Adaptive NN control based on Butterworth low-pass filter for quarter active suspension systems with actuator failure
This paper focuses on the adaptive neural network (NN) control problem for nonlinear quarter active suspension systems with actuator failure. By using Butterworth low-pass filter (LPF), the second order active suspension system is converted to a fourth order system, which solves the problem of zero...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 1; pp. 754 - 771 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021046 |
Cover
Loading…
Abstract | This paper focuses on the adaptive neural network (NN) control problem for nonlinear quarter active suspension systems with actuator failure. By using Butterworth low-pass filter (LPF), the second order active suspension system is converted to a fourth order system, which solves the problem of zero dynamics analysis in the second order system. Based on the adaptive backstepping technique, considering the actuator fault of vehicle, the corresponding fault tolerant controller is designed. At the same time, the unknown smooth functions are estimated by the NN. It is proved by stability analysis that all states in active suspension system are bounded. Finally, a simulation example is given to verify the effectiveness of the proposed method in a quarter active suspension system. |
---|---|
AbstractList | This paper focuses on the adaptive neural network (NN) control problem for nonlinear quarter active suspension systems with actuator failure. By using Butterworth low-pass filter (LPF), the second order active suspension system is converted to a fourth order system, which solves the problem of zero dynamics analysis in the second order system. Based on the adaptive backstepping technique, considering the actuator fault of vehicle, the corresponding fault tolerant controller is designed. At the same time, the unknown smooth functions are estimated by the NN. It is proved by stability analysis that all states in active suspension system are bounded. Finally, a simulation example is given to verify the effectiveness of the proposed method in a quarter active suspension system. |
Author | Liu, Yan-Jun Zhang, Xing Liu, Lei |
Author_xml | – sequence: 1 givenname: Xing surname: Zhang fullname: Zhang, Xing – sequence: 2 givenname: Lei surname: Liu fullname: Liu, Lei – sequence: 3 givenname: Yan-Jun surname: Liu fullname: Liu, Yan-Jun |
BookMark | eNptUctOwzAQtFCRKKU3PsAfQCB-JHaOpeJRqSoXOFubxKGu0rjYDhV_j9MWCSFOXo1nRrM7l2jU2U4jdE3SW1YwfreFsL6lKSUpz8_QmHLBkryQcvRrvkBT7zdpGlmUU8HHKMxq2AXzqfFqhSvbBWdbXILXNbYdvu9D0G5vXVjj1u6THXiPG9NGEDfW4Y8e3DBDdbDwvd_pzpuo9F8-6K3HexOl8buHEPkNmLZ3-gqdN9B6PT29E_T2-PA6f06WL0-L-WyZVEzIkDQxZ1YwLUHkGc2gKHjNSc41aSiQTEhG8qYoCTABERNa5qzkUqS0qmmelWyCFkff2sJG7ZzZgvtSFow6ANa9q5jfVK1WGWMAUnJZE8HLjMsyq2Qh4s2KGIMPXvToVTnrvdONqkyAYIaTxa0USdVQgxpqUKcaoujmj-gnxL_0b9GOjNQ |
CitedBy_id | crossref_primary_10_3934_math_2024048 crossref_primary_10_3934_mbe_2022262 |
Cites_doi | 10.1006/jsvi.1998.1882 10.1016/j.jsv.2005.04.007 10.1109/ACCESS.2019.2891724 10.1109/TSMC.2017.2719629 10.1109/TCST.2017.2699158 10.1109/TMECH.2016.2587159 10.1109/TCYB.2019.2931770 10.1109/TSMC.2019.2903203 10.1016/j.automatica.2016.11.002 10.1109/TNNLS.2017.2690465 10.1016/j.ymssp.2008.10.003 10.1109/TFUZZ.2018.2882173 10.1109/TNNLS.2016.2599009 10.1109/TAC.2005.863501 10.1109/TNNLS.2014.2334638 10.1109/TVT.2013.2282956 10.1109/TSMC.2019.2894750 10.1109/TII.2018.2866518 10.3934/math.2020179 10.1016/S0005-1098(03)00219-X 10.1016/j.ymssp.2016.01.002 10.1109/TFUZZ.2011.2171189 10.1109/TNNLS.2015.2490168 10.1016/j.automatica.2017.08.021 10.1109/TFUZZ.2011.2174244 10.1016/j.conengprac.2008.04.003 10.1299/jsmec.43.537 10.1109/TCYB.2020.2977175 10.1109/TCYB.2018.2794968 10.1016/j.jsv.2017.03.011 10.1049/iet-cta.2015.1317 10.1049/iet-cta.2010.0519 10.1109/TIE.2019.2893847 10.1049/iet-spr.2018.5077 10.1109/TNN.2008.2010349 10.1109/JAS.2018.7511195 10.1109/TFUZZ.2017.2750619 10.1016/j.amc.2018.09.003 10.1109/TCYB.2015.2411285 10.1109/TSMC.2016.2597305 10.1109/TFUZZ.2008.917301 10.1109/TITS.2016.2585343 10.3934/mbe.2018069 10.1109/TNNLS.2018.2886023 10.1007/s11432-019-2714-7 10.1016/j.automatica.2017.02.005 10.1109/TVT.2018.2870325 10.1016/j.automatica.2016.10.011 10.1177/0959651817704537 10.1016/j.automatica.2011.08.022 10.1109/TMECH.2018.2803284 10.1109/TMECH.2014.2319355 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021046 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 771 |
ExternalDocumentID | oai_doaj_org_article_533aa8848d174b548b5c8979889f004b 10_3934_math_2021046 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-f002593e8a76525a994d4164e1f2a1578316f9b1a37ae1f7e863b48702cd265b3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:31:01 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Tue Jul 01 03:56:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-f002593e8a76525a994d4164e1f2a1578316f9b1a37ae1f7e863b48702cd265b3 |
OpenAccessLink | https://doaj.org/article/533aa8848d174b548b5c8979889f004b |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_533aa8848d174b548b5c8979889f004b crossref_citationtrail_10_3934_math_2021046 crossref_primary_10_3934_math_2021046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021046-39 key-10.3934/math.2021046-38 key-10.3934/math.2021046-35 key-10.3934/math.2021046-34 key-10.3934/math.2021046-37 key-10.3934/math.2021046-36 key-10.3934/math.2021046-31 key-10.3934/math.2021046-30 key-10.3934/math.2021046-33 key-10.3934/math.2021046-32 key-10.3934/math.2021046-28 key-10.3934/math.2021046-27 key-10.3934/math.2021046-29 key-10.3934/math.2021046-24 key-10.3934/math.2021046-23 key-10.3934/math.2021046-26 key-10.3934/math.2021046-25 key-10.3934/math.2021046-20 key-10.3934/math.2021046-22 key-10.3934/math.2021046-21 key-10.3934/math.2021046-9 key-10.3934/math.2021046-8 key-10.3934/math.2021046-7 key-10.3934/math.2021046-17 key-10.3934/math.2021046-16 key-10.3934/math.2021046-19 key-10.3934/math.2021046-18 key-10.3934/math.2021046-13 key-10.3934/math.2021046-12 key-10.3934/math.2021046-15 key-10.3934/math.2021046-14 key-10.3934/math.2021046-6 key-10.3934/math.2021046-53 key-10.3934/math.2021046-5 key-10.3934/math.2021046-52 key-10.3934/math.2021046-4 key-10.3934/math.2021046-11 key-10.3934/math.2021046-55 key-10.3934/math.2021046-3 key-10.3934/math.2021046-10 key-10.3934/math.2021046-54 key-10.3934/math.2021046-2 key-10.3934/math.2021046-1 key-10.3934/math.2021046-51 key-10.3934/math.2021046-50 key-10.3934/math.2021046-49 key-10.3934/math.2021046-46 key-10.3934/math.2021046-45 key-10.3934/math.2021046-48 key-10.3934/math.2021046-47 key-10.3934/math.2021046-42 key-10.3934/math.2021046-41 key-10.3934/math.2021046-44 key-10.3934/math.2021046-43 key-10.3934/math.2021046-40 |
References_xml | – ident: key-10.3934/math.2021046-1 doi: 10.1006/jsvi.1998.1882 – ident: key-10.3934/math.2021046-5 doi: 10.1016/j.jsv.2005.04.007 – ident: key-10.3934/math.2021046-31 doi: 10.1109/ACCESS.2019.2891724 – ident: key-10.3934/math.2021046-47 doi: 10.1109/TSMC.2017.2719629 – ident: key-10.3934/math.2021046-7 doi: 10.1109/TCST.2017.2699158 – ident: key-10.3934/math.2021046-32 doi: 10.1109/TMECH.2016.2587159 – ident: key-10.3934/math.2021046-45 doi: 10.1109/TCYB.2019.2931770 – ident: key-10.3934/math.2021046-10 doi: 10.1109/TSMC.2019.2903203 – ident: key-10.3934/math.2021046-43 doi: 10.1016/j.automatica.2016.11.002 – ident: key-10.3934/math.2021046-26 doi: 10.1109/TNNLS.2017.2690465 – ident: key-10.3934/math.2021046-17 doi: 10.1016/j.ymssp.2008.10.003 – ident: key-10.3934/math.2021046-23 doi: 10.1109/TFUZZ.2018.2882173 – ident: key-10.3934/math.2021046-46 doi: 10.1109/TNNLS.2016.2599009 – ident: key-10.3934/math.2021046-54 doi: 10.1109/TAC.2005.863501 – ident: key-10.3934/math.2021046-19 doi: 10.1109/TNNLS.2014.2334638 – ident: key-10.3934/math.2021046-52 doi: 10.1109/TVT.2013.2282956 – ident: key-10.3934/math.2021046-44 doi: 10.1109/TSMC.2019.2894750 – ident: key-10.3934/math.2021046-6 doi: 10.1109/TII.2018.2866518 – ident: key-10.3934/math.2021046-29 doi: 10.3934/math.2020179 – ident: key-10.3934/math.2021046-48 doi: 10.1016/S0005-1098(03)00219-X – ident: key-10.3934/math.2021046-2 doi: 10.1016/j.ymssp.2016.01.002 – ident: key-10.3934/math.2021046-20 doi: 10.1109/TFUZZ.2011.2171189 – ident: key-10.3934/math.2021046-12 doi: 10.1109/TNNLS.2015.2490168 – ident: key-10.3934/math.2021046-42 doi: 10.1016/j.automatica.2017.08.021 – ident: key-10.3934/math.2021046-50 doi: 10.1109/TFUZZ.2011.2174244 – ident: key-10.3934/math.2021046-11 doi: 10.1016/j.conengprac.2008.04.003 – ident: key-10.3934/math.2021046-4 doi: 10.1299/jsmec.43.537 – ident: key-10.3934/math.2021046-21 doi: 10.1109/TCYB.2020.2977175 – ident: key-10.3934/math.2021046-15 doi: 10.1109/TCYB.2018.2794968 – ident: key-10.3934/math.2021046-35 doi: 10.1016/j.jsv.2017.03.011 – ident: key-10.3934/math.2021046-18 – ident: key-10.3934/math.2021046-34 doi: 10.1049/iet-cta.2015.1317 – ident: key-10.3934/math.2021046-49 doi: 10.1049/iet-cta.2010.0519 – ident: key-10.3934/math.2021046-9 doi: 10.1109/TIE.2019.2893847 – ident: key-10.3934/math.2021046-40 doi: 10.1049/iet-spr.2018.5077 – ident: key-10.3934/math.2021046-13 doi: 10.1109/TNN.2008.2010349 – ident: key-10.3934/math.2021046-28 doi: 10.1109/JAS.2018.7511195 – ident: key-10.3934/math.2021046-22 doi: 10.1109/TFUZZ.2017.2750619 – ident: key-10.3934/math.2021046-25 doi: 10.1016/j.amc.2018.09.003 – ident: key-10.3934/math.2021046-38 doi: 10.1109/TCYB.2015.2411285 – ident: key-10.3934/math.2021046-27 doi: 10.1109/TSMC.2016.2597305 – ident: key-10.3934/math.2021046-37 doi: 10.1109/TFUZZ.2008.917301 – ident: key-10.3934/math.2021046-36 doi: 10.1109/TITS.2016.2585343 – ident: key-10.3934/math.2021046-24 doi: 10.3934/mbe.2018069 – ident: key-10.3934/math.2021046-41 doi: 10.1109/TNNLS.2018.2886023 – ident: key-10.3934/math.2021046-39 doi: 10.1007/s11432-019-2714-7 – ident: key-10.3934/math.2021046-55 doi: 10.1016/j.automatica.2017.02.005 – ident: key-10.3934/math.2021046-3 doi: 10.1109/TVT.2018.2870325 – ident: key-10.3934/math.2021046-14 doi: 10.1016/j.automatica.2016.10.011 – ident: key-10.3934/math.2021046-30 doi: 10.1177/0959651817704537 – ident: key-10.3934/math.2021046-53 doi: 10.1016/j.automatica.2011.08.022 – ident: key-10.3934/math.2021046-51 doi: 10.1109/TMECH.2016.2587159 – ident: key-10.3934/math.2021046-16 – ident: key-10.3934/math.2021046-8 doi: 10.1109/TMECH.2018.2803284 – ident: key-10.3934/math.2021046-33 doi: 10.1109/TMECH.2014.2319355 |
SSID | ssj0002124274 |
Score | 2.1605687 |
Snippet | This paper focuses on the adaptive neural network (NN) control problem for nonlinear quarter active suspension systems with actuator failure. By using... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 754 |
SubjectTerms | adaptive control butterworth low-pass filter fault tolerance nn control vehicle suspension systems |
Title | Adaptive NN control based on Butterworth low-pass filter for quarter active suspension systems with actuator failure |
URI | https://doaj.org/article/533aa8848d174b548b5c8979889f004b |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATikpiO7HHgqgqpHaiUrfIT6lSlQbSir_PXRyqMiAWVsexrPPl7jvf5TtC7nIfnHUQnVgnQsILYRKpdZqY1DntePCpxn-HJ9N8POOvczHfafWFNWGRHjgKbgBwRGspuXSAnQ3gayOsVMiypQIcsEHrCz5vJ5hCGwwGmUO8FSvdmWJ8APgPcw8Z5jR_-KAdqv7Wp4yOyGEHBukwbuKY7PnqhBxMtkyqzSlZD52u0STR6ZR2deUUXY-jq4rGNtNtmR9drj6TGqAwDQvMgFNAo_Q9lmxS3Vo12myaGgvW4c3I4NxQvIfFxxsMvmnQCyxTPyOz0cvb8zjpOiUklhVynQSELop5qYtcZEIrxR0gLe7TkOkUPkqW5kGZVLNCw1jhZc4MhCqPmXVZLgw7J71qVfkLQpUFzGOFssHBIkobJjOViaAthmsu9MnDt-xK29GIYzeLZQnhBEq6REmXnaT75H47u470Gb_Me8Jj2M5B0ut2AFSh7FSh_EsVLv9jkSuyj3uKtyzXpLf-2PgbwB1rc9uq2Bd1Fdfa |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+NN+control+based+on+Butterworth+low-pass+filter+for+quarter+active+suspension+systems+with+actuator+failure&rft.jtitle=AIMS+mathematics&rft.au=Xing+Zhang&rft.au=Lei+Liu&rft.au=Yan-Jun+Liu&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=1&rft.spage=754&rft.epage=771&rft_id=info:doi/10.3934%2Fmath.2021046&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_533aa8848d174b548b5c8979889f004b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |