Proximity effects in topological insulator heterostructures

Topological insulators (Tls) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which con- ventional proximity effects give rise to a series of...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 9; pp. 84 - 92
Main Author 李晓光 张谷丰 武光芬 陈铧 Dmmitrie Culcer 张振宇
Format Journal Article
LanguageEnglish
Published 01.09.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/9/097306

Cover

Loading…
Abstract Topological insulators (Tls) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which con- ventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insu- lator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topo- logical helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath, These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI- based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications.
AbstractList Topological insulators (Tls) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which con- ventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insu- lator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topo- logical helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath, These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI- based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications.
Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to Tl-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI-based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications.
Author 李晓光 张谷丰 武光芬 陈铧 Dmmitrie Culcer 张振宇
AuthorAffiliation Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China International Center for Quantum Design of Functional Materials (ICQD)/Hefei National Laboratory for Physical Sciences at the Microscale (HFNL), Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA School of Physics, The University of New South Wales, Sydney 2052, Australia
Author_xml – sequence: 1
  fullname: 李晓光 张谷丰 武光芬 陈铧 Dmmitrie Culcer 张振宇
BookMark eNqFkD1rwzAQhkVJoUnan1Bwty6uT5Il2WQqoV8QaIfsQpGlRMWxEkmG5t_XISFDl053B-9zdzwTNOp8ZxC6x_CEoaoKzEWZY2C8IKSoC6gFBX6FxgRYldOKliM0vmRu0CTGbwCOgdAxmn0F_-O2Lh0yY63RKWauy5Lf-davnVbtMMa-VcmHbGOSCT6m0OvUBxNv0bVVbTR35zpFy9eX5fw9X3y-fcyfF7mmokq55cDIygqouWp4A6oRhCjVAAy_MT00mmumuRW8EZhjK7DhdYWBQmlXKzpFj6e1u-D3vYlJbl3Upm1VZ3wfJRaMMlaC4EOUnaJ6-DMGY-UuuK0KB4lBHl3Jowd59CAJkbU8uRq42R9Ou6SS810KyrX_0g9neuO79d5168vZUmAmSgr0F5ydfL8
CitedBy_id crossref_primary_10_1088_2053_1583_ab6ff7
crossref_primary_10_1103_PhysRevB_91_075307
crossref_primary_10_7498_aps_63_187303
crossref_primary_10_1038_ncomms8630
crossref_primary_10_1103_PhysRevB_96_045307
crossref_primary_10_1088_1674_1056_23_3_030309
crossref_primary_10_1038_ncomms7547
crossref_primary_10_1038_s41598_020_71624_4
crossref_primary_10_1103_PhysRevB_96_075302
crossref_primary_10_1039_C9TA09687F
crossref_primary_10_1088_1674_1056_23_5_057201
crossref_primary_10_3390_molecules29174101
crossref_primary_10_3390_ma10070807
crossref_primary_10_7498_aps_63_117301
Cites_doi 10.1103/PhysRevLett.105.096404
10.1103/PhysRevLett.98.106803
10.1103/PhysRevLett.104.146802
10.1038/nchem.1171
10.1103/PhysRevB.75.041401
10.1103/PhysRevB.82.195440
10.1038/ncomms1638
10.1103/PhysRevB.87.161108
10.1103/PhysRevB.85.121103
10.1088/1367-2630/12/6/065013
10.1103/PhysRevB.84.085103
10.1126/science.1173034
10.1038/nmat2770
10.1103/RevModPhys.80.1083
10.1103/PhysRevLett.95.226801
10.1038/nmat2771
10.1103/PhysRevLett.109.236804
10.1103/PhysRevLett.49.405
10.1103/PhysRevLett.101.066802
10.1038/nphys1689
10.1103/PhysRevB.81.241310
10.1038/nature06843
10.1126/science.1148047
10.1103/RevModPhys.83.1057
10.1073/pnas.1119010109
10.1103/PhysRevLett.103.266803
10.1103/PhysRevB.84.155105
10.1103/PhysRevLett.95.146802
10.1103/PhysRevX.2.031004
10.1126/science.1201607
10.1103/PhysRevLett.107.166801
10.1103/PhysRevX.1.021001
10.1103/RevModPhys.82.3045
10.1103/PhysRevB.88.024501
10.1126/science.1167747
10.1103/PhysRevLett.107.056804
10.1126/science.1133734
10.1103/PhysRevLett.100.096407
10.1038/nature08234
10.1103/PhysRevB.87.085431
10.1021/nn2045328
10.1103/PhysRevB.84.201105
10.1103/RevModPhys.81.109
10.1103/PhysRevLett.98.237201
10.1016/j.physe.2011.11.003
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/22/9/097306
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Proximity effects in topological insulator heterostructures
EISSN 2058-3834
1741-4199
EndPage 92
ExternalDocumentID 10_1088_1674_1056_22_9_097306
47157430
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7SP
7U5
8FD
AEINN
H8D
L7M
ID FETCH-LOGICAL-c378t-f6052bf7096ad6d0ad722aad003835cad0c6c5c6f76d7161f71e69810304fbb3
ISSN 1674-1056
IngestDate Tue Aug 05 10:58:43 EDT 2025
Tue Jul 01 02:55:02 EDT 2025
Thu Apr 24 22:54:22 EDT 2025
Wed Feb 14 10:39:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-f6052bf7096ad6d0ad722aad003835cad0c6c5c6f76d7161f71e69810304fbb3
Notes Li Xiao-Guang, Zhang Gu-Feng, Wu Guang-Fen, Chen Hua, Dimitrie Culcer, Zhang Zhen-Yu( a) Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China b) International Center Ibr Quantum Design of Functional Materials (ICQD)/Hefei National Laboratory for Physical Sciences at the Microscale (HFNL) University of Science and Technology of China, Hefei 230026, China C) Depamnent of Physics, University of Texas at Austin, Austin, Texas 78712, USA d) School of Physics, The University of New South Wales, Sydney 2052, Australia
topological insulator, heterostructure, proximity effect, catalysis
Topological insulators (Tls) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which con- ventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insu- lator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topo- logical helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath, These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI- based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications.
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1753554076
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1753554076
crossref_primary_10_1088_1674_1056_22_9_097306
crossref_citationtrail_10_1088_1674_1056_22_9_097306
chongqing_primary_47157430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2013
References 44
45
Qu F (22) 2012; 2
46
47
48
49
50
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
Wu G (27) 2013; 3
6
7
8
9
20
21
Qi X L (40) 2010; 63
25
26
28
29
Zhang W (31) 2010; 12
30
32
33
34
35
36
37
38
39
Eremeev S V (24) 2013
41
42
Zhang G (23) 2012
43
References_xml – ident: 37
  doi: 10.1103/PhysRevLett.105.096404
– ident: 45
  doi: 10.1103/PhysRevLett.98.106803
– ident: 12
  doi: 10.1103/PhysRevLett.104.146802
– ident: 8
  doi: 10.1038/nchem.1171
– ident: 43
  doi: 10.1103/PhysRevB.75.041401
– ident: 11
  doi: 10.1103/PhysRevB.82.195440
– ident: 32
  doi: 10.1038/ncomms1638
– ident: 25
  doi: 10.1103/PhysRevB.87.161108
– ident: 33
  doi: 10.1103/PhysRevB.85.121103
– volume: 12
  start-page: 065013
  issn: 1367-2630
  year: 2010
  ident: 31
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/6/065013
– volume: 63
  start-page: 33
  issn: 0031-9228
  year: 2010
  ident: 40
  publication-title: Phys. Today
– ident: 14
  doi: 10.1103/PhysRevB.84.085103
– ident: 49
  doi: 10.1126/science.1173034
– ident: 36
  doi: 10.1038/nmat2770
– ident: 29
  doi: 10.1103/RevModPhys.80.1083
– ident: 5
  doi: 10.1103/PhysRevLett.95.226801
– ident: 38
  doi: 10.1038/nmat2771
– ident: 19
  doi: 10.1103/PhysRevLett.109.236804
– ident: 1
  doi: 10.1103/PhysRevLett.49.405
– ident: 42
  doi: 10.1103/PhysRevLett.101.066802
– ident: 50
  doi: 10.1038/nphys1689
– ident: 10
  doi: 10.1103/PhysRevB.81.241310
– ident: 46
  doi: 10.1038/nature06843
– volume: 2
  year: 2012
  ident: 22
  publication-title: Sci. Rep.
– ident: 7
  doi: 10.1126/science.1148047
– year: 2013
  ident: 24
– ident: 3
  doi: 10.1103/RevModPhys.83.1057
– ident: 39
  doi: 10.1073/pnas.1119010109
– ident: 47
  doi: 10.1103/PhysRevLett.103.266803
– ident: 13
  doi: 10.1103/PhysRevB.84.155105
– ident: 4
  doi: 10.1103/PhysRevLett.95.146802
– ident: 20
  doi: 10.1103/PhysRevX.2.031004
– ident: 34
  doi: 10.1126/science.1201607
– ident: 15
  doi: 10.1103/PhysRevLett.107.166801
– ident: 35
  doi: 10.1103/PhysRevX.1.021001
– ident: 2
  doi: 10.1103/RevModPhys.82.3045
– ident: 28
  doi: 10.1103/PhysRevB.88.024501
– ident: 30
  doi: 10.1126/science.1167747
– volume: 3
  year: 2013
  ident: 27
  publication-title: Sci. Rep.
– ident: 16
  doi: 10.1103/PhysRevLett.107.056804
– ident: 6
  doi: 10.1126/science.1133734
– ident: 9
  doi: 10.1103/PhysRevLett.100.096407
– ident: 48
  doi: 10.1038/nature08234
– ident: 26
  doi: 10.1103/PhysRevB.87.085431
– ident: 18
  doi: 10.1021/nn2045328
– ident: 17
  doi: 10.1103/PhysRevB.84.201105
– ident: 44
  doi: 10.1103/RevModPhys.81.109
– year: 2012
  ident: 23
– ident: 41
  doi: 10.1103/PhysRevLett.98.237201
– ident: 21
  doi: 10.1016/j.physe.2011.11.003
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.0737193
SecondaryResourceType review_article
Snippet Topological insulators (Tls) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A...
Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 84
SubjectTerms Control systems
Foundations
Helical
Heterostructures
Insulators
Phase diagrams
Proximity effect (electricity)
Surface reactions
Topology
垂直位置
应用程序
异质结构
拓扑
物理现象
第一性原理
绝缘体
邻近效应
Title Proximity effects in topological insulator heterostructures
URI http://lib.cqvip.com/qk/85823A/201309/47157430.html
https://www.proquest.com/docview/1753554076
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4im2PBQkru4mjuOHOCHUsqCq3UMq9mY5TkIroQTajdTy65mJ83ABicIlimY3TjQzHs94xt8Q8gZW7ERoJ2iiZUl5JTRMKWupTG1qS8ZrZvsC2SOxOuGfNtlmBlToT5dsiz3344_nSv5HqkADueIp2X-Q7DQoEOAe5AtXkDBcbyTj9Xl7iQeUrqayDKxa9G0Peub3leYYVoNDCAxsPVpsdz4UDo4IBad9H8phl-MiaMTcp_o3Z7aloErDGhfuMn_oKDBkon_uPBF-RfpcOuBt26qz4SYDNnzQ4yaDt4tCcrDY2YBa7WngjGASWYfGlLFAaXRgGREWKBbBOptQT6K-rPU3Uw7mD3cVxhfjyRXEitV9umkeKwTQPjo2ByeHhybf3-S3yR0GkQPa6o_H68DjibmcI9CMg8Oq0KPzi7dAJAuM0cfXjoe-lFpOtCVjS730H4GQHKdt8-U7OBrXXZvrK3vvruQPyP0hzojeeaV5SG5VzSNyd-0l_Ji8nVQnGlQnOmuiQHWiSXWiX1XnCckP9vP3Kzr00aAulWpLawhZWVFLiFZtKcrYlpIxa0vMCqeZgxsnXOZELUUJ4XNSywTmrMIGdLwuivQp2WnapnpGIidjV8VOcV04TLgW3LFYOZeViXKyLhZkd-KG-ebhUgy4Pxn4qfGC8JE9xg0A9NgH5avpCyGUMshhgxw2jBltPIcXZG96bBzyLw-8HnlvwFZiAsw2VdtdGESlzRBxUuze4D_Pyb15KrwgO8Dm6iV4oNviVa9TPwHJJXue
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximity+effects+in+topological+insulator+heterostructures&rft.jtitle=Chinese+physics+B&rft.au=Li%2C+Xiao-Guang&rft.au=Zhang%2C+Gu-Feng&rft.au=Wu%2C+Guang-Fen&rft.au=Chen%2C+Hua&rft.date=2013-09-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=22&rft.issue=9&rft.spage=097306&rft.epage=1-097306-10&rft_id=info:doi/10.1088%2F1674-1056%2F22%2F9%2F097306&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg