Investigation of a cost-effective strategy for polymer electrolyte membrane fuel cells: High power density operation
Polymer electrolyte membrane (PEM) fuel cell technology needs to overcome the cost barrier in order to compete with the internal combustion engines (ICEs) for transportation application. A viable approach is to raise fuel cell's power output without increasing its size and Pt loading in the cat...
Saved in:
Published in | International journal of hydrogen energy Vol. 46; no. 71; pp. 35448 - 35458 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
14.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-3199 |
DOI | 10.1016/j.ijhydene.2021.08.103 |
Cover
Loading…
Abstract | Polymer electrolyte membrane (PEM) fuel cell technology needs to overcome the cost barrier in order to compete with the internal combustion engines (ICEs) for transportation application. A viable approach is to raise fuel cell's power output without increasing its size and Pt loading in the catalyst layers (CLs). In this strategy, the cost per kW power output can be proportionally reduced due to the increased power density. This paper examines this strategy by exploring several important aspects that influence fuel cell performance under high power or current density using a three-dimensional (3-D) fuel cell model. It is shown that local CLs may be subject to low oxygen concentration under a high current density of 2 A/cm2, causing low reaction rate near the outlet, especially under the land. Additionally, the oxygen reduction reaction (ORR) rate may be subject to a large through-plane variation under 2 A/cm2, raising ohmic voltage loss in the CL. Two additional cases are investigated to improve fuel cell performance under 2 A/cm2: one has a 5 times thinner CL with the same ORR kinetics per membrane electrode assembly (MEA) area and the other has a 5 times thinner CL with 5 times higher ORR kinetics. The results show the output voltage is raised approximately from 0.5 V to 0.554 V in the former CL case and further to 0.606 V for the latter CL. To enable high-efficiency operation (e.g. >50%), thinner CLs with high ORR kinetics and GDLs with better transport properties are one research and development (R&D) direction.
•Fuel cell operation may subject to oxygen starvation near cathode outlet @ 2.0 A/cm2.•The oxygen reduction reaction (ORR) rate subjects to large spatial variations in all the three dimensions @ 2.0 A/cm2.•GDLs with better transport properties are desirable for high current density operation.•Thinner catalyst layers with high ORR kinetics are desirable for high current density operation. |
---|---|
AbstractList | Polymer electrolyte membrane (PEM) fuel cell technology needs to overcome the cost barrier in order to compete with the internal combustion engines (ICEs) for transportation application. A viable approach is to raise fuel cell's power output without increasing its size and Pt loading in the catalyst layers (CLs). In this strategy, the cost per kW power output can be proportionally reduced due to the increased power density. This paper examines this strategy by exploring several important aspects that influence fuel cell performance under high power or current density using a three-dimensional (3-D) fuel cell model. It is shown that local CLs may be subject to low oxygen concentration under a high current density of 2 A/cm2, causing low reaction rate near the outlet, especially under the land. Additionally, the oxygen reduction reaction (ORR) rate may be subject to a large through-plane variation under 2 A/cm2, raising ohmic voltage loss in the CL. Two additional cases are investigated to improve fuel cell performance under 2 A/cm2: one has a 5 times thinner CL with the same ORR kinetics per membrane electrode assembly (MEA) area and the other has a 5 times thinner CL with 5 times higher ORR kinetics. The results show the output voltage is raised approximately from 0.5 V to 0.554 V in the former CL case and further to 0.606 V for the latter CL. To enable high-efficiency operation (e.g. >50%), thinner CLs with high ORR kinetics and GDLs with better transport properties are one research and development (R&D) direction.
•Fuel cell operation may subject to oxygen starvation near cathode outlet @ 2.0 A/cm2.•The oxygen reduction reaction (ORR) rate subjects to large spatial variations in all the three dimensions @ 2.0 A/cm2.•GDLs with better transport properties are desirable for high current density operation.•Thinner catalyst layers with high ORR kinetics are desirable for high current density operation. |
Author | Wang, Zhe Wang, Yun Zhou, Jieyang Seo, Bongjin |
Author_xml | – sequence: 1 givenname: Jieyang surname: Zhou fullname: Zhou, Jieyang organization: Renewable Energy Resources Lab (RERL), Department of Mechanical and Aerospace Engineering, The University of California, Irvine, CA, 92697-3975, USA – sequence: 2 givenname: Bongjin surname: Seo fullname: Seo, Bongjin organization: Renewable Energy Resources Lab (RERL), Department of Mechanical and Aerospace Engineering, The University of California, Irvine, CA, 92697-3975, USA – sequence: 3 givenname: Zhe surname: Wang fullname: Wang, Zhe email: zhewang@tsinghua.edu.cn organization: State Key Lab of Power Systems, International Joint Laboratory on Low Carbon Clean Energy, Innovation, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China – sequence: 4 givenname: Yun surname: Wang fullname: Wang, Yun email: yunw@uci.edu organization: Renewable Energy Resources Lab (RERL), Department of Mechanical and Aerospace Engineering, The University of California, Irvine, CA, 92697-3975, USA |
BookMark | eNqFUEFOwzAQ9KFItIUvIH8gwY7TJEYcQBXQSpW4wNlynHXrKIkr2xTl97gtXLj0tNrdmd2ZmaHJYAdA6I6SlBJa3LepaXdjAwOkGcloSqo4ZxM0JawgCaOcX6OZ9y0htCQ5n6KwHg7gg9nKYOyArcYSK-tDAlqDCuYA2AcnA2xHrK3De9uNPTgMXdy62ATAPfS1kwNg_QUdVtB1_gGvzHYX0d8RG-V4E0Zs9-BOb27QlZadh9vfOkefry8fy1WyeX9bL583iWJlFRINrIacctmwumS04BmtKXBFZcahkHnOdFXSJi8gg2wBlBYlXSw04znPMklqNkeP57vKWe8daKFMOCmIlkwnKBHH1EQr_lITx9QEqeKcRXrxj753ppduvEx8OhMhmjsYcMIrA4OCxrgYm2isuXTiB2zVkow |
CitedBy_id | crossref_primary_10_1039_D2EE00790H crossref_primary_10_1016_j_nxener_2024_100202 crossref_primary_10_1016_j_ijhydene_2022_01_182 crossref_primary_10_1016_j_renene_2024_120600 crossref_primary_10_1016_j_enss_2024_09_002 crossref_primary_10_1016_j_ijhydene_2022_02_131 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123209 crossref_primary_10_1016_j_ijhydene_2023_12_118 crossref_primary_10_1149_1945_7111_ad13da crossref_primary_10_1557_s43578_021_00417_w crossref_primary_10_1039_D1TA10346F |
Cites_doi | 10.1016/j.enconman.2020.113579 10.1016/j.ijhydene.2013.10.041 10.1016/j.ijhydene.2013.11.103 10.1016/j.ijheatmasstransfer.2016.11.045 10.1115/1.3008043 10.1016/j.ijhydene.2021.03.166 10.1002/fuce.201100100 10.1002/nme.4317 10.1016/j.egyai.2020.100014 10.1007/s10973-019-08354-x 10.1149/2.015111jes 10.1016/j.ijhydene.2015.01.035 10.1016/j.apenergy.2017.01.056 10.1016/j.jpowsour.2012.07.043 10.1615/InterfacPhenomHeatTransfer.2016014779 10.1016/j.apenergy.2016.02.132 10.1016/j.jpowsour.2008.07.007 10.1016/j.jpowsour.2015.08.092 10.1016/j.ijhydene.2015.02.097 10.1016/j.ijheatmasstransfer.2019.119294 10.1016/j.ijhydene.2019.07.231 10.1016/j.jpowsour.2020.228427 10.1002/er.6116 10.1016/j.pecs.2017.10.003 10.1007/s10409-013-0037-y 10.1149/1.2988763 10.1149/1.2734076 10.1016/j.ces.2011.04.016 10.1016/j.jpowsour.2016.03.045 10.1016/j.egyai.2020.100045 10.1016/j.ijheatmasstransfer.2012.12.016 10.1016/j.ijhydene.2014.08.126 10.20964/2020.05.15 10.1016/j.apenergy.2015.12.075 10.1016/j.mattod.2019.06.005 10.1149/1.3056057 10.1016/j.ijhydene.2020.12.076 10.1016/j.jpowsour.2011.07.076 10.1016/j.electacta.2010.06.053 10.1016/j.electacta.2010.08.070 10.1016/j.ijthermalsci.2019.106045 |
ContentType | Journal Article |
Copyright | 2021 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2021 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2021.08.103 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 35458 |
ExternalDocumentID | 10_1016_j_ijhydene_2021_08_103 S0360319921032985 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSH SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SEW T9H WUQ |
ID | FETCH-LOGICAL-c378t-fe3be419ad3b7316921b1e9c1a29e6a443f871d46e2e25e1167155f394922a0b3 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Thu Apr 24 23:02:23 EDT 2025 Tue Jul 01 05:11:56 EDT 2025 Sat Apr 12 15:21:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 71 |
Keywords | Model Cost effective Spatial variation High current density Polymer electrolyte fuel cell |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-fe3be419ad3b7316921b1e9c1a29e6a443f871d46e2e25e1167155f394922a0b3 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijhydene_2021_08_103 crossref_primary_10_1016_j_ijhydene_2021_08_103 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2021_08_103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-14 |
PublicationDateYYYYMMDD | 2021-10-14 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rasheed, Ehteshami, Chan (bib41) 2014; 39 Carrere, Prat (bib31) 2019; 145 Verma, Pitchumani (bib47) 2014; 39 Wang, Feng (bib21) 2009; 156 Qin, Hassanizadeh (bib34) 2015; 40 Molaeimanesh, Akbari (bib19) 2015; 40 Markötter, Manke, Kuhn, Arlt, Kardjilov, Hentschel, Banhart (bib33) 2012; 219 Wang, Ruiz Diaz, Chen, Wang, Adroher (bib1) 2020; 32 Ge, Chevalier, Lee, Yip, Banerjee, George, Kotaka (bib25) 2017; 107 Liu, Guo, Ye, Ma (bib40) 2015; 3 Lin, Hu, Wisely, Gu, Cai, Litster, Kara (bib15) 2021; 3 Chen, Niu, Li, Jiao, Wang (bib35) 2021; 46 Wang (bib43) 2008; 185 Thomas, Maranzana, Didierjean, Dillet, Lottin (bib27) 2012; 12 Liu, Peng, Lou, Wen (bib16) 2015; 299 Park, Oh, Lee, Min, Lee, Jyoung (bib11) 2016; 171 Gabbasa, Sopian (bib23) 2012 Afshari (bib28) 2020; 139 Sun (bib30) 2012; 91 Jiao, Jiao, Du (bib42) 2021; 45 Wang, Chen (bib44) 2011; 158 Cho, Oh, Park, Min, Lee, Jyoung (bib36) 2014; 39 Wang, Wang (bib37) 2007; 154 Niblett, Mularczyk, Niasar, Eller, Holmes (bib29) 2020; 471 Wang, Chen (bib45) 2011; 66 Benner, Mortazavi, Santamaria (bib24) 2019 Wang, Yuan, Martinez, Hong, Xu, Bockmiller (bib6) 2021; 100011 Wang, Chen (bib46) 2016; 315 Luo, Jiao (bib13) 2018; 64 Wang, Chen (bib10) 2013 Wang, Zhang, Wang, Xuan, Jiao (bib12) 2020 Zhang, Wu, Wang, Yin, Jiao (bib17) 2020; 150 Wang, Gundevia (bib39) 2013; 60 Wang, Feng (bib20) 2008; 155 Zhu, Wang, Sui, Gao (bib48) 2021; 46 Demuren, Edwards (bib9) 2020 bib7 Wang, Seo, Wang, Zamel, Jiao, Adroher (bib4) 2020; 1 Wu (bib3) 2016; 165 Ma, Zhang, Yang, Zhuge, Shuai (bib18) 2021; 227 Kulikovsky (bib22) 2010; 55 Adroher, Wang (bib32) 2011; 196 Kandlikar, Lu (bib26) 2009; 6 Song, Zhang, Ling, Han, Yong, Sun, Chen (bib2) 2019; 45 Tabuchi, Shiomi, Aoki, Kubo, Shinohara (bib38) 2010; 56 Li, Wei, Zhang, Qi, Yang, Shen (bib14) 2020; 15 Song, Meng (bib8) 2013; 29 Wei, Smith, Sohn (bib5) 2017; 191 Markötter (10.1016/j.ijhydene.2021.08.103_bib33) 2012; 219 Afshari (10.1016/j.ijhydene.2021.08.103_bib28) 2020; 139 Chen (10.1016/j.ijhydene.2021.08.103_bib35) 2021; 46 Wang (10.1016/j.ijhydene.2021.08.103_bib39) 2013; 60 Zhu (10.1016/j.ijhydene.2021.08.103_bib48) 2021; 46 Wang (10.1016/j.ijhydene.2021.08.103_bib6) 2021; 100011 Wang (10.1016/j.ijhydene.2021.08.103_bib20) 2008; 155 Park (10.1016/j.ijhydene.2021.08.103_bib11) 2016; 171 Lin (10.1016/j.ijhydene.2021.08.103_bib15) 2021; 3 Wu (10.1016/j.ijhydene.2021.08.103_bib3) 2016; 165 Wei (10.1016/j.ijhydene.2021.08.103_bib5) 2017; 191 Sun (10.1016/j.ijhydene.2021.08.103_bib30) 2012; 91 Cho (10.1016/j.ijhydene.2021.08.103_bib36) 2014; 39 Wang (10.1016/j.ijhydene.2021.08.103_bib1) 2020; 32 Tabuchi (10.1016/j.ijhydene.2021.08.103_bib38) 2010; 56 Liu (10.1016/j.ijhydene.2021.08.103_bib40) 2015; 3 Wang (10.1016/j.ijhydene.2021.08.103_bib12) 2020 Kulikovsky (10.1016/j.ijhydene.2021.08.103_bib22) 2010; 55 Song (10.1016/j.ijhydene.2021.08.103_bib2) 2019; 45 Qin (10.1016/j.ijhydene.2021.08.103_bib34) 2015; 40 Li (10.1016/j.ijhydene.2021.08.103_bib14) 2020; 15 Ma (10.1016/j.ijhydene.2021.08.103_bib18) 2021; 227 Gabbasa (10.1016/j.ijhydene.2021.08.103_bib23) 2012 Song (10.1016/j.ijhydene.2021.08.103_bib8) 2013; 29 Demuren (10.1016/j.ijhydene.2021.08.103_bib9) 2020 Ge (10.1016/j.ijhydene.2021.08.103_bib25) 2017; 107 Wang (10.1016/j.ijhydene.2021.08.103_bib21) 2009; 156 Wang (10.1016/j.ijhydene.2021.08.103_bib45) 2011; 66 Wang (10.1016/j.ijhydene.2021.08.103_bib46) 2016; 315 Molaeimanesh (10.1016/j.ijhydene.2021.08.103_bib19) 2015; 40 Rasheed (10.1016/j.ijhydene.2021.08.103_bib41) 2014; 39 Benner (10.1016/j.ijhydene.2021.08.103_bib24) 2019 Kandlikar (10.1016/j.ijhydene.2021.08.103_bib26) 2009; 6 Verma (10.1016/j.ijhydene.2021.08.103_bib47) 2014; 39 Jiao (10.1016/j.ijhydene.2021.08.103_bib42) 2021; 45 Wang (10.1016/j.ijhydene.2021.08.103_bib43) 2008; 185 Luo (10.1016/j.ijhydene.2021.08.103_bib13) 2018; 64 Adroher (10.1016/j.ijhydene.2021.08.103_bib32) 2011; 196 Wang (10.1016/j.ijhydene.2021.08.103_bib4) 2020; 1 Wang (10.1016/j.ijhydene.2021.08.103_bib44) 2011; 158 Wang (10.1016/j.ijhydene.2021.08.103_bib10) 2013 Zhang (10.1016/j.ijhydene.2021.08.103_bib17) 2020; 150 Liu (10.1016/j.ijhydene.2021.08.103_bib16) 2015; 299 Carrere (10.1016/j.ijhydene.2021.08.103_bib31) 2019; 145 Wang (10.1016/j.ijhydene.2021.08.103_bib37) 2007; 154 Niblett (10.1016/j.ijhydene.2021.08.103_bib29) 2020; 471 Thomas (10.1016/j.ijhydene.2021.08.103_bib27) 2012; 12 |
References_xml | – volume: 3 start-page: 259 year: 2015 end-page: 301 ident: bib40 article-title: Interfacial phenomena and heat transfer in proton exchange membrane fuel cells publication-title: Interfacial Phenom Heat Transf – volume: 45 start-page: 4466 year: 2021 end-page: 4478 ident: bib42 article-title: Vapor condensation in reconstructed gas diffusion layers of proton exchange membrane fuel cell publication-title: Int J Energy Res – volume: 191 start-page: 346 year: 2017 end-page: 357 ident: bib5 article-title: Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US publication-title: Appl Energy – volume: 154 start-page: B636 year: 2007 ident: bib37 article-title: Two-phase transients of polymer electrolyte fuel cells publication-title: J Electrochem Soc – volume: 6 year: 2009 ident: bib26 article-title: Fundamental research needs in combined water and thermal management within a proton exchange membrane fuel cell stack under normal and cold-start conditions publication-title: J Fuel Cell Sci Technol – volume: 60 start-page: 134 year: 2013 end-page: 142 ident: bib39 article-title: Measurement of thermal conductivity and heat pipe effect in hydrophilic and hydrophobic carbon papers publication-title: Int J Heat Mass Tran – volume: 171 start-page: 200 year: 2016 end-page: 212 ident: bib11 article-title: Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance publication-title: Appl Energy – volume: 299 start-page: 85 year: 2015 end-page: 96 ident: bib16 article-title: Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: a review publication-title: J Power Sources – volume: 3 start-page: 100045 year: 2021 ident: bib15 article-title: Prediction of high frequency resistance in polymer electrolyte membrane fuel cells using long short term memory based model publication-title: Energy and AI – volume: 219 start-page: 120 year: 2012 end-page: 125 ident: bib33 article-title: Neutron tomographic investigations of water distributions in polymer electrolyte membrane fuel cell stacks publication-title: J Power Sources – volume: 29 start-page: 318 year: 2013 end-page: 334 ident: bib8 article-title: Numerical modeling and simulation of PEM fuel cells: progress and perspective publication-title: Acta Mech Sin – start-page: 163 year: 2012 end-page: 168 ident: bib23 article-title: Review of the electrodes layer for unitized regenerative proton exchange membrane fuel cells publication-title: Adv Environ Biol Biomedicine – volume: 46 start-page: 8640 year: 2021 end-page: 8671 ident: bib35 article-title: Recent progress of gas diffusion layer in proton exchange membrane fuel cell: two-phase flow and material properties publication-title: Int J Hydrogen Energy – volume: 100011 year: 2021 ident: bib6 article-title: Polymer electrolyte membrane fuel cell and hydrogen station network for automobiles: status, technology, and perspectives publication-title: Advances in Applied Energy – volume: 1 start-page: 100014 year: 2020 ident: bib4 article-title: Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology publication-title: Energy AI – volume: 227 start-page: 113579 year: 2021 ident: bib18 article-title: Impact of gas diffusion layer spatial variation properties on water management and performance of PEM fuel cells publication-title: Energy Convers Manag – volume: 185 start-page: 261 year: 2008 end-page: 271 ident: bib43 article-title: Modeling of two-phase transport in the diffusion media of polymer electrolyte fuel cells publication-title: J Power Sources – volume: 15 start-page: 4138 year: 2020 end-page: 4147 ident: bib14 article-title: Numerical investigation on the impact of membrane thickness on transport phenomena in PEM fuel cells publication-title: Int J Electrochem Sci – volume: 32 start-page: 178 year: 2020 end-page: 203 ident: bib1 article-title: Materials, technological status, and fundamentals of PEM fuel cells – a review publication-title: Mater Today – volume: 139 start-page: 2423 year: 2020 end-page: 2434 ident: bib28 article-title: Computational analysis of heat transfer in a PEM fuel cell with metal foam as a flow field publication-title: J Therm Anal Calorim – volume: 165 start-page: 81 year: 2016 end-page: 106 ident: bib3 article-title: A review of recent development: transport and performance modeling of PEM fuel cells publication-title: Appl Energy – start-page: 513 year: 2020 end-page: 547 ident: bib9 article-title: “Modeling proton exchange membrane fuel cells—a review,” 50 Years of CFD in engineering sciences – volume: 12 start-page: 212 year: 2012 end-page: 224 ident: bib27 article-title: Thermal effect on water transport in proton exchange membrane fuel cell publication-title: Fuel Cell – year: 2013 ident: bib10 article-title: PEM fuel cells: thermal and water management fundamentals – volume: 196 start-page: 9544 year: 2011 end-page: 9551 ident: bib32 article-title: Ex situ and modeling study of two-phase flow in a single channel of polymer electrolyte membrane fuel cells publication-title: J Power Sources – year: 2019 ident: bib24 article-title: Numerical simulation of droplet emergence and growth from gas diffusion layers (GDLs) in proton exchange membrane (PEM) fuel cell flow channels – volume: 91 start-page: 1115 year: 2012 end-page: 1136 ident: bib30 article-title: A domain decomposition method for a two-phase transport model of polymer electrolyte fuel cell containing micro-porous layer publication-title: Int J Numer Methods Eng – volume: 66 start-page: 3557 year: 2011 end-page: 3567 ident: bib45 article-title: Elucidating two-phase transport in a polymer electrolyte fuel cell, Part 1: characterizing flow regimes with a dimensionless group publication-title: Chem Eng Sci – volume: 107 start-page: 418 year: 2017 end-page: 431 ident: bib25 article-title: Non-isothermal two-phase transport in a polymer electrolyte membrane fuel cell with crack-free microporous layers publication-title: Int J Heat Mass Tran – volume: 150 start-page: 119294 year: 2020 ident: bib17 article-title: Investigation of current density spatial distribution in PEM fuel cells using a comprehensively validated multi-phase non-isothermal model publication-title: Int J Heat Mass Tran – volume: 156 start-page: B403 year: 2009 ident: bib21 article-title: Analysis of the reaction rates in the cathode electrode of polymer electrolyte fuel cells: II. Dual-layer electrodes publication-title: J Electrochem Soc – volume: 39 start-page: 459 year: 2014 end-page: 468 ident: bib36 article-title: Effect of the micro porous layer design on the dynamic performance of a proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy – volume: 56 start-page: 352 year: 2010 end-page: 360 ident: bib38 article-title: Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation publication-title: Electrochim Acta – volume: 46 start-page: 20702 year: 2021 end-page: 20714 ident: bib48 article-title: Multiscale modeling of an angled gas diffusion layer for polymer electrolyte membrane fuel cells: performance enhancing for aviation applications publication-title: Int J Hydrogen Energy – volume: 45 start-page: 29832 year: 2019 end-page: 29847 ident: bib2 article-title: Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy – volume: 158 start-page: B1292 year: 2011 ident: bib44 article-title: Effect of spatially-varying GDL properties and land compression on water distribution in PEM fuel cells publication-title: J Electrochem Soc – ident: bib7 – start-page: 100004 year: 2020 ident: bib12 article-title: Multi-physics-resolved digital twin of proton exchange membrane fuel cells with A data-driven surrogate model – volume: 64 start-page: 29 year: 2018 end-page: 61 ident: bib13 article-title: Cold start of proton exchange membrane fuel cell publication-title: Prog Energy Combust Sci – volume: 471 start-page: 228427 year: 2020 ident: bib29 article-title: Two-phase flow dynamics in a gas diffusion layer-gas channel-microporous layer system publication-title: J Power Sources – volume: 315 start-page: 224 year: 2016 end-page: 235 ident: bib46 article-title: Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number publication-title: J Power Sources – volume: 40 start-page: 5169 year: 2015 end-page: 5185 ident: bib19 article-title: Agglomerate modeling of cathode catalyst layer of a PEM fuel cell by the lattice Boltzmann method publication-title: Int J Hydrogen Energy – volume: 55 start-page: 6391 year: 2010 end-page: 6401 ident: bib22 article-title: The regimes of catalyst layer operation in a fuel cell publication-title: Electrochim Acta – volume: 39 start-page: 19024 year: 2014 end-page: 19038 ident: bib47 article-title: Effects of operating parameters on the transient response of proton exchange membrane fuel cells subject to load changes publication-title: Int J Hydrogen Energy – volume: 155 start-page: B1289 year: 2008 ident: bib20 article-title: Analysis of reaction rates in the cathode electrode of polymer electrolyte fuel cell I. Single-layer electrodes publication-title: J Electrochem Soc – volume: 145 start-page: 106045 year: 2019 ident: bib31 article-title: Impact of non-uniform wettability in the condensation and condensation-liquid water intrusion regimes in the cathode gas diffusion layer of proton exchange membrane fuel cell publication-title: Int J Therm Sci – volume: 40 start-page: 3348 year: 2015 end-page: 3358 ident: bib34 article-title: A new approach to modelling water flooding in a polymer electrolyte fuel cell publication-title: Int J Hydrogen Energy – volume: 39 start-page: 2246 year: 2014 end-page: 2260 ident: bib41 article-title: Analytical modelling of boiling phase change phenomenon in high-temperature proton exchange membrane fuel cells during warm-up process publication-title: Int J Hydrogen Energy – start-page: 513 year: 2020 ident: 10.1016/j.ijhydene.2021.08.103_bib9 – volume: 227 start-page: 113579 year: 2021 ident: 10.1016/j.ijhydene.2021.08.103_bib18 article-title: Impact of gas diffusion layer spatial variation properties on water management and performance of PEM fuel cells publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113579 – volume: 39 start-page: 459 issue: 1 year: 2014 ident: 10.1016/j.ijhydene.2021.08.103_bib36 article-title: Effect of the micro porous layer design on the dynamic performance of a proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.10.041 – volume: 39 start-page: 2246 issue: 5 year: 2014 ident: 10.1016/j.ijhydene.2021.08.103_bib41 article-title: Analytical modelling of boiling phase change phenomenon in high-temperature proton exchange membrane fuel cells during warm-up process publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.11.103 – volume: 107 start-page: 418 year: 2017 ident: 10.1016/j.ijhydene.2021.08.103_bib25 article-title: Non-isothermal two-phase transport in a polymer electrolyte membrane fuel cell with crack-free microporous layers publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2016.11.045 – volume: 6 issue: 4 year: 2009 ident: 10.1016/j.ijhydene.2021.08.103_bib26 article-title: Fundamental research needs in combined water and thermal management within a proton exchange membrane fuel cell stack under normal and cold-start conditions publication-title: J Fuel Cell Sci Technol doi: 10.1115/1.3008043 – volume: 46 start-page: 20702 issue: 39 year: 2021 ident: 10.1016/j.ijhydene.2021.08.103_bib48 article-title: Multiscale modeling of an angled gas diffusion layer for polymer electrolyte membrane fuel cells: performance enhancing for aviation applications publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.03.166 – volume: 12 start-page: 212 issue: 2 year: 2012 ident: 10.1016/j.ijhydene.2021.08.103_bib27 article-title: Thermal effect on water transport in proton exchange membrane fuel cell publication-title: Fuel Cell doi: 10.1002/fuce.201100100 – volume: 100011 year: 2021 ident: 10.1016/j.ijhydene.2021.08.103_bib6 article-title: Polymer electrolyte membrane fuel cell and hydrogen station network for automobiles: status, technology, and perspectives publication-title: Advances in Applied Energy – volume: 91 start-page: 1115 issue: 10 year: 2012 ident: 10.1016/j.ijhydene.2021.08.103_bib30 article-title: A domain decomposition method for a two-phase transport model of polymer electrolyte fuel cell containing micro-porous layer publication-title: Int J Numer Methods Eng doi: 10.1002/nme.4317 – year: 2013 ident: 10.1016/j.ijhydene.2021.08.103_bib10 – year: 2019 ident: 10.1016/j.ijhydene.2021.08.103_bib24 – volume: 1 start-page: 100014 year: 2020 ident: 10.1016/j.ijhydene.2021.08.103_bib4 article-title: Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology publication-title: Energy AI doi: 10.1016/j.egyai.2020.100014 – volume: 139 start-page: 2423 issue: 4 year: 2020 ident: 10.1016/j.ijhydene.2021.08.103_bib28 article-title: Computational analysis of heat transfer in a PEM fuel cell with metal foam as a flow field publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08354-x – volume: 158 start-page: B1292 issue: 11 year: 2011 ident: 10.1016/j.ijhydene.2021.08.103_bib44 article-title: Effect of spatially-varying GDL properties and land compression on water distribution in PEM fuel cells publication-title: J Electrochem Soc doi: 10.1149/2.015111jes – volume: 40 start-page: 3348 issue: 8 year: 2015 ident: 10.1016/j.ijhydene.2021.08.103_bib34 article-title: A new approach to modelling water flooding in a polymer electrolyte fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.01.035 – volume: 191 start-page: 346 year: 2017 ident: 10.1016/j.ijhydene.2021.08.103_bib5 article-title: Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.01.056 – volume: 219 start-page: 120 year: 2012 ident: 10.1016/j.ijhydene.2021.08.103_bib33 article-title: Neutron tomographic investigations of water distributions in polymer electrolyte membrane fuel cell stacks publication-title: J Power Sources doi: 10.1016/j.jpowsour.2012.07.043 – volume: 3 start-page: 259 issue: 3 year: 2015 ident: 10.1016/j.ijhydene.2021.08.103_bib40 article-title: Interfacial phenomena and heat transfer in proton exchange membrane fuel cells publication-title: Interfacial Phenom Heat Transf doi: 10.1615/InterfacPhenomHeatTransfer.2016014779 – volume: 171 start-page: 200 year: 2016 ident: 10.1016/j.ijhydene.2021.08.103_bib11 article-title: Effect of the pore size variation in the substrate of the gas diffusion layer on water management and fuel cell performance publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.132 – volume: 185 start-page: 261 issue: 1 year: 2008 ident: 10.1016/j.ijhydene.2021.08.103_bib43 article-title: Modeling of two-phase transport in the diffusion media of polymer electrolyte fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2008.07.007 – start-page: 100004 year: 2020 ident: 10.1016/j.ijhydene.2021.08.103_bib12 – volume: 299 start-page: 85 year: 2015 ident: 10.1016/j.ijhydene.2021.08.103_bib16 article-title: Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: a review publication-title: J Power Sources doi: 10.1016/j.jpowsour.2015.08.092 – volume: 40 start-page: 5169 issue: 15 year: 2015 ident: 10.1016/j.ijhydene.2021.08.103_bib19 article-title: Agglomerate modeling of cathode catalyst layer of a PEM fuel cell by the lattice Boltzmann method publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.02.097 – volume: 150 start-page: 119294 year: 2020 ident: 10.1016/j.ijhydene.2021.08.103_bib17 article-title: Investigation of current density spatial distribution in PEM fuel cells using a comprehensively validated multi-phase non-isothermal model publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2019.119294 – volume: 45 start-page: 29832 issue: 54 year: 2019 ident: 10.1016/j.ijhydene.2021.08.103_bib2 article-title: Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2019.07.231 – volume: 471 start-page: 228427 year: 2020 ident: 10.1016/j.ijhydene.2021.08.103_bib29 article-title: Two-phase flow dynamics in a gas diffusion layer-gas channel-microporous layer system publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228427 – volume: 45 start-page: 4466 issue: 3 year: 2021 ident: 10.1016/j.ijhydene.2021.08.103_bib42 article-title: Vapor condensation in reconstructed gas diffusion layers of proton exchange membrane fuel cell publication-title: Int J Energy Res doi: 10.1002/er.6116 – volume: 64 start-page: 29 year: 2018 ident: 10.1016/j.ijhydene.2021.08.103_bib13 article-title: Cold start of proton exchange membrane fuel cell publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2017.10.003 – volume: 29 start-page: 318 year: 2013 ident: 10.1016/j.ijhydene.2021.08.103_bib8 article-title: Numerical modeling and simulation of PEM fuel cells: progress and perspective publication-title: Acta Mech Sin doi: 10.1007/s10409-013-0037-y – start-page: 163 year: 2012 ident: 10.1016/j.ijhydene.2021.08.103_bib23 article-title: Review of the electrodes layer for unitized regenerative proton exchange membrane fuel cells publication-title: Adv Environ Biol Biomedicine – volume: 155 start-page: B1289 issue: 12 year: 2008 ident: 10.1016/j.ijhydene.2021.08.103_bib20 article-title: Analysis of reaction rates in the cathode electrode of polymer electrolyte fuel cell I. Single-layer electrodes publication-title: J Electrochem Soc doi: 10.1149/1.2988763 – volume: 154 start-page: B636 issue: 7 year: 2007 ident: 10.1016/j.ijhydene.2021.08.103_bib37 article-title: Two-phase transients of polymer electrolyte fuel cells publication-title: J Electrochem Soc doi: 10.1149/1.2734076 – volume: 66 start-page: 3557 issue: 15 year: 2011 ident: 10.1016/j.ijhydene.2021.08.103_bib45 article-title: Elucidating two-phase transport in a polymer electrolyte fuel cell, Part 1: characterizing flow regimes with a dimensionless group publication-title: Chem Eng Sci doi: 10.1016/j.ces.2011.04.016 – volume: 315 start-page: 224 year: 2016 ident: 10.1016/j.ijhydene.2021.08.103_bib46 article-title: Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.03.045 – volume: 3 start-page: 100045 year: 2021 ident: 10.1016/j.ijhydene.2021.08.103_bib15 article-title: Prediction of high frequency resistance in polymer electrolyte membrane fuel cells using long short term memory based model publication-title: Energy and AI doi: 10.1016/j.egyai.2020.100045 – volume: 60 start-page: 134 year: 2013 ident: 10.1016/j.ijhydene.2021.08.103_bib39 article-title: Measurement of thermal conductivity and heat pipe effect in hydrophilic and hydrophobic carbon papers publication-title: Int J Heat Mass Tran doi: 10.1016/j.ijheatmasstransfer.2012.12.016 – volume: 39 start-page: 19024 issue: 33 year: 2014 ident: 10.1016/j.ijhydene.2021.08.103_bib47 article-title: Effects of operating parameters on the transient response of proton exchange membrane fuel cells subject to load changes publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.08.126 – volume: 15 start-page: 4138 year: 2020 ident: 10.1016/j.ijhydene.2021.08.103_bib14 article-title: Numerical investigation on the impact of membrane thickness on transport phenomena in PEM fuel cells publication-title: Int J Electrochem Sci doi: 10.20964/2020.05.15 – volume: 165 start-page: 81 year: 2016 ident: 10.1016/j.ijhydene.2021.08.103_bib3 article-title: A review of recent development: transport and performance modeling of PEM fuel cells publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.12.075 – volume: 32 start-page: 178 year: 2020 ident: 10.1016/j.ijhydene.2021.08.103_bib1 article-title: Materials, technological status, and fundamentals of PEM fuel cells – a review publication-title: Mater Today doi: 10.1016/j.mattod.2019.06.005 – volume: 156 start-page: B403 issue: 3 year: 2009 ident: 10.1016/j.ijhydene.2021.08.103_bib21 article-title: Analysis of the reaction rates in the cathode electrode of polymer electrolyte fuel cells: II. Dual-layer electrodes publication-title: J Electrochem Soc doi: 10.1149/1.3056057 – volume: 46 start-page: 8640 issue: 12 year: 2021 ident: 10.1016/j.ijhydene.2021.08.103_bib35 article-title: Recent progress of gas diffusion layer in proton exchange membrane fuel cell: two-phase flow and material properties publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.076 – volume: 196 start-page: 9544 issue: 22 year: 2011 ident: 10.1016/j.ijhydene.2021.08.103_bib32 article-title: Ex situ and modeling study of two-phase flow in a single channel of polymer electrolyte membrane fuel cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2011.07.076 – volume: 55 start-page: 6391 issue: 22 year: 2010 ident: 10.1016/j.ijhydene.2021.08.103_bib22 article-title: The regimes of catalyst layer operation in a fuel cell publication-title: Electrochim Acta doi: 10.1016/j.electacta.2010.06.053 – volume: 56 start-page: 352 issue: 1 year: 2010 ident: 10.1016/j.ijhydene.2021.08.103_bib38 article-title: Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation publication-title: Electrochim Acta doi: 10.1016/j.electacta.2010.08.070 – volume: 145 start-page: 106045 year: 2019 ident: 10.1016/j.ijhydene.2021.08.103_bib31 article-title: Impact of non-uniform wettability in the condensation and condensation-liquid water intrusion regimes in the cathode gas diffusion layer of proton exchange membrane fuel cell publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2019.106045 |
SSID | ssj0017049 |
Score | 2.418657 |
Snippet | Polymer electrolyte membrane (PEM) fuel cell technology needs to overcome the cost barrier in order to compete with the internal combustion engines (ICEs) for... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 35448 |
SubjectTerms | Cost effective High current density Polymer electrolyte fuel cell Spatial variation |
Title | Investigation of a cost-effective strategy for polymer electrolyte membrane fuel cells: High power density operation |
URI | https://dx.doi.org/10.1016/j.ijhydene.2021.08.103 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb8IwDI4Qu2yHaU-NvZTDrgWapi3ZDaEhtmlcNiRuVdM6GghaBEVTL_vts2mL2C4cdmxkS5Xj2E77-TNjD6IdQaxCbcU2hkApDVgd42tLYHVhx66JjaB-57ehNxjJl7E7rrFe1QtDsMoy9hcxfROty5VWac3WYjJpvWPspRYcJYgTTnWo0ZzY69Cnm99bmIftlyUwClskvdMlPG1Opp85Hm-iyxQbKk-7Gp71N0HtJJ3-CTsuq0XeLV7olNUgOWNHOxyC5yzbYcpIE54aHvIoXWVWgdTAYMZXBQNtzrFA5Yt0ls9hycv5N7M8Az6HOV6aE-BmDTNO3_JXj5wQICj9hbIxodyznKcLKBzmgo36Tx-9gVWOUrAix-9klgFHg7RVGDuaZlWh0bQNKrJDocALpXQM3pxi6YEA4QL9nMFCwzhKKiHCtnYuWT1JE7hiXEe0f-3QUHr3VRQSq5zwhas9X8pYNZhb2S-ISp5xGncxCypA2TSo7B6Q3YN2B9edBmtt9RYF08ZeDVVtT_DLZwJMB3t0r_-he8MO6YkymC1vWT1bruEOS5NM3298754ddJ9fB8MfGgDmiQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbGOAAHxFOMZw5cy9Y0XRduCIEGe1wAiVvVtI7YtLXVVoT674lpigYXDlxTW6oc97PT2J8BLnknxkRGyklcA4FCaHR6OlAON9mFm_g60Zz6nUfjbv9FPL76rw24rXthqKzSYn-F6V9obVfa1prtfDJpPxnspRYcyYkTTvb8NVgndirRhPWbh0F__H2ZENgs2Mg7pLDSKDy9mkzfSvOFE2Mm_2LzdOv5Wb9j1Ercud-BbZswspvqnXahgekebK3QCO5DsUKWkaUs0yxicbYsnKpYw-AZW1YktCUzOSrLs1k5xwWzI3BmZYFsjnNzbk6R6XecMfqdv7xmVARipD-MbEKF7kXJshwrnzmAl_u759u-Y6cpOLEX9ApHo6dQuDJKPEXjqozdlIsydiMusRsJ4WlzeEpEFzlyH-l-xuQa2pNCch51lHcIzTRL8QiYimkLO5GmCB_IOCJiOR5wX3UDIRLZAr-2XxhbqnGaeDEL65qyaVjbPSS7h52eWfda0P7WyyuyjT81ZL094Q-3CU1E-EP3-B-6F7DRfx4Nw-HDeHACm_SEAporTqFZLN7xzGQqhTq3nvgJAP_pOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+a+cost-effective+strategy+for+polymer+electrolyte+membrane+fuel+cells%3A+High+power+density+operation&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Zhou%2C+Jieyang&rft.au=Seo%2C+Bongjin&rft.au=Wang%2C+Zhe&rft.au=Wang%2C+Yun&rft.date=2021-10-14&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.volume=46&rft.issue=71&rft.spage=35448&rft.epage=35458&rft_id=info:doi/10.1016%2Fj.ijhydene.2021.08.103&rft.externalDocID=S0360319921032985 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |