Dynamics of a nonlinear SIQRS computer virus spreading model with two delays
In this paper, a Susceptible-Infected-Quarantined-Susceptible (SIQRS) computer virus propagation model with nonlinear infection rate and two-delay is formulated. The local stability of virus-free equilibrium without delay is examined. Furthermore, we also expound and prove that time-delay plays a cr...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 4; pp. 4083 - 4104 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a Susceptible-Infected-Quarantined-Susceptible (SIQRS) computer virus propagation model with nonlinear infection rate and two-delay is formulated. The local stability of virus-free equilibrium without delay is examined. Furthermore, we also expound and prove that time-delay plays a crucial role in sufficient conditions for the local stability of the virus-existence equilibrium and the occurrence of Hopf bifurcation at the critical value. Especially, direction and stability of the Hopf bifurcation are demonstrated. Finally, some numerical simulations are presented in order to verify the theoretical results. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2021242 |