 2014
  end-page: 468
  ident: bib36
  article-title: Effect of the micro porous layer design on the dynamic performance of a proton exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 56
  start-page: 352
  year: 2010
  end-page: 360
  ident: bib38
  article-title: Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation
  publication-title: Electrochim Acta
– volume: 46
  start-page: 20702
  year: 2021
  end-page: 20714
  ident: bib48
  article-title: Multiscale modeling of an angled gas diffusion layer for polymer electrolyte membrane fuel cells: performance enhancing for aviation applications
  publication-title: Int J Hydrogen Energy
– volume: 45
  start-page: 29832
  year: 2019
  end-page: 29847
  ident: bib2
  article-title: Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 158
  start-page: B1292
  year: 2011
  ident: bib44
  article-title: Effect of spatially-varying GDL properties and land compression on water distribution in PEM fuel cells
  publication-title: J Electrochem Soc
– ident: bib7
– start-page: 100004
  year: 2020
  ident: bib12
  article-title: Multi-physics-resolved digital twin of proton exchange membrane fuel cells with A data-driven surrogate model
– volume: 64
  start-page: 29
  year: 2018
  end-page: 61
  ident: bib13
  article-title: Cold start of proton exchange membrane fuel cell
  publication-title: Prog Energy Combust Sci
– volume: 471
  start-page: 228427
  year: 2020
  ident: bib29
  article-title: Two-phase flow dynamics in a gas diffusion layer-gas channel-microporous layer system
  publication-title: J Power Sources
– volume: 315
  start-page: 224
  year: 2016
  end-page: 235
  ident: bib46
  article-title: Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number
  publication-title: J Power Sources
– volume: 40
  start-page: 5169
  year: 2015
  end-page: 5185
  ident: bib19
  article-title: Agglomerate modeling of cathode catalyst layer of a PEM fuel cell by the lattice Boltzmann method
  publication-title: Int J Hydrogen Energy
– volume: 55
  start-page: 6391
  year: 2010
  end-page: 6401
  ident: bib22
  article-title: The regimes of catalyst layer operation in a fuel cell
  publication-title: Electrochim Acta
– volume: 39
  start-page: 19024
  year: 2014
  end-page: 19038
  ident: bib47
  article-title: Effects of operating parameters on the transient response of proton exchange membrane fuel cells subject to load changes
  publication-title: Int J Hydrogen Energy
– volume: 155
  start-page: B1289
  year: 2008
  ident: bib20
  article-title: Analysis of reaction rates in the cathode electrode of polymer electrolyte fuel cell I. Single-layer electrodes
  publication-title: J Electrochem Soc
– volume: 145
  start-page: 106045
  year: 2019
  ident: bib31
  article-title: Impact of non-uniform wettability in the condensation and condensation-liquid water intrusion regimes in the cathode gas diffusion layer of proton exchange membrane fuel cell
  publication-title: Int J Therm Sci
– volume: 40
  start-page: 3348
  year: 2015
  end-page: 3358
  ident: bib34
  article-title: A new approach to modelling water flooding in a polymer electrolyte fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 39
  start-page: 2246
  year: 2014
  end-page: 2260
  ident: bib41
  article-title: Analytical modelling of boiling phase change phenomenon in high-temperature proton exchange membrane fuel cells during warm-up process
  publication-title: Int J Hydrogen Energy
– start-page: 513
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.103_bib9
– volume: 227
  start-page: 113579
  year: 2021
  ident: 10.1016/j.ijhydene.2021.08.103_bib18
  article-title: Impact of gas diffusion layer spatial variation properties on water management and performance of PEM fuel cells
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113579
– volume: 39
  start-page: 459
  issue: 1
  year: 2014
  ident: 10.1016/j.ijhydene.2021.08.103_bib36
  article-title: Effect of the micro porous layer design on the dynamic performance of a proton exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.10.041
– volume: 39
  start-page: 2246
  issue: 5
  year: 2014
  ident: 10.1016/j.ijhydene.2021.08.103_bib41
  article-title: Analytical modelling of boiling phase change phenomenon in high-temperature proton exchange membrane fuel cells during warm-up process
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.11.103
– volume: 107
  start-page: 418
  year: 2017
  ident: 10.1016/j.ijhydene.2021.08.103_bib25
  article-title: Non-isothermal two-phase transport in a polymer electrolyte membrane fuel cell with crack-free microporous layers
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2016.11.045
– volume: 6
  issue: 4
  year: 2009
  ident: 10.1016/j.ijhydene.2021.08.103_bib26
  article-title: Fundamental research needs in combined water and thermal management within a proton exchange membrane fuel cell stack under normal and cold-start conditions
  publication-title: J Fuel Cell Sci Technol
  doi: 10.1115/1.3008043
– volume: 46
  start-page: 20702
  issue: 39
  year: 2021
  ident: 10.1016/j.ijhydene.2021.08.103_bib48
  article-title: Multiscale modeling of an angled gas diffusion layer for polymer electrolyte membrane fuel cells: performance enhancing for aviation applications
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.03.166
– volume: 12
  start-page: 212
  issue: 2
  year: 2012
  ident: 10.1016/j.ijhydene.2021.08.103_bib27
  article-title: Thermal effect on water transport in proton exchange membrane fuel cell
  publication-title: Fuel Cell
  doi: 10.1002/fuce.201100100
– volume: 100011
  year: 2021
  ident: 10.1016/j.ijhydene.2021.08.103_bib6
  article-title: Polymer electrolyte membrane fuel cell and hydrogen station network for automobiles: status, technology, and perspectives
  publication-title: Advances in Applied Energy
– volume: 91
  start-page: 1115
  issue: 10
  year: 2012
  ident: 10.1016/j.ijhydene.2021.08.103_bib30
  article-title: A domain decomposition method for a two-phase transport model of polymer electrolyte fuel cell containing micro-porous layer
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.4317
– year: 2013
  ident: 10.1016/j.ijhydene.2021.08.103_bib10
– year: 2019
  ident: 10.1016/j.ijhydene.2021.08.103_bib24
– volume: 1
  start-page: 100014
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.103_bib4
  article-title: Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2020.100014
– volume: 139
  start-page: 2423
  issue: 4
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.103_bib28
  article-title: Computational analysis of heat transfer in a PEM fuel cell with metal foam as a flow field
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-08354-x
– volume: 158
  start-page: B1292
  issue: 11
  year: 2011
  ident: 10.1016/j.ijhydene.2021.08.103_bib44
  article-title: Effect of spatially-varying GDL properties and land compression on water distribution in PEM fuel cells
  publication-title: J Electrochem Soc
  doi: 10.1149/2.015111jes
– volume: 40
  start-page: 3348
  issue: 8
  year: 2015
  ident: 10.1016/j.ijhydene.2021.08.103_bib34
  article-title: A new approach to modelling water flooding in a polymer electrolyte fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.01.035
– volume: 191
  start-page: 346
  year: 2017
  ident: 10.1016/j.ijhydene.2021.08.103_bib5
  article-title: Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.056
– volume: 219
  start-page: 120
  year: 2012
  ident: 10.1016/j.ijhydene.2021.08.103_bib33
  article-title: Neutron tomographic investigations of water distributions in polymer electrolyte membrane fuel cell stacks
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2012.07.043
– volume: 3
  start-page: 259
  issue: 3
  year: 2015
  ident: 10.1016/j.ijhydene.2021.08.103_bib40
  article-title: Interfacial phenomena and heat transfer in proton exchange membrane fuel cells
  publication-title: Interfacial Phenom Heat Transf
  doi: 10.1615/InterfacPhenomHeatTransfer.2016014779
– volume: 171
  start-page: 200
  year: 2016
  ident: 10.1016/j.ijhydene.2021.08.103_bib11
  article-title: Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.132
– volume: 185
  start-page: 261
  issue: 1
  year: 2008
  ident: 10.1016/j.ijhydene.2021.08.103_bib43
  article-title: Modeling of two-phase transport in the diffusion media of polymer electrolyte fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2008.07.007
– start-page: 100004
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.103_bib12
– volume: 299
  start-page: 85
  year: 2015
  ident: 10.1016/j.ijhydene.2021.08.103_bib16
  article-title: Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: a review
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2015.08.092
– volume: 40
  start-page: 5169
  issue: 15
  year: 2015
  ident: 10.1016/j.ijhydene.2021.08.103_bib19
  article-title: Agglomerate modeling of cathode catalyst layer of a PEM fuel cell by the lattice Boltzmann method
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.02.097
– volume: 150
  start-page: 119294
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.103_bib17
  article-title: Investigation of current density spatial distribution in PEM fuel cells using a comprehensively validated multi-phase non-isothermal model
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2019.119294
– volume: 45
  start-page: 29832
  issue: 54
  year: 2019
  ident: 10.1016/j.ijhydene.2021.08.103_bib2
  article-title: Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.07.231
– volume: 471
  start-page: 228427
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.103_bib29
  article-title: Two-phase flow dynamics in a gas diffusion layer-gas channel-microporous layer system
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228427
– volume: 45
  start-page: 4466
  issue: 3
  year: 2021
  ident: 10.1016/j.ijhydene.2021.08.103_bib42
  article-title: Vapor condensation in reconstructed gas diffusion layers of proton exchange membrane fuel cell
  publication-title: Int J Energy Res
  doi: 10.1002/er.6116
– volume: 64
  start-page: 29
  year: 2018
  ident: 10.1016/j.ijhydene.2021.08.103_bib13
  article-title: Cold start of proton exchange membrane fuel cell
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2017.10.003
– volume: 29
  start-page: 318
  year: 2013
  ident: 10.1016/j.ijhydene.2021.08.103_bib8
  article-title: Numerical modeling and simulation of PEM fuel cells: progress and perspective
  publication-title: Acta Mech Sin
  doi: 10.1007/s10409-013-0037-y
– start-page: 163
  year: 2012
  ident: 10.1016/j.ijhydene.2021.08.103_bib23
  article-title: Review of the electrodes layer for unitized regenerative proton exchange membrane fuel cells
  publication-title: Adv Environ Biol Biomedicine
– volume: 155
  start-page: B1289
  issue: 12
  year: 2008
  ident: 10.1016/j.ijhydene.2021.08.103_bib20
  article-title: Analysis of reaction rates in the cathode electrode of polymer electrolyte fuel cell I. Single-layer electrodes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2988763
– volume: 154
  start-page: B636
  issue: 7
  year: 2007
  ident: 10.1016/j.ijhydene.2021.08.103_bib37
  article-title: Two-phase transients of polymer electrolyte fuel cells
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2734076
– volume: 66
  start-page: 3557
  issue: 15
  year: 2011
  ident: 10.1016/j.ijhydene.2021.08.103_bib45
  article-title: Elucidating two-phase transport in a polymer electrolyte fuel cell, Part 1: characterizing flow regimes with a dimensionless group
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2011.04.016
– volume: 315
  start-page: 224
  year: 2016
  ident: 10.1016/j.ijhydene.2021.08.103_bib46
  article-title: Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.03.045
– volume: 3
  start-page: 100045
  year: 2021
  ident: 10.1016/j.ijhydene.2021.08.103_bib15
  article-title: Prediction of high frequency resistance in polymer electrolyte membrane fuel cells using long short term memory based model
  publication-title: Energy and AI
  doi: 10.1016/j.egyai.2020.100045
– volume: 60
  start-page: 134
  year: 2013
  ident: 10.1016/j.ijhydene.2021.08.103_bib39
  article-title: Measurement of thermal conductivity and heat pipe effect in hydrophilic and hydrophobic carbon papers
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2012.12.016
– volume: 39
  start-page: 19024
  issue: 33
  year: 2014
  ident: 10.1016/j.ijhydene.2021.08.103_bib47
  article-title: Effects of operating parameters on the transient response of proton exchange membrane fuel cells subject to load changes
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.08.126
– volume: 15
  start-page: 4138
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.103_bib14
  article-title: Numerical investigation on the impact of membrane thickness on transport phenomena in PEM fuel cells
  publication-title: Int J Electrochem Sci
  doi: 10.20964/2020.05.15
– volume: 165
  start-page: 81
  year: 2016
  ident: 10.1016/j.ijhydene.2021.08.103_bib3
  article-title: A review of recent development: transport and performance modeling of PEM fuel cells
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.075
– volume: 32
  start-page: 178
  year: 2020
  ident: 10.1016/j.ijhydene.2021.08.103_bib1
  article-title: Materials, technological status, and fundamentals of PEM fuel cells – a review
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2019.06.005
– volume: 156
  start-page: B403
  issue: 3
  year: 2009
  ident: 10.1016/j.ijhydene.2021.08.103_bib21
  article-title: Analysis of the reaction rates in the cathode electrode of polymer electrolyte fuel cells: II. Dual-layer electrodes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3056057
– volume: 46
  start-page: 8640
  issue: 12
  year: 2021
  ident: 10.1016/j.ijhydene.2021.08.103_bib35
  article-title: Recent progress of gas diffusion layer in proton exchange membrane fuel cell: two-phase flow and material properties
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.076
– volume: 196
  start-page: 9544
  issue: 22
  year: 2011
  ident: 10.1016/j.ijhydene.2021.08.103_bib32
  article-title: Ex situ and modeling study of two-phase flow in a single channel of polymer electrolyte membrane fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.07.076
– volume: 55
  start-page: 6391
  issue: 22
  year: 2010
  ident: 10.1016/j.ijhydene.2021.08.103_bib22
  article-title: The regimes of catalyst layer operation in a fuel cell
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2010.06.053
– volume: 56
  start-page: 352
  issue: 1
  year: 2010
  ident: 10.1016/j.ijhydene.2021.08.103_bib38
  article-title: Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2010.08.070
– volume: 145
  start-page: 106045
  year: 2019
  ident: 10.1016/j.ijhydene.2021.08.103_bib31
  article-title: Impact of non-uniform wettability in the condensation and condensation-liquid water intrusion regimes in the cathode gas diffusion layer of proton exchange membrane fuel cell
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2019.106045
SSID ssj0017049
Score 2.418657
Snippet Polymer electrolyte membrane (PEM) fuel cell technology needs to overcome the cost barrier in order to compete with the internal combustion engines (ICEs) for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 35448
SubjectTerms Cost effective
High current density
Polymer electrolyte fuel cell
Spatial variation
Title Investigation of a cost-effective strategy for polymer electrolyte membrane fuel cells: High power density operation
URI https://dx.doi.org/10.1016/j.ijhydene.2021.08.103
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb8IwDI4Qu2yHaU-NvZTDrgWapi3ZDaEhtmlcNiRuVdM6GghaBEVTL_vts2mL2C4cdmxkS5Xj2E77-TNjD6IdQaxCbcU2hkApDVgd42tLYHVhx66JjaB-57ehNxjJl7E7rrFe1QtDsMoy9hcxfROty5VWac3WYjJpvWPspRYcJYgTTnWo0ZzY69Cnm99bmIftlyUwClskvdMlPG1Opp85Hm-iyxQbKk-7Gp71N0HtJJ3-CTsuq0XeLV7olNUgOWNHOxyC5yzbYcpIE54aHvIoXWVWgdTAYMZXBQNtzrFA5Yt0ls9hycv5N7M8Az6HOV6aE-BmDTNO3_JXj5wQICj9hbIxodyznKcLKBzmgo36Tx-9gVWOUrAix-9klgFHg7RVGDuaZlWh0bQNKrJDocALpXQM3pxi6YEA4QL9nMFCwzhKKiHCtnYuWT1JE7hiXEe0f-3QUHr3VRQSq5zwhas9X8pYNZhb2S-ISp5xGncxCypA2TSo7B6Q3YN2B9edBmtt9RYF08ZeDVVtT_DLZwJMB3t0r_-he8MO6YkymC1vWT1bruEOS5NM3298754ddJ9fB8MfGgDmiQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbGOAAHxFOMZw5cy9Y0XRduCIEGe1wAiVvVtI7YtLXVVoT674lpigYXDlxTW6oc97PT2J8BLnknxkRGyklcA4FCaHR6OlAON9mFm_g60Zz6nUfjbv9FPL76rw24rXthqKzSYn-F6V9obVfa1prtfDJpPxnspRYcyYkTTvb8NVgndirRhPWbh0F__H2ZENgs2Mg7pLDSKDy9mkzfSvOFE2Mm_2LzdOv5Wb9j1Ercud-BbZswspvqnXahgekebK3QCO5DsUKWkaUs0yxicbYsnKpYw-AZW1YktCUzOSrLs1k5xwWzI3BmZYFsjnNzbk6R6XecMfqdv7xmVARipD-MbEKF7kXJshwrnzmAl_u759u-Y6cpOLEX9ApHo6dQuDJKPEXjqozdlIsydiMusRsJ4WlzeEpEFzlyH-l-xuQa2pNCch51lHcIzTRL8QiYimkLO5GmCB_IOCJiOR5wX3UDIRLZAr-2XxhbqnGaeDEL65qyaVjbPSS7h52eWfda0P7WyyuyjT81ZL094Q-3CU1E-EP3-B-6F7DRfx4Nw-HDeHACm_SEAporTqFZLN7xzGQqhTq3nvgJAP_pOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+a+cost-effective+strategy+for+polymer+electrolyte+membrane+fuel+cells%3A+High+power+density+operation&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zhou%2C+Jieyang&rft.au=Seo%2C+Bongjin&rft.au=Wang%2C+Zhe&rft.au=Wang%2C+Yun&rft.date=2021-10-14&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.volume=46&rft.issue=71&rft.spage=35448&rft.epage=35458&rft_id=info:doi/10.1016%2Fj.ijhydene.2021.08.103&rft.externalDocID=S0360319921032985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon