Exponential stability of stochastic Hopfield neural network with mixed multiple delays
This paper investigates the problem for exponential stability of stochastic Hopfield neural networks involving multiple discrete time-varying delays and multiple distributed time-varying delays. The exponential stability of such neural systems has not been given much attention in the past literature...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 4; pp. 4142 - 4155 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper investigates the problem for exponential stability of stochastic Hopfield neural networks involving multiple discrete time-varying delays and multiple distributed time-varying delays. The exponential stability of such neural systems has not been given much attention in the past literature because this type of neural systems cannot be transformed into the vector forms and it is difficult to derive the easily verified stability conditions expressed in terms of the linear matrix inequality. Therefore, this paper tries to establish the easily verified sufficient conditions of the linear matrix inequality forms to ensure the mean-square exponential stability and the almost sure exponential stability for this type of neural systems by constructing a suitable Lyapunov-Krasovskii functional and inequality techniques. Four examples are provided to demonstrate the effectiveness of the proposed theoretical results and compare the established stability conditions to the previous results. |
---|---|
AbstractList | This paper investigates the problem for exponential stability of stochastic Hopfield neural networks involving multiple discrete time-varying delays and multiple distributed time-varying delays. The exponential stability of such neural systems has not been given much attention in the past literature because this type of neural systems cannot be transformed into the vector forms and it is difficult to derive the easily verified stability conditions expressed in terms of the linear matrix inequality. Therefore, this paper tries to establish the easily verified sufficient conditions of the linear matrix inequality forms to ensure the mean-square exponential stability and the almost sure exponential stability for this type of neural systems by constructing a suitable Lyapunov-Krasovskii functional and inequality techniques. Four examples are provided to demonstrate the effectiveness of the proposed theoretical results and compare the established stability conditions to the previous results. |
Author | Zhou, Qinghua Wan, Li Fu, Hongbo Zhang, Qunjiao |
Author_xml | – sequence: 1 givenname: Qinghua surname: Zhou fullname: Zhou, Qinghua – sequence: 2 givenname: Li surname: Wan fullname: Wan, Li – sequence: 3 givenname: Hongbo surname: Fu fullname: Fu, Hongbo – sequence: 4 givenname: Qunjiao surname: Zhang fullname: Zhang, Qunjiao |
BookMark | eNptkNtOwkAQhjcGExG58wH6AIJ7gnYvDUEhIfFGvd3MtlNZ3Hab7RLg7S0HE2O8mkP-_8vMf0t6ta-RkHtGx0IJ-VhBXI855YzLyRXpc5mK0VRlWe9Xf0OGbbuh9KTiqeyTj_m-6Th1tOCSNoKxzsZD4stu8Pka2mjzZOGb0qIrkhq3odPVGHc-fCU7G9dJZfdYJNXWRds4TAp0cGjvyHUJrsXhpQ7I-_P8bbYYrV5flrOn1SgXaRZHWAgmJ0KoXKV5OZEwBZOnopQ8YxmfgmRSqYxJU06ZoIrxEgtmKLIUBRWMiwFZnrmFh41ugq0gHLQHq08LHz41hO4Fh5pTOikKA8A5SEGNScEYzARXmCrBsGPxMysPvm0Dljq3EaL1dQxgnWZUH4PWx6D1JejO9PDH9HPEv_JvF4OCjA |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3300581 crossref_primary_10_1016_j_chaos_2024_115404 |
Cites_doi | 10.1016/S0016-0032(01)00016-3 10.1016/j.physleta.2007.09.009 10.1016/j.neunet.2020.05.014 10.1016/j.camwa.2008.04.004 10.1080/07362994.2014.962044 10.1016/j.neucom.2017.07.001 10.1016/j.neucom.2017.08.060 10.1080/00207161003716827 10.1016/j.cam.2010.10.002 10.1088/0031-8949/83/01/015008 10.3934/QFE.2019.4.608 10.1016/j.physleta.2005.07.039 10.1016/j.amc.2007.09.025 10.1016/0262-8856(95)91467-R 10.1109/TNNLS.2015.2503749 10.1016/j.neunet.2020.06.013 10.1016/j.neucom.2016.02.034 10.1016/j.neunet.2016.03.007 10.1016/j.chaos.2017.01.012 10.1016/j.amc.2018.11.063 10.1073/pnas.79.8.2554 10.1016/j.matpr.2017.09.222 10.1109/TNNLS.2012.2236352 10.1016/j.amc.2015.05.134 10.1016/j.neucom.2018.08.089 10.1109/TNNLS.2014.2347290 10.1016/j.neucom.2019.09.019 10.1109/TNN.2009.2036610 10.1016/j.nonrwa.2009.01.008 10.1155/2013/384981 10.1142/S0218127410025594 10.1109/TAC.2018.2830638 10.1016/j.physleta.2005.06.024 10.1016/j.jfranklin.2018.11.002 10.1080/00207160.2010.500374 10.1109/TSMCB.2008.2006860 |
ContentType | Journal Article |
CorporateAuthor | School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, PR China School of Mathematics and Computer Science, Engineering Research Center of Hubei Province for Clothing Information, Research Centre of Nonlinear Science, Wuhan Textile University, Wuhan, 430073, PR China |
CorporateAuthor_xml | – name: School of Mathematics and Computer Science, Engineering Research Center of Hubei Province for Clothing Information, Research Centre of Nonlinear Science, Wuhan Textile University, Wuhan, 430073, PR China – name: School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, PR China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021245 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 4155 |
ExternalDocumentID | oai_doaj_org_article_2005ddbaa22a430bb7abbe8329e7931e 10_3934_math_2021245 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-ed3145339c97cf54a6abc73f4281826a41499814bf6130912fed1b0e17e303123 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:08:30 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Tue Jul 01 03:56:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-ed3145339c97cf54a6abc73f4281826a41499814bf6130912fed1b0e17e303123 |
OpenAccessLink | https://doaj.org/article/2005ddbaa22a430bb7abbe8329e7931e |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2005ddbaa22a430bb7abbe8329e7931e crossref_citationtrail_10_3934_math_2021245 crossref_primary_10_3934_math_2021245 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021245-9 key-10.3934/math.2021245-22 key-10.3934/math.2021245-8 key-10.3934/math.2021245-23 key-10.3934/math.2021245-7 key-10.3934/math.2021245-20 key-10.3934/math.2021245-6 key-10.3934/math.2021245-21 key-10.3934/math.2021245-28 key-10.3934/math.2021245-29 key-10.3934/math.2021245-26 key-10.3934/math.2021245-27 key-10.3934/math.2021245-24 key-10.3934/math.2021245-25 key-10.3934/math.2021245-1 key-10.3934/math.2021245-5 key-10.3934/math.2021245-4 key-10.3934/math.2021245-3 key-10.3934/math.2021245-2 key-10.3934/math.2021245-11 key-10.3934/math.2021245-33 key-10.3934/math.2021245-12 key-10.3934/math.2021245-34 key-10.3934/math.2021245-31 key-10.3934/math.2021245-10 key-10.3934/math.2021245-32 key-10.3934/math.2021245-30 key-10.3934/math.2021245-19 key-10.3934/math.2021245-17 key-10.3934/math.2021245-18 key-10.3934/math.2021245-15 key-10.3934/math.2021245-37 key-10.3934/math.2021245-16 key-10.3934/math.2021245-38 key-10.3934/math.2021245-13 key-10.3934/math.2021245-35 key-10.3934/math.2021245-14 key-10.3934/math.2021245-36 |
References_xml | – ident: key-10.3934/math.2021245-21 doi: 10.1016/S0016-0032(01)00016-3 – ident: key-10.3934/math.2021245-23 doi: 10.1016/j.physleta.2007.09.009 – ident: key-10.3934/math.2021245-19 doi: 10.1016/j.neunet.2020.05.014 – ident: key-10.3934/math.2021245-32 – ident: key-10.3934/math.2021245-25 doi: 10.1016/j.camwa.2008.04.004 – ident: key-10.3934/math.2021245-34 doi: 10.1080/07362994.2014.962044 – ident: key-10.3934/math.2021245-13 doi: 10.1016/j.neucom.2017.07.001 – ident: key-10.3934/math.2021245-37 doi: 10.1016/j.neucom.2017.08.060 – ident: key-10.3934/math.2021245-30 doi: 10.1080/00207161003716827 – ident: key-10.3934/math.2021245-7 doi: 10.1016/j.cam.2010.10.002 – ident: key-10.3934/math.2021245-28 doi: 10.1088/0031-8949/83/01/015008 – ident: key-10.3934/math.2021245-4 doi: 10.3934/QFE.2019.4.608 – ident: key-10.3934/math.2021245-5 doi: 10.1016/j.physleta.2005.07.039 – ident: key-10.3934/math.2021245-24 doi: 10.1016/j.amc.2007.09.025 – ident: key-10.3934/math.2021245-2 doi: 10.1016/0262-8856(95)91467-R – ident: key-10.3934/math.2021245-10 doi: 10.1109/TNNLS.2015.2503749 – ident: key-10.3934/math.2021245-18 doi: 10.1016/j.neunet.2020.06.013 – ident: key-10.3934/math.2021245-36 doi: 10.1016/j.neucom.2016.02.034 – ident: key-10.3934/math.2021245-11 doi: 10.1016/j.neunet.2016.03.007 – ident: key-10.3934/math.2021245-12 doi: 10.1016/j.chaos.2017.01.012 – ident: key-10.3934/math.2021245-38 doi: 10.1016/j.amc.2018.11.063 – ident: key-10.3934/math.2021245-1 doi: 10.1073/pnas.79.8.2554 – ident: key-10.3934/math.2021245-3 doi: 10.1016/j.matpr.2017.09.222 – ident: key-10.3934/math.2021245-8 doi: 10.1109/TNNLS.2012.2236352 – ident: key-10.3934/math.2021245-35 doi: 10.1016/j.amc.2015.05.134 – ident: key-10.3934/math.2021245-16 doi: 10.1016/j.neucom.2018.08.089 – ident: key-10.3934/math.2021245-9 doi: 10.1109/TNNLS.2014.2347290 – ident: key-10.3934/math.2021245-17 doi: 10.1016/j.neucom.2019.09.019 – ident: key-10.3934/math.2021245-27 doi: 10.1109/TNN.2009.2036610 – ident: key-10.3934/math.2021245-6 doi: 10.1016/j.nonrwa.2009.01.008 – ident: key-10.3934/math.2021245-33 doi: 10.1155/2013/384981 – ident: key-10.3934/math.2021245-29 doi: 10.1142/S0218127410025594 – ident: key-10.3934/math.2021245-20 – ident: key-10.3934/math.2021245-14 doi: 10.1109/TAC.2018.2830638 – ident: key-10.3934/math.2021245-22 doi: 10.1016/j.physleta.2005.06.024 – ident: key-10.3934/math.2021245-15 doi: 10.1016/j.jfranklin.2018.11.002 – ident: key-10.3934/math.2021245-31 doi: 10.1080/00207160.2010.500374 – ident: key-10.3934/math.2021245-26 doi: 10.1109/TSMCB.2008.2006860 |
SSID | ssj0002124274 |
Score | 2.1605966 |
Snippet | This paper investigates the problem for exponential stability of stochastic Hopfield neural networks involving multiple discrete time-varying delays and... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 4142 |
SubjectTerms | exponential stability multiple time-varying delays stochastic hopfield neural network |
Title | Exponential stability of stochastic Hopfield neural network with mixed multiple delays |
URI | https://doaj.org/article/2005ddbaa22a430bb7abbe8329e7931e |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOehJljabdDc5qrQUoZ6s9LbkiYLuFttC---d2WxLPYgXj7s7hPBlmNd-fCHkJrUu-GDyRGXCJSL0RCKlCYnNDOR75jPucKA_es6GY_E06U22rvpCTliUB47AdXDq4ZzROk214F1jcm2MBz9UHlyLeYy-kPO2mimMwRCQBfRbkenOFRcdqP_w3wN-6P3IQVtS_XVOGRyQ_aYYpPdxE4dkx5dHZG-0UVKdHZPX_nJalUjpAUOo5Gou64pWAR4q-6ZRZpkOq2nNRKOoTgl2ZeR2Uxyy0s_3pXd0TRykqAq5mp2Q8aD_8jhMmrsQEstzOU-840xAaaasyi0gqjNtbM6DQDWnNNMCOh0lmTABGwLF0uAdM13Pcg9JCtLTKWmVsN0zQrsaVQi9DMFALZRqGZxy0OdJiTMpxtrkbo1OYRuhcLyv4qOAhgGxLBDLosGyTW431tMokPGL3QMCvbFBWev6BRx20Rx28ddhn__HIhdkF_cU5yiXpDX_WvgrqCzm5rp2om-o3c2U |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+stability+of+stochastic+Hopfield+neural+network+with+mixed+multiple+delays&rft.jtitle=AIMS+mathematics&rft.au=Qinghua+Zhou&rft.au=Li+Wan&rft.au=Hongbo+Fu&rft.au=Qunjiao+Zhang&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=4&rft.spage=4142&rft.epage=4155&rft_id=info:doi/10.3934%2Fmath.2021245&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2005ddbaa22a430bb7abbe8329e7931e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |