Heat and mass transport of nano-encapsulated phase change materials in a complex cavity: An artificial neural network coupled with incompressible smoothed particle hydrodynamics simulations

This work simulates thermo-diffusion and diffusion-thermo on heat, mass transfer, and fluid flow of nano-encapsulated phase change materials (NEPCM) within a complex cavity. It is a novel study in handling the heat/mass transfer inside a highly complicated shape saturated by a partial layer porous m...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 9; no. 3; pp. 5609 - 5632
Main Authors Alhejaili, Weaam, Lee, Sang-Wook, Hat, Cao Quang, Aly, Abdelraheem M.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work simulates thermo-diffusion and diffusion-thermo on heat, mass transfer, and fluid flow of nano-encapsulated phase change materials (NEPCM) within a complex cavity. It is a novel study in handling the heat/mass transfer inside a highly complicated shape saturated by a partial layer porous medium. In addition, an artificial neural network (ANN) model is used in conjunction with the incompressible smoothed particle hydrodynamics (ISPH) simulation to forecast the mean Nusselt and Sherwood numbers ($ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $). Heat and mass transfer, as well as thermo-diffusion effects, are useful in a variety of applications, including chemical engineering, material processing, and multifunctional heat exchangers. The ISPH method is used to solve the system of governing equations for the heat and mass transfer inside a complex cavity. The scales of pertinent parameters are fusion temperature $ {\theta }_{f} = 0.05-0.95 $, Rayleigh number $ Ra = {10}^{3}-{10}^{6} $, buoyancy ratio parameter $ N = -2-1 $, Darcy number $ Da = {10}^{-2}-{10}^{-5} $, Lewis number $ Le = 1-20 $, Dufour number $ Du = 0-0.25 $, and Soret number $ Sr = 0-0.8 $. Alterations of Rayleigh number are effective in enhancing the intensity of heat and mass transfer and velocity field of NEPCM within a complex cavity. The high complexity of a closed domain reduced the influences of Soret-Dufour numbers on heat and mass transfer especially at the steady state. The fusion temperature works well in adjusting the intensity and location of a heat capacity ratio inside a complex cavity. The presence of a porous layer in a cavity's center decreases the velocity field within a complex cavity at a reduction in Darcy number. The goal values of $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ for each data point are compared to those estimated by the ANN model. It is discovered that the ANN model's $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values correspond completely with the target values. The exact harmony of the ANN model prediction values with the target values demonstrates that the developed ANN model can forecast the $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values precisely.
AbstractList This work simulates thermo-diffusion and diffusion-thermo on heat, mass transfer, and fluid flow of nano-encapsulated phase change materials (NEPCM) within a complex cavity. It is a novel study in handling the heat/mass transfer inside a highly complicated shape saturated by a partial layer porous medium. In addition, an artificial neural network (ANN) model is used in conjunction with the incompressible smoothed particle hydrodynamics (ISPH) simulation to forecast the mean Nusselt and Sherwood numbers ($ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $). Heat and mass transfer, as well as thermo-diffusion effects, are useful in a variety of applications, including chemical engineering, material processing, and multifunctional heat exchangers. The ISPH method is used to solve the system of governing equations for the heat and mass transfer inside a complex cavity. The scales of pertinent parameters are fusion temperature $ {\theta }_{f} = 0.05-0.95 $, Rayleigh number $ Ra = {10}^{3}-{10}^{6} $, buoyancy ratio parameter $ N = -2-1 $, Darcy number $ Da = {10}^{-2}-{10}^{-5} $, Lewis number $ Le = 1-20 $, Dufour number $ Du = 0-0.25 $, and Soret number $ Sr = 0-0.8 $. Alterations of Rayleigh number are effective in enhancing the intensity of heat and mass transfer and velocity field of NEPCM within a complex cavity. The high complexity of a closed domain reduced the influences of Soret-Dufour numbers on heat and mass transfer especially at the steady state. The fusion temperature works well in adjusting the intensity and location of a heat capacity ratio inside a complex cavity. The presence of a porous layer in a cavity's center decreases the velocity field within a complex cavity at a reduction in Darcy number. The goal values of $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ for each data point are compared to those estimated by the ANN model. It is discovered that the ANN model's $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values correspond completely with the target values. The exact harmony of the ANN model prediction values with the target values demonstrates that the developed ANN model can forecast the $ \stackrel{-}{Nu} $ and $ \stackrel{-}{Sh} $ values precisely.
Author Alhejaili, Weaam
Lee, Sang-Wook
Aly, Abdelraheem M.
Hat, Cao Quang
Author_xml – sequence: 1
  givenname: Weaam
  surname: Alhejaili
  fullname: Alhejaili, Weaam
  organization: Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
– sequence: 2
  givenname: Sang-Wook
  surname: Lee
  fullname: Lee, Sang-Wook
  organization: School of Mechanical Engineering, University of Ulsan, Ulsan, South Korea
– sequence: 3
  givenname: Cao Quang
  surname: Hat
  fullname: Hat, Cao Quang
  organization: School of Mechanical Engineering, University of Ulsan, Ulsan, South Korea
– sequence: 4
  givenname: Abdelraheem M.
  surname: Aly
  fullname: Aly, Abdelraheem M.
  organization: Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
BookMark eNptUd1qFTEYDFLBWnvnA-QB3Jq_PUm8K0VtoeBN78O32aSbupssSY71PJzvZvb0CCJC4PsYZiaTzFt0FlN0CL2n5IprLj4uUKcrRphgkr5C50xI3u20Umd_7W_QZSlPhBBGN544R79uHVQMccQLlIJrhljWlCtOHkeIqXPRwlr2M1Q34nWC4rCdID66JqguB5gLDhEDtmlZZ_cTW_gR6uETvm5grsEH2zg4un0-jvqc8vdG3jfyiJ9DnZp802ZXShhmh8uSUp222za9bch0GHMaDxGWYAsuYdnihBTLO_TatwDu8jQv0MOXzw83t939t693N9f3neVS1c4rLigwZZXTXlrngfuxHcL1buiFI0IBUXrH6Kilp4rR3ral12ynBLH8At292I4JnsyawwL5YBIEcwRSfjSnqMaOUkslqQDeCznIYbCSM66ZA257pZsXe_GyOZWSnTc21ONr2t-H2VBitjrNVqc51dlEH_4R_QnxX_pvGRCpcw
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2024_108383
crossref_primary_10_3934_math_2025268
crossref_primary_10_1016_j_est_2024_111750
crossref_primary_10_1016_j_est_2024_113762
crossref_primary_10_1016_j_est_2024_115113
crossref_primary_10_1016_j_jtice_2024_105912
crossref_primary_10_32604_fhmt_2024_056087
crossref_primary_10_1016_j_csite_2024_104796
Cites_doi 10.1016/j.ijheatmasstransfer.2020.119377
10.1016/j.ijheatmasstransfer.2020.120717
10.1016/j.ijheatmasstransfer.2016.11.074
10.1017/S0022112081001614
10.1016/j.est.2023.108101
10.1016/j.ijheatmasstransfer.2020.120153
10.1016/S0045-7825(98)00036-X
10.1016/j.rser.2009.07.035
10.1016/j.icheatmasstransfer.2020.104646
10.1108/HFF-05-2021-0365
10.2172/958216
10.1016/j.microrel.2023.115040
10.1016/j.seta.2020.100969
10.1038/263020a0
10.1016/j.tsep.2018.01.005
10.1016/j.compfluid.2014.12.007
10.1016/j.physa.2019.122623
10.1016/j.icheatmasstransfer.2021.105533
10.1016/j.molliq.2019.111049
10.1016/0022-0248(84)90184-2
10.1016/S1359-4311(02)00192-8
10.1088/1402-4896/ac3118
10.1137/0111030
10.1016/j.icheatmasstransfer.2023.106893
10.1140/epjs/s11734-021-00050-y
10.1016/j.ijmecsci.2020.105609
10.1016/j.matpr.2017.06.332
10.1016/j.rser.2018.12.057
10.1016/j.jfluidstructs.2023.103855
10.1115/1.3246888
10.1007/s10973-018-7565-4
10.1016/j.tsep.2019.01.019
10.1016/j.csite.2021.101541
10.1016/0017-9310(94)90147-3
10.1007/s10973-018-7396-3
10.1016/j.ijthermalsci.2020.106503
10.1016/j.physa.2019.123034
10.1016/j.jmmm.2016.09.123
10.1016/j.ijheatmasstransfer.2018.09.074
10.1016/j.csite.2021.101016
10.1007/s10853-021-06641-3
10.1016/j.rser.2010.11.018
10.1016/j.icheatmasstransfer.2020.104676
10.1016/j.ijheatmasstransfer.2011.06.034
10.1016/j.seta.2021.101274
10.1016/j.pnucene.2018.02.013
10.1016/j.apt.2020.09.022
10.1016/j.powtec.2020.08.074
10.1016/j.apenergy.2012.03.058
10.1016/j.enbuild.2006.03.030
10.1016/j.rser.2012.05.023
10.1016/j.csite.2021.101298
10.1016/j.ijheatmasstransfer.2018.01.008
10.1016/j.physa.2019.122144
10.1140/epjp/s13360-020-01025-z
10.1108/HFF-04-2020-0231
10.1016/j.icheatmasstransfer.2012.10.024
10.1016/j.aej.2019.12.026
10.1016/j.jtice.2021.09.006
10.1002/er.5417
10.1007/s11804-022-00260-3
10.1016/j.ijheatmasstransfer.2021.121623
10.1090/qam/10666
10.1016/j.ijheatmasstransfer.2012.10.037
10.1615/ComputThermalScien.2016016527
10.1016/j.ijmecsci.2020.105558
10.1007/s10973-019-08333-2
10.1016/0198-0149(83)90063-8
10.1016/j.amc.2015.09.043
10.1016/j.est.2023.108393
10.1016/j.ijheatmasstransfer.2014.11.055
10.1016/S0017-9310(97)00008-2
10.1002/(SICI)1097-0207(20000228)47:6%3C1189::AID-NME830%3E3.0.CO;2-I
10.1016/j.csite.2021.100864
10.1016/j.ijheatmasstransfer.2019.04.037
10.1016/j.enconman.2019.112444
10.1108/HFF-07-2018-0364
10.1016/j.icheatmasstransfer.2016.12.001
10.1016/j.ijmecsci.2018.07.044
10.1002/fld.1650030305
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2024271
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 5632
ExternalDocumentID oai_doaj_org_article_cd7978714a3547b7bbc732392ea3c589
10_3934_math_2024271
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-f8341a28c8e9f7cefa3fd3fd0396b54e048a089621d97f18215c97f5926840c3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:31:43 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Tue Jul 01 03:57:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-f8341a28c8e9f7cefa3fd3fd0396b54e048a089621d97f18215c97f5926840c3
OpenAccessLink https://doaj.org/article/cd7978714a3547b7bbc732392ea3c589
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_cd7978714a3547b7bbc732392ea3c589
crossref_citationtrail_10_3934_math_2024271
crossref_primary_10_3934_math_2024271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024271-46
key-10.3934/math.2024271-47
key-10.3934/math.2024271-44
key-10.3934/math.2024271-45
key-10.3934/math.2024271-48
key-10.3934/math.2024271-49
key-10.3934/math.2024271-50
key-10.3934/math.2024271-53
key-10.3934/math.2024271-10
key-10.3934/math.2024271-54
key-10.3934/math.2024271-51
key-10.3934/math.2024271-52
key-10.3934/math.2024271-13
key-10.3934/math.2024271-57
key-10.3934/math.2024271-14
key-10.3934/math.2024271-58
key-10.3934/math.2024271-11
key-10.3934/math.2024271-55
key-10.3934/math.2024271-12
key-10.3934/math.2024271-56
key-10.3934/math.2024271-17
key-10.3934/math.2024271-18
key-10.3934/math.2024271-15
key-10.3934/math.2024271-59
key-10.3934/math.2024271-16
key-10.3934/math.2024271-19
key-10.3934/math.2024271-60
key-10.3934/math.2024271-61
key-10.3934/math.2024271-20
key-10.3934/math.2024271-64
key-10.3934/math.2024271-21
key-10.3934/math.2024271-65
key-10.3934/math.2024271-62
key-10.3934/math.2024271-63
key-10.3934/math.2024271-3
key-10.3934/math.2024271-24
key-10.3934/math.2024271-68
key-10.3934/math.2024271-2
key-10.3934/math.2024271-25
key-10.3934/math.2024271-69
key-10.3934/math.2024271-1
key-10.3934/math.2024271-22
key-10.3934/math.2024271-66
key-10.3934/math.2024271-23
key-10.3934/math.2024271-67
key-10.3934/math.2024271-7
key-10.3934/math.2024271-28
key-10.3934/math.2024271-6
key-10.3934/math.2024271-29
key-10.3934/math.2024271-5
key-10.3934/math.2024271-26
key-10.3934/math.2024271-4
key-10.3934/math.2024271-27
key-10.3934/math.2024271-9
key-10.3934/math.2024271-8
key-10.3934/math.2024271-71
key-10.3934/math.2024271-72
key-10.3934/math.2024271-70
key-10.3934/math.2024271-31
key-10.3934/math.2024271-75
key-10.3934/math.2024271-32
key-10.3934/math.2024271-76
key-10.3934/math.2024271-73
key-10.3934/math.2024271-30
key-10.3934/math.2024271-74
key-10.3934/math.2024271-35
key-10.3934/math.2024271-79
key-10.3934/math.2024271-36
key-10.3934/math.2024271-33
key-10.3934/math.2024271-77
key-10.3934/math.2024271-34
key-10.3934/math.2024271-78
key-10.3934/math.2024271-39
key-10.3934/math.2024271-37
key-10.3934/math.2024271-38
key-10.3934/math.2024271-82
key-10.3934/math.2024271-83
key-10.3934/math.2024271-80
key-10.3934/math.2024271-81
key-10.3934/math.2024271-42
key-10.3934/math.2024271-43
key-10.3934/math.2024271-40
key-10.3934/math.2024271-41
References_xml – ident: key-10.3934/math.2024271-65
  doi: 10.1016/j.ijheatmasstransfer.2020.119377
– ident: key-10.3934/math.2024271-12
  doi: 10.1016/j.ijheatmasstransfer.2020.120717
– ident: key-10.3934/math.2024271-39
  doi: 10.1016/j.ijheatmasstransfer.2016.11.074
– ident: key-10.3934/math.2024271-23
  doi: 10.1017/S0022112081001614
– ident: key-10.3934/math.2024271-81
  doi: 10.1016/j.est.2023.108101
– ident: key-10.3934/math.2024271-62
  doi: 10.1016/j.ijheatmasstransfer.2020.120153
– ident: key-10.3934/math.2024271-77
  doi: 10.1016/S0045-7825(98)00036-X
– ident: key-10.3934/math.2024271-4
  doi: 10.1016/j.rser.2009.07.035
– ident: key-10.3934/math.2024271-63
  doi: 10.1016/j.icheatmasstransfer.2020.104646
– ident: key-10.3934/math.2024271-71
  doi: 10.1108/HFF-05-2021-0365
– ident: key-10.3934/math.2024271-35
  doi: 10.2172/958216
– ident: key-10.3934/math.2024271-83
  doi: 10.1016/j.microrel.2023.115040
– ident: key-10.3934/math.2024271-7
  doi: 10.1016/j.seta.2020.100969
– ident: key-10.3934/math.2024271-25
  doi: 10.1038/263020a0
– ident: key-10.3934/math.2024271-55
  doi: 10.1016/j.tsep.2018.01.005
– ident: key-10.3934/math.2024271-41
  doi: 10.1016/j.compfluid.2014.12.007
– ident: key-10.3934/math.2024271-61
  doi: 10.1016/j.physa.2019.122623
– ident: key-10.3934/math.2024271-14
  doi: 10.1016/j.icheatmasstransfer.2021.105533
– ident: key-10.3934/math.2024271-31
  doi: 10.1016/j.molliq.2019.111049
– ident: key-10.3934/math.2024271-26
  doi: 10.1016/0022-0248(84)90184-2
– ident: key-10.3934/math.2024271-2
  doi: 10.1016/S1359-4311(02)00192-8
– ident: key-10.3934/math.2024271-15
  doi: 10.1088/1402-4896/ac3118
– ident: key-10.3934/math.2024271-80
  doi: 10.1137/0111030
– ident: key-10.3934/math.2024271-19
  doi: 10.1016/j.icheatmasstransfer.2023.106893
– ident: key-10.3934/math.2024271-66
  doi: 10.1140/epjs/s11734-021-00050-y
– ident: key-10.3934/math.2024271-9
  doi: 10.1016/j.ijmecsci.2020.105609
– ident: key-10.3934/math.2024271-34
  doi: 10.1016/j.matpr.2017.06.332
– ident: key-10.3934/math.2024271-33
  doi: 10.1016/j.rser.2018.12.057
– ident: key-10.3934/math.2024271-69
  doi: 10.1016/j.jfluidstructs.2023.103855
– ident: key-10.3934/math.2024271-27
  doi: 10.1115/1.3246888
– ident: key-10.3934/math.2024271-40
  doi: 10.1007/s10973-018-7565-4
– ident: key-10.3934/math.2024271-56
  doi: 10.1016/j.tsep.2019.01.019
– ident: key-10.3934/math.2024271-21
  doi: 10.1016/j.csite.2021.101541
– ident: key-10.3934/math.2024271-28
  doi: 10.1016/0017-9310(94)90147-3
– ident: key-10.3934/math.2024271-45
  doi: 10.1007/s10973-018-7396-3
– ident: key-10.3934/math.2024271-72
  doi: 10.1016/j.ijthermalsci.2020.106503
– ident: key-10.3934/math.2024271-49
  doi: 10.1016/j.physa.2019.123034
– ident: key-10.3934/math.2024271-43
  doi: 10.1016/j.jmmm.2016.09.123
– ident: key-10.3934/math.2024271-60
  doi: 10.1016/j.ijheatmasstransfer.2018.09.074
– ident: key-10.3934/math.2024271-78
  doi: 10.1016/j.csite.2021.101016
– ident: key-10.3934/math.2024271-1
  doi: 10.1007/s10853-021-06641-3
– ident: key-10.3934/math.2024271-5
  doi: 10.1016/j.rser.2010.11.018
– ident: key-10.3934/math.2024271-50
  doi: 10.1016/j.icheatmasstransfer.2020.104676
– ident: key-10.3934/math.2024271-57
  doi: 10.1016/j.ijheatmasstransfer.2011.06.034
– ident: key-10.3934/math.2024271-20
  doi: 10.1016/j.seta.2021.101274
– ident: key-10.3934/math.2024271-36
  doi: 10.1016/j.pnucene.2018.02.013
– ident: key-10.3934/math.2024271-11
  doi: 10.1016/j.apt.2020.09.022
– ident: key-10.3934/math.2024271-38
  doi: 10.1016/j.matpr.2017.06.332
– ident: key-10.3934/math.2024271-64
  doi: 10.1016/j.powtec.2020.08.074
– ident: key-10.3934/math.2024271-6
  doi: 10.1016/j.apenergy.2012.03.058
– ident: key-10.3934/math.2024271-3
  doi: 10.1016/j.enbuild.2006.03.030
– ident: key-10.3934/math.2024271-32
  doi: 10.1016/j.rser.2012.05.023
– ident: key-10.3934/math.2024271-22
  doi: 10.1016/j.csite.2021.101298
– ident: key-10.3934/math.2024271-44
  doi: 10.1016/j.ijheatmasstransfer.2018.01.008
– ident: key-10.3934/math.2024271-46
  doi: 10.1016/j.physa.2019.122144
– ident: key-10.3934/math.2024271-51
  doi: 10.1140/epjp/s13360-020-01025-z
– ident: key-10.3934/math.2024271-67
  doi: 10.1108/HFF-04-2020-0231
– ident: key-10.3934/math.2024271-53
  doi: 10.1016/j.icheatmasstransfer.2012.10.024
– ident: key-10.3934/math.2024271-48
  doi: 10.1016/j.aej.2019.12.026
– ident: key-10.3934/math.2024271-16
  doi: 10.1016/j.jtice.2021.09.006
– ident: key-10.3934/math.2024271-82
  doi: 10.1002/er.5417
– ident: key-10.3934/math.2024271-70
  doi: 10.1007/s11804-022-00260-3
– ident: key-10.3934/math.2024271-52
  doi: 10.1016/j.ijheatmasstransfer.2021.121623
– ident: key-10.3934/math.2024271-79
  doi: 10.1090/qam/10666
– ident: key-10.3934/math.2024271-29
  doi: 10.1016/j.ijheatmasstransfer.2012.10.037
– ident: key-10.3934/math.2024271-58
  doi: 10.1615/ComputThermalScien.2016016527
– ident: key-10.3934/math.2024271-68
  doi: 10.1016/j.ijmecsci.2020.105558
– ident: key-10.3934/math.2024271-37
  doi: 10.1007/s10973-019-08333-2
– ident: key-10.3934/math.2024271-24
  doi: 10.1016/0198-0149(83)90063-8
– ident: key-10.3934/math.2024271-42
  doi: 10.1016/j.amc.2015.09.043
– ident: key-10.3934/math.2024271-17
  doi: 10.1016/j.est.2023.108393
– ident: key-10.3934/math.2024271-30
  doi: 10.1016/j.ijheatmasstransfer.2014.11.055
– ident: key-10.3934/math.2024271-76
  doi: 10.1016/S0017-9310(97)00008-2
– ident: key-10.3934/math.2024271-74
  doi: 10.1002/(SICI)1097-0207(20000228)47:6%3C1189::AID-NME830%3E3.0.CO;2-I
– ident: key-10.3934/math.2024271-73
  doi: 10.1016/j.csite.2021.100864
– ident: key-10.3934/math.2024271-10
  doi: 10.1016/j.ijheatmasstransfer.2019.04.037
– ident: key-10.3934/math.2024271-13
  doi: 10.1016/j.csite.2021.100864
– ident: key-10.3934/math.2024271-8
  doi: 10.1016/j.enconman.2019.112444
– ident: key-10.3934/math.2024271-47
  doi: 10.1108/HFF-07-2018-0364
– ident: key-10.3934/math.2024271-54
  doi: 10.1016/j.icheatmasstransfer.2016.12.001
– ident: key-10.3934/math.2024271-59
  doi: 10.1016/j.ijmecsci.2018.07.044
– ident: key-10.3934/math.2024271-75
  doi: 10.1002/fld.1650030305
– ident: key-10.3934/math.2024271-18
SSID ssj0002124274
Score 2.3072112
Snippet This work simulates thermo-diffusion and diffusion-thermo on heat, mass transfer, and fluid flow of nano-encapsulated phase change materials (NEPCM) within a...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 5609
SubjectTerms ann model
complex cavity
isph method
nepcm
porous media
Title Heat and mass transport of nano-encapsulated phase change materials in a complex cavity: An artificial neural network coupled with incompressible smoothed particle hydrodynamics simulations
URI https://doaj.org/article/cd7978714a3547b7bbc732392ea3c589
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv5qAnCU262WTjrYqlCPVUobew2QcttGlpUtAf539zdjct9SBehECSZZIsO7Pz2Mx-Q8gdl4bhrFGBhcANYqGSQCSCB4lJdCRiI0O3oD98Swbv8euYjXdKfdmcMA8P7AeuI1WKgU4axYKyOC3SopAp7aJV14JKxt3WPbR5O8GU1cGokGOMt3ymO81o3EH_z_57sM3RDxu0A9XvbEr_iBw2ziD0fCeOyZ4uT8jBcIukWp2SrwEqS8BwH-bo5kK9wSKHhYFSlIsApUxgpDtDn1HBcoJGCfxmXnyg9uIF0xIEuORx_QFS2HIRj9DDxpXLFEIasLiW7uSywpF4jcQK7DItWACHuU-YLWYaqvnCbtvCrzWjB5NPhXrY17avoJrOm5pg1RkZ9V9Gz4OgKbkQSJryOjAcrZrocsl1ZlKpjaBG4RHSLClYrHG-i5BnSTdSWWowNomYxAuWOdAYSc9Jq1yU-oKAoBFTJgszrqgrYy6NRHfCaLwTrKva5GHDg1w2cOS2KsYsx7DEciy3HMsbjrXJ_ZZ66WE4fqF7suzc0ljwbNeAIpU3g5L_JVKX__GSK7Jv--RXa65Jq16t9Q36L3Vx60T1G-GX89k
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+and+mass+transport+of+nano-encapsulated+phase+change+materials+in+a+complex+cavity%3A+An+artificial+neural+network+coupled+with+incompressible+smoothed+particle+hydrodynamics+simulations&rft.jtitle=AIMS+mathematics&rft.au=Alhejaili%2C+Weaam&rft.au=Lee%2C+Sang-Wook&rft.au=Hat%2C+Cao+Quang&rft.au=Aly%2C+Abdelraheem+M.&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=3&rft.spage=5609&rft.epage=5632&rft_id=info:doi/10.3934%2Fmath.2024271&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2024271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon