Adaptive NN control based on Butterworth low-pass filter for quarter active suspension systems with actuator failure

This paper focuses on the adaptive neural network (NN) control problem for nonlinear quarter active suspension systems with actuator failure. By using Butterworth low-pass filter (LPF), the second order active suspension system is converted to a fourth order system, which solves the problem of zero...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 1; pp. 754 - 771
Main Authors Zhang, Xing, Liu, Lei, Liu, Yan-Jun
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021046

Cover

Loading…
Abstract This paper focuses on the adaptive neural network (NN) control problem for nonlinear quarter active suspension systems with actuator failure. By using Butterworth low-pass filter (LPF), the second order active suspension system is converted to a fourth order system, which solves the problem of zero dynamics analysis in the second order system. Based on the adaptive backstepping technique, considering the actuator fault of vehicle, the corresponding fault tolerant controller is designed. At the same time, the unknown smooth functions are estimated by the NN. It is proved by stability analysis that all states in active suspension system are bounded. Finally, a simulation example is given to verify the effectiveness of the proposed method in a quarter active suspension system.
AbstractList This paper focuses on the adaptive neural network (NN) control problem for nonlinear quarter active suspension systems with actuator failure. By using Butterworth low-pass filter (LPF), the second order active suspension system is converted to a fourth order system, which solves the problem of zero dynamics analysis in the second order system. Based on the adaptive backstepping technique, considering the actuator fault of vehicle, the corresponding fault tolerant controller is designed. At the same time, the unknown smooth functions are estimated by the NN. It is proved by stability analysis that all states in active suspension system are bounded. Finally, a simulation example is given to verify the effectiveness of the proposed method in a quarter active suspension system.
Author Liu, Yan-Jun
Zhang, Xing
Liu, Lei
Author_xml – sequence: 1
  givenname: Xing
  surname: Zhang
  fullname: Zhang, Xing
– sequence: 2
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
– sequence: 3
  givenname: Yan-Jun
  surname: Liu
  fullname: Liu, Yan-Jun
BookMark eNptUctOwzAQtFCRKKU3PsAfQCB-JHaOpeJRqSoXOFubxKGu0rjYDhV_j9MWCSFOXo1nRrM7l2jU2U4jdE3SW1YwfreFsL6lKSUpz8_QmHLBkryQcvRrvkBT7zdpGlmUU8HHKMxq2AXzqfFqhSvbBWdbXILXNbYdvu9D0G5vXVjj1u6THXiPG9NGEDfW4Y8e3DBDdbDwvd_pzpuo9F8-6K3HexOl8buHEPkNmLZ3-gqdN9B6PT29E_T2-PA6f06WL0-L-WyZVEzIkDQxZ1YwLUHkGc2gKHjNSc41aSiQTEhG8qYoCTABERNa5qzkUqS0qmmelWyCFkff2sJG7ZzZgvtSFow6ANa9q5jfVK1WGWMAUnJZE8HLjMsyq2Qh4s2KGIMPXvToVTnrvdONqkyAYIaTxa0USdVQgxpqUKcaoujmj-gnxL_0b9GOjNQ
CitedBy_id crossref_primary_10_3934_math_2024048
crossref_primary_10_3934_mbe_2022262
Cites_doi 10.1006/jsvi.1998.1882
10.1016/j.jsv.2005.04.007
10.1109/ACCESS.2019.2891724
10.1109/TSMC.2017.2719629
10.1109/TCST.2017.2699158
10.1109/TMECH.2016.2587159
10.1109/TCYB.2019.2931770
10.1109/TSMC.2019.2903203
10.1016/j.automatica.2016.11.002
10.1109/TNNLS.2017.2690465
10.1016/j.ymssp.2008.10.003
10.1109/TFUZZ.2018.2882173
10.1109/TNNLS.2016.2599009
10.1109/TAC.2005.863501
10.1109/TNNLS.2014.2334638
10.1109/TVT.2013.2282956
10.1109/TSMC.2019.2894750
10.1109/TII.2018.2866518
10.3934/math.2020179
10.1016/S0005-1098(03)00219-X
10.1016/j.ymssp.2016.01.002
10.1109/TFUZZ.2011.2171189
10.1109/TNNLS.2015.2490168
10.1016/j.automatica.2017.08.021
10.1109/TFUZZ.2011.2174244
10.1016/j.conengprac.2008.04.003
10.1299/jsmec.43.537
10.1109/TCYB.2020.2977175
10.1109/TCYB.2018.2794968
10.1016/j.jsv.2017.03.011
10.1049/iet-cta.2015.1317
10.1049/iet-cta.2010.0519
10.1109/TIE.2019.2893847
10.1049/iet-spr.2018.5077
10.1109/TNN.2008.2010349
10.1109/JAS.2018.7511195
10.1109/TFUZZ.2017.2750619
10.1016/j.amc.2018.09.003
10.1109/TCYB.2015.2411285
10.1109/TSMC.2016.2597305
10.1109/TFUZZ.2008.917301
10.1109/TITS.2016.2585343
10.3934/mbe.2018069
10.1109/TNNLS.2018.2886023
10.1007/s11432-019-2714-7
10.1016/j.automatica.2017.02.005
10.1109/TVT.2018.2870325
10.1016/j.automatica.2016.10.011
10.1177/0959651817704537
10.1016/j.automatica.2011.08.022
10.1109/TMECH.2018.2803284
10.1109/TMECH.2014.2319355
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021046
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 771
ExternalDocumentID oai_doaj_org_article_533aa8848d174b548b5c8979889f004b
10_3934_math_2021046
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-f002593e8a76525a994d4164e1f2a1578316f9b1a37ae1f7e863b48702cd265b3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:31:01 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Tue Jul 01 03:56:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-f002593e8a76525a994d4164e1f2a1578316f9b1a37ae1f7e863b48702cd265b3
OpenAccessLink https://doaj.org/article/533aa8848d174b548b5c8979889f004b
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_533aa8848d174b548b5c8979889f004b
crossref_citationtrail_10_3934_math_2021046
crossref_primary_10_3934_math_2021046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021046-39
key-10.3934/math.2021046-38
key-10.3934/math.2021046-35
key-10.3934/math.2021046-34
key-10.3934/math.2021046-37
key-10.3934/math.2021046-36
key-10.3934/math.2021046-31
key-10.3934/math.2021046-30
key-10.3934/math.2021046-33
key-10.3934/math.2021046-32
key-10.3934/math.2021046-28
key-10.3934/math.2021046-27
key-10.3934/math.2021046-29
key-10.3934/math.2021046-24
key-10.3934/math.2021046-23
key-10.3934/math.2021046-26
key-10.3934/math.2021046-25
key-10.3934/math.2021046-20
key-10.3934/math.2021046-22
key-10.3934/math.2021046-21
key-10.3934/math.2021046-9
key-10.3934/math.2021046-8
key-10.3934/math.2021046-7
key-10.3934/math.2021046-17
key-10.3934/math.2021046-16
key-10.3934/math.2021046-19
key-10.3934/math.2021046-18
key-10.3934/math.2021046-13
key-10.3934/math.2021046-12
key-10.3934/math.2021046-15
key-10.3934/math.2021046-14
key-10.3934/math.2021046-6
key-10.3934/math.2021046-53
key-10.3934/math.2021046-5
key-10.3934/math.2021046-52
key-10.3934/math.2021046-4
key-10.3934/math.2021046-11
key-10.3934/math.2021046-55
key-10.3934/math.2021046-3
key-10.3934/math.2021046-10
key-10.3934/math.2021046-54
key-10.3934/math.2021046-2
key-10.3934/math.2021046-1
key-10.3934/math.2021046-51
key-10.3934/math.2021046-50
key-10.3934/math.2021046-49
key-10.3934/math.2021046-46
key-10.3934/math.2021046-45
key-10.3934/math.2021046-48
key-10.3934/math.2021046-47
key-10.3934/math.2021046-42
key-10.3934/math.2021046-41
key-10.3934/math.2021046-44
key-10.3934/math.2021046-43
key-10.3934/math.2021046-40
References_xml – ident: key-10.3934/math.2021046-1
  doi: 10.1006/jsvi.1998.1882
– ident: key-10.3934/math.2021046-5
  doi: 10.1016/j.jsv.2005.04.007
– ident: key-10.3934/math.2021046-31
  doi: 10.1109/ACCESS.2019.2891724
– ident: key-10.3934/math.2021046-47
  doi: 10.1109/TSMC.2017.2719629
– ident: key-10.3934/math.2021046-7
  doi: 10.1109/TCST.2017.2699158
– ident: key-10.3934/math.2021046-32
  doi: 10.1109/TMECH.2016.2587159
– ident: key-10.3934/math.2021046-45
  doi: 10.1109/TCYB.2019.2931770
– ident: key-10.3934/math.2021046-10
  doi: 10.1109/TSMC.2019.2903203
– ident: key-10.3934/math.2021046-43
  doi: 10.1016/j.automatica.2016.11.002
– ident: key-10.3934/math.2021046-26
  doi: 10.1109/TNNLS.2017.2690465
– ident: key-10.3934/math.2021046-17
  doi: 10.1016/j.ymssp.2008.10.003
– ident: key-10.3934/math.2021046-23
  doi: 10.1109/TFUZZ.2018.2882173
– ident: key-10.3934/math.2021046-46
  doi: 10.1109/TNNLS.2016.2599009
– ident: key-10.3934/math.2021046-54
  doi: 10.1109/TAC.2005.863501
– ident: key-10.3934/math.2021046-19
  doi: 10.1109/TNNLS.2014.2334638
– ident: key-10.3934/math.2021046-52
  doi: 10.1109/TVT.2013.2282956
– ident: key-10.3934/math.2021046-44
  doi: 10.1109/TSMC.2019.2894750
– ident: key-10.3934/math.2021046-6
  doi: 10.1109/TII.2018.2866518
– ident: key-10.3934/math.2021046-29
  doi: 10.3934/math.2020179
– ident: key-10.3934/math.2021046-48
  doi: 10.1016/S0005-1098(03)00219-X
– ident: key-10.3934/math.2021046-2
  doi: 10.1016/j.ymssp.2016.01.002
– ident: key-10.3934/math.2021046-20
  doi: 10.1109/TFUZZ.2011.2171189
– ident: key-10.3934/math.2021046-12
  doi: 10.1109/TNNLS.2015.2490168
– ident: key-10.3934/math.2021046-42
  doi: 10.1016/j.automatica.2017.08.021
– ident: key-10.3934/math.2021046-50
  doi: 10.1109/TFUZZ.2011.2174244
– ident: key-10.3934/math.2021046-11
  doi: 10.1016/j.conengprac.2008.04.003
– ident: key-10.3934/math.2021046-4
  doi: 10.1299/jsmec.43.537
– ident: key-10.3934/math.2021046-21
  doi: 10.1109/TCYB.2020.2977175
– ident: key-10.3934/math.2021046-15
  doi: 10.1109/TCYB.2018.2794968
– ident: key-10.3934/math.2021046-35
  doi: 10.1016/j.jsv.2017.03.011
– ident: key-10.3934/math.2021046-18
– ident: key-10.3934/math.2021046-34
  doi: 10.1049/iet-cta.2015.1317
– ident: key-10.3934/math.2021046-49
  doi: 10.1049/iet-cta.2010.0519
– ident: key-10.3934/math.2021046-9
  doi: 10.1109/TIE.2019.2893847
– ident: key-10.3934/math.2021046-40
  doi: 10.1049/iet-spr.2018.5077
– ident: key-10.3934/math.2021046-13
  doi: 10.1109/TNN.2008.2010349
– ident: key-10.3934/math.2021046-28
  doi: 10.1109/JAS.2018.7511195
– ident: key-10.3934/math.2021046-22
  doi: 10.1109/TFUZZ.2017.2750619
– ident: key-10.3934/math.2021046-25
  doi: 10.1016/j.amc.2018.09.003
– ident: key-10.3934/math.2021046-38
  doi: 10.1109/TCYB.2015.2411285
– ident: key-10.3934/math.2021046-27
  doi: 10.1109/TSMC.2016.2597305
– ident: key-10.3934/math.2021046-37
  doi: 10.1109/TFUZZ.2008.917301
– ident: key-10.3934/math.2021046-36
  doi: 10.1109/TITS.2016.2585343
– ident: key-10.3934/math.2021046-24
  doi: 10.3934/mbe.2018069
– ident: key-10.3934/math.2021046-41
  doi: 10.1109/TNNLS.2018.2886023
– ident: key-10.3934/math.2021046-39
  doi: 10.1007/s11432-019-2714-7
– ident: key-10.3934/math.2021046-55
  doi: 10.1016/j.automatica.2017.02.005
– ident: key-10.3934/math.2021046-3
  doi: 10.1109/TVT.2018.2870325
– ident: key-10.3934/math.2021046-14
  doi: 10.1016/j.automatica.2016.10.011
– ident: key-10.3934/math.2021046-30
  doi: 10.1177/0959651817704537
– ident: key-10.3934/math.2021046-53
  doi: 10.1016/j.automatica.2011.08.022
– ident: key-10.3934/math.2021046-51
  doi: 10.1109/TMECH.2016.2587159
– ident: key-10.3934/math.2021046-16
– ident: key-10.3934/math.2021046-8
  doi: 10.1109/TMECH.2018.2803284
– ident: key-10.3934/math.2021046-33
  doi: 10.1109/TMECH.2014.2319355
SSID ssj0002124274
Score 2.1605687
Snippet This paper focuses on the adaptive neural network (NN) control problem for nonlinear quarter active suspension systems with actuator failure. By using...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 754
SubjectTerms adaptive control
butterworth low-pass filter
fault tolerance
nn control
vehicle suspension systems
Title Adaptive NN control based on Butterworth low-pass filter for quarter active suspension systems with actuator failure
URI https://doaj.org/article/533aa8848d174b548b5c8979889f004b
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATikpiO7HHgqgqpHaiUrfIT6lSlQbSir_PXRyqMiAWVsexrPPl7jvf5TtC7nIfnHUQnVgnQsILYRKpdZqY1DntePCpxn-HJ9N8POOvczHfafWFNWGRHjgKbgBwRGspuXSAnQ3gayOsVMiypQIcsEHrCz5vJ5hCGwwGmUO8FSvdmWJ8APgPcw8Z5jR_-KAdqv7Wp4yOyGEHBukwbuKY7PnqhBxMtkyqzSlZD52u0STR6ZR2deUUXY-jq4rGNtNtmR9drj6TGqAwDQvMgFNAo_Q9lmxS3Vo12myaGgvW4c3I4NxQvIfFxxsMvmnQCyxTPyOz0cvb8zjpOiUklhVynQSELop5qYtcZEIrxR0gLe7TkOkUPkqW5kGZVLNCw1jhZc4MhCqPmXVZLgw7J71qVfkLQpUFzGOFssHBIkobJjOViaAthmsu9MnDt-xK29GIYzeLZQnhBEq6REmXnaT75H47u470Gb_Me8Jj2M5B0ut2AFSh7FSh_EsVLv9jkSuyj3uKtyzXpLf-2PgbwB1rc9uq2Bd1Fdfa
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+NN+control+based+on+Butterworth+low-pass+filter+for+quarter+active+suspension+systems+with+actuator+failure&rft.jtitle=AIMS+mathematics&rft.au=Xing+Zhang&rft.au=Lei+Liu&rft.au=Yan-Jun+Liu&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=1&rft.spage=754&rft.epage=771&rft_id=info:doi/10.3934%2Fmath.2021046&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_533aa8848d174b548b5c8979889f004b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon