Heat and mass transport of nano-encapsulated phase change materials in a complex cavity: An artificial neural network coupled with incompressible smoothed particle hydrodynamics simulations
This work simulates thermo-diffusion and diffusion-thermo on heat, mass transfer, and fluid flow of nano-encapsulated phase change materials (NEPCM) within a complex cavity. It is a novel study in handling the heat/mass transfer inside a highly complicated shape saturated by a partial layer porous m...
Saved in:
Published in | AIMS mathematics Vol. 9; no. 3; pp. 5609 - 5632 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work simulates thermo-diffusion and diffusion-thermo on heat, mass transfer, and fluid flow of nano-encapsulated phase change materials (NEPCM) within a complex cavity. It is a novel study in handling the heat/mass transfer inside a highly complicated shape saturated by a partial layer porous medium. In addition, an artificial neural network (ANN) model is used in conjunction with the incompressible smoothed particle hydrodynamics (ISPH) simulation to forecast the mean Nusselt and Sherwood numbers ($ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $). Heat and mass transfer, as well as thermo-diffusion effects, are useful in a variety of applications, including chemical engineering, material processing, and multifunctional heat exchangers. The ISPH method is used to solve the system of governing equations for the heat and mass transfer inside a complex cavity. The scales of pertinent parameters are fusion temperature $ {\theta }_{f} = 0.05-0.95 $, Rayleigh number $ Ra = {10}^{3}-{10}^{6} $, buoyancy ratio parameter $ N = -2-1 $, Darcy number $ Da = {10}^{-2}-{10}^{-5} $, Lewis number $ Le = 1-20 $, Dufour number $ Du = 0-0.25 $, and Soret number $ Sr = 0-0.8 $. Alterations of Rayleigh number are effective in enhancing the intensity of heat and mass transfer and velocity field of NEPCM within a complex cavity. The high complexity of a closed domain reduced the influences of Soret-Dufour numbers on heat and mass transfer especially at the steady state. The fusion temperature works well in adjusting the intensity and location of a heat capacity ratio inside a complex cavity. The presence of a porous layer in a cavity's center decreases the velocity field within a complex cavity at a reduction in Darcy number. The goal values of $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ for each data point are compared to those estimated by the ANN model. It is discovered that the ANN model's $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values correspond completely with the target values. The exact harmony of the ANN model prediction values with the target values demonstrates that the developed ANN model can forecast the $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values precisely. |
---|---|
AbstractList | This work simulates thermo-diffusion and diffusion-thermo on heat, mass transfer, and fluid flow of nano-encapsulated phase change materials (NEPCM) within a complex cavity. It is a novel study in handling the heat/mass transfer inside a highly complicated shape saturated by a partial layer porous medium. In addition, an artificial neural network (ANN) model is used in conjunction with the incompressible smoothed particle hydrodynamics (ISPH) simulation to forecast the mean Nusselt and Sherwood numbers ($ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $). Heat and mass transfer, as well as thermo-diffusion effects, are useful in a variety of applications, including chemical engineering, material processing, and multifunctional heat exchangers. The ISPH method is used to solve the system of governing equations for the heat and mass transfer inside a complex cavity. The scales of pertinent parameters are fusion temperature $ {\theta }_{f} = 0.05-0.95 $, Rayleigh number $ Ra = {10}^{3}-{10}^{6} $, buoyancy ratio parameter $ N = -2-1 $, Darcy number $ Da = {10}^{-2}-{10}^{-5} $, Lewis number $ Le = 1-20 $, Dufour number $ Du = 0-0.25 $, and Soret number $ Sr = 0-0.8 $. Alterations of Rayleigh number are effective in enhancing the intensity of heat and mass transfer and velocity field of NEPCM within a complex cavity. The high complexity of a closed domain reduced the influences of Soret-Dufour numbers on heat and mass transfer especially at the steady state. The fusion temperature works well in adjusting the intensity and location of a heat capacity ratio inside a complex cavity. The presence of a porous layer in a cavity's center decreases the velocity field within a complex cavity at a reduction in Darcy number. The goal values of $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ for each data point are compared to those estimated by the ANN model. It is discovered that the ANN model's $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values correspond completely with the target values. The exact harmony of the ANN model prediction values with the target values demonstrates that the developed ANN model can forecast the $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values precisely. |
Author | Alhejaili, Weaam Lee, Sang-Wook Aly, Abdelraheem M. Hat, Cao Quang |
Author_xml | – sequence: 1 givenname: Weaam surname: Alhejaili fullname: Alhejaili, Weaam organization: Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia – sequence: 2 givenname: Sang-Wook surname: Lee fullname: Lee, Sang-Wook organization: School of Mechanical Engineering, University of Ulsan, Ulsan, South Korea – sequence: 3 givenname: Cao Quang surname: Hat fullname: Hat, Cao Quang organization: School of Mechanical Engineering, University of Ulsan, Ulsan, South Korea – sequence: 4 givenname: Abdelraheem M. surname: Aly fullname: Aly, Abdelraheem M. organization: Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia |
BookMark | eNptUd1qFTEYDFLBWnvnA-QB3Jq_PUm8K0VtoeBN78O32aSbupssSY71PJzvZvb0CCJC4PsYZiaTzFt0FlN0CL2n5IprLj4uUKcrRphgkr5C50xI3u20Umd_7W_QZSlPhBBGN544R79uHVQMccQLlIJrhljWlCtOHkeIqXPRwlr2M1Q34nWC4rCdID66JqguB5gLDhEDtmlZZ_cTW_gR6uETvm5grsEH2zg4un0-jvqc8vdG3jfyiJ9DnZp802ZXShhmh8uSUp222za9bch0GHMaDxGWYAsuYdnihBTLO_TatwDu8jQv0MOXzw83t939t693N9f3neVS1c4rLigwZZXTXlrngfuxHcL1buiFI0IBUXrH6Kilp4rR3ral12ynBLH8At292I4JnsyawwL5YBIEcwRSfjSnqMaOUkslqQDeCznIYbCSM66ZA257pZsXe_GyOZWSnTc21ONr2t-H2VBitjrNVqc51dlEH_4R_QnxX_pvGRCpcw |
CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2024_108383 crossref_primary_10_3934_math_2025268 crossref_primary_10_1016_j_est_2024_111750 crossref_primary_10_1016_j_est_2024_113762 crossref_primary_10_1016_j_est_2024_115113 crossref_primary_10_1016_j_jtice_2024_105912 crossref_primary_10_32604_fhmt_2024_056087 crossref_primary_10_1016_j_csite_2024_104796 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2020.119377 10.1016/j.ijheatmasstransfer.2020.120717 10.1016/j.ijheatmasstransfer.2016.11.074 10.1017/S0022112081001614 10.1016/j.est.2023.108101 10.1016/j.ijheatmasstransfer.2020.120153 10.1016/S0045-7825(98)00036-X 10.1016/j.rser.2009.07.035 10.1016/j.icheatmasstransfer.2020.104646 10.1108/HFF-05-2021-0365 10.2172/958216 10.1016/j.microrel.2023.115040 10.1016/j.seta.2020.100969 10.1038/263020a0 10.1016/j.tsep.2018.01.005 10.1016/j.compfluid.2014.12.007 10.1016/j.physa.2019.122623 10.1016/j.icheatmasstransfer.2021.105533 10.1016/j.molliq.2019.111049 10.1016/0022-0248(84)90184-2 10.1016/S1359-4311(02)00192-8 10.1088/1402-4896/ac3118 10.1137/0111030 10.1016/j.icheatmasstransfer.2023.106893 10.1140/epjs/s11734-021-00050-y 10.1016/j.ijmecsci.2020.105609 10.1016/j.matpr.2017.06.332 10.1016/j.rser.2018.12.057 10.1016/j.jfluidstructs.2023.103855 10.1115/1.3246888 10.1007/s10973-018-7565-4 10.1016/j.tsep.2019.01.019 10.1016/j.csite.2021.101541 10.1016/0017-9310(94)90147-3 10.1007/s10973-018-7396-3 10.1016/j.ijthermalsci.2020.106503 10.1016/j.physa.2019.123034 10.1016/j.jmmm.2016.09.123 10.1016/j.ijheatmasstransfer.2018.09.074 10.1016/j.csite.2021.101016 10.1007/s10853-021-06641-3 10.1016/j.rser.2010.11.018 10.1016/j.icheatmasstransfer.2020.104676 10.1016/j.ijheatmasstransfer.2011.06.034 10.1016/j.seta.2021.101274 10.1016/j.pnucene.2018.02.013 10.1016/j.apt.2020.09.022 10.1016/j.powtec.2020.08.074 10.1016/j.apenergy.2012.03.058 10.1016/j.enbuild.2006.03.030 10.1016/j.rser.2012.05.023 10.1016/j.csite.2021.101298 10.1016/j.ijheatmasstransfer.2018.01.008 10.1016/j.physa.2019.122144 10.1140/epjp/s13360-020-01025-z 10.1108/HFF-04-2020-0231 10.1016/j.icheatmasstransfer.2012.10.024 10.1016/j.aej.2019.12.026 10.1016/j.jtice.2021.09.006 10.1002/er.5417 10.1007/s11804-022-00260-3 10.1016/j.ijheatmasstransfer.2021.121623 10.1090/qam/10666 10.1016/j.ijheatmasstransfer.2012.10.037 10.1615/ComputThermalScien.2016016527 10.1016/j.ijmecsci.2020.105558 10.1007/s10973-019-08333-2 10.1016/0198-0149(83)90063-8 10.1016/j.amc.2015.09.043 10.1016/j.est.2023.108393 10.1016/j.ijheatmasstransfer.2014.11.055 10.1016/S0017-9310(97)00008-2 10.1002/(SICI)1097-0207(20000228)47:6%3C1189::AID-NME830%3E3.0.CO;2-I 10.1016/j.csite.2021.100864 10.1016/j.ijheatmasstransfer.2019.04.037 10.1016/j.enconman.2019.112444 10.1108/HFF-07-2018-0364 10.1016/j.icheatmasstransfer.2016.12.001 10.1016/j.ijmecsci.2018.07.044 10.1002/fld.1650030305 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2024271 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 5632 |
ExternalDocumentID | oai_doaj_org_article_cd7978714a3547b7bbc732392ea3c589 10_3934_math_2024271 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-f8341a28c8e9f7cefa3fd3fd0396b54e048a089621d97f18215c97f5926840c3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:31:43 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Tue Jul 01 03:57:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-f8341a28c8e9f7cefa3fd3fd0396b54e048a089621d97f18215c97f5926840c3 |
OpenAccessLink | https://doaj.org/article/cd7978714a3547b7bbc732392ea3c589 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cd7978714a3547b7bbc732392ea3c589 crossref_citationtrail_10_3934_math_2024271 crossref_primary_10_3934_math_2024271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2024 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2024271-46 key-10.3934/math.2024271-47 key-10.3934/math.2024271-44 key-10.3934/math.2024271-45 key-10.3934/math.2024271-48 key-10.3934/math.2024271-49 key-10.3934/math.2024271-50 key-10.3934/math.2024271-53 key-10.3934/math.2024271-10 key-10.3934/math.2024271-54 key-10.3934/math.2024271-51 key-10.3934/math.2024271-52 key-10.3934/math.2024271-13 key-10.3934/math.2024271-57 key-10.3934/math.2024271-14 key-10.3934/math.2024271-58 key-10.3934/math.2024271-11 key-10.3934/math.2024271-55 key-10.3934/math.2024271-12 key-10.3934/math.2024271-56 key-10.3934/math.2024271-17 key-10.3934/math.2024271-18 key-10.3934/math.2024271-15 key-10.3934/math.2024271-59 key-10.3934/math.2024271-16 key-10.3934/math.2024271-19 key-10.3934/math.2024271-60 key-10.3934/math.2024271-61 key-10.3934/math.2024271-20 key-10.3934/math.2024271-64 key-10.3934/math.2024271-21 key-10.3934/math.2024271-65 key-10.3934/math.2024271-62 key-10.3934/math.2024271-63 key-10.3934/math.2024271-3 key-10.3934/math.2024271-24 key-10.3934/math.2024271-68 key-10.3934/math.2024271-2 key-10.3934/math.2024271-25 key-10.3934/math.2024271-69 key-10.3934/math.2024271-1 key-10.3934/math.2024271-22 key-10.3934/math.2024271-66 key-10.3934/math.2024271-23 key-10.3934/math.2024271-67 key-10.3934/math.2024271-7 key-10.3934/math.2024271-28 key-10.3934/math.2024271-6 key-10.3934/math.2024271-29 key-10.3934/math.2024271-5 key-10.3934/math.2024271-26 key-10.3934/math.2024271-4 key-10.3934/math.2024271-27 key-10.3934/math.2024271-9 key-10.3934/math.2024271-8 key-10.3934/math.2024271-71 key-10.3934/math.2024271-72 key-10.3934/math.2024271-70 key-10.3934/math.2024271-31 key-10.3934/math.2024271-75 key-10.3934/math.2024271-32 key-10.3934/math.2024271-76 key-10.3934/math.2024271-73 key-10.3934/math.2024271-30 key-10.3934/math.2024271-74 key-10.3934/math.2024271-35 key-10.3934/math.2024271-79 key-10.3934/math.2024271-36 key-10.3934/math.2024271-33 key-10.3934/math.2024271-77 key-10.3934/math.2024271-34 key-10.3934/math.2024271-78 key-10.3934/math.2024271-39 key-10.3934/math.2024271-37 key-10.3934/math.2024271-38 key-10.3934/math.2024271-82 key-10.3934/math.2024271-83 key-10.3934/math.2024271-80 key-10.3934/math.2024271-81 key-10.3934/math.2024271-42 key-10.3934/math.2024271-43 key-10.3934/math.2024271-40 key-10.3934/math.2024271-41 |
References_xml | – ident: key-10.3934/math.2024271-65 doi: 10.1016/j.ijheatmasstransfer.2020.119377 – ident: key-10.3934/math.2024271-12 doi: 10.1016/j.ijheatmasstransfer.2020.120717 – ident: key-10.3934/math.2024271-39 doi: 10.1016/j.ijheatmasstransfer.2016.11.074 – ident: key-10.3934/math.2024271-23 doi: 10.1017/S0022112081001614 – ident: key-10.3934/math.2024271-81 doi: 10.1016/j.est.2023.108101 – ident: key-10.3934/math.2024271-62 doi: 10.1016/j.ijheatmasstransfer.2020.120153 – ident: key-10.3934/math.2024271-77 doi: 10.1016/S0045-7825(98)00036-X – ident: key-10.3934/math.2024271-4 doi: 10.1016/j.rser.2009.07.035 – ident: key-10.3934/math.2024271-63 doi: 10.1016/j.icheatmasstransfer.2020.104646 – ident: key-10.3934/math.2024271-71 doi: 10.1108/HFF-05-2021-0365 – ident: key-10.3934/math.2024271-35 doi: 10.2172/958216 – ident: key-10.3934/math.2024271-83 doi: 10.1016/j.microrel.2023.115040 – ident: key-10.3934/math.2024271-7 doi: 10.1016/j.seta.2020.100969 – ident: key-10.3934/math.2024271-25 doi: 10.1038/263020a0 – ident: key-10.3934/math.2024271-55 doi: 10.1016/j.tsep.2018.01.005 – ident: key-10.3934/math.2024271-41 doi: 10.1016/j.compfluid.2014.12.007 – ident: key-10.3934/math.2024271-61 doi: 10.1016/j.physa.2019.122623 – ident: key-10.3934/math.2024271-14 doi: 10.1016/j.icheatmasstransfer.2021.105533 – ident: key-10.3934/math.2024271-31 doi: 10.1016/j.molliq.2019.111049 – ident: key-10.3934/math.2024271-26 doi: 10.1016/0022-0248(84)90184-2 – ident: key-10.3934/math.2024271-2 doi: 10.1016/S1359-4311(02)00192-8 – ident: key-10.3934/math.2024271-15 doi: 10.1088/1402-4896/ac3118 – ident: key-10.3934/math.2024271-80 doi: 10.1137/0111030 – ident: key-10.3934/math.2024271-19 doi: 10.1016/j.icheatmasstransfer.2023.106893 – ident: key-10.3934/math.2024271-66 doi: 10.1140/epjs/s11734-021-00050-y – ident: key-10.3934/math.2024271-9 doi: 10.1016/j.ijmecsci.2020.105609 – ident: key-10.3934/math.2024271-34 doi: 10.1016/j.matpr.2017.06.332 – ident: key-10.3934/math.2024271-33 doi: 10.1016/j.rser.2018.12.057 – ident: key-10.3934/math.2024271-69 doi: 10.1016/j.jfluidstructs.2023.103855 – ident: key-10.3934/math.2024271-27 doi: 10.1115/1.3246888 – ident: key-10.3934/math.2024271-40 doi: 10.1007/s10973-018-7565-4 – ident: key-10.3934/math.2024271-56 doi: 10.1016/j.tsep.2019.01.019 – ident: key-10.3934/math.2024271-21 doi: 10.1016/j.csite.2021.101541 – ident: key-10.3934/math.2024271-28 doi: 10.1016/0017-9310(94)90147-3 – ident: key-10.3934/math.2024271-45 doi: 10.1007/s10973-018-7396-3 – ident: key-10.3934/math.2024271-72 doi: 10.1016/j.ijthermalsci.2020.106503 – ident: key-10.3934/math.2024271-49 doi: 10.1016/j.physa.2019.123034 – ident: key-10.3934/math.2024271-43 doi: 10.1016/j.jmmm.2016.09.123 – ident: key-10.3934/math.2024271-60 doi: 10.1016/j.ijheatmasstransfer.2018.09.074 – ident: key-10.3934/math.2024271-78 doi: 10.1016/j.csite.2021.101016 – ident: key-10.3934/math.2024271-1 doi: 10.1007/s10853-021-06641-3 – ident: key-10.3934/math.2024271-5 doi: 10.1016/j.rser.2010.11.018 – ident: key-10.3934/math.2024271-50 doi: 10.1016/j.icheatmasstransfer.2020.104676 – ident: key-10.3934/math.2024271-57 doi: 10.1016/j.ijheatmasstransfer.2011.06.034 – ident: key-10.3934/math.2024271-20 doi: 10.1016/j.seta.2021.101274 – ident: key-10.3934/math.2024271-36 doi: 10.1016/j.pnucene.2018.02.013 – ident: key-10.3934/math.2024271-11 doi: 10.1016/j.apt.2020.09.022 – ident: key-10.3934/math.2024271-38 doi: 10.1016/j.matpr.2017.06.332 – ident: key-10.3934/math.2024271-64 doi: 10.1016/j.powtec.2020.08.074 – ident: key-10.3934/math.2024271-6 doi: 10.1016/j.apenergy.2012.03.058 – ident: key-10.3934/math.2024271-3 doi: 10.1016/j.enbuild.2006.03.030 – ident: key-10.3934/math.2024271-32 doi: 10.1016/j.rser.2012.05.023 – ident: key-10.3934/math.2024271-22 doi: 10.1016/j.csite.2021.101298 – ident: key-10.3934/math.2024271-44 doi: 10.1016/j.ijheatmasstransfer.2018.01.008 – ident: key-10.3934/math.2024271-46 doi: 10.1016/j.physa.2019.122144 – ident: key-10.3934/math.2024271-51 doi: 10.1140/epjp/s13360-020-01025-z – ident: key-10.3934/math.2024271-67 doi: 10.1108/HFF-04-2020-0231 – ident: key-10.3934/math.2024271-53 doi: 10.1016/j.icheatmasstransfer.2012.10.024 – ident: key-10.3934/math.2024271-48 doi: 10.1016/j.aej.2019.12.026 – ident: key-10.3934/math.2024271-16 doi: 10.1016/j.jtice.2021.09.006 – ident: key-10.3934/math.2024271-82 doi: 10.1002/er.5417 – ident: key-10.3934/math.2024271-70 doi: 10.1007/s11804-022-00260-3 – ident: key-10.3934/math.2024271-52 doi: 10.1016/j.ijheatmasstransfer.2021.121623 – ident: key-10.3934/math.2024271-79 doi: 10.1090/qam/10666 – ident: key-10.3934/math.2024271-29 doi: 10.1016/j.ijheatmasstransfer.2012.10.037 – ident: key-10.3934/math.2024271-58 doi: 10.1615/ComputThermalScien.2016016527 – ident: key-10.3934/math.2024271-68 doi: 10.1016/j.ijmecsci.2020.105558 – ident: key-10.3934/math.2024271-37 doi: 10.1007/s10973-019-08333-2 – ident: key-10.3934/math.2024271-24 doi: 10.1016/0198-0149(83)90063-8 – ident: key-10.3934/math.2024271-42 doi: 10.1016/j.amc.2015.09.043 – ident: key-10.3934/math.2024271-17 doi: 10.1016/j.est.2023.108393 – ident: key-10.3934/math.2024271-30 doi: 10.1016/j.ijheatmasstransfer.2014.11.055 – ident: key-10.3934/math.2024271-76 doi: 10.1016/S0017-9310(97)00008-2 – ident: key-10.3934/math.2024271-74 doi: 10.1002/(SICI)1097-0207(20000228)47:6%3C1189::AID-NME830%3E3.0.CO;2-I – ident: key-10.3934/math.2024271-73 doi: 10.1016/j.csite.2021.100864 – ident: key-10.3934/math.2024271-10 doi: 10.1016/j.ijheatmasstransfer.2019.04.037 – ident: key-10.3934/math.2024271-13 doi: 10.1016/j.csite.2021.100864 – ident: key-10.3934/math.2024271-8 doi: 10.1016/j.enconman.2019.112444 – ident: key-10.3934/math.2024271-47 doi: 10.1108/HFF-07-2018-0364 – ident: key-10.3934/math.2024271-54 doi: 10.1016/j.icheatmasstransfer.2016.12.001 – ident: key-10.3934/math.2024271-59 doi: 10.1016/j.ijmecsci.2018.07.044 – ident: key-10.3934/math.2024271-75 doi: 10.1002/fld.1650030305 – ident: key-10.3934/math.2024271-18 |
SSID | ssj0002124274 |
Score | 2.3072112 |
Snippet | This work simulates thermo-diffusion and diffusion-thermo on heat, mass transfer, and fluid flow of nano-encapsulated phase change materials (NEPCM) within a... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 5609 |
SubjectTerms | ann model complex cavity isph method nepcm porous media |
Title | Heat and mass transport of nano-encapsulated phase change materials in a complex cavity: An artificial neural network coupled with incompressible smoothed particle hydrodynamics simulations |
URI | https://doaj.org/article/cd7978714a3547b7bbc732392ea3c589 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv5qAnCU262WTjrYqlCPVUobew2QcttGlpUtAf539zdjct9SBehECSZZIsO7Pz2Mx-Q8gdl4bhrFGBhcANYqGSQCSCB4lJdCRiI0O3oD98Swbv8euYjXdKfdmcMA8P7AeuI1WKgU4axYKyOC3SopAp7aJV14JKxt3WPbR5O8GU1cGokGOMt3ymO81o3EH_z_57sM3RDxu0A9XvbEr_iBw2ziD0fCeOyZ4uT8jBcIukWp2SrwEqS8BwH-bo5kK9wSKHhYFSlIsApUxgpDtDn1HBcoJGCfxmXnyg9uIF0xIEuORx_QFS2HIRj9DDxpXLFEIasLiW7uSywpF4jcQK7DItWACHuU-YLWYaqvnCbtvCrzWjB5NPhXrY17avoJrOm5pg1RkZ9V9Gz4OgKbkQSJryOjAcrZrocsl1ZlKpjaBG4RHSLClYrHG-i5BnSTdSWWowNomYxAuWOdAYSc9Jq1yU-oKAoBFTJgszrqgrYy6NRHfCaLwTrKva5GHDg1w2cOS2KsYsx7DEciy3HMsbjrXJ_ZZ66WE4fqF7suzc0ljwbNeAIpU3g5L_JVKX__GSK7Jv--RXa65Jq16t9Q36L3Vx60T1G-GX89k |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+and+mass+transport+of+nano-encapsulated+phase+change+materials+in+a+complex+cavity%3A+An+artificial+neural+network+coupled+with+incompressible+smoothed+particle+hydrodynamics+simulations&rft.jtitle=AIMS+mathematics&rft.au=Alhejaili%2C+Weaam&rft.au=Lee%2C+Sang-Wook&rft.au=Hat%2C+Cao+Quang&rft.au=Aly%2C+Abdelraheem+M.&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=3&rft.spage=5609&rft.epage=5632&rft_id=info:doi/10.3934%2Fmath.2024271&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2024271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |