Automated estimation of item difficulty for multiple-choice tests: An application of word embedding techniques
Pretesting is the most commonly used method for estimating test item difficulty because it provides highly accurate results that can be applied to assessment development activities. However, pretesting is inefficient, and it can lead to item exposure. Hence, an increasing number of studies have inve...
Saved in:
Published in | Information processing & management Vol. 54; no. 6; pp. 969 - 984 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.11.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pretesting is the most commonly used method for estimating test item difficulty because it provides highly accurate results that can be applied to assessment development activities. However, pretesting is inefficient, and it can lead to item exposure. Hence, an increasing number of studies have invested considerable effort in researching the automated estimation of item difficulty. Language proficiency tests constitute the majority of researched test topics, while comparatively less research has focused on content subjects. This paper introduces a novel method for the automated estimation of item difficulty for social studies tests. In this study, we explore the difficulty of multiple-choice items, which consist of the following item elements: a question and alternative options. We use learning materials to construct a semantic space using word embedding techniques and project an item's texts into the semantic space to obtain corresponding vectors. Semantic features are obtained by calculating the cosine similarity between the vectors of item elements. Subsequently, these semantic features are sent to a classifier for training and testing. Based on the output of the classifier, an estimation model is created and item difficulty is estimated. Our findings suggest that the semantic similarity between a stem and the options has the strongest impact on item difficulty. Furthermore, the results indicate that the proposed estimation method outperforms pretesting, and therefore, we expect that the proposed approach will complement and partially replace pretesting in future. |
---|---|
AbstractList | Pretesting is the most commonly used method for estimating test item difficulty because it provides highly accurate results that can be applied to assessment development activities. However, pretesting is inefficient, and it can lead to item exposure. Hence, an increasing number of studies have invested considerable effort in researching the automated estimation of item difficulty. Language proficiency tests constitute the majority of researched test topics, while comparatively less research has focused on content subjects. This paper introduces a novel method for the automated estimation of item difficulty for social studies tests. In this study, we explore the difficulty of multiple-choice items, which consist of the following item elements: a question and alternative options. We use learning materials to construct a semantic space using word embedding techniques and project an item's texts into the semantic space to obtain corresponding vectors. Semantic features are obtained by calculating the cosine similarity between the vectors of item elements. Subsequently, these semantic features are sent to a classifier for training and testing. Based on the output of the classifier, an estimation model is created and item difficulty is estimated. Our findings suggest that the semantic similarity between a stem and the options has the strongest impact on item difficulty. Furthermore, the results indicate that the proposed estimation method outperforms pretesting, and therefore, we expect that the proposed approach will complement and partially replace pretesting in future. |
Author | Hsu, Fu-Yuan Sung, Yao-Ting Lee, Hahn-Ming Chang, Tao-Hsing |
Author_xml | – sequence: 1 givenname: Fu-Yuan orcidid: 0000-0003-0919-0608 surname: Hsu fullname: Hsu, Fu-Yuan email: D9715009@mail.ntust.edu.tw, kevinhsu@ntnu.edu.tw organization: Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, No.43, Sec.4, Keelung Rd., Da’an Dist., Taipei City 106, Taiwan – sequence: 2 givenname: Hahn-Ming surname: Lee fullname: Lee, Hahn-Ming email: hmlee@mail.ntust.edu.tw, hmlee@iis.sinica.edu.tw organization: Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, No.43, Sec.4, Keelung Rd., Da’an Dist., Taipei City 106, Taiwan – sequence: 3 givenname: Tao-Hsing surname: Chang fullname: Chang, Tao-Hsing email: changth@cc.kuas.edu.tw organization: Department of Computer Science and Information Engineering, National Kaohsiung University of Applied Sciences, No.415, Jiangong Rd., Sanmin Dist., Kaohsiung City 807, Taiwan – sequence: 4 givenname: Yao-Ting surname: Sung fullname: Sung, Yao-Ting email: sungtc@ntnu.edu.tw organization: Department of Educational Psychology and Counseling, National Taiwan Normal University, No.162, Sec.1, Heping E. Rd., Da’an Dist., Taipei City 106, Taiwan |
BookMark | eNp9kMFu1DAQhq2qSGwLD8DNEucET5zETjmtKgpIlbj0biXOmM4qsVPbC-rb4-0iDhx6mjn83z-a74pd-uCRsQ8gahDQfzrUtK11I0DXoq-FUBdsB1rJqpMKLtlOSNFXbafkW3aV0kEI0XbQ7JjfH3NYx4wzx5SpbBQ8D45TxpXP5BzZ45KfuQuRr2WjbcHKPgayyHNB0g3fez5u20L2H_w7xNK3TjjP5H-WnH309HTE9I69ceOS8P3fec0e7r483H6r7n98_X67v6-sVDpXrhvbZpAooXEKlRbjoAYpJqdtC02jcZxg6rsB5DRpPWAjBwlOd1Y4pftZXrOP59othtPZbA7hGH25aBqAYWjbFtqSgnPKxpBSRGe2WAzEZwPCnKyagylWzcmqEb0pVguj_mMs5Ze_cxxpeZX8fCax_P2LMJpkCb3FmSLabOZAr9B_AJTjlRo |
CitedBy_id | crossref_primary_10_4018_IJKSS_291974 crossref_primary_10_21449_ijate_1376160 crossref_primary_10_3758_s13428_019_01208_2 crossref_primary_10_1177_00131644241281053 crossref_primary_10_3390_math11194104 crossref_primary_10_3390_math12101455 crossref_primary_10_1017_S1351324919000093 crossref_primary_10_1007_s10489_023_04988_5 crossref_primary_10_1016_j_ipm_2019_102098 crossref_primary_10_1177_00131644251319047 crossref_primary_10_1016_j_engappai_2022_104807 crossref_primary_10_1177_00131644241299834 crossref_primary_10_1007_s40593_023_00362_1 crossref_primary_10_1016_j_ijcce_2021_08_001 crossref_primary_10_1016_j_ipm_2018_12_008 crossref_primary_10_1007_s10639_024_12764_2 crossref_primary_10_1145_3556538 |
Cites_doi | 10.1002/j.2333-8504.1998.tb01786.x 10.1016/j.ipm.2017.01.002 10.1002/j.2333-8504.1996.tb01709.x 10.1016/j.bandc.2009.07.011 10.1613/jair.2934 10.1177/014662168701100207 10.1111/j.1745-3992.1993.tb00543.x 10.1016/j.ipm.2016.09.001 10.1016/j.ipm.2017.03.007 10.1348/000712606X165484 10.1145/1961189.1961199 10.1109/72.991427 10.1080/09585176.2016.1232201 10.3758/s13428-015-0649-1 10.4103/1658-600X.142784 10.1111/modl.12213 10.1007/BF00994018 10.1111/emip.12155 10.1002/ets2.12042 10.3102/0034654317726529 10.1177/0146621606288554 10.1016/j.cedpsych.2016.07.001 10.1016/j.ipm.2016.11.002 10.1016/j.ipm.2017.09.001 10.1111/j.1745-3992.2011.00218.x 10.1016/j.ipm.2017.04.004 10.1002/j.2333-8504.2001.tb01867.x |
ContentType | Journal Article |
Copyright | 2018 Copyright Pergamon Press Inc. Nov 2018 |
Copyright_xml | – notice: 2018 – notice: Copyright Pergamon Press Inc. Nov 2018 |
DBID | AAYXX CITATION 7T9 E3H F2A |
DOI | 10.1016/j.ipm.2018.06.007 |
DatabaseName | CrossRef Linguistics and Language Behavior Abstracts (LLBA) Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) |
DatabaseTitle | CrossRef Library and Information Science Abstracts (LISA) Linguistics and Language Behavior Abstracts (LLBA) |
DatabaseTitleList | Library and Information Science Abstracts (LISA) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science |
EISSN | 1873-5371 |
EndPage | 984 |
ExternalDocumentID | 10_1016_j_ipm_2018_06_007 S0306457317308245 |
GroupedDBID | --K --M -~X .DC .~1 0B8 0R~ 1B1 1RT 1~. 1~5 29I 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABMMH ABPPZ ABXDB ABYKQ ACDAQ ACGFS ACHQT ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMY HVGLF HZ~ H~9 IHE J1W KOM LG9 LPU LY1 M3Y M41 MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSO SSS SSV SSZ T5K TN5 U5U UHB UHS UNMZH WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7T9 E3H EFKBS F2A |
ID | FETCH-LOGICAL-c378t-f5a4293e312f7e780a97930bf8c41228eab1b65913bb889e23931f85c0f786d3 |
IEDL.DBID | .~1 |
ISSN | 0306-4573 |
IngestDate | Wed Aug 27 09:43:23 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Tue Jul 01 00:44:32 EDT 2025 Fri Feb 23 02:18:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Multiple-choice item Semantic similarity Word embedding Item difficulty estimation Cognitive processing model Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-f5a4293e312f7e780a97930bf8c41228eab1b65913bb889e23931f85c0f786d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0919-0608 |
PQID | 2119944414 |
PQPubID | 46166 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2119944414 crossref_primary_10_1016_j_ipm_2018_06_007 crossref_citationtrail_10_1016_j_ipm_2018_06_007 elsevier_sciencedirect_doi_10_1016_j_ipm_2018_06_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Information processing & management |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Fernández-Reyes, Hermosillo-Valadez, Montes-y-Gómez (bib0018) 2018; 54 Kirsch, Lennon, Yamamoto, von Davier (bib0032) 2017 (bib0040) 2015 Sung, Chang, Lin, Hsieh, Chang (bib0047) 2016; 48 Turney, Pantel (bib0051) 2010; 37 Freedle, Kostin (bib0022) 1993 Mikolov, Chen, Corrado, Dean (bib0039) 2013 Loukina, Yoon, Sakano, Wei, Sheehan (bib0036) 2016 Bengio, Ducharme, Vincent, Jauvin (bib0005) 2003; 3 Le, Mikolov (bib0035) 2014 Sung, Lin, Dyson, Chang, Chen (bib0049) 2015; 99 Ferrara, Svetina, Skucha, Davidson (bib0019) 2011; 30 Heilman, Collins-Thompson, Eskenazi (bib0027) 2008 Bond, Fox (bib0009) 2015 Al-Smadi, Jaradat, Al-Ayyoub, Jararweh (bib0002) 2017; 53 Baroni, Dinu, Kruszewski (bib0004) 2014 Landauer, McNamara, Dennis, Kintsch (bib0034) 2014 Meng, Huang, Gu (bib0038) 2013; 6 Gorin, Embretson (bib0024) 2006; 30 Boldt, Freedle (bib0008) 1996; 1996 Ronzano, Anke, Saggion (bib0044) 2016 Kirsch (bib0031) 2001; 2001 Cortes, Vapnik (bib0015) 1995; 20 Embretson, Wetzel (bib0017) 1987; 11 Chen, Zhou, Dunlap, Perfetti (bib0011) 2007; 98 "DeMars (bib0054) 2010 Gupta, Banchs, Rosso (bib0025) 2017; 53 Susanti, Nishikawa, Tokunaga, Hiroyuki (bib0050) 2016 (bib0041) 2016 Kenter, de Rijke (bib0030) 2015 Chang, Lin (bib0010) 2011; 2 Sheehan (bib0046) 2017; 36 Vechtomova (bib0052) 2017; 53 Chen, Liu, Chang, Lee (bib0012) 2010; 25 Yeh, Chang, Hu, Yeh, Lin (bib0053) 2009; 71 Kocher, Savoy (bib0033) 2017; 53 Jiang, Bai, Zhang, Hu (bib0029) 2017; 53 Cokluk, Gul, Dogan-Gul (bib0014) 2016; 16 Masri, H., Ferrara, Foltz, Baird (bib0016) 2017; 28 Freedle, Kostin (bib0020) 1991 Chih-Wei, Chih-Jen (bib0013) 2002; 13 Abdulghani, Ahmad, Ponnamperuma, Khalil, Aldrees (bib0001) 2014; 2 Pho, Ligozat, Grau (bib0042) 2015 Hu, Lu, Li, Chen (bib0028) 2014 Sung, Chao, Tseng (bib0048) 2016 Bickman, Rog (bib0006) 2009 Sano (bib0045) 2015 Lumley, Routitsky, Mendelovits, Ramalingam (bib0037) 2012 Freedle, Kostin (bib0021) 1992 Hambleton, Jones (bib0026) 1993; 12 Gierl, Bulut, Guo, Zhang (bib0023) 2017; 87 Pollitt, Ahmed, Crisp (bib0043) 2007 Attali, Saldivia, Jackson, Schuppan, Wanamaker (bib0003) 2014; 2014 Boldt (bib0007) 1998; 1998 Boldt (10.1016/j.ipm.2018.06.007_bib0007) 1998; 1998 Chen (10.1016/j.ipm.2018.06.007_bib0012) 2010; 25 Baroni (10.1016/j.ipm.2018.06.007_bib0004) 2014 Chang (10.1016/j.ipm.2018.06.007_bib0010) 2011; 2 (10.1016/j.ipm.2018.06.007_bib0041) 2016 Cortes (10.1016/j.ipm.2018.06.007_bib0015) 1995; 20 Bond (10.1016/j.ipm.2018.06.007_bib0009) 2015 Freedle (10.1016/j.ipm.2018.06.007_bib0022) 1993 Attali (10.1016/j.ipm.2018.06.007_bib0003) 2014; 2014 Kenter (10.1016/j.ipm.2018.06.007_bib0030) 2015 Kirsch (10.1016/j.ipm.2018.06.007_bib0031) 2001; 2001 Meng (10.1016/j.ipm.2018.06.007_bib0038) 2013; 6 Masri (10.1016/j.ipm.2018.06.007_bib0016) 2017; 28 Yeh (10.1016/j.ipm.2018.06.007_bib0053) 2009; 71 Kirsch (10.1016/j.ipm.2018.06.007_bib0032) 2017 Turney (10.1016/j.ipm.2018.06.007_bib0051) 2010; 37 Pollitt (10.1016/j.ipm.2018.06.007_bib0043) 2007 Abdulghani (10.1016/j.ipm.2018.06.007_bib0001) 2014; 2 Sung (10.1016/j.ipm.2018.06.007_bib0047) 2016; 48 "DeMars (10.1016/j.ipm.2018.06.007_bib0054) 2010 Loukina (10.1016/j.ipm.2018.06.007_bib0036) 2016 Sano (10.1016/j.ipm.2018.06.007_bib0045) 2015 Chen (10.1016/j.ipm.2018.06.007_bib0011) 2007; 98 Freedle (10.1016/j.ipm.2018.06.007_bib0021) 1992 Landauer (10.1016/j.ipm.2018.06.007_bib0034) 2014 Freedle (10.1016/j.ipm.2018.06.007_bib0020) 1991 Le (10.1016/j.ipm.2018.06.007_bib0035) 2014 Sheehan (10.1016/j.ipm.2018.06.007_bib0046) 2017; 36 Gierl (10.1016/j.ipm.2018.06.007_bib0023) 2017; 87 Pho (10.1016/j.ipm.2018.06.007_bib0042) 2015 Susanti (10.1016/j.ipm.2018.06.007_bib0050) 2016 Gorin (10.1016/j.ipm.2018.06.007_bib0024) 2006; 30 Jiang (10.1016/j.ipm.2018.06.007_bib0029) 2017; 53 Mikolov (10.1016/j.ipm.2018.06.007_bib0039) 2013 Cokluk (10.1016/j.ipm.2018.06.007_bib0014) 2016; 16 Ferrara (10.1016/j.ipm.2018.06.007_bib0019) 2011; 30 Heilman (10.1016/j.ipm.2018.06.007_bib0027) 2008 Bickman (10.1016/j.ipm.2018.06.007_bib0006) 2009 Al-Smadi (10.1016/j.ipm.2018.06.007_bib0002) 2017; 53 Gupta (10.1016/j.ipm.2018.06.007_bib0025) 2017; 53 Kocher (10.1016/j.ipm.2018.06.007_bib0033) 2017; 53 Chih-Wei (10.1016/j.ipm.2018.06.007_bib0013) 2002; 13 Ronzano (10.1016/j.ipm.2018.06.007_bib0044) 2016 Hambleton (10.1016/j.ipm.2018.06.007_bib0026) 1993; 12 Sung (10.1016/j.ipm.2018.06.007_bib0049) 2015; 99 Lumley (10.1016/j.ipm.2018.06.007_bib0037) 2012 Hu (10.1016/j.ipm.2018.06.007_bib0028) 2014 Boldt (10.1016/j.ipm.2018.06.007_bib0008) 1996; 1996 (10.1016/j.ipm.2018.06.007_bib0040) 2015 Embretson (10.1016/j.ipm.2018.06.007_bib0017) 1987; 11 Sung (10.1016/j.ipm.2018.06.007_bib0048) 2016 Vechtomova (10.1016/j.ipm.2018.06.007_bib0052) 2017; 53 Fernández-Reyes (10.1016/j.ipm.2018.06.007_bib0018) 2018; 54 Bengio (10.1016/j.ipm.2018.06.007_bib0005) 2003; 3 |
References_xml | – year: 2016 ident: bib0036 article-title: Textual complexity as a predictor of difficulty of listening items in language proficiency tests publication-title: Proceedings of the 26th international conference on computational linguistics (COLING 2016) – year: 2013 ident: bib0039 article-title: Efficient estimation of word representations in vector space publication-title: Proceedings of workshop at international conference on learning representations (ICLR 2013) – volume: 12 start-page: 535 year: 1993 end-page: 556 ident: bib0026 article-title: Comparison of classical test theory and item response theory and their applications to test development publication-title: Educational Measurement: Issues and Practice – year: 2014 ident: bib0028 article-title: Convolutional neural network architectures for matching natural language sentences publication-title: Proceedings of the 27th international conference on neural information processing systems – year: 2010 ident: bib0054 publication-title: Item response theory – year: 2015 ident: bib0045 article-title: Automated capturing of psycho-linguistic features in reading assessment text publication-title: Proceedings of the annual meeting of national council on measurement in education (NCME) – volume: 13 start-page: 415 year: 2002 end-page: 425 ident: bib0013 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Transactions on Neural Networks – volume: 53 start-page: 248 year: 2017 end-page: 265 ident: bib0029 article-title: Wikipedia-based information content and semantic similarity computation publication-title: Information Processing & Management – year: 2012 ident: bib0037 article-title: A framework for predicting item difficulty in reading tests publication-title: Proceedings of the annual meeting of the American educational research association (AERA) – year: 2014 ident: bib0034 article-title: How to use the LSA web site publication-title: Handbook of latent semantic analysis – year: 2016 ident: bib0044 article-title: Taln at semeval-2016 task 11: Modelling complex words by contextual, lexical and semantic features publication-title: Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016) – start-page: 36 year: 2015 end-page: 59 ident: bib0009 article-title: Basic principles of the Rasch model publication-title: Applying the Rasch model: fundamental measurement in the human sciences – start-page: 166 year: 2007 end-page: 206 ident: bib0043 article-title: The demands on examination syllabuses and question papers publication-title: Techniques for monitoring the comparability of examination standards – volume: 2014 start-page: 1 year: 2014 end-page: 8 ident: bib0003 article-title: Estimating item difficulty with comparative judgments publication-title: ETS Research Report Series – year: 2009 ident: bib0006 article-title: The SAGE handbook of applied social research methods – year: 2014 ident: bib0035 article-title: Distributed representations of sentences and documents publication-title: Proceedings of the 31st international conference on machine learning (ICML 2014) – start-page: 285 year: 2017 end-page: 310 ident: bib0032 article-title: Large-scale assessments of adult literacy publication-title: Advancing human assessment: the methodological, psychological and policy contributions of ETS – year: 2008 ident: bib0027 article-title: An analysis of statistical models and features for reading difficulty prediction publication-title: Proceedings of the third workshop on innovative use of NLP for building educational applications – start-page: 241 year: 2016 end-page: 252 ident: bib0048 article-title: Reexamining the relationship between test anxiety and learning achievement: An individual-differences perspective publication-title: Contemporary Educational Psychology, 46 – volume: 1998 year: 1998 ident: bib0007 article-title: GRE analytical reasoning item statistics prediction study publication-title: ETS Research Report Series – volume: 54 start-page: 1 year: 2018 end-page: 13 ident: bib0018 article-title: A prospect-guided global query expansion strategy using word embeddings publication-title: Information Processing & Management – year: 1991 ident: bib0020 article-title: The prediction of SAT reading comprehension item difficulty for expository prose passages (RR-91-29) publication-title: Retrieved from Princeton – volume: 30 start-page: 394 year: 2006 end-page: 411 ident: bib0024 article-title: Item difficulty modeling of paragraph comprehension items publication-title: Applied Psychological Measurement – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: bib0010 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – volume: 3 start-page: 1137 year: 2003 end-page: 1155 ident: bib0005 article-title: A neural probabilistic language model publication-title: Journal of Machine Learning Research – volume: 2001 start-page: i year: 2001 end-page: 61 ident: bib0031 article-title: The international adult literacy survey (IALS): Understanding what was measured publication-title: ETS Research Report Series – volume: 1996 start-page: i year: 1996 end-page: 19 ident: bib0008 article-title: Using a neural net to predict item difficulty publication-title: ETS Research Report Series – volume: 87 year: 2017 ident: bib0023 article-title: Developing, analyzing, and using distractors for multiple-choice tests in education: A comprehensive review publication-title: Review of Educational Research – year: 2015 ident: bib0030 article-title: Short text similarity with word embeddings publication-title: Proceedings of the 24th ACM international conference on information and knowledge management (CIKM 2015) – year: 2016 ident: bib0050 article-title: Item difficulty analysis of English vocabulary questions publication-title: Proceedings of the 8th international conference on computer supported education (CSEDU 2016) – volume: 53 start-page: 640 year: 2017 end-page: 652 ident: bib0002 article-title: Paraphrase identification and semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic features publication-title: Information Processing & Management – volume: 37 start-page: 141 year: 2010 end-page: 188 ident: bib0051 article-title: From frequency to meaning: vector space models of semantics publication-title: Journal of Artificial Intelligence Research – volume: 98 start-page: 499 year: 2007 end-page: 516 ident: bib0011 article-title: Age of acquisition effects in reading Chinese: Evidence in favour of the arbitrary mapping hypothesis publication-title: British Journal of Psychology – volume: 53 start-page: 1062 year: 2017 end-page: 1079 ident: bib0052 article-title: Disambiguating context-dependent polarity of words: An information retrieval approach publication-title: Information Processing & Management – volume: 71 start-page: 300 year: 2009 end-page: 305 ident: bib0053 article-title: Association of catechol-O-methyltransferase (COMT) polymorphism and academic achievement in a Chinese cohort publication-title: Brain and Cognition – volume: 16 year: 2016 ident: bib0014 article-title: Examining differential item functions of different item ordered test forms according to item difficulty levels publication-title: Educational Sciences: Theory & Practice – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0015 article-title: Support-vector networks publication-title: Machine Learning – volume: 30 start-page: 3 year: 2011 end-page: 15 ident: bib0019 article-title: Test development with performance standards and achievement growth in mind publication-title: Educational Measurement: Issues and Practice – volume: 2 start-page: 148 year: 2014 end-page: 151 ident: bib0001 article-title: The relationship between non-functioning distractors and item difficulty of multiple choice questions: A descriptive analysis publication-title: Journal of Health Specialties – volume: 28 start-page: 59 year: 2017 end-page: 82 ident: bib0016 article-title: Predicting item difficulty of science national curriculum tests: The case of key stage 2 assessments publication-title: The Curriculum Journal – year: 2014 ident: bib0004 article-title: Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors publication-title: Proceedings of the 52nd annual meeting of the association for computational linguistics (ACL 2014) – year: 1992 ident: bib0021 article-title: The Prediction of GRE Reading Comprehension Item Difficulty for Expository Prose Passages for each of three Item Types: Main Ideas, Inferences and Explicit Statements (RR-91-59) publication-title: Retrieved from Princeton – year: 1993 ident: bib0022 article-title: The Prediction of TOEFL Reading Comprehension Item Difficulty for Expository Prose Passages for three Item Types: Main Ideas, Inference, and Supporting Idea Items (RR-93-13) publication-title: Retrieved from Princeton – volume: 6 start-page: 1 year: 2013 end-page: 12 ident: bib0038 article-title: A review of semantic similarity measures in wordnet publication-title: International Journal of Hybrid Information Technology – year: 2015 ident: bib0042 article-title: Distractor quality evaluation in multiple choice questions publication-title: Proceedings of the international conference on artificial intelligence in education – volume: 53 start-page: 359 year: 2017 end-page: 370 ident: bib0025 article-title: Continuous space models for CLIR publication-title: Information Processing & Management – volume: 48 start-page: 1238 year: 2016 end-page: 1251 ident: bib0047 article-title: CRIE: An automated analyzer for Chinese texts publication-title: Behavior Research Methods – volume: 36 start-page: 35 year: 2017 end-page: 43 ident: bib0046 article-title: Validating automated measures of text complexity publication-title: Educational Measurement: Issues and Practice – volume: 25 start-page: 61 year: 2010 end-page: 67 ident: bib0012 article-title: An unsupervised automated essay scoring system publication-title: IEEE Intelligent Systems – volume: 99 start-page: 371 year: 2015 end-page: 391 ident: bib0049 article-title: Leveling L2 texts through readability: Combining multilevel linguistic features with the CEFR publication-title: The Modern Language Journal – volume: 11 start-page: 175 year: 1987 end-page: 193 ident: bib0017 article-title: Component latent trait models for paragraph comprehension tests publication-title: Applied Psychological Measurement – year: 2016 ident: bib0041 article-title: The design of item difficulty level (RCPET-105-001) – volume: 53 start-page: 1103 year: 2017 end-page: 1119 ident: bib0033 article-title: Distance measures in author profiling publication-title: Information Processing & Management – year: 2015 ident: bib0040 article-title: The examination administration and item development research report of the basic competence TEST 2001-2013 and the comprehensive assessment program 2013-2015 in Taiwan (RCPET-104-001) – volume: 1998 issue: 2 year: 1998 ident: 10.1016/j.ipm.2018.06.007_bib0007 article-title: GRE analytical reasoning item statistics prediction study publication-title: ETS Research Report Series doi: 10.1002/j.2333-8504.1998.tb01786.x – volume: 53 start-page: 640 issue: 3 year: 2017 ident: 10.1016/j.ipm.2018.06.007_bib0002 article-title: Paraphrase identification and semantic text similarity analysis in Arabic news tweets using lexical, syntactic, and semantic features publication-title: Information Processing & Management doi: 10.1016/j.ipm.2017.01.002 – volume: 1996 start-page: i issue: 2 year: 1996 ident: 10.1016/j.ipm.2018.06.007_bib0008 article-title: Using a neural net to predict item difficulty publication-title: ETS Research Report Series doi: 10.1002/j.2333-8504.1996.tb01709.x – year: 2008 ident: 10.1016/j.ipm.2018.06.007_bib0027 article-title: An analysis of statistical models and features for reading difficulty prediction – volume: 25 start-page: 61 issue: 5 year: 2010 ident: 10.1016/j.ipm.2018.06.007_bib0012 article-title: An unsupervised automated essay scoring system publication-title: IEEE Intelligent Systems – volume: 71 start-page: 300 issue: 3 year: 2009 ident: 10.1016/j.ipm.2018.06.007_bib0053 article-title: Association of catechol-O-methyltransferase (COMT) polymorphism and academic achievement in a Chinese cohort publication-title: Brain and Cognition doi: 10.1016/j.bandc.2009.07.011 – volume: 37 start-page: 141 year: 2010 ident: 10.1016/j.ipm.2018.06.007_bib0051 article-title: From frequency to meaning: vector space models of semantics publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.2934 – volume: 11 start-page: 175 issue: 2 year: 1987 ident: 10.1016/j.ipm.2018.06.007_bib0017 article-title: Component latent trait models for paragraph comprehension tests publication-title: Applied Psychological Measurement doi: 10.1177/014662168701100207 – volume: 12 start-page: 535 issue: 3 year: 1993 ident: 10.1016/j.ipm.2018.06.007_bib0026 article-title: Comparison of classical test theory and item response theory and their applications to test development publication-title: Educational Measurement: Issues and Practice doi: 10.1111/j.1745-3992.1993.tb00543.x – volume: 53 start-page: 248 issue: 1 year: 2017 ident: 10.1016/j.ipm.2018.06.007_bib0029 article-title: Wikipedia-based information content and semantic similarity computation publication-title: Information Processing & Management doi: 10.1016/j.ipm.2016.09.001 – volume: 53 start-page: 1062 issue: 5 year: 2017 ident: 10.1016/j.ipm.2018.06.007_bib0052 article-title: Disambiguating context-dependent polarity of words: An information retrieval approach publication-title: Information Processing & Management doi: 10.1016/j.ipm.2017.03.007 – year: 2012 ident: 10.1016/j.ipm.2018.06.007_bib0037 article-title: A framework for predicting item difficulty in reading tests – volume: 98 start-page: 499 issue: 3 year: 2007 ident: 10.1016/j.ipm.2018.06.007_bib0011 article-title: Age of acquisition effects in reading Chinese: Evidence in favour of the arbitrary mapping hypothesis publication-title: British Journal of Psychology doi: 10.1348/000712606X165484 – year: 2014 ident: 10.1016/j.ipm.2018.06.007_bib0035 article-title: Distributed representations of sentences and documents – year: 1993 ident: 10.1016/j.ipm.2018.06.007_bib0022 article-title: The Prediction of TOEFL Reading Comprehension Item Difficulty for Expository Prose Passages for three Item Types: Main Ideas, Inference, and Supporting Idea Items (RR-93-13) – year: 2015 ident: 10.1016/j.ipm.2018.06.007_bib0045 article-title: Automated capturing of psycho-linguistic features in reading assessment text – volume: 2 start-page: 1 issue: 3 year: 2011 ident: 10.1016/j.ipm.2018.06.007_bib0010 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) doi: 10.1145/1961189.1961199 – year: 2016 ident: 10.1016/j.ipm.2018.06.007_bib0041 – volume: 13 start-page: 415 issue: 2 year: 2002 ident: 10.1016/j.ipm.2018.06.007_bib0013 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.991427 – year: 2016 ident: 10.1016/j.ipm.2018.06.007_bib0036 article-title: Textual complexity as a predictor of difficulty of listening items in language proficiency tests – year: 2016 ident: 10.1016/j.ipm.2018.06.007_bib0050 article-title: Item difficulty analysis of English vocabulary questions – volume: 28 start-page: 59 issue: 1 year: 2017 ident: 10.1016/j.ipm.2018.06.007_bib0016 article-title: Predicting item difficulty of science national curriculum tests: The case of key stage 2 assessments publication-title: The Curriculum Journal doi: 10.1080/09585176.2016.1232201 – year: 2015 ident: 10.1016/j.ipm.2018.06.007_bib0030 article-title: Short text similarity with word embeddings – year: 2009 ident: 10.1016/j.ipm.2018.06.007_bib0006 – volume: 48 start-page: 1238 issue: 4 year: 2016 ident: 10.1016/j.ipm.2018.06.007_bib0047 article-title: CRIE: An automated analyzer for Chinese texts publication-title: Behavior Research Methods doi: 10.3758/s13428-015-0649-1 – volume: 2 start-page: 148 issue: 4 year: 2014 ident: 10.1016/j.ipm.2018.06.007_bib0001 article-title: The relationship between non-functioning distractors and item difficulty of multiple choice questions: A descriptive analysis publication-title: Journal of Health Specialties doi: 10.4103/1658-600X.142784 – year: 2014 ident: 10.1016/j.ipm.2018.06.007_bib0034 article-title: How to use the LSA web site – volume: 99 start-page: 371 issue: 2 year: 2015 ident: 10.1016/j.ipm.2018.06.007_bib0049 article-title: Leveling L2 texts through readability: Combining multilevel linguistic features with the CEFR publication-title: The Modern Language Journal doi: 10.1111/modl.12213 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.ipm.2018.06.007_bib0015 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – year: 1992 ident: 10.1016/j.ipm.2018.06.007_bib0021 article-title: The Prediction of GRE Reading Comprehension Item Difficulty for Expository Prose Passages for each of three Item Types: Main Ideas, Inferences and Explicit Statements (RR-91-59) – volume: 36 start-page: 35 issue: 4 year: 2017 ident: 10.1016/j.ipm.2018.06.007_bib0046 article-title: Validating automated measures of text complexity publication-title: Educational Measurement: Issues and Practice doi: 10.1111/emip.12155 – start-page: 166 year: 2007 ident: 10.1016/j.ipm.2018.06.007_bib0043 article-title: The demands on examination syllabuses and question papers – year: 2013 ident: 10.1016/j.ipm.2018.06.007_bib0039 article-title: Efficient estimation of word representations in vector space – year: 2014 ident: 10.1016/j.ipm.2018.06.007_bib0004 article-title: Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors – year: 2010 ident: 10.1016/j.ipm.2018.06.007_bib0054 – start-page: 285 year: 2017 ident: 10.1016/j.ipm.2018.06.007_bib0032 article-title: Large-scale assessments of adult literacy – volume: 2014 start-page: 1 issue: 2 year: 2014 ident: 10.1016/j.ipm.2018.06.007_bib0003 article-title: Estimating item difficulty with comparative judgments publication-title: ETS Research Report Series doi: 10.1002/ets2.12042 – volume: 87 issue: 6 year: 2017 ident: 10.1016/j.ipm.2018.06.007_bib0023 article-title: Developing, analyzing, and using distractors for multiple-choice tests in education: A comprehensive review publication-title: Review of Educational Research doi: 10.3102/0034654317726529 – volume: 30 start-page: 394 issue: 5 year: 2006 ident: 10.1016/j.ipm.2018.06.007_bib0024 article-title: Item difficulty modeling of paragraph comprehension items publication-title: Applied Psychological Measurement doi: 10.1177/0146621606288554 – year: 2015 ident: 10.1016/j.ipm.2018.06.007_bib0040 – volume: 6 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.ipm.2018.06.007_bib0038 article-title: A review of semantic similarity measures in wordnet publication-title: International Journal of Hybrid Information Technology – start-page: 36 year: 2015 ident: 10.1016/j.ipm.2018.06.007_bib0009 article-title: Basic principles of the Rasch model – start-page: 241 year: 2016 ident: 10.1016/j.ipm.2018.06.007_bib0048 article-title: Reexamining the relationship between test anxiety and learning achievement: An individual-differences perspective publication-title: Contemporary Educational Psychology, 46 doi: 10.1016/j.cedpsych.2016.07.001 – year: 1991 ident: 10.1016/j.ipm.2018.06.007_bib0020 article-title: The prediction of SAT reading comprehension item difficulty for expository prose passages (RR-91-29) – volume: 53 start-page: 359 issue: 2 year: 2017 ident: 10.1016/j.ipm.2018.06.007_bib0025 article-title: Continuous space models for CLIR publication-title: Information Processing & Management doi: 10.1016/j.ipm.2016.11.002 – volume: 54 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ipm.2018.06.007_bib0018 article-title: A prospect-guided global query expansion strategy using word embeddings publication-title: Information Processing & Management doi: 10.1016/j.ipm.2017.09.001 – year: 2014 ident: 10.1016/j.ipm.2018.06.007_bib0028 article-title: Convolutional neural network architectures for matching natural language sentences – volume: 3 start-page: 1137 year: 2003 ident: 10.1016/j.ipm.2018.06.007_bib0005 article-title: A neural probabilistic language model publication-title: Journal of Machine Learning Research – year: 2015 ident: 10.1016/j.ipm.2018.06.007_bib0042 article-title: Distractor quality evaluation in multiple choice questions – volume: 30 start-page: 3 issue: 4 year: 2011 ident: 10.1016/j.ipm.2018.06.007_bib0019 article-title: Test development with performance standards and achievement growth in mind publication-title: Educational Measurement: Issues and Practice doi: 10.1111/j.1745-3992.2011.00218.x – volume: 53 start-page: 1103 issue: 5 year: 2017 ident: 10.1016/j.ipm.2018.06.007_bib0033 article-title: Distance measures in author profiling publication-title: Information Processing & Management doi: 10.1016/j.ipm.2017.04.004 – volume: 16 issue: 1 year: 2016 ident: 10.1016/j.ipm.2018.06.007_bib0014 article-title: Examining differential item functions of different item ordered test forms according to item difficulty levels publication-title: Educational Sciences: Theory & Practice – year: 2016 ident: 10.1016/j.ipm.2018.06.007_bib0044 article-title: Taln at semeval-2016 task 11: Modelling complex words by contextual, lexical and semantic features – volume: 2001 start-page: i issue: 2 year: 2001 ident: 10.1016/j.ipm.2018.06.007_bib0031 article-title: The international adult literacy survey (IALS): Understanding what was measured publication-title: ETS Research Report Series doi: 10.1002/j.2333-8504.2001.tb01867.x |
SSID | ssj0004512 |
Score | 2.3837948 |
Snippet | Pretesting is the most commonly used method for estimating test item difficulty because it provides highly accurate results that can be applied to assessment... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 969 |
SubjectTerms | Artificial intelligence Automation Classifiers Cognitive processing model Construction materials Embedding Item difficulty estimation Language proficiency Language tests Machine learning Materials selection Mathematical analysis Multiple choice Multiple-choice item Semantic features Semantic relations Semantic similarity Semantics Similarity Tests Vectors (mathematics) Word embedding |
Title | Automated estimation of item difficulty for multiple-choice tests: An application of word embedding techniques |
URI | https://dx.doi.org/10.1016/j.ipm.2018.06.007 https://www.proquest.com/docview/2119944414 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy_iE59LDuJBiNu0aZN6WxZlVfSigrfQpAmsaHdxu4gXf7szbSoq4sFj00wJmck3aTLzDSGHjpdgupFjhfIJE1JlLJfcMoDCMvYqdzHH5OTrm2x0Ly4f0ocFMuxyYTCsMmB_i-kNWoeWfpjN_nQ87t_iblekEhwgUq4ITDQXQqKVn7zzL4zhPNwkZAx7dzebTYzXeIrJ6Lyl8MSKsr_7ph8o3bie81WyEvaMdNAOa40suGqdHISMA3pEQ0oRTjENa3WDVIN5PYFGV1Ik0givJ57iaS3FuigN68YbBVnahRUyAENADgr7z3p2SgcV_XLBjcKv8K9K3bNxJfo8-skAO9skd-dnd8MRC8UVmE2kqplPC3BFeAQae-mkiooclmpkvLKCx7FyheEmS3OeGKNQZ0mecK9SG3lQaJlskcVqUrltQrNESofVT21mhC0cIIL0xsa2sEYIke6QqJtVbQPxONa_eNJdhNmjBkVoVIRuouzkDjn-FJm2rBt_dRadqvQ309HgFf4S2-_UqsO6nWnku8th0Fzs_u-re2QZn9psxX2yWL_M3QFsW2rTa-yyR5YGF1ejmw9R--1L |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLY6OGwXNNimFejwAe2A5DVOnNjZraqGCrRc6CRuVuzYUtGWVjQV4rLfvvcSB3UT4sDV9ossP7_vOfZ73yPk1PEStm7kWKF8woRUGcsltwygsIy9yl3MMTl5dp1NforL2_S2R8ZdLgyGVQbsbzG9QevQMgyrOVwtFsMbPO2KVIIDRMoVkb4huwLMF8sYfPvDtyjDeXhKyBgO7542myCvxQqz0XnL4YklZZ93Tv_BdON7zt-TvXBopKN2Xvuk56oDMggpB_QrDTlFuMY0GOsHUo029RIaXUmRSSN0Lz3F61qKhVEa2o1HCrK0iytkgIYAHRQOoPX6Ox1VdOuFG4Uf4GeVut_Glej06BMF7PojmZ__mI8nLFRXYDaRqmY-LcAX4R1o7KWTKipysNXIeGUFj2PlCsNNluY8MUah0pI84V6lNvKg0TL5RHaqZeU-E5olUjosf2ozI2zhABKkNza2hTVCiLRPom5VtQ3M41gA45fuQszuNChCoyJ0E2Yn--TsSWTV0m68NFh0qtL_7B0NbuElseNOrToY7loj4V0Ok-bi8HVfPSFvJ_PZVE8vrq-OyDvsaVMXj8lOfb9xAzjD1OZLs0f_AsXy7tk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+estimation+of+item+difficulty+for+multiple-choice+tests%3A+An+application+of+word+embedding+techniques&rft.jtitle=Information+processing+%26+management&rft.au=Hsu%2C+Fu-Yuan&rft.au=Lee%2C+Hahn-Ming&rft.au=Chang%2C+Tao-Hsing&rft.au=Sung%2C+Yao-Ting&rft.date=2018-11-01&rft.issn=0306-4573&rft.volume=54&rft.issue=6&rft.spage=969&rft.epage=984&rft_id=info:doi/10.1016%2Fj.ipm.2018.06.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipm_2018_06_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4573&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4573&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4573&client=summon |