Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: Leaching optimization and kinetic analysis
Recycling of valuable metals from waste lithium-ion batteries (LIBs) has recently attracted significant attention due to the environmental and economical concerns. In this paper, a simple and economical leaching process based on citric acid system was developed for the leaching of metals from the in...
Saved in:
Published in | Hydrometallurgy Vol. 191; p. 105160 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recycling of valuable metals from waste lithium-ion batteries (LIBs) has recently attracted significant attention due to the environmental and economical concerns. In this paper, a simple and economical leaching process based on citric acid system was developed for the leaching of metals from the industrial waste LIBs without the manual separation of current collectors, i.e. copper and aluminum foils. The results showed significantly higher leaching efficiencies of metals due to the presence of copper and aluminum. About 91% Li, 90% Co, 94% Ni and 89% Mn were leached under the optimum leaching conditions of 0.5 mol/L citric acid, solid to liquid (S/L) ratio of 80 g/L at 90 °C for 80 min. Furthermore, the effects of the addition time and species of reductant on the leaching of Li, Co, Ni, and Mn were investigated, and the selectivity over Cu and Al as well. The kinetics data revealed that the leaching of Li, Co, Ni and Mn fitted best to the Avrami equation controlled by the surface chemical reaction, whilst the leaching of Cu and Al corresponded to the surface chemical-controlled reaction based on shrinking core model. The leaching feed before and after leaching were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).
[Display omitted]
•A simple leaching process based on citric acid system for recycling of LIBs.•About 90% of Li, Co, Ni and Mn were leached with current collectors in the absence of reductant.•The leaching of Li, Co, Ni and Mn followed the Avrami equation.•The reductant of ascorbic acid exhibits better selectivity than H2O2.•Delayed addition of reductant results in better metals leaching. |
---|---|
AbstractList | Recycling of valuable metals from waste lithium-ion batteries (LIBs) has recently attracted significant attention due to the environmental and economical concerns. In this paper, a simple and economical leaching process based on citric acid system was developed for the leaching of metals from the industrial waste LIBs without the manual separation of current collectors, i.e. copper and aluminum foils. The results showed significantly higher leaching efficiencies of metals due to the presence of copper and aluminum. About 91% Li, 90% Co, 94% Ni and 89% Mn were leached under the optimum leaching conditions of 0.5 mol/L citric acid, solid to liquid (S/L) ratio of 80 g/L at 90 °C for 80 min. Furthermore, the effects of the addition time and species of reductant on the leaching of Li, Co, Ni, and Mn were investigated, and the selectivity over Cu and Al as well. The kinetics data revealed that the leaching of Li, Co, Ni and Mn fitted best to the Avrami equation controlled by the surface chemical reaction, whilst the leaching of Cu and Al corresponded to the surface chemical-controlled reaction based on shrinking core model. The leaching feed before and after leaching were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).
[Display omitted]
•A simple leaching process based on citric acid system for recycling of LIBs.•About 90% of Li, Co, Ni and Mn were leached with current collectors in the absence of reductant.•The leaching of Li, Co, Ni and Mn followed the Avrami equation.•The reductant of ascorbic acid exhibits better selectivity than H2O2.•Delayed addition of reductant results in better metals leaching. |
ArticleNumber | 105160 |
Author | Liu, Qingcai Kim, Rina Wang, Jingxiu Liu, Gui Meng, Fei Ghahreman, Ahmad |
Author_xml | – sequence: 1 givenname: Fei surname: Meng fullname: Meng, Fei organization: College of Material Science & Engineering, Chongqing University, Shapingba, Chongqing 400044, China – sequence: 2 givenname: Qingcai surname: Liu fullname: Liu, Qingcai email: liuqc@cqu.edu.cn organization: College of Material Science & Engineering, Chongqing University, Shapingba, Chongqing 400044, China – sequence: 3 givenname: Rina surname: Kim fullname: Kim, Rina organization: Robert M. Buchan Department of Mining, Queen's University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada – sequence: 4 givenname: Jingxiu surname: Wang fullname: Wang, Jingxiu organization: Robert M. Buchan Department of Mining, Queen's University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada – sequence: 5 givenname: Gui surname: Liu fullname: Liu, Gui organization: Robert M. Buchan Department of Mining, Queen's University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada – sequence: 6 givenname: Ahmad surname: Ghahreman fullname: Ghahreman, Ahmad email: ahmad.g@queensu.ca organization: Robert M. Buchan Department of Mining, Queen's University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada |
BookMark | eNqFkc-KFDEQh4Os4OzqK0heoMek03_Fg7K4Kgx4UMFbqE4qTo09yZKkR8ZH8ilNO3rxsqdAke-rql9dsysfPDL2XIqtFLJ7cdjuzzaGI-ZtLeRYiq3sxCO2kUM_VlK2wxXbCCWaSg3d1yfsOqWDEKJTvdywX59wRpPphDyiCSeMZx4cP8G8wDQjL1aYE3fFz8nbJeVIMPMfkDLymfKelmNFwfMJcsZImPiSyH_jhspPw8GQ5Yu3GIvfLpdOJnhLuVDpJd8hmP0KhPtMR_oJa52Dt_w7ecyrwsN8TpSesseuzILP_r437Mvd28-376vdx3cfbt_sKqP6IVfOtEq5phZGSGi7RgwGpHN9bSyqoW6ktONYg51M24-jtC04p-oJRQ1dM8Ggbtiri9fEkFJEp8suf8bKEWjWUug1d33Q_3LXa-76knvBu__w-0hHiOeHwdcXEMtyJ8KokyH0Bi2V02RtAz2k-A089qpe |
CitedBy_id | crossref_primary_10_1016_j_hydromet_2024_106305 crossref_primary_10_1080_08827508_2023_2196073 crossref_primary_10_1016_S1003_6326_22_65902_8 crossref_primary_10_1007_s40831_023_00745_7 crossref_primary_10_1021_acsomega_2c06654 crossref_primary_10_1007_s11356_024_32837_6 crossref_primary_10_3390_met13061021 crossref_primary_10_1007_s42461_024_01142_8 crossref_primary_10_1002_pssb_202100588 crossref_primary_10_1016_j_psep_2025_107038 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000671 crossref_primary_10_1007_s42461_023_00837_8 crossref_primary_10_1016_j_susmat_2021_e00296 crossref_primary_10_1039_D2RA07926G crossref_primary_10_1021_acssusresmgt_4c00175 crossref_primary_10_4028_p_0bcko6 crossref_primary_10_1021_acs_energyfuels_1c02489 crossref_primary_10_1016_j_hydromet_2020_105448 crossref_primary_10_1016_j_mineng_2021_107204 crossref_primary_10_1016_j_hydromet_2022_105966 crossref_primary_10_3390_met13050947 crossref_primary_10_1016_j_jclepro_2023_136608 crossref_primary_10_1016_j_molliq_2021_116703 crossref_primary_10_1016_j_apmt_2020_100638 crossref_primary_10_3390_batteries11020051 crossref_primary_10_1016_j_hazl_2024_100104 crossref_primary_10_1016_j_matpr_2022_12_175 crossref_primary_10_1021_acssuschemeng_2c03346 crossref_primary_10_1016_j_hydromet_2023_106168 crossref_primary_10_3390_min13081104 crossref_primary_10_1016_S1872_5805_24_60846_2 crossref_primary_10_1016_j_seppur_2025_131708 crossref_primary_10_1002_metm_5 crossref_primary_10_1002_adsu_202300512 crossref_primary_10_1016_j_grets_2024_100135 crossref_primary_10_1021_acssuschemeng_3c02348 crossref_primary_10_3390_su16166817 crossref_primary_10_1016_j_seppur_2020_117463 crossref_primary_10_1016_j_ces_2025_121351 crossref_primary_10_1039_D2RA04391B crossref_primary_10_1016_j_wasman_2024_08_004 crossref_primary_10_1016_j_hydromet_2021_105608 crossref_primary_10_1016_j_apt_2022_103547 crossref_primary_10_1016_j_jpowsour_2023_233870 crossref_primary_10_1021_acsomega_4c05086 crossref_primary_10_1134_S0040579521040370 crossref_primary_10_1021_acsaem_0c03192 crossref_primary_10_1016_j_hydromet_2024_106362 crossref_primary_10_1007_s43153_021_00095_5 crossref_primary_10_1016_j_jallcom_2023_171130 crossref_primary_10_1016_j_mineng_2022_107939 crossref_primary_10_1021_acsomega_3c08687 crossref_primary_10_1007_s11837_021_05111_0 crossref_primary_10_1002_celc_202400248 crossref_primary_10_7844_kirr_2024_33_5_14 crossref_primary_10_1016_j_seppur_2024_127771 crossref_primary_10_1007_s10668_023_02925_7 crossref_primary_10_1016_j_susmat_2022_e00499 crossref_primary_10_1016_j_jece_2025_116174 crossref_primary_10_1016_j_jhazmat_2021_127481 crossref_primary_10_1016_j_desal_2023_116874 crossref_primary_10_1080_08827508_2021_2017925 crossref_primary_10_1002_smll_202400557 crossref_primary_10_1016_j_scowo_2024_100027 crossref_primary_10_1080_09593330_2021_1968505 crossref_primary_10_3390_en17164055 crossref_primary_10_3390_batteries10060170 crossref_primary_10_1021_acs_jchemed_4c00204 crossref_primary_10_1039_D2GC03947H crossref_primary_10_1080_10643389_2020_1847949 crossref_primary_10_1016_j_cej_2023_143030 crossref_primary_10_1002_adfm_202402325 crossref_primary_10_1016_j_wasman_2023_08_030 crossref_primary_10_3390_met13081330 crossref_primary_10_1016_j_microc_2020_105483 crossref_primary_10_3390_min12060753 crossref_primary_10_1016_j_electacta_2023_141842 crossref_primary_10_3390_su142114169 crossref_primary_10_1007_s11356_022_24560_x crossref_primary_10_1016_j_jece_2023_110216 crossref_primary_10_1021_acs_est_2c08395 crossref_primary_10_1016_j_colsurfa_2024_134241 crossref_primary_10_1016_j_resconrec_2021_105813 crossref_primary_10_1039_D0RE00286K crossref_primary_10_1038_s41598_021_02019_2 crossref_primary_10_1016_j_seppur_2024_131298 crossref_primary_10_1016_j_rineng_2025_104190 crossref_primary_10_1016_j_jhazmat_2021_125561 crossref_primary_10_1002_cjce_25230 crossref_primary_10_1002_celc_202201059 crossref_primary_10_1016_j_supflu_2020_104990 crossref_primary_10_1016_j_jenvman_2024_121862 crossref_primary_10_1016_j_jhazmat_2021_127214 crossref_primary_10_1016_j_jallcom_2023_169548 crossref_primary_10_1016_j_seppur_2021_119903 crossref_primary_10_1016_j_cej_2024_158114 crossref_primary_10_3390_app10186375 crossref_primary_10_3390_batteries10120415 crossref_primary_10_3390_recycling8050079 crossref_primary_10_1021_acssuschemeng_3c05141 crossref_primary_10_1039_D0GC03820B crossref_primary_10_1016_j_ensm_2020_12_019 crossref_primary_10_3390_met12091400 crossref_primary_10_1016_j_hydromet_2024_106281 |
Cites_doi | 10.1016/j.seppur.2015.07.003 10.1016/j.jpowsour.2015.02.073 10.1016/j.hydromet.2005.10.003 10.1016/j.jclepro.2018.01.040 10.1016/j.jhazmat.2016.12.021 10.1080/10643389.2013.763578 10.1016/j.jhazmat.2009.11.026 10.1016/S0378-7753(97)02538-X 10.1016/j.wasman.2018.02.052 10.1016/j.wasman.2015.11.036 10.1002/aic.690330213 10.1016/j.seppur.2016.08.031 10.1016/j.hydromet.2008.06.012 10.1016/j.rser.2015.12.363 10.1021/acssuschemeng.5b01000 10.1021/acs.est.6b03320 10.1016/j.jpowsour.2012.01.115 10.1021/ie401552v 10.1016/j.hydromet.2017.02.010 10.1016/j.wasman.2015.05.027 10.1021/acssuschemeng.6b02056 10.1016/j.cej.2015.06.071 10.1016/j.jiec.2013.11.066 10.1021/acssuschemeng.6b02337 10.1016/j.resconrec.2018.04.024 10.1016/j.jpowsour.2014.03.126 10.1016/j.cej.2009.05.020 10.1016/j.resconrec.2017.11.001 10.1021/acssuschemeng.7b00571 10.1016/j.electacta.2018.08.134 10.1016/j.jhazmat.2016.03.062 10.1016/j.jpowsour.2012.06.068 10.1016/j.jpowsour.2017.12.006 10.1016/j.jece.2016.04.016 10.1016/j.matlet.2006.06.068 10.1016/j.wasman.2017.10.028 10.1016/j.mineng.2016.01.010 10.1016/j.wasman.2017.03.037 10.1016/j.jpowsour.2003.12.026 10.1002/jctb.4053 10.1016/j.wasman.2010.08.008 10.1016/j.wasman.2017.02.011 10.1021/acssuschemeng.8b01805 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.hydromet.2019.105160 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1158 |
ExternalDocumentID | 10_1016_j_hydromet_2019_105160 S0304386X19304918 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABEFU ABFNM ABMAC ABNUV ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSG SSZ T5K VH1 WUQ XPP XXG ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c378t-fc533f420c01a56408ca1ff72cde382411d992adbc57991d5aff32be02a64ba83 |
IEDL.DBID | .~1 |
ISSN | 0304-386X |
IngestDate | Thu Apr 24 23:02:44 EDT 2025 Tue Jul 01 04:29:21 EDT 2025 Fri Feb 23 02:49:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reductant Industrial waste LIBs Leaching kinetics Current collectors Citric acid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-fc533f420c01a56408ca1ff72cde382411d992adbc57991d5aff32be02a64ba83 |
ParticipantIDs | crossref_citationtrail_10_1016_j_hydromet_2019_105160 crossref_primary_10_1016_j_hydromet_2019_105160 elsevier_sciencedirect_doi_10_1016_j_hydromet_2019_105160 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationTitle | Hydrometallurgy |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Ge, Chen, Wu, Chen, Zhang (bb0110) 2010; 30 Gratz, Sa, Apelian, Wang (bb0065) 2014; 262 Li, Qu, Zhang, Lu, Chen, Wu, Amine (bb0130) 2015; 282 Wagner (bb0190) 2006 Iwakura, Fukumoto, Inoue, Ohashi, Kobayashi, Tada, Abe (bb0095) 1997; 68 Meshram, Pandey, Mankhand (bb0155) 2015; 45 Franke, Ernst, Myerson (bb0035) 1987; 33 Peng, Hamuyuni, Wilson, Lundström (bb0175) 2018; 76 Gao, Zhang, Zheng, Lin, Cao, Zhang, Sun (bb0040) 2017; 51 Ordoñez, Gago, Girard (bb0165) 2016; 60 Nayaka, Pai, Santhosh, Manjanna (bb0160) 2016; 4 Li, Bian, Zhang, Guan, Fan, Wu, Chen (bb0140) 2018; 71 Li, Bian, Zhang, Xue, Fan, Wu, Chen (bb0145) 2018; 377 Li, Fan, Guan, Zhang, Xue, Wei, Wu, Chen (bb0135) 2017; 5 Sokić, Marković, Živković (bb0180) 2009; 95 Golmohammadzadeh, Faraji, Rashchi (bb0055) 2018; 136 Chagnes, Pospiech (bb0015) 2013; 88 Yue, Wei, Yongjie, Chenyang, Shaole, Yuehua (bb0205) 2018; 6 Granata, Moscardini, Pagnanelli, Trabucco, Toro (bb0060) 2012; 206 Zhang, Cao, Xie, Ning, An, You, Nawaz (bb0215) 2015; 150 Meshram, Pandey, Mankhand (bb0150) 2015; 281 Swain (bb0185) 2017; 172 Aydogan, Ucar, Canbazoglu (bb0005) 2006; 81 Li, Liu, Liu (bb0125) 2014; 53 Habbache, Alane, Djerad, Tifouti (bb0080) 2009; 152 Ku, Jung, Jo, Park, Kim, Yang, Rhee, An, Sohn, Kwon (bb0105) 2016; 313 Guan, Li, Guo, Su, Gao, Song, Yuan, Liang, Guo (bb0070) 2017; 5 Pagnanelli, Moscardini, Granata, Cerbelli, Agosta, Fieramosca, Toro (bb0170) 2014; 20 Li, Lu, Ren, Zhang, Chen, Wu, Amine (bb0120) 2012; 218 Bernardes, Espinosa, Tenório (bb0010) 2004; 130 Guo, Li, Zhu, Li, Huang, He (bb0075) 2016; 51 Zeng, Li, Singh (bb0210) 2014; 44 Gao, Song, Cao, Lin, Zhang, Zheng, Zhang, Sun (bb0045) 2018; 178 Chen, Ma, Luo, Zhou (bb0025) 2017; 326 Zhou, Zhao, Yin, Li (bb0220) 2018; 291 Golmohammadzadeh, Rashchi, Vahidi (bb0050) 2017; 64 Chen, Luo, Zhang, Kong, Zhou (bb0020) 2015; 3 Choubey, Kim, Srivastava, Lee, Lee (bb0030) 2016; 89 Joulié, Billy, Laucournet, Meyer (bb0100) 2017; 169 He, Sun, Mu, Song, Yu (bb0085) 2017; 5 Winslow, Laux, Townsend (bb0195) 2018; 129 He, Sun, Song, Yu (bb0090) 2017; 64 Li, Ge, Wu, Chen, Chen, Wu (bb0115) 2010; 176 Wu (bb0200) 2007; 61 Bernardes (10.1016/j.hydromet.2019.105160_bb0010) 2004; 130 Gratz (10.1016/j.hydromet.2019.105160_bb0065) 2014; 262 Aydogan (10.1016/j.hydromet.2019.105160_bb0005) 2006; 81 Gao (10.1016/j.hydromet.2019.105160_bb0040) 2017; 51 Pagnanelli (10.1016/j.hydromet.2019.105160_bb0170) 2014; 20 Ordoñez (10.1016/j.hydromet.2019.105160_bb0165) 2016; 60 Yue (10.1016/j.hydromet.2019.105160_bb0205) 2018; 6 Zhou (10.1016/j.hydromet.2019.105160_bb0220) 2018; 291 Iwakura (10.1016/j.hydromet.2019.105160_bb0095) 1997; 68 Meshram (10.1016/j.hydromet.2019.105160_bb0155) 2015; 45 Franke (10.1016/j.hydromet.2019.105160_bb0035) 1987; 33 Joulié (10.1016/j.hydromet.2019.105160_bb0100) 2017; 169 Gao (10.1016/j.hydromet.2019.105160_bb0045) 2018; 178 Zhang (10.1016/j.hydromet.2019.105160_bb0215) 2015; 150 Ku (10.1016/j.hydromet.2019.105160_bb0105) 2016; 313 Chagnes (10.1016/j.hydromet.2019.105160_bb0015) 2013; 88 Li (10.1016/j.hydromet.2019.105160_bb0140) 2018; 71 Granata (10.1016/j.hydromet.2019.105160_bb0060) 2012; 206 Golmohammadzadeh (10.1016/j.hydromet.2019.105160_bb0050) 2017; 64 Choubey (10.1016/j.hydromet.2019.105160_bb0030) 2016; 89 Habbache (10.1016/j.hydromet.2019.105160_bb0080) 2009; 152 He (10.1016/j.hydromet.2019.105160_bb0085) 2017; 5 Li (10.1016/j.hydromet.2019.105160_bb0130) 2015; 282 Peng (10.1016/j.hydromet.2019.105160_bb0175) 2018; 76 Zeng (10.1016/j.hydromet.2019.105160_bb0210) 2014; 44 Guan (10.1016/j.hydromet.2019.105160_bb0070) 2017; 5 Li (10.1016/j.hydromet.2019.105160_bb0115) 2010; 176 Sokić (10.1016/j.hydromet.2019.105160_bb0180) 2009; 95 Wu (10.1016/j.hydromet.2019.105160_bb0200) 2007; 61 Li (10.1016/j.hydromet.2019.105160_bb0135) 2017; 5 Li (10.1016/j.hydromet.2019.105160_bb0120) 2012; 218 Li (10.1016/j.hydromet.2019.105160_bb0110) 2010; 30 He (10.1016/j.hydromet.2019.105160_bb0090) 2017; 64 Swain (10.1016/j.hydromet.2019.105160_bb0185) 2017; 172 Meshram (10.1016/j.hydromet.2019.105160_bb0150) 2015; 281 Wagner (10.1016/j.hydromet.2019.105160_bb0190) 2006 Chen (10.1016/j.hydromet.2019.105160_bb0025) 2017; 326 Guo (10.1016/j.hydromet.2019.105160_bb0075) 2016; 51 Li (10.1016/j.hydromet.2019.105160_bb0125) 2014; 53 Nayaka (10.1016/j.hydromet.2019.105160_bb0160) 2016; 4 Chen (10.1016/j.hydromet.2019.105160_bb0020) 2015; 3 Li (10.1016/j.hydromet.2019.105160_bb0145) 2018; 377 Winslow (10.1016/j.hydromet.2019.105160_bb0195) 2018; 129 Golmohammadzadeh (10.1016/j.hydromet.2019.105160_bb0055) 2018; 136 |
References_xml | – volume: 81 start-page: 45 year: 2006 end-page: 51 ident: bb0005 article-title: Dissolution kinetics of chalcopyrite in acidic potassium dichromate solution publication-title: Hydrometallurgy – volume: 172 start-page: 388 year: 2017 end-page: 403 ident: bb0185 article-title: Recovery and recycling of lithium: a review publication-title: Sep. Purif. Technol. – volume: 130 start-page: 291 year: 2004 end-page: 298 ident: bb0010 article-title: Recycling of batteries: a review of current processes and technologies publication-title: J. Power Sources – volume: 129 start-page: 263 year: 2018 end-page: 277 ident: bb0195 article-title: A review on the growing concern and potential management strategies of waste lithium-ion batteries publication-title: Resour. Conserv. Recycl. – volume: 51 start-page: 1662 year: 2017 end-page: 1669 ident: bb0040 article-title: Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process publication-title: Environ. Sci. Technol. – volume: 150 start-page: 186 year: 2015 end-page: 195 ident: bb0215 article-title: A closed-loop process for recycling LiNi publication-title: Sep. Purif. Technol. – volume: 152 start-page: 503 year: 2009 end-page: 508 ident: bb0080 article-title: Leaching of copper oxide with different acid solutions publication-title: Chem. Eng. J. – volume: 5 start-page: 1026 year: 2017 end-page: 1032 ident: bb0070 article-title: Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries publication-title: ACS Sustain. Chem. Eng. – volume: 176 start-page: 288 year: 2010 end-page: 293 ident: bb0115 article-title: Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant publication-title: J. Hazard. Mater. – volume: 178 start-page: 833 year: 2018 end-page: 845 ident: bb0045 article-title: Selective recovery of valuable metals from spent lithium-ion batteries–process development and kinetics evaluation publication-title: J. Clean. Prod. – volume: 206 start-page: 393 year: 2012 end-page: 401 ident: bb0060 article-title: Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: lab scale tests and process simulations publication-title: J. Power Sources – volume: 262 start-page: 255 year: 2014 end-page: 262 ident: bb0065 article-title: A closed loop process for recycling spent lithium ion batteries publication-title: J. Power Sources – volume: 169 start-page: 426 year: 2017 end-page: 432 ident: bb0100 article-title: Current collectors as reducing agent to dissolve active materials of positive electrodes from Li-ion battery wastes publication-title: Hydrometallurgy – volume: 95 start-page: 273 year: 2009 end-page: 279 ident: bb0180 article-title: Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid publication-title: Hydrometallurgy – volume: 68 start-page: 301 year: 1997 end-page: 303 ident: bb0095 article-title: Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries publication-title: J. Power Sources – volume: 53 start-page: 2956 year: 2014 end-page: 2962 ident: bb0125 article-title: Kinetics of vanadium leaching from a spent industrial V publication-title: Ind. Eng. Chem. Res. – volume: 6 start-page: 10445 year: 2018 end-page: 10453 ident: bb0205 article-title: Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching publication-title: ACS Sustain. Chem. Eng. – volume: 88 start-page: 1191 year: 2013 end-page: 1199 ident: bb0015 article-title: A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries publication-title: J. Chem. Technol. Biotechnol. – volume: 281 start-page: 418 year: 2015 end-page: 427 ident: bb0150 article-title: Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching publication-title: Chem. Eng. J. – volume: 60 start-page: 195 year: 2016 end-page: 205 ident: bb0165 article-title: Processes and technologies for the recycling and recovery of spent lithium-ion batteries publication-title: Renew. Sust. Energ. Rev. – volume: 377 start-page: 70 year: 2018 end-page: 79 ident: bb0145 article-title: Economical recycling process for spent lithium-ion batteries and macro-and micro-scale mechanistic study publication-title: J. Power Sources – volume: 51 start-page: 227 year: 2016 end-page: 233 ident: bb0075 article-title: Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl) publication-title: Waste Manag. – volume: 3 start-page: 3104 year: 2015 end-page: 3113 ident: bb0020 article-title: Sustainable recovery of metals from spent lithium-ion batteries: a green process publication-title: ACS Sustain. Chem. Eng. – volume: 30 start-page: 2615 year: 2010 end-page: 2621 ident: bb0110 article-title: Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries publication-title: Waste Manag. – volume: 44 start-page: 1129 year: 2014 end-page: 1165 ident: bb0210 article-title: Recycling of spent lithium-ion battery: a critical review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 89 start-page: 119 year: 2016 end-page: 137 ident: bb0030 article-title: Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: from mineral and brine resources publication-title: Miner. Eng. – volume: 326 start-page: 77 year: 2017 end-page: 86 ident: bb0025 article-title: Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid publication-title: J. Hazard. Mater. – volume: 5 start-page: 5224 year: 2017 end-page: 5233 ident: bb0135 article-title: Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system publication-title: ACS Sustain. Chem. Eng. – volume: 71 start-page: 362 year: 2018 end-page: 371 ident: bb0140 article-title: Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching publication-title: Waste Manag. – volume: 20 start-page: 3201 year: 2014 end-page: 3207 ident: bb0170 article-title: Acid reducing leaching of cathodic powder from spent lithium ion batteries: glucose oxidative pathways and particle area evolution publication-title: J. Ind. Eng. Chem. – volume: 291 start-page: 142 year: 2018 end-page: 150 ident: bb0220 article-title: Regeneration of LiNi publication-title: Electrochim. Acta – volume: 218 start-page: 21 year: 2012 end-page: 27 ident: bb0120 article-title: Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries publication-title: J. Power Sources – volume: 64 start-page: 171 year: 2017 end-page: 181 ident: bb0090 article-title: Leaching process for recovering valuable metals from the LiNi publication-title: Waste Manag. – volume: 5 start-page: 714 year: 2017 end-page: 721 ident: bb0085 article-title: Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant publication-title: ACS Sustain. Chem. Eng. – volume: 313 start-page: 138 year: 2016 end-page: 146 ident: bb0105 article-title: Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching publication-title: J. Hazard. Mater. – volume: 282 start-page: 544 year: 2015 end-page: 551 ident: bb0130 article-title: Succinic acid-based leaching system : a sustainable process for recovery of valuable metals from spent Li-ion batteries publication-title: J. Power Sources – volume: 45 start-page: 306 year: 2015 end-page: 313 ident: bb0155 article-title: Recovery of valuable metals from cathodic active material of spent lithium ion batteries: leaching and kinetic aspects publication-title: Waste Manag. – volume: 64 start-page: 244 year: 2017 end-page: 254 ident: bb0050 article-title: Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: process optimization and kinetic aspects publication-title: Waste Manag. – volume: 4 start-page: 2378 year: 2016 end-page: 2383 ident: bb0160 article-title: Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent publication-title: J. Environ. Chem. Eng. – volume: 76 start-page: 582 year: 2018 end-page: 590 ident: bb0175 article-title: Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system publication-title: Waste Manag. – volume: 33 start-page: 267 year: 1987 end-page: 273 ident: bb0035 article-title: Kinetics of dissolution of alumina in acidic solution publication-title: AICHE J. – volume: 136 start-page: 418 year: 2018 end-page: 435 ident: bb0055 article-title: Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: a review publication-title: Resour. Conserv. Recycl. – year: 2006 ident: bb0190 article-title: Battery Fuel Gauges: Accurately Measuring Charge Level – volume: 61 start-page: 1125 year: 2007 end-page: 1129 ident: bb0200 article-title: Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC publication-title: Mater. Lett. – volume: 150 start-page: 186 year: 2015 ident: 10.1016/j.hydromet.2019.105160_bb0215 article-title: A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: process optimization and kinetics analysis publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.07.003 – volume: 282 start-page: 544 year: 2015 ident: 10.1016/j.hydromet.2019.105160_bb0130 article-title: Succinic acid-based leaching system : a sustainable process for recovery of valuable metals from spent Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.073 – volume: 81 start-page: 45 year: 2006 ident: 10.1016/j.hydromet.2019.105160_bb0005 article-title: Dissolution kinetics of chalcopyrite in acidic potassium dichromate solution publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2005.10.003 – volume: 178 start-page: 833 year: 2018 ident: 10.1016/j.hydromet.2019.105160_bb0045 article-title: Selective recovery of valuable metals from spent lithium-ion batteries–process development and kinetics evaluation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.01.040 – volume: 326 start-page: 77 year: 2017 ident: 10.1016/j.hydromet.2019.105160_bb0025 article-title: Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.12.021 – volume: 44 start-page: 1129 year: 2014 ident: 10.1016/j.hydromet.2019.105160_bb0210 article-title: Recycling of spent lithium-ion battery: a critical review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2013.763578 – volume: 176 start-page: 288 year: 2010 ident: 10.1016/j.hydromet.2019.105160_bb0115 article-title: Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.11.026 – volume: 68 start-page: 301 year: 1997 ident: 10.1016/j.hydromet.2019.105160_bb0095 article-title: Electrochemical characterization of various metal foils as a current collector of positive electrode for rechargeable lithium batteries publication-title: J. Power Sources doi: 10.1016/S0378-7753(97)02538-X – volume: 76 start-page: 582 year: 2018 ident: 10.1016/j.hydromet.2019.105160_bb0175 article-title: Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system publication-title: Waste Manag. doi: 10.1016/j.wasman.2018.02.052 – volume: 51 start-page: 227 year: 2016 ident: 10.1016/j.hydromet.2019.105160_bb0075 article-title: Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl) publication-title: Waste Manag. doi: 10.1016/j.wasman.2015.11.036 – volume: 33 start-page: 267 year: 1987 ident: 10.1016/j.hydromet.2019.105160_bb0035 article-title: Kinetics of dissolution of alumina in acidic solution publication-title: AICHE J. doi: 10.1002/aic.690330213 – volume: 172 start-page: 388 year: 2017 ident: 10.1016/j.hydromet.2019.105160_bb0185 article-title: Recovery and recycling of lithium: a review publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.08.031 – volume: 95 start-page: 273 year: 2009 ident: 10.1016/j.hydromet.2019.105160_bb0180 article-title: Kinetics of chalcopyrite leaching by sodium nitrate in sulphuric acid publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2008.06.012 – volume: 60 start-page: 195 year: 2016 ident: 10.1016/j.hydromet.2019.105160_bb0165 article-title: Processes and technologies for the recycling and recovery of spent lithium-ion batteries publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.12.363 – volume: 3 start-page: 3104 year: 2015 ident: 10.1016/j.hydromet.2019.105160_bb0020 article-title: Sustainable recovery of metals from spent lithium-ion batteries: a green process publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.5b01000 – volume: 51 start-page: 1662 year: 2017 ident: 10.1016/j.hydromet.2019.105160_bb0040 article-title: Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03320 – volume: 206 start-page: 393 year: 2012 ident: 10.1016/j.hydromet.2019.105160_bb0060 article-title: Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: lab scale tests and process simulations publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.01.115 – volume: 53 start-page: 2956 year: 2014 ident: 10.1016/j.hydromet.2019.105160_bb0125 article-title: Kinetics of vanadium leaching from a spent industrial V2O5/TiO2 catalyst by sulfuric acid publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie401552v – volume: 169 start-page: 426 year: 2017 ident: 10.1016/j.hydromet.2019.105160_bb0100 article-title: Current collectors as reducing agent to dissolve active materials of positive electrodes from Li-ion battery wastes publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2017.02.010 – volume: 45 start-page: 306 year: 2015 ident: 10.1016/j.hydromet.2019.105160_bb0155 article-title: Recovery of valuable metals from cathodic active material of spent lithium ion batteries: leaching and kinetic aspects publication-title: Waste Manag. doi: 10.1016/j.wasman.2015.05.027 – volume: 5 start-page: 714 year: 2017 ident: 10.1016/j.hydromet.2019.105160_bb0085 article-title: Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02056 – volume: 281 start-page: 418 year: 2015 ident: 10.1016/j.hydromet.2019.105160_bb0150 article-title: Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.06.071 – volume: 20 start-page: 3201 year: 2014 ident: 10.1016/j.hydromet.2019.105160_bb0170 article-title: Acid reducing leaching of cathodic powder from spent lithium ion batteries: glucose oxidative pathways and particle area evolution publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.11.066 – volume: 5 start-page: 1026 year: 2017 ident: 10.1016/j.hydromet.2019.105160_bb0070 article-title: Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02337 – volume: 136 start-page: 418 year: 2018 ident: 10.1016/j.hydromet.2019.105160_bb0055 article-title: Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: a review publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2018.04.024 – volume: 262 start-page: 255 year: 2014 ident: 10.1016/j.hydromet.2019.105160_bb0065 article-title: A closed loop process for recycling spent lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.03.126 – volume: 152 start-page: 503 year: 2009 ident: 10.1016/j.hydromet.2019.105160_bb0080 article-title: Leaching of copper oxide with different acid solutions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.05.020 – volume: 129 start-page: 263 year: 2018 ident: 10.1016/j.hydromet.2019.105160_bb0195 article-title: A review on the growing concern and potential management strategies of waste lithium-ion batteries publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2017.11.001 – volume: 5 start-page: 5224 year: 2017 ident: 10.1016/j.hydromet.2019.105160_bb0135 article-title: Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b00571 – volume: 291 start-page: 142 year: 2018 ident: 10.1016/j.hydromet.2019.105160_bb0220 article-title: Regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.134 – volume: 313 start-page: 138 year: 2016 ident: 10.1016/j.hydromet.2019.105160_bb0105 article-title: Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.03.062 – volume: 218 start-page: 21 year: 2012 ident: 10.1016/j.hydromet.2019.105160_bb0120 article-title: Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.06.068 – volume: 377 start-page: 70 year: 2018 ident: 10.1016/j.hydromet.2019.105160_bb0145 article-title: Economical recycling process for spent lithium-ion batteries and macro-and micro-scale mechanistic study publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.12.006 – volume: 4 start-page: 2378 year: 2016 ident: 10.1016/j.hydromet.2019.105160_bb0160 article-title: Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.04.016 – volume: 61 start-page: 1125 year: 2007 ident: 10.1016/j.hydromet.2019.105160_bb0200 article-title: Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC publication-title: Mater. Lett. doi: 10.1016/j.matlet.2006.06.068 – volume: 71 start-page: 362 year: 2018 ident: 10.1016/j.hydromet.2019.105160_bb0140 article-title: Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.10.028 – volume: 89 start-page: 119 year: 2016 ident: 10.1016/j.hydromet.2019.105160_bb0030 article-title: Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: from mineral and brine resources publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.01.010 – volume: 64 start-page: 244 year: 2017 ident: 10.1016/j.hydromet.2019.105160_bb0050 article-title: Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: process optimization and kinetic aspects publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.03.037 – year: 2006 ident: 10.1016/j.hydromet.2019.105160_bb0190 – volume: 130 start-page: 291 year: 2004 ident: 10.1016/j.hydromet.2019.105160_bb0010 article-title: Recycling of batteries: a review of current processes and technologies publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2003.12.026 – volume: 88 start-page: 1191 year: 2013 ident: 10.1016/j.hydromet.2019.105160_bb0015 article-title: A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4053 – volume: 30 start-page: 2615 year: 2010 ident: 10.1016/j.hydromet.2019.105160_bb0110 article-title: Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries publication-title: Waste Manag. doi: 10.1016/j.wasman.2010.08.008 – volume: 64 start-page: 171 year: 2017 ident: 10.1016/j.hydromet.2019.105160_bb0090 article-title: Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries publication-title: Waste Manag. doi: 10.1016/j.wasman.2017.02.011 – volume: 6 start-page: 10445 year: 2018 ident: 10.1016/j.hydromet.2019.105160_bb0205 article-title: Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01805 |
SSID | ssj0006371 |
Score | 2.5671275 |
Snippet | Recycling of valuable metals from waste lithium-ion batteries (LIBs) has recently attracted significant attention due to the environmental and economical... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105160 |
SubjectTerms | Citric acid Current collectors Industrial waste LIBs Leaching kinetics Reductant |
Title | Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: Leaching optimization and kinetic analysis |
URI | https://dx.doi.org/10.1016/j.hydromet.2019.105160 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELYiuJQDglIEbUFz6NVJ1ut9cUMIFNqSS4qU28pPWB4JQkGICz-ov5IZr5cGqRIHriuPbXlG42-8M98w9oNQp9dZwnMtFJc-lVxX1vKs8JUXDkNoTe-QZ-N8dC5_TrNpjx11tTCUVhl9f-vTg7eOXwbxNAd3TTOY0E-9tMynCEFwwYQKfqUsyMr7z__SPPI0BF00mNPopSrhq_7lUyAFoJzKpKKWt0mgqvzPBbV06ZxssPWIFuGw3dAm67nZZ7a2xCG4xf5OQicbdFpAwS1a5hPMPQQSb33jANdFCwMqI4HmtU8HPCpULyAGv2webjkqB3Rg2sTAGSgX_gJMQ-T9oExjgSrN7nF-IoellTCItm2u1wH8jvmYMEfvcxvLOkHNLFzjLhc0RSQ--cLOT47_HI14bMDATVqUC-4NgkEvxdAME5XlclgalXhfCGNdWuLdn9iqEspqkxWIM22mvE-FdkOhcqlVmW6zldl85nYYqEwKj-GTklbKyqGQQ2haGQzsSwIiuyzrTr02kZ2cmmTc1F0a2lXdaasmbdWttnbZ4FXuruXneFei6pRav7G0Gi-Rd2S_fkD2G_skKFYPzzff2cri_sHtIaBZ6P1gsfts9fD012j8Ao4j_FA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69LDtMOyJdU8edtUSy5Jj71YUK9I1zaUtkJuh5-o-kqJIMfQv9VeWtOUgAwb0sKthSoJJkB9l8iPAN0ad0epMFFYaoWKuhK28F3ocqygDpdCW7yGPZsXkVP2a6_kW7PW9MFxWmXx_59Nbb52eDNPXHF43zfCYf-rlZTEnCEIbZuUT2GZ2Kj2A7d2Dw8ls7ZCLvM27-H3BAhuNwuffz-5aXgAuq8wqnnqbtWyV_4hRG3Fn_yW8SIARd7szvYKtsHgNzzdoBN_A_XE7zIb8FnJ-S8Z5h8uILY-3vQxI-5KRIXeSYLMe1YF_DGkYCYafNbdXgvSDtiXbpNwZuRz-N7qG-fvRuMYjN5vd0PrMD8s7UR7tu3KvHzhNJZm4JAd0lTo70Sw8XtApV7xE4j55C6f7P0_2JiLNYBAuH5crER3hwajkyI0yows1Kp3JYhxL50NeUvjPfFVJ463TY4KaXpsYc2nDSJpCWVPm72CwWC7Ce0CjlYyUQRnllaoCCQVCp5Wj3L5kLLIDuv_qtUsE5Twn47LuK9HO615bNWur7rS1A8O13HVH0fGoRNUrtf7L2GqKI4_IfvgP2a_wdHJyNK2nB7PDj_BMcure3uZ8gsHq5jZ8Jnyzsl-S_T4AII3_AQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+recovery+of+valuable+metals+from+industrial+waste+lithium-ion+batteries+using+citric+acid+under+reductive+conditions%3A+Leaching+optimization+and+kinetic+analysis&rft.jtitle=Hydrometallurgy&rft.au=Meng%2C+Fei&rft.au=Liu%2C+Qingcai&rft.au=Kim%2C+Rina&rft.au=Wang%2C+Jingxiu&rft.date=2020-01-01&rft.pub=Elsevier+B.V&rft.issn=0304-386X&rft.eissn=1879-1158&rft.volume=191&rft_id=info:doi/10.1016%2Fj.hydromet.2019.105160&rft.externalDocID=S0304386X19304918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-386X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-386X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-386X&client=summon |