Proximity effects in topological insulator heterostructures
Topological insulators (Tls) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which con- ventional proximity effects give rise to a series of...
Saved in:
Published in | Chinese physics B Vol. 22; no. 9; pp. 84 - 92 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.09.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/22/9/097306 |
Cover
Loading…
Abstract | Topological insulators (Tls) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which con- ventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insu- lator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topo- logical helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath, These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI- based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. |
---|---|
AbstractList | Topological insulators (Tls) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which con- ventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insu- lator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topo- logical helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath, These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI- based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to Tl-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI-based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. |
Author | 李晓光 张谷丰 武光芬 陈铧 Dmmitrie Culcer 张振宇 |
AuthorAffiliation | Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China International Center for Quantum Design of Functional Materials (ICQD)/Hefei National Laboratory for Physical Sciences at the Microscale (HFNL), Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA School of Physics, The University of New South Wales, Sydney 2052, Australia |
Author_xml | – sequence: 1 fullname: 李晓光 张谷丰 武光芬 陈铧 Dmmitrie Culcer 张振宇 |
BookMark | eNqFkD1rwzAQhkVJoUnan1Bwty6uT5Il2WQqoV8QaIfsQpGlRMWxEkmG5t_XISFDl053B-9zdzwTNOp8ZxC6x_CEoaoKzEWZY2C8IKSoC6gFBX6FxgRYldOKliM0vmRu0CTGbwCOgdAxmn0F_-O2Lh0yY63RKWauy5Lf-davnVbtMMa-VcmHbGOSCT6m0OvUBxNv0bVVbTR35zpFy9eX5fw9X3y-fcyfF7mmokq55cDIygqouWp4A6oRhCjVAAy_MT00mmumuRW8EZhjK7DhdYWBQmlXKzpFj6e1u-D3vYlJbl3Upm1VZ3wfJRaMMlaC4EOUnaJ6-DMGY-UuuK0KB4lBHl3Jowd59CAJkbU8uRq42R9Ou6SS810KyrX_0g9neuO79d5168vZUmAmSgr0F5ydfL8 |
CitedBy_id | crossref_primary_10_1088_2053_1583_ab6ff7 crossref_primary_10_1103_PhysRevB_91_075307 crossref_primary_10_7498_aps_63_187303 crossref_primary_10_1038_ncomms8630 crossref_primary_10_1103_PhysRevB_96_045307 crossref_primary_10_1088_1674_1056_23_3_030309 crossref_primary_10_1038_ncomms7547 crossref_primary_10_1038_s41598_020_71624_4 crossref_primary_10_1103_PhysRevB_96_075302 crossref_primary_10_1039_C9TA09687F crossref_primary_10_1088_1674_1056_23_5_057201 crossref_primary_10_3390_molecules29174101 crossref_primary_10_3390_ma10070807 crossref_primary_10_7498_aps_63_117301 |
Cites_doi | 10.1103/PhysRevLett.105.096404 10.1103/PhysRevLett.98.106803 10.1103/PhysRevLett.104.146802 10.1038/nchem.1171 10.1103/PhysRevB.75.041401 10.1103/PhysRevB.82.195440 10.1038/ncomms1638 10.1103/PhysRevB.87.161108 10.1103/PhysRevB.85.121103 10.1088/1367-2630/12/6/065013 10.1103/PhysRevB.84.085103 10.1126/science.1173034 10.1038/nmat2770 10.1103/RevModPhys.80.1083 10.1103/PhysRevLett.95.226801 10.1038/nmat2771 10.1103/PhysRevLett.109.236804 10.1103/PhysRevLett.49.405 10.1103/PhysRevLett.101.066802 10.1038/nphys1689 10.1103/PhysRevB.81.241310 10.1038/nature06843 10.1126/science.1148047 10.1103/RevModPhys.83.1057 10.1073/pnas.1119010109 10.1103/PhysRevLett.103.266803 10.1103/PhysRevB.84.155105 10.1103/PhysRevLett.95.146802 10.1103/PhysRevX.2.031004 10.1126/science.1201607 10.1103/PhysRevLett.107.166801 10.1103/PhysRevX.1.021001 10.1103/RevModPhys.82.3045 10.1103/PhysRevB.88.024501 10.1126/science.1167747 10.1103/PhysRevLett.107.056804 10.1126/science.1133734 10.1103/PhysRevLett.100.096407 10.1038/nature08234 10.1103/PhysRevB.87.085431 10.1021/nn2045328 10.1103/PhysRevB.84.201105 10.1103/RevModPhys.81.109 10.1103/PhysRevLett.98.237201 10.1016/j.physe.2011.11.003 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1088/1674-1056/22/9/097306 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Proximity effects in topological insulator heterostructures |
EISSN | 2058-3834 1741-4199 |
EndPage | 92 |
ExternalDocumentID | 10_1088_1674_1056_22_9_097306 47157430 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7SP 7U5 8FD AEINN H8D L7M |
ID | FETCH-LOGICAL-c378t-f6052bf7096ad6d0ad722aad003835cad0c6c5c6f76d7161f71e69810304fbb3 |
ISSN | 1674-1056 |
IngestDate | Tue Aug 05 10:58:43 EDT 2025 Tue Jul 01 02:55:02 EDT 2025 Thu Apr 24 22:54:22 EDT 2025 Wed Feb 14 10:39:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-f6052bf7096ad6d0ad722aad003835cad0c6c5c6f76d7161f71e69810304fbb3 |
Notes | Li Xiao-Guang, Zhang Gu-Feng, Wu Guang-Fen, Chen Hua, Dimitrie Culcer, Zhang Zhen-Yu( a) Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China b) International Center Ibr Quantum Design of Functional Materials (ICQD)/Hefei National Laboratory for Physical Sciences at the Microscale (HFNL) University of Science and Technology of China, Hefei 230026, China C) Depamnent of Physics, University of Texas at Austin, Austin, Texas 78712, USA d) School of Physics, The University of New South Wales, Sydney 2052, Australia topological insulator, heterostructure, proximity effect, catalysis Topological insulators (Tls) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which con- ventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insu- lator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topo- logical helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath, These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI- based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1753554076 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1753554076 crossref_primary_10_1088_1674_1056_22_9_097306 crossref_citationtrail_10_1088_1674_1056_22_9_097306 chongqing_primary_47157430 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2013 |
References | 44 45 Qu F (22) 2012; 2 46 47 48 49 50 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 Wu G (27) 2013; 3 6 7 8 9 20 21 Qi X L (40) 2010; 63 25 26 28 29 Zhang W (31) 2010; 12 30 32 33 34 35 36 37 38 39 Eremeev S V (24) 2013 41 42 Zhang G (23) 2012 43 |
References_xml | – ident: 37 doi: 10.1103/PhysRevLett.105.096404 – ident: 45 doi: 10.1103/PhysRevLett.98.106803 – ident: 12 doi: 10.1103/PhysRevLett.104.146802 – ident: 8 doi: 10.1038/nchem.1171 – ident: 43 doi: 10.1103/PhysRevB.75.041401 – ident: 11 doi: 10.1103/PhysRevB.82.195440 – ident: 32 doi: 10.1038/ncomms1638 – ident: 25 doi: 10.1103/PhysRevB.87.161108 – ident: 33 doi: 10.1103/PhysRevB.85.121103 – volume: 12 start-page: 065013 issn: 1367-2630 year: 2010 ident: 31 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/6/065013 – volume: 63 start-page: 33 issn: 0031-9228 year: 2010 ident: 40 publication-title: Phys. Today – ident: 14 doi: 10.1103/PhysRevB.84.085103 – ident: 49 doi: 10.1126/science.1173034 – ident: 36 doi: 10.1038/nmat2770 – ident: 29 doi: 10.1103/RevModPhys.80.1083 – ident: 5 doi: 10.1103/PhysRevLett.95.226801 – ident: 38 doi: 10.1038/nmat2771 – ident: 19 doi: 10.1103/PhysRevLett.109.236804 – ident: 1 doi: 10.1103/PhysRevLett.49.405 – ident: 42 doi: 10.1103/PhysRevLett.101.066802 – ident: 50 doi: 10.1038/nphys1689 – ident: 10 doi: 10.1103/PhysRevB.81.241310 – ident: 46 doi: 10.1038/nature06843 – volume: 2 year: 2012 ident: 22 publication-title: Sci. Rep. – ident: 7 doi: 10.1126/science.1148047 – year: 2013 ident: 24 – ident: 3 doi: 10.1103/RevModPhys.83.1057 – ident: 39 doi: 10.1073/pnas.1119010109 – ident: 47 doi: 10.1103/PhysRevLett.103.266803 – ident: 13 doi: 10.1103/PhysRevB.84.155105 – ident: 4 doi: 10.1103/PhysRevLett.95.146802 – ident: 20 doi: 10.1103/PhysRevX.2.031004 – ident: 34 doi: 10.1126/science.1201607 – ident: 15 doi: 10.1103/PhysRevLett.107.166801 – ident: 35 doi: 10.1103/PhysRevX.1.021001 – ident: 2 doi: 10.1103/RevModPhys.82.3045 – ident: 28 doi: 10.1103/PhysRevB.88.024501 – ident: 30 doi: 10.1126/science.1167747 – volume: 3 year: 2013 ident: 27 publication-title: Sci. Rep. – ident: 16 doi: 10.1103/PhysRevLett.107.056804 – ident: 6 doi: 10.1126/science.1133734 – ident: 9 doi: 10.1103/PhysRevLett.100.096407 – ident: 48 doi: 10.1038/nature08234 – ident: 26 doi: 10.1103/PhysRevB.87.085431 – ident: 18 doi: 10.1021/nn2045328 – ident: 17 doi: 10.1103/PhysRevB.84.201105 – ident: 44 doi: 10.1103/RevModPhys.81.109 – year: 2012 ident: 23 – ident: 41 doi: 10.1103/PhysRevLett.98.237201 – ident: 21 doi: 10.1016/j.physe.2011.11.003 |
SSID | ssj0061023 ssib054405859 ssib000804704 |
Score | 2.0737193 |
SecondaryResourceType | review_article |
Snippet | Topological insulators (Tls) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A... Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 84 |
SubjectTerms | Control systems Foundations Helical Heterostructures Insulators Phase diagrams Proximity effect (electricity) Surface reactions Topology 垂直位置 应用程序 异质结构 拓扑 物理现象 第一性原理 绝缘体 邻近效应 |
Title | Proximity effects in topological insulator heterostructures |
URI | http://lib.cqvip.com/qk/85823A/201309/47157430.html https://www.proquest.com/docview/1753554076 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4im2PBQkru4mjuOHOCHUsqCq3UMq9mY5TkIroQTajdTy65mJ83ABicIlimY3TjQzHs94xt8Q8gZW7ERoJ2iiZUl5JTRMKWupTG1qS8ZrZvsC2SOxOuGfNtlmBlToT5dsiz3344_nSv5HqkADueIp2X-Q7DQoEOAe5AtXkDBcbyTj9Xl7iQeUrqayDKxa9G0Peub3leYYVoNDCAxsPVpsdz4UDo4IBad9H8phl-MiaMTcp_o3Z7aloErDGhfuMn_oKDBkon_uPBF-RfpcOuBt26qz4SYDNnzQ4yaDt4tCcrDY2YBa7WngjGASWYfGlLFAaXRgGREWKBbBOptQT6K-rPU3Uw7mD3cVxhfjyRXEitV9umkeKwTQPjo2ByeHhybf3-S3yR0GkQPa6o_H68DjibmcI9CMg8Oq0KPzi7dAJAuM0cfXjoe-lFpOtCVjS730H4GQHKdt8-U7OBrXXZvrK3vvruQPyP0hzojeeaV5SG5VzSNyd-0l_Ji8nVQnGlQnOmuiQHWiSXWiX1XnCckP9vP3Kzr00aAulWpLawhZWVFLiFZtKcrYlpIxa0vMCqeZgxsnXOZELUUJ4XNSywTmrMIGdLwuivQp2WnapnpGIidjV8VOcV04TLgW3LFYOZeViXKyLhZkd-KG-ebhUgy4Pxn4qfGC8JE9xg0A9NgH5avpCyGUMshhgxw2jBltPIcXZG96bBzyLw-8HnlvwFZiAsw2VdtdGESlzRBxUuze4D_Pyb15KrwgO8Dm6iV4oNviVa9TPwHJJXue |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximity+effects+in+topological+insulator+heterostructures&rft.jtitle=Chinese+physics+B&rft.au=Li%2C+Xiao-Guang&rft.au=Zhang%2C+Gu-Feng&rft.au=Wu%2C+Guang-Fen&rft.au=Chen%2C+Hua&rft.date=2013-09-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=22&rft.issue=9&rft.spage=097306&rft.epage=1-097306-10&rft_id=info:doi/10.1088%2F1674-1056%2F22%2F9%2F097306&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |