Exponential stability of stochastic Hopfield neural network with mixed multiple delays

This paper investigates the problem for exponential stability of stochastic Hopfield neural networks involving multiple discrete time-varying delays and multiple distributed time-varying delays. The exponential stability of such neural systems has not been given much attention in the past literature...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 4; pp. 4142 - 4155
Main Authors Zhou, Qinghua, Wan, Li, Fu, Hongbo, Zhang, Qunjiao
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper investigates the problem for exponential stability of stochastic Hopfield neural networks involving multiple discrete time-varying delays and multiple distributed time-varying delays. The exponential stability of such neural systems has not been given much attention in the past literature because this type of neural systems cannot be transformed into the vector forms and it is difficult to derive the easily verified stability conditions expressed in terms of the linear matrix inequality. Therefore, this paper tries to establish the easily verified sufficient conditions of the linear matrix inequality forms to ensure the mean-square exponential stability and the almost sure exponential stability for this type of neural systems by constructing a suitable Lyapunov-Krasovskii functional and inequality techniques. Four examples are provided to demonstrate the effectiveness of the proposed theoretical results and compare the established stability conditions to the previous results.
AbstractList This paper investigates the problem for exponential stability of stochastic Hopfield neural networks involving multiple discrete time-varying delays and multiple distributed time-varying delays. The exponential stability of such neural systems has not been given much attention in the past literature because this type of neural systems cannot be transformed into the vector forms and it is difficult to derive the easily verified stability conditions expressed in terms of the linear matrix inequality. Therefore, this paper tries to establish the easily verified sufficient conditions of the linear matrix inequality forms to ensure the mean-square exponential stability and the almost sure exponential stability for this type of neural systems by constructing a suitable Lyapunov-Krasovskii functional and inequality techniques. Four examples are provided to demonstrate the effectiveness of the proposed theoretical results and compare the established stability conditions to the previous results.
Author Zhou, Qinghua
Wan, Li
Fu, Hongbo
Zhang, Qunjiao
Author_xml – sequence: 1
  givenname: Qinghua
  surname: Zhou
  fullname: Zhou, Qinghua
– sequence: 2
  givenname: Li
  surname: Wan
  fullname: Wan, Li
– sequence: 3
  givenname: Hongbo
  surname: Fu
  fullname: Fu, Hongbo
– sequence: 4
  givenname: Qunjiao
  surname: Zhang
  fullname: Zhang, Qunjiao
BookMark eNptkNtOwkAQhjcGExG58wH6AIJ7gnYvDUEhIfFGvd3MtlNZ3Hab7RLg7S0HE2O8mkP-_8vMf0t6ta-RkHtGx0IJ-VhBXI855YzLyRXpc5mK0VRlWe9Xf0OGbbuh9KTiqeyTj_m-6Th1tOCSNoKxzsZD4stu8Pka2mjzZOGb0qIrkhq3odPVGHc-fCU7G9dJZfdYJNXWRds4TAp0cGjvyHUJrsXhpQ7I-_P8bbYYrV5flrOn1SgXaRZHWAgmJ0KoXKV5OZEwBZOnopQ8YxmfgmRSqYxJU06ZoIrxEgtmKLIUBRWMiwFZnrmFh41ugq0gHLQHq08LHz41hO4Fh5pTOikKA8A5SEGNScEYzARXmCrBsGPxMysPvm0Dljq3EaL1dQxgnWZUH4PWx6D1JejO9PDH9HPEv_JvF4OCjA
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3300581
crossref_primary_10_1016_j_chaos_2024_115404
Cites_doi 10.1016/S0016-0032(01)00016-3
10.1016/j.physleta.2007.09.009
10.1016/j.neunet.2020.05.014
10.1016/j.camwa.2008.04.004
10.1080/07362994.2014.962044
10.1016/j.neucom.2017.07.001
10.1016/j.neucom.2017.08.060
10.1080/00207161003716827
10.1016/j.cam.2010.10.002
10.1088/0031-8949/83/01/015008
10.3934/QFE.2019.4.608
10.1016/j.physleta.2005.07.039
10.1016/j.amc.2007.09.025
10.1016/0262-8856(95)91467-R
10.1109/TNNLS.2015.2503749
10.1016/j.neunet.2020.06.013
10.1016/j.neucom.2016.02.034
10.1016/j.neunet.2016.03.007
10.1016/j.chaos.2017.01.012
10.1016/j.amc.2018.11.063
10.1073/pnas.79.8.2554
10.1016/j.matpr.2017.09.222
10.1109/TNNLS.2012.2236352
10.1016/j.amc.2015.05.134
10.1016/j.neucom.2018.08.089
10.1109/TNNLS.2014.2347290
10.1016/j.neucom.2019.09.019
10.1109/TNN.2009.2036610
10.1016/j.nonrwa.2009.01.008
10.1155/2013/384981
10.1142/S0218127410025594
10.1109/TAC.2018.2830638
10.1016/j.physleta.2005.06.024
10.1016/j.jfranklin.2018.11.002
10.1080/00207160.2010.500374
10.1109/TSMCB.2008.2006860
ContentType Journal Article
CorporateAuthor School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, PR China
School of Mathematics and Computer Science, Engineering Research Center of Hubei Province for Clothing Information, Research Centre of Nonlinear Science, Wuhan Textile University, Wuhan, 430073, PR China
CorporateAuthor_xml – name: School of Mathematics and Computer Science, Engineering Research Center of Hubei Province for Clothing Information, Research Centre of Nonlinear Science, Wuhan Textile University, Wuhan, 430073, PR China
– name: School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, PR China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021245
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 4155
ExternalDocumentID oai_doaj_org_article_2005ddbaa22a430bb7abbe8329e7931e
10_3934_math_2021245
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-ed3145339c97cf54a6abc73f4281826a41499814bf6130912fed1b0e17e303123
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:08:30 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Tue Jul 01 03:56:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-ed3145339c97cf54a6abc73f4281826a41499814bf6130912fed1b0e17e303123
OpenAccessLink https://doaj.org/article/2005ddbaa22a430bb7abbe8329e7931e
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_2005ddbaa22a430bb7abbe8329e7931e
crossref_citationtrail_10_3934_math_2021245
crossref_primary_10_3934_math_2021245
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021245-9
key-10.3934/math.2021245-22
key-10.3934/math.2021245-8
key-10.3934/math.2021245-23
key-10.3934/math.2021245-7
key-10.3934/math.2021245-20
key-10.3934/math.2021245-6
key-10.3934/math.2021245-21
key-10.3934/math.2021245-28
key-10.3934/math.2021245-29
key-10.3934/math.2021245-26
key-10.3934/math.2021245-27
key-10.3934/math.2021245-24
key-10.3934/math.2021245-25
key-10.3934/math.2021245-1
key-10.3934/math.2021245-5
key-10.3934/math.2021245-4
key-10.3934/math.2021245-3
key-10.3934/math.2021245-2
key-10.3934/math.2021245-11
key-10.3934/math.2021245-33
key-10.3934/math.2021245-12
key-10.3934/math.2021245-34
key-10.3934/math.2021245-31
key-10.3934/math.2021245-10
key-10.3934/math.2021245-32
key-10.3934/math.2021245-30
key-10.3934/math.2021245-19
key-10.3934/math.2021245-17
key-10.3934/math.2021245-18
key-10.3934/math.2021245-15
key-10.3934/math.2021245-37
key-10.3934/math.2021245-16
key-10.3934/math.2021245-38
key-10.3934/math.2021245-13
key-10.3934/math.2021245-35
key-10.3934/math.2021245-14
key-10.3934/math.2021245-36
References_xml – ident: key-10.3934/math.2021245-21
  doi: 10.1016/S0016-0032(01)00016-3
– ident: key-10.3934/math.2021245-23
  doi: 10.1016/j.physleta.2007.09.009
– ident: key-10.3934/math.2021245-19
  doi: 10.1016/j.neunet.2020.05.014
– ident: key-10.3934/math.2021245-32
– ident: key-10.3934/math.2021245-25
  doi: 10.1016/j.camwa.2008.04.004
– ident: key-10.3934/math.2021245-34
  doi: 10.1080/07362994.2014.962044
– ident: key-10.3934/math.2021245-13
  doi: 10.1016/j.neucom.2017.07.001
– ident: key-10.3934/math.2021245-37
  doi: 10.1016/j.neucom.2017.08.060
– ident: key-10.3934/math.2021245-30
  doi: 10.1080/00207161003716827
– ident: key-10.3934/math.2021245-7
  doi: 10.1016/j.cam.2010.10.002
– ident: key-10.3934/math.2021245-28
  doi: 10.1088/0031-8949/83/01/015008
– ident: key-10.3934/math.2021245-4
  doi: 10.3934/QFE.2019.4.608
– ident: key-10.3934/math.2021245-5
  doi: 10.1016/j.physleta.2005.07.039
– ident: key-10.3934/math.2021245-24
  doi: 10.1016/j.amc.2007.09.025
– ident: key-10.3934/math.2021245-2
  doi: 10.1016/0262-8856(95)91467-R
– ident: key-10.3934/math.2021245-10
  doi: 10.1109/TNNLS.2015.2503749
– ident: key-10.3934/math.2021245-18
  doi: 10.1016/j.neunet.2020.06.013
– ident: key-10.3934/math.2021245-36
  doi: 10.1016/j.neucom.2016.02.034
– ident: key-10.3934/math.2021245-11
  doi: 10.1016/j.neunet.2016.03.007
– ident: key-10.3934/math.2021245-12
  doi: 10.1016/j.chaos.2017.01.012
– ident: key-10.3934/math.2021245-38
  doi: 10.1016/j.amc.2018.11.063
– ident: key-10.3934/math.2021245-1
  doi: 10.1073/pnas.79.8.2554
– ident: key-10.3934/math.2021245-3
  doi: 10.1016/j.matpr.2017.09.222
– ident: key-10.3934/math.2021245-8
  doi: 10.1109/TNNLS.2012.2236352
– ident: key-10.3934/math.2021245-35
  doi: 10.1016/j.amc.2015.05.134
– ident: key-10.3934/math.2021245-16
  doi: 10.1016/j.neucom.2018.08.089
– ident: key-10.3934/math.2021245-9
  doi: 10.1109/TNNLS.2014.2347290
– ident: key-10.3934/math.2021245-17
  doi: 10.1016/j.neucom.2019.09.019
– ident: key-10.3934/math.2021245-27
  doi: 10.1109/TNN.2009.2036610
– ident: key-10.3934/math.2021245-6
  doi: 10.1016/j.nonrwa.2009.01.008
– ident: key-10.3934/math.2021245-33
  doi: 10.1155/2013/384981
– ident: key-10.3934/math.2021245-29
  doi: 10.1142/S0218127410025594
– ident: key-10.3934/math.2021245-20
– ident: key-10.3934/math.2021245-14
  doi: 10.1109/TAC.2018.2830638
– ident: key-10.3934/math.2021245-22
  doi: 10.1016/j.physleta.2005.06.024
– ident: key-10.3934/math.2021245-15
  doi: 10.1016/j.jfranklin.2018.11.002
– ident: key-10.3934/math.2021245-31
  doi: 10.1080/00207160.2010.500374
– ident: key-10.3934/math.2021245-26
  doi: 10.1109/TSMCB.2008.2006860
SSID ssj0002124274
Score 2.1605966
Snippet This paper investigates the problem for exponential stability of stochastic Hopfield neural networks involving multiple discrete time-varying delays and...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 4142
SubjectTerms exponential stability
multiple time-varying delays
stochastic hopfield neural network
Title Exponential stability of stochastic Hopfield neural network with mixed multiple delays
URI https://doaj.org/article/2005ddbaa22a430bb7abbe8329e7931e
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOehJljabdDc5qrQUoZ6s9LbkiYLuFttC---d2WxLPYgXj7s7hPBlmNd-fCHkJrUu-GDyRGXCJSL0RCKlCYnNDOR75jPucKA_es6GY_E06U22rvpCTliUB47AdXDq4ZzROk214F1jcm2MBz9UHlyLeYy-kPO2mimMwRCQBfRbkenOFRcdqP_w3wN-6P3IQVtS_XVOGRyQ_aYYpPdxE4dkx5dHZG-0UVKdHZPX_nJalUjpAUOo5Gou64pWAR4q-6ZRZpkOq2nNRKOoTgl2ZeR2Uxyy0s_3pXd0TRykqAq5mp2Q8aD_8jhMmrsQEstzOU-840xAaaasyi0gqjNtbM6DQDWnNNMCOh0lmTABGwLF0uAdM13Pcg9JCtLTKWmVsN0zQrsaVQi9DMFALZRqGZxy0OdJiTMpxtrkbo1OYRuhcLyv4qOAhgGxLBDLosGyTW431tMokPGL3QMCvbFBWev6BRx20Rx28ddhn__HIhdkF_cU5yiXpDX_WvgrqCzm5rp2om-o3c2U
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+stability+of+stochastic+Hopfield+neural+network+with+mixed+multiple+delays&rft.jtitle=AIMS+mathematics&rft.au=Qinghua+Zhou&rft.au=Li+Wan&rft.au=Hongbo+Fu&rft.au=Qunjiao+Zhang&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=4&rft.spage=4142&rft.epage=4155&rft_id=info:doi/10.3934%2Fmath.2021245&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2005ddbaa22a430bb7abbe8329e7931e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon