Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: Leaching optimization and kinetic analysis

Recycling of valuable metals from waste lithium-ion batteries (LIBs) has recently attracted significant attention due to the environmental and economical concerns. In this paper, a simple and economical leaching process based on citric acid system was developed for the leaching of metals from the in...

Full description

Saved in:
Bibliographic Details
Published inHydrometallurgy Vol. 191; p. 105160
Main Authors Meng, Fei, Liu, Qingcai, Kim, Rina, Wang, Jingxiu, Liu, Gui, Ghahreman, Ahmad
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recycling of valuable metals from waste lithium-ion batteries (LIBs) has recently attracted significant attention due to the environmental and economical concerns. In this paper, a simple and economical leaching process based on citric acid system was developed for the leaching of metals from the industrial waste LIBs without the manual separation of current collectors, i.e. copper and aluminum foils. The results showed significantly higher leaching efficiencies of metals due to the presence of copper and aluminum. About 91% Li, 90% Co, 94% Ni and 89% Mn were leached under the optimum leaching conditions of 0.5 mol/L citric acid, solid to liquid (S/L) ratio of 80 g/L at 90 °C for 80 min. Furthermore, the effects of the addition time and species of reductant on the leaching of Li, Co, Ni, and Mn were investigated, and the selectivity over Cu and Al as well. The kinetics data revealed that the leaching of Li, Co, Ni and Mn fitted best to the Avrami equation controlled by the surface chemical reaction, whilst the leaching of Cu and Al corresponded to the surface chemical-controlled reaction based on shrinking core model. The leaching feed before and after leaching were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). [Display omitted] •A simple leaching process based on citric acid system for recycling of LIBs.•About 90% of Li, Co, Ni and Mn were leached with current collectors in the absence of reductant.•The leaching of Li, Co, Ni and Mn followed the Avrami equation.•The reductant of ascorbic acid exhibits better selectivity than H2O2.•Delayed addition of reductant results in better metals leaching.
AbstractList Recycling of valuable metals from waste lithium-ion batteries (LIBs) has recently attracted significant attention due to the environmental and economical concerns. In this paper, a simple and economical leaching process based on citric acid system was developed for the leaching of metals from the industrial waste LIBs without the manual separation of current collectors, i.e. copper and aluminum foils. The results showed significantly higher leaching efficiencies of metals due to the presence of copper and aluminum. About 91% Li, 90% Co, 94% Ni and 89% Mn were leached under the optimum leaching conditions of 0.5 mol/L citric acid, solid to liquid (S/L) ratio of 80 g/L at 90 °C for 80 min. Furthermore, the effects of the addition time and species of reductant on the leaching of Li, Co, Ni, and Mn were investigated, and the selectivity over Cu and Al as well. The kinetics data revealed that the leaching of Li, Co, Ni and Mn fitted best to the Avrami equation controlled by the surface chemical reaction, whilst the leaching of Cu and Al corresponded to the surface chemical-controlled reaction based on shrinking core model. The leaching feed before and after leaching were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). [Display omitted] •A simple leaching process based on citric acid system for recycling of LIBs.•About 90% of Li, Co, Ni and Mn were leached with current collectors in the absence of reductant.•The leaching of Li, Co, Ni and Mn followed the Avrami equation.•The reductant of ascorbic acid exhibits better selectivity than H2O2.•Delayed addition of reductant results in better metals leaching.
ArticleNumber 105160
Author Liu, Qingcai
Kim, Rina
Wang, Jingxiu
Liu, Gui
Meng, Fei
Ghahreman, Ahmad
Author_xml – sequence: 1
  givenname: Fei
  surname: Meng
  fullname: Meng, Fei
  organization: College of Material Science & Engineering, Chongqing University, Shapingba, Chongqing 400044, China
– sequence: 2
  givenname: Qingcai
  surname: Liu
  fullname: Liu, Qingcai
  email: liuqc@cqu.edu.cn
  organization: College of Material Science & Engineering, Chongqing University, Shapingba, Chongqing 400044, China
– sequence: 3
  givenname: Rina
  surname: Kim
  fullname: Kim, Rina
  organization: Robert M. Buchan Department of Mining, Queen's University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
– sequence: 4
  givenname: Jingxiu
  surname: Wang
  fullname: Wang, Jingxiu
  organization: Robert M. Buchan Department of Mining, Queen's University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
– sequence: 5
  givenname: Gui
  surname: Liu
  fullname: Liu, Gui
  organization: Robert M. Buchan Department of Mining, Queen's University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
– sequence: 6
  givenname: Ahmad
  surname: Ghahreman
  fullname: Ghahreman, Ahmad
  email: ahmad.g@queensu.ca
  organization: Robert M. Buchan Department of Mining, Queen's University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
BookMark eNqFkc-KFDEQh4Os4OzqK0heoMek03_Fg7K4Kgx4UMFbqE4qTo09yZKkR8ZH8ilNO3rxsqdAke-rql9dsysfPDL2XIqtFLJ7cdjuzzaGI-ZtLeRYiq3sxCO2kUM_VlK2wxXbCCWaSg3d1yfsOqWDEKJTvdywX59wRpPphDyiCSeMZx4cP8G8wDQjL1aYE3fFz8nbJeVIMPMfkDLymfKelmNFwfMJcsZImPiSyH_jhspPw8GQ5Yu3GIvfLpdOJnhLuVDpJd8hmP0KhPtMR_oJa52Dt_w7ecyrwsN8TpSesseuzILP_r437Mvd28-376vdx3cfbt_sKqP6IVfOtEq5phZGSGi7RgwGpHN9bSyqoW6ktONYg51M24-jtC04p-oJRQ1dM8Ggbtiri9fEkFJEp8suf8bKEWjWUug1d33Q_3LXa-76knvBu__w-0hHiOeHwdcXEMtyJ8KokyH0Bi2V02RtAz2k-A089qpe
CitedBy_id crossref_primary_10_1016_j_hydromet_2024_106305
crossref_primary_10_1080_08827508_2023_2196073
crossref_primary_10_1016_S1003_6326_22_65902_8
crossref_primary_10_1007_s40831_023_00745_7
crossref_primary_10_1021_acsomega_2c06654
crossref_primary_10_1007_s11356_024_32837_6
crossref_primary_10_3390_met13061021
crossref_primary_10_1007_s42461_024_01142_8
crossref_primary_10_1002_pssb_202100588
crossref_primary_10_1016_j_psep_2025_107038
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000671
crossref_primary_10_1007_s42461_023_00837_8
crossref_primary_10_1016_j_susmat_2021_e00296
crossref_primary_10_1039_D2RA07926G
crossref_primary_10_1021_acssusresmgt_4c00175
crossref_primary_10_4028_p_0bcko6
crossref_primary_10_1021_acs_energyfuels_1c02489
crossref_primary_10_1016_j_hydromet_2020_105448
crossref_primary_10_1016_j_mineng_2021_107204
crossref_primary_10_1016_j_hydromet_2022_105966
crossref_primary_10_3390_met13050947
crossref_primary_10_1016_j_jclepro_2023_136608
crossref_primary_10_1016_j_molliq_2021_116703
crossref_primary_10_1016_j_apmt_2020_100638
crossref_primary_10_3390_batteries11020051
crossref_primary_10_1016_j_hazl_2024_100104
crossref_primary_10_1016_j_matpr_2022_12_175
crossref_primary_10_1021_acssuschemeng_2c03346
crossref_primary_10_1016_j_hydromet_2023_106168
crossref_primary_10_3390_min13081104
crossref_primary_10_1016_S1872_5805_24_60846_2
crossref_primary_10_1016_j_seppur_2025_131708
crossref_primary_10_1002_metm_5
crossref_primary_10_1002_adsu_202300512
crossref_primary_10_1016_j_grets_2024_100135
crossref_primary_10_1021_acssuschemeng_3c02348
crossref_primary_10_3390_su16166817
crossref_primary_10_1016_j_seppur_2020_117463
crossref_primary_10_1016_j_ces_2025_121351
crossref_primary_10_1039_D2RA04391B
crossref_primary_10_1016_j_wasman_2024_08_004
crossref_primary_10_1016_j_hydromet_2021_105608
crossref_primary_10_1016_j_apt_2022_103547
crossref_primary_10_1016_j_jpowsour_2023_233870
crossref_primary_10_1021_acsomega_4c05086
crossref_primary_10_1134_S0040579521040370
crossref_primary_10_1021_acsaem_0c03192
crossref_primary_10_1016_j_hydromet_2024_106362
crossref_primary_10_1007_s43153_021_00095_5
crossref_primary_10_1016_j_jallcom_2023_171130
crossref_primary_10_1016_j_mineng_2022_107939
crossref_primary_10_1021_acsomega_3c08687
crossref_primary_10_1007_s11837_021_05111_0
crossref_primary_10_1002_celc_202400248
crossref_primary_10_7844_kirr_2024_33_5_14
crossref_primary_10_1016_j_seppur_2024_127771
crossref_primary_10_1007_s10668_023_02925_7
crossref_primary_10_1016_j_susmat_2022_e00499
crossref_primary_10_1016_j_jece_2025_116174
crossref_primary_10_1016_j_jhazmat_2021_127481
crossref_primary_10_1016_j_desal_2023_116874
crossref_primary_10_1080_08827508_2021_2017925
crossref_primary_10_1002_smll_202400557
crossref_primary_10_1016_j_scowo_2024_100027
crossref_primary_10_1080_09593330_2021_1968505
crossref_primary_10_3390_en17164055
crossref_primary_10_3390_batteries10060170
crossref_primary_10_1021_acs_jchemed_4c00204
crossref_primary_10_1039_D2GC03947H
crossref_primary_10_1080_10643389_2020_1847949
crossref_primary_10_1016_j_cej_2023_143030
crossref_primary_10_1002_adfm_202402325
crossref_primary_10_1016_j_wasman_2023_08_030
crossref_primary_10_3390_met13081330
crossref_primary_10_1016_j_microc_2020_105483
crossref_primary_10_3390_min12060753
crossref_primary_10_1016_j_electacta_2023_141842
crossref_primary_10_3390_su142114169
crossref_primary_10_1007_s11356_022_24560_x
crossref_primary_10_1016_j_jece_2023_110216
crossref_primary_10_1021_acs_est_2c08395
crossref_primary_10_1016_j_colsurfa_2024_134241
crossref_primary_10_1016_j_resconrec_2021_105813
crossref_primary_10_1039_D0RE00286K
crossref_primary_10_1038_s41598_021_02019_2
crossref_primary_10_1016_j_seppur_2024_131298
crossref_primary_10_1016_j_rineng_2025_104190
crossref_primary_10_1016_j_jhazmat_2021_125561
crossref_primary_10_1002_cjce_25230
crossref_primary_10_1002_celc_202201059
crossref_primary_10_1016_j_supflu_2020_104990
crossref_primary_10_1016_j_jenvman_2024_121862
crossref_primary_10_1016_j_jhazmat_2021_127214
crossref_primary_10_1016_j_jallcom_2023_169548
crossref_primary_10_1016_j_seppur_2021_119903
crossref_primary_10_1016_j_cej_2024_158114
crossref_primary_10_3390_app10186375
crossref_primary_10_3390_batteries10120415
crossref_primary_10_3390_recycling8050079
crossref_primary_10_1021_acssuschemeng_3c05141
crossref_primary_10_1039_D0GC03820B
crossref_primary_10_1016_j_ensm_2020_12_019
crossref_primary_10_3390_met12091400
crossref_primary_10_1016_j_hydromet_2024_106281
Cites_doi 10.1016/j.seppur.2015.07.003
10.1016/j.jpowsour.2015.02.073
10.1016/j.hydromet.2005.10.003
10.1016/j.jclepro.2018.01.040
10.1016/j.jhazmat.2016.12.021
10.1080/10643389.2013.763578
10.1016/j.jhazmat.2009.11.026
10.1016/S0378-7753(97)02538-X
10.1016/j.wasman.2018.02.052
10.1016/j.wasman.2015.11.036
10.1002/aic.690330213
10.1016/j.seppur.2016.08.031
10.1016/j.hydromet.2008.06.012
10.1016/j.rser.2015.12.363
10.1021/acssuschemeng.5b01000
10.1021/acs.est.6b03320
10.1016/j.jpowsour.2012.01.115
10.1021/ie401552v
10.1016/j.hydromet.2017.02.010
10.1016/j.wasman.2015.05.027
10.1021/acssuschemeng.6b02056
10.1016/j.cej.2015.06.071
10.1016/j.jiec.2013.11.066
10.1021/acssuschemeng.6b02337
10.1016/j.resconrec.2018.04.024
10.1016/j.jpowsour.2014.03.126
10.1016/j.cej.2009.05.020
10.1016/j.resconrec.2017.11.001
10.1021/acssuschemeng.7b00571
10.1016/j.electacta.2018.08.134
10.1016/j.jhazmat.2016.03.062
10.1016/j.jpowsour.2012.06.068
10.1016/j.jpowsour.2017.12.006
10.1016/j.jece.2016.04.016
10.1016/j.matlet.2006.06.068
10.1016/j.wasman.2017.10.028
10.1016/j.mineng.2016.01.010
10.1016/j.wasman.2017.03.037
10.1016/j.jpowsour.2003.12.026
10.1002/jctb.4053
10.1016/j.wasman.2010.08.008
10.1016/j.wasman.2017.02.011
10.1021/acssuschemeng.8b01805
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.hydromet.2019.105160
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1158
ExternalDocumentID 10_1016_j_hydromet_2019_105160
S0304386X19304918
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABEFU
ABFNM
ABMAC
ABNUV
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSG
SSZ
T5K
VH1
WUQ
XPP
XXG
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c378t-fc533f420c01a56408ca1ff72cde382411d992adbc57991d5aff32be02a64ba83
IEDL.DBID .~1
ISSN 0304-386X
IngestDate Thu Apr 24 23:02:44 EDT 2025
Tue Jul 01 04:29:21 EDT 2025
Fri Feb 23 02:49:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reductant
Industrial waste LIBs
Leaching kinetics
Current collectors
Citric acid
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-fc533f420c01a56408ca1ff72cde382411d992adbc57991d5aff32be02a64ba83
ParticipantIDs crossref_citationtrail_10_1016_j_hydromet_2019_105160
crossref_primary_10_1016_j_hydromet_2019_105160
elsevier_sciencedirect_doi_10_1016_j_hydromet_2019_105160
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Hydrometallurgy
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Ge, Chen, Wu, Chen, Zhang (bb0110) 2010; 30
Gratz, Sa, Apelian, Wang (bb0065) 2014; 262
Li, Qu, Zhang, Lu, Chen, Wu, Amine (bb0130) 2015; 282
Wagner (bb0190) 2006
Iwakura, Fukumoto, Inoue, Ohashi, Kobayashi, Tada, Abe (bb0095) 1997; 68
Meshram, Pandey, Mankhand (bb0155) 2015; 45
Franke, Ernst, Myerson (bb0035) 1987; 33
Peng, Hamuyuni, Wilson, Lundström (bb0175) 2018; 76
Gao, Zhang, Zheng, Lin, Cao, Zhang, Sun (bb0040) 2017; 51
Ordoñez, Gago, Girard (bb0165) 2016; 60
Nayaka, Pai, Santhosh, Manjanna (bb0160) 2016; 4
Li, Bian, Zhang, Guan, Fan, Wu, Chen (bb0140) 2018; 71
Li, Bian, Zhang, Xue, Fan, Wu, Chen (bb0145) 2018; 377
Li, Fan, Guan, Zhang, Xue, Wei, Wu, Chen (bb0135) 2017; 5
Sokić, Marković, Živković (bb0180) 2009; 95
Golmohammadzadeh, Faraji, Rashchi (bb0055) 2018; 136
Chagnes, Pospiech (bb0015) 2013; 88
Yue, Wei, Yongjie, Chenyang, Shaole, Yuehua (bb0205) 2018; 6
Granata, Moscardini, Pagnanelli, Trabucco, Toro (bb0060) 2012; 206
Zhang, Cao, Xie, Ning, An, You, Nawaz (bb0215) 2015; 150
Meshram, Pandey, Mankhand (bb0150) 2015; 281
Swain (bb0185) 2017; 172
Aydogan, Ucar, Canbazoglu (bb0005) 2006; 81
Li, Liu, Liu (bb0125) 2014; 53
Habbache, Alane, Djerad, Tifouti (bb0080) 2009; 152
Ku, Jung, Jo, Park, Kim, Yang, Rhee, An, Sohn, Kwon (bb0105) 2016; 313
Guan, Li, Guo, Su, Gao, Song, Yuan, Liang, Guo (bb0070) 2017; 5
Pagnanelli, Moscardini, Granata, Cerbelli, Agosta, Fieramosca, Toro (bb0170) 2014; 20
Li, Lu, Ren, Zhang, Chen, Wu, Amine (bb0120) 2012; 218
Bernardes, Espinosa, Tenório (bb0010) 2004; 130
Guo, Li, Zhu, Li, Huang, He (bb0075) 2016; 51
Zeng, Li, Singh (bb0210) 2014; 44
Gao, Song, Cao, Lin, Zhang, Zheng, Zhang, Sun (bb0045) 2018; 178
Chen, Ma, Luo, Zhou (bb0025) 2017; 326
Zhou, Zhao, Yin, Li (bb0220) 2018; 291
Golmohammadzadeh, Rashchi, Vahidi (bb0050) 2017; 64
Chen, Luo, Zhang, Kong, Zhou (bb0020) 2015; 3
Choubey, Kim, Srivastava, Lee, Lee (bb0030) 2016; 89
Joulié, Billy, Laucournet, Meyer (bb0100) 2017; 169
He, Sun, Mu, Song, Yu (bb0085) 2017; 5
Winslow, Laux, Townsend (bb0195) 2018; 129
He, Sun, Song, Yu (bb0090) 2017; 64
Li, Ge, Wu, Chen, Chen, Wu (bb0115) 2010; 176
Wu (bb0200) 2007; 61
Bernardes (10.1016/j.hydromet.2019.105160_bb0010) 2004; 130
Gratz (10.1016/j.hydromet.2019.105160_bb0065) 2014; 262
Aydogan (10.1016/j.hydromet.2019.105160_bb0005) 2006; 81
Gao (10.1016/j.hydromet.2019.105160_bb0040) 2017; 51
Pagnanelli (10.1016/j.hydromet.2019.105160_bb0170) 2014; 20
Ordoñez (10.1016/j.hydromet.2019.105160_bb0165) 2016; 60
Yue (10.1016/j.hydromet.2019.105160_bb0205) 2018; 6
Zhou (10.1016/j.hydromet.2019.105160_bb0220) 2018; 291
Iwakura (10.1016/j.hydromet.2019.105160_bb0095) 1997; 68
Meshram (10.1016/j.hydromet.2019.105160_bb0155) 2015; 45
Franke (10.1016/j.hydromet.2019.105160_bb0035) 1987; 33
Joulié (10.1016/j.hydromet.2019.105160_bb0100) 2017; 169
Gao (10.1016/j.hydromet.2019.105160_bb0045) 2018; 178
Zhang (10.1016/j.hydromet.2019.105160_bb0215) 2015; 150
Ku (10.1016/j.hydromet.2019.105160_bb0105) 2016; 313
Chagnes (10.1016/j.hydromet.2019.105160_bb0015) 2013; 88
Li (10.1016/j.hydromet.2019.105160_bb0140) 2018; 71
Granata (10.1016/j.hydromet.2019.105160_bb0060) 2012; 206
Golmohammadzadeh (10.1016/j.hydromet.2019.105160_bb0050) 2017; 64
Choubey (10.1016/j.hydromet.2019.105160_bb0030) 2016; 89
Habbache (10.1016/j.hydromet.2019.105160_bb0080) 2009; 152
He (10.1016/j.hydromet.2019.105160_bb0085) 2017; 5
Li (10.1016/j.hydromet.2019.105160_bb0130) 2015; 282
Peng (10.1016/j.hydromet.2019.105160_bb0175) 2018; 76
Zeng (10.1016/j.hydromet.2019.105160_bb0210) 2014; 44
Guan (10.1016/j.hydromet.2019.105160_bb0070) 2017; 5
Li (10.1016/j.hydromet.2019.105160_bb0115) 2010; 176
Sokić (10.1016/j.hydromet.2019.105160_bb0180) 2009; 95
Wu (10.1016/j.hydromet.2019.105160_bb0200) 2007; 61
Li (10.1016/j.hydromet.2019.105160_bb0135) 2017; 5
Li (10.1016/j.hydromet.2019.105160_bb0120) 2012; 218
Li (10.1016/j.hydromet.2019.105160_bb0110) 2010; 30
He (10.1016/j.hydromet.2019.105160_bb0090) 2017; 64
Swain (10.1016/j.hydromet.2019.105160_bb0185) 2017; 172
Meshram (10.1016/j.hydromet.2019.105160_bb0150) 2015; 281
Wagner (10.1016/j.hydromet.2019.105160_bb0190) 2006
Chen (10.1016/j.hydromet.2019.105160_bb0025) 2017; 326
Guo (10.1016/j.hydromet.2019.105160_bb0075) 2016; 51
Li (10.1016/j.hydromet.2019.105160_bb0125) 2014; 53
Nayaka (10.1016/j.hydromet.2019.105160_bb0160) 2016; 4
Chen (10.1016/j.hydromet.2019.105160_bb0020) 2015; 3
Li (10.1016/j.hydromet.2019.105160_bb0145) 2018; 377
Winslow (10.1016/j.hydromet.2019.105160_bb0195) 2018; 129
Golmohammadzadeh (10.1016/j.hydromet.2019.105160_bb0055) 2018; 136
References_xml – volume: 81
  start-page: 45
  year: 2006
  end-page: 51
  ident: bb0005
  article-title: Dissolution kinetics of chalcopyrite in acidic potassium dichromate solution
  publication-title: Hydrometallurgy
– volume: 172
  start-page: 388
  year: 2017
  end-page: 403
  ident: bb0185
  article-title: Recovery and recycling of lithium: a review
  publication-title: Sep. Purif. Technol.
– volume: 130
  start-page: 291
  year: 2004
  end-page: 298
  ident: bb0010
  article-title: Recycling of batteries: a review of current processes and technologies
  publication-title: J. Power Sources
– volume: 129
  start-page: 263
  year: 2018
  end-page: 277
  ident: bb0195
  article-title: A review on the growing concern and potential management strategies of waste lithium-ion batteries
  publication-title: Resour. Conserv. Recycl.
– volume: 51
  start-page: 1662
  year: 2017
  end-page: 1669
  ident: bb0040
  article-title: Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process
  publication-title: Environ. Sci. Technol.
– volume: 150
  start-page: 186
  year: 2015
  end-page: 195
  ident: bb0215
  article-title: A closed-loop process for recycling LiNi
  publication-title: Sep. Purif. Technol.
– volume: 152
  start-page: 503
  year: 2009
  end-page: 508
  ident: bb0080
  article-title: Leaching of copper oxide with different acid solutions
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 1026
  year: 2017
  end-page: 1032
  ident: bb0070
  article-title: Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries
  publication-title: ACS Sustain. Chem. Eng.
– volume: 176
  start-page: 288
  year: 2010
  end-page: 293
  ident: bb0115
  article-title: Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant
  publication-title: J. Hazard. Mater.
– volume: 178
  start-page: 833
  year: 2018
  end-page: 845
  ident: bb0045
  article-title: Selective recovery of valuable metals from spent lithium-ion batteries–process development and kinetics evaluation
  publication-title: J. Clean. Prod.
– volume: 206
  start-page: 393
  year: 2012
  end-page: 401
  ident: bb0060
  article-title: Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: lab scale tests and process simulations
  publication-title: J. Power Sources
– volume: 262
  start-page: 255
  year: 2014
  end-page: 262
  ident: bb0065
  article-title: A closed loop process for recycling spent lithium ion batteries
  publication-title: J. Power Sources
– volume: 169
  start-page: 426
  year: 2017
  end-page: 432
  ident: bb0100
  article-title: Current collectors as reducing agent to dissolve active materials of positive electrodes from Li-ion battery wastes
  publication-title: Hydrometallurgy
– volume: 95
  start-page: 273
  year: 2009
  end-page: 279
  ident: bb0180
  article-title: Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid
  publication-title: Hydrometallurgy
– volume: 68
  start-page: 301
  year: 1997
  end-page: 303
  ident: bb0095
  article-title: Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries
  publication-title: J. Power Sources
– volume: 53
  start-page: 2956
  year: 2014
  end-page: 2962
  ident: bb0125
  article-title: Kinetics of vanadium leaching from a spent industrial V
  publication-title: Ind. Eng. Chem. Res.
– volume: 6
  start-page: 10445
  year: 2018
  end-page: 10453
  ident: bb0205
  article-title: Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching
  publication-title: ACS Sustain. Chem. Eng.
– volume: 88
  start-page: 1191
  year: 2013
  end-page: 1199
  ident: bb0015
  article-title: A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 281
  start-page: 418
  year: 2015
  end-page: 427
  ident: bb0150
  article-title: Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching
  publication-title: Chem. Eng. J.
– volume: 60
  start-page: 195
  year: 2016
  end-page: 205
  ident: bb0165
  article-title: Processes and technologies for the recycling and recovery of spent lithium-ion batteries
  publication-title: Renew. Sust. Energ. Rev.
– volume: 377
  start-page: 70
  year: 2018
  end-page: 79
  ident: bb0145
  article-title: Economical recycling process for spent lithium-ion batteries and macro-and micro-scale mechanistic study
  publication-title: J. Power Sources
– volume: 51
  start-page: 227
  year: 2016
  end-page: 233
  ident: bb0075
  article-title: Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)
  publication-title: Waste Manag.
– volume: 3
  start-page: 3104
  year: 2015
  end-page: 3113
  ident: bb0020
  article-title: Sustainable recovery of metals from spent lithium-ion batteries: a green process
  publication-title: ACS Sustain. Chem. Eng.
– volume: 30
  start-page: 2615
  year: 2010
  end-page: 2621
  ident: bb0110
  article-title: Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries
  publication-title: Waste Manag.
– volume: 44
  start-page: 1129
  year: 2014
  end-page: 1165
  ident: bb0210
  article-title: Recycling of spent lithium-ion battery: a critical review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 89
  start-page: 119
  year: 2016
  end-page: 137
  ident: bb0030
  article-title: Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: from mineral and brine resources
  publication-title: Miner. Eng.
– volume: 326
  start-page: 77
  year: 2017
  end-page: 86
  ident: bb0025
  article-title: Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid
  publication-title: J. Hazard. Mater.
– volume: 5
  start-page: 5224
  year: 2017
  end-page: 5233
  ident: bb0135
  article-title: Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system
  publication-title: ACS Sustain. Chem. Eng.
– volume: 71
  start-page: 362
  year: 2018
  end-page: 371
  ident: bb0140
  article-title: Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching
  publication-title: Waste Manag.
– volume: 20
  start-page: 3201
  year: 2014
  end-page: 3207
  ident: bb0170
  article-title: Acid reducing leaching of cathodic powder from spent lithium ion batteries: glucose oxidative pathways and particle area evolution
  publication-title: J. Ind. Eng. Chem.
– volume: 291
  start-page: 142
  year: 2018
  end-page: 150
  ident: bb0220
  article-title: Regeneration of LiNi
  publication-title: Electrochim. Acta
– volume: 218
  start-page: 21
  year: 2012
  end-page: 27
  ident: bb0120
  article-title: Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries
  publication-title: J. Power Sources
– volume: 64
  start-page: 171
  year: 2017
  end-page: 181
  ident: bb0090
  article-title: Leaching process for recovering valuable metals from the LiNi
  publication-title: Waste Manag.
– volume: 5
  start-page: 714
  year: 2017
  end-page: 721
  ident: bb0085
  article-title: Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant
  publication-title: ACS Sustain. Chem. Eng.
– volume: 313
  start-page: 138
  year: 2016
  end-page: 146
  ident: bb0105
  article-title: Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching
  publication-title: J. Hazard. Mater.
– volume: 282
  start-page: 544
  year: 2015
  end-page: 551
  ident: bb0130
  article-title: Succinic acid-based leaching system : a sustainable process for recovery of valuable metals from spent Li-ion batteries
  publication-title: J. Power Sources
– volume: 45
  start-page: 306
  year: 2015
  end-page: 313
  ident: bb0155
  article-title: Recovery of valuable metals from cathodic active material of spent lithium ion batteries: leaching and kinetic aspects
  publication-title: Waste Manag.
– volume: 64
  start-page: 244
  year: 2017
  end-page: 254
  ident: bb0050
  article-title: Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: process optimization and kinetic aspects
  publication-title: Waste Manag.
– volume: 4
  start-page: 2378
  year: 2016
  end-page: 2383
  ident: bb0160
  article-title: Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent
  publication-title: J. Environ. Chem. Eng.
– volume: 76
  start-page: 582
  year: 2018
  end-page: 590
  ident: bb0175
  article-title: Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system
  publication-title: Waste Manag.
– volume: 33
  start-page: 267
  year: 1987
  end-page: 273
  ident: bb0035
  article-title: Kinetics of dissolution of alumina in acidic solution
  publication-title: AICHE J.
– volume: 136
  start-page: 418
  year: 2018
  end-page: 435
  ident: bb0055
  article-title: Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: a review
  publication-title: Resour. Conserv. Recycl.
– year: 2006
  ident: bb0190
  article-title: Battery Fuel Gauges: Accurately Measuring Charge Level
– volume: 61
  start-page: 1125
  year: 2007
  end-page: 1129
  ident: bb0200
  article-title: Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC
  publication-title: Mater. Lett.
– volume: 150
  start-page: 186
  year: 2015
  ident: 10.1016/j.hydromet.2019.105160_bb0215
  article-title: A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: process optimization and kinetics analysis
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2015.07.003
– volume: 282
  start-page: 544
  year: 2015
  ident: 10.1016/j.hydromet.2019.105160_bb0130
  article-title: Succinic acid-based leaching system : a sustainable process for recovery of valuable metals from spent Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.073
– volume: 81
  start-page: 45
  year: 2006
  ident: 10.1016/j.hydromet.2019.105160_bb0005
  article-title: Dissolution kinetics of chalcopyrite in acidic potassium dichromate solution
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2005.10.003
– volume: 178
  start-page: 833
  year: 2018
  ident: 10.1016/j.hydromet.2019.105160_bb0045
  article-title: Selective recovery of valuable metals from spent lithium-ion batteries–process development and kinetics evaluation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.01.040
– volume: 326
  start-page: 77
  year: 2017
  ident: 10.1016/j.hydromet.2019.105160_bb0025
  article-title: Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.12.021
– volume: 44
  start-page: 1129
  year: 2014
  ident: 10.1016/j.hydromet.2019.105160_bb0210
  article-title: Recycling of spent lithium-ion battery: a critical review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2013.763578
– volume: 176
  start-page: 288
  year: 2010
  ident: 10.1016/j.hydromet.2019.105160_bb0115
  article-title: Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.11.026
– volume: 68
  start-page: 301
  year: 1997
  ident: 10.1016/j.hydromet.2019.105160_bb0095
  article-title: Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(97)02538-X
– volume: 76
  start-page: 582
  year: 2018
  ident: 10.1016/j.hydromet.2019.105160_bb0175
  article-title: Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2018.02.052
– volume: 51
  start-page: 227
  year: 2016
  ident: 10.1016/j.hydromet.2019.105160_bb0075
  article-title: Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2015.11.036
– volume: 33
  start-page: 267
  year: 1987
  ident: 10.1016/j.hydromet.2019.105160_bb0035
  article-title: Kinetics of dissolution of alumina in acidic solution
  publication-title: AICHE J.
  doi: 10.1002/aic.690330213
– volume: 172
  start-page: 388
  year: 2017
  ident: 10.1016/j.hydromet.2019.105160_bb0185
  article-title: Recovery and recycling of lithium: a review
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.08.031
– volume: 95
  start-page: 273
  year: 2009
  ident: 10.1016/j.hydromet.2019.105160_bb0180
  article-title: Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2008.06.012
– volume: 60
  start-page: 195
  year: 2016
  ident: 10.1016/j.hydromet.2019.105160_bb0165
  article-title: Processes and technologies for the recycling and recovery of spent lithium-ion batteries
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.12.363
– volume: 3
  start-page: 3104
  year: 2015
  ident: 10.1016/j.hydromet.2019.105160_bb0020
  article-title: Sustainable recovery of metals from spent lithium-ion batteries: a green process
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01000
– volume: 51
  start-page: 1662
  year: 2017
  ident: 10.1016/j.hydromet.2019.105160_bb0040
  article-title: Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03320
– volume: 206
  start-page: 393
  year: 2012
  ident: 10.1016/j.hydromet.2019.105160_bb0060
  article-title: Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: lab scale tests and process simulations
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.01.115
– volume: 53
  start-page: 2956
  year: 2014
  ident: 10.1016/j.hydromet.2019.105160_bb0125
  article-title: Kinetics of vanadium leaching from a spent industrial V2O5/TiO2 catalyst by sulfuric acid
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie401552v
– volume: 169
  start-page: 426
  year: 2017
  ident: 10.1016/j.hydromet.2019.105160_bb0100
  article-title: Current collectors as reducing agent to dissolve active materials of positive electrodes from Li-ion battery wastes
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2017.02.010
– volume: 45
  start-page: 306
  year: 2015
  ident: 10.1016/j.hydromet.2019.105160_bb0155
  article-title: Recovery of valuable metals from cathodic active material of spent lithium ion batteries: leaching and kinetic aspects
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2015.05.027
– volume: 5
  start-page: 714
  year: 2017
  ident: 10.1016/j.hydromet.2019.105160_bb0085
  article-title: Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02056
– volume: 281
  start-page: 418
  year: 2015
  ident: 10.1016/j.hydromet.2019.105160_bb0150
  article-title: Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.06.071
– volume: 20
  start-page: 3201
  year: 2014
  ident: 10.1016/j.hydromet.2019.105160_bb0170
  article-title: Acid reducing leaching of cathodic powder from spent lithium ion batteries: glucose oxidative pathways and particle area evolution
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2013.11.066
– volume: 5
  start-page: 1026
  year: 2017
  ident: 10.1016/j.hydromet.2019.105160_bb0070
  article-title: Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02337
– volume: 136
  start-page: 418
  year: 2018
  ident: 10.1016/j.hydromet.2019.105160_bb0055
  article-title: Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: a review
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2018.04.024
– volume: 262
  start-page: 255
  year: 2014
  ident: 10.1016/j.hydromet.2019.105160_bb0065
  article-title: A closed loop process for recycling spent lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.03.126
– volume: 152
  start-page: 503
  year: 2009
  ident: 10.1016/j.hydromet.2019.105160_bb0080
  article-title: Leaching of copper oxide with different acid solutions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.05.020
– volume: 129
  start-page: 263
  year: 2018
  ident: 10.1016/j.hydromet.2019.105160_bb0195
  article-title: A review on the growing concern and potential management strategies of waste lithium-ion batteries
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2017.11.001
– volume: 5
  start-page: 5224
  year: 2017
  ident: 10.1016/j.hydromet.2019.105160_bb0135
  article-title: Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00571
– volume: 291
  start-page: 142
  year: 2018
  ident: 10.1016/j.hydromet.2019.105160_bb0220
  article-title: Regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.134
– volume: 313
  start-page: 138
  year: 2016
  ident: 10.1016/j.hydromet.2019.105160_bb0105
  article-title: Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.03.062
– volume: 218
  start-page: 21
  year: 2012
  ident: 10.1016/j.hydromet.2019.105160_bb0120
  article-title: Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.06.068
– volume: 377
  start-page: 70
  year: 2018
  ident: 10.1016/j.hydromet.2019.105160_bb0145
  article-title: Economical recycling process for spent lithium-ion batteries and macro-and micro-scale mechanistic study
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.12.006
– volume: 4
  start-page: 2378
  year: 2016
  ident: 10.1016/j.hydromet.2019.105160_bb0160
  article-title: Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2016.04.016
– volume: 61
  start-page: 1125
  year: 2007
  ident: 10.1016/j.hydromet.2019.105160_bb0200
  article-title: Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2006.06.068
– volume: 71
  start-page: 362
  year: 2018
  ident: 10.1016/j.hydromet.2019.105160_bb0140
  article-title: Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.10.028
– volume: 89
  start-page: 119
  year: 2016
  ident: 10.1016/j.hydromet.2019.105160_bb0030
  article-title: Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: from mineral and brine resources
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.01.010
– volume: 64
  start-page: 244
  year: 2017
  ident: 10.1016/j.hydromet.2019.105160_bb0050
  article-title: Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: process optimization and kinetic aspects
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.03.037
– year: 2006
  ident: 10.1016/j.hydromet.2019.105160_bb0190
– volume: 130
  start-page: 291
  year: 2004
  ident: 10.1016/j.hydromet.2019.105160_bb0010
  article-title: Recycling of batteries: a review of current processes and technologies
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.12.026
– volume: 88
  start-page: 1191
  year: 2013
  ident: 10.1016/j.hydromet.2019.105160_bb0015
  article-title: A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.4053
– volume: 30
  start-page: 2615
  year: 2010
  ident: 10.1016/j.hydromet.2019.105160_bb0110
  article-title: Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2010.08.008
– volume: 64
  start-page: 171
  year: 2017
  ident: 10.1016/j.hydromet.2019.105160_bb0090
  article-title: Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.02.011
– volume: 6
  start-page: 10445
  year: 2018
  ident: 10.1016/j.hydromet.2019.105160_bb0205
  article-title: Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01805
SSID ssj0006371
Score 2.5671275
Snippet Recycling of valuable metals from waste lithium-ion batteries (LIBs) has recently attracted significant attention due to the environmental and economical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105160
SubjectTerms Citric acid
Current collectors
Industrial waste LIBs
Leaching kinetics
Reductant
Title Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: Leaching optimization and kinetic analysis
URI https://dx.doi.org/10.1016/j.hydromet.2019.105160
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYiuJQDglIEbUFz6NVJ1ut9cUMIFNqSS4qU28pPWB4JQkGICz-ov5IZr5cGqRIHriuPbXlG42-8M98w9oNQp9dZwnMtFJc-lVxX1vKs8JUXDkNoTe-QZ-N8dC5_TrNpjx11tTCUVhl9f-vTg7eOXwbxNAd3TTOY0E-9tMynCEFwwYQKfqUsyMr7z__SPPI0BF00mNPopSrhq_7lUyAFoJzKpKKWt0mgqvzPBbV06ZxssPWIFuGw3dAm67nZZ7a2xCG4xf5OQicbdFpAwS1a5hPMPQQSb33jANdFCwMqI4HmtU8HPCpULyAGv2webjkqB3Rg2sTAGSgX_gJMQ-T9oExjgSrN7nF-IoellTCItm2u1wH8jvmYMEfvcxvLOkHNLFzjLhc0RSQ--cLOT47_HI14bMDATVqUC-4NgkEvxdAME5XlclgalXhfCGNdWuLdn9iqEspqkxWIM22mvE-FdkOhcqlVmW6zldl85nYYqEwKj-GTklbKyqGQQ2haGQzsSwIiuyzrTr02kZ2cmmTc1F0a2lXdaasmbdWttnbZ4FXuruXneFei6pRav7G0Gi-Rd2S_fkD2G_skKFYPzzff2cri_sHtIaBZ6P1gsfts9fD012j8Ao4j_FA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69LDtMOyJdU8edtUSy5Jj71YUK9I1zaUtkJuh5-o-kqJIMfQv9VeWtOUgAwb0sKthSoJJkB9l8iPAN0ad0epMFFYaoWKuhK28F3ocqygDpdCW7yGPZsXkVP2a6_kW7PW9MFxWmXx_59Nbb52eDNPXHF43zfCYf-rlZTEnCEIbZuUT2GZ2Kj2A7d2Dw8ls7ZCLvM27-H3BAhuNwuffz-5aXgAuq8wqnnqbtWyV_4hRG3Fn_yW8SIARd7szvYKtsHgNzzdoBN_A_XE7zIb8FnJ-S8Z5h8uILY-3vQxI-5KRIXeSYLMe1YF_DGkYCYafNbdXgvSDtiXbpNwZuRz-N7qG-fvRuMYjN5vd0PrMD8s7UR7tu3KvHzhNJZm4JAd0lTo70Sw8XtApV7xE4j55C6f7P0_2JiLNYBAuH5crER3hwajkyI0yows1Kp3JYhxL50NeUvjPfFVJ463TY4KaXpsYc2nDSJpCWVPm72CwWC7Ce0CjlYyUQRnllaoCCQVCp5Wj3L5kLLIDuv_qtUsE5Twn47LuK9HO615bNWur7rS1A8O13HVH0fGoRNUrtf7L2GqKI4_IfvgP2a_wdHJyNK2nB7PDj_BMcure3uZ8gsHq5jZ8Jnyzsl-S_T4AII3_AQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+recovery+of+valuable+metals+from+industrial+waste+lithium-ion+batteries+using+citric+acid+under+reductive+conditions%3A+Leaching+optimization+and+kinetic+analysis&rft.jtitle=Hydrometallurgy&rft.au=Meng%2C+Fei&rft.au=Liu%2C+Qingcai&rft.au=Kim%2C+Rina&rft.au=Wang%2C+Jingxiu&rft.date=2020-01-01&rft.pub=Elsevier+B.V&rft.issn=0304-386X&rft.eissn=1879-1158&rft.volume=191&rft_id=info:doi/10.1016%2Fj.hydromet.2019.105160&rft.externalDocID=S0304386X19304918
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-386X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-386X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-386X&client=summon