New relativistic traversable wormholes and energy constraints in the rastall teleparallel gravitational paradigm

This study investigates the existence and stability of traversable wormhole (WH) solutions within the framework of Rastall Teleparallel Gravity. In this context, we focus on the impact of geometric constraints and energy conditions. Utilizing the class I embedding technique under the Karmarkar condi...

Full description

Saved in:
Bibliographic Details
Published inNuclear physics. B Vol. 1018; p. 117008
Main Authors Saleem, Amna, Ali, Zulfiqar, Bouzenada, Abdelmalek, Ditta, Allah, Atamurotov, Farruh, Mustafa, G.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2025
Elsevier
Subjects
Online AccessGet full text
ISSN0550-3213
DOI10.1016/j.nuclphysb.2025.117008

Cover

Abstract This study investigates the existence and stability of traversable wormhole (WH) solutions within the framework of Rastall Teleparallel Gravity. In this context, we focus on the impact of geometric constraints and energy conditions. Utilizing the class I embedding technique under the Karmarkar condition, we derive two novel static spherically symmetric WH solutions. In addition, these solutions are illustrated with distinct redshift functions, leading to corresponding shape functions that satisfy the Morris-Thorne criteria, ensuring asymptotic flatness and necessary throat conditions. The field equations, constructed within an anisotropic stress-energy tensor framework, are analyzed to evaluate the energy density, radial pressure, and tangential pressure distributions. A comprehensive graphical analysis tested the energy conditions, i.e., the null energy condition (NEC), weak energy condition (WEC), strong energy condition (SEC), and dominant energy condition (DEC). This shows the violations of the Null Energy Condition (NEC), confirming the presence of exotic matter necessary for sustaining WH structures. Both models exhibit regions where the energy density remains positive, while radial and tangential pressures violate classical energy conditions, reinforcing the theoretical expectations for the stability of the WH. Also, these results illustrated the compatibility of Rastall Teleparallel Gravity with traversable WH subjects and tested the intricate matter-geometry interplay in exotic spacetimes.
AbstractList This study investigates the existence and stability of traversable wormhole (WH) solutions within the framework of Rastall Teleparallel Gravity. In this context, we focus on the impact of geometric constraints and energy conditions. Utilizing the class I embedding technique under the Karmarkar condition, we derive two novel static spherically symmetric WH solutions. In addition, these solutions are illustrated with distinct redshift functions, leading to corresponding shape functions that satisfy the Morris-Thorne criteria, ensuring asymptotic flatness and necessary throat conditions. The field equations, constructed within an anisotropic stress-energy tensor framework, are analyzed to evaluate the energy density, radial pressure, and tangential pressure distributions. A comprehensive graphical analysis tested the energy conditions, i.e., the null energy condition (NEC), weak energy condition (WEC), strong energy condition (SEC), and dominant energy condition (DEC). This shows the violations of the Null Energy Condition (NEC), confirming the presence of exotic matter necessary for sustaining WH structures. Both models exhibit regions where the energy density remains positive, while radial and tangential pressures violate classical energy conditions, reinforcing the theoretical expectations for the stability of the WH. Also, these results illustrated the compatibility of Rastall Teleparallel Gravity with traversable WH subjects and tested the intricate matter-geometry interplay in exotic spacetimes.
ArticleNumber 117008
Author Mustafa, G.
Atamurotov, Farruh
Saleem, Amna
Bouzenada, Abdelmalek
Ditta, Allah
Ali, Zulfiqar
Author_xml – sequence: 1
  givenname: Amna
  surname: Saleem
  fullname: Saleem, Amna
  email: a.saleemintel@gmail.com
  organization: Department of Mathematics, Riphah International University, Faisalabad Campus, 38000, Punjab, Pakistan
– sequence: 2
  givenname: Zulfiqar
  surname: Ali
  fullname: Ali, Zulfiqar
  email: zulfiqar.ali@riphahfsd.edu.pk
  organization: Department of Mathematics, Riphah International University, Faisalabad Campus, 38000, Punjab, Pakistan
– sequence: 3
  givenname: Abdelmalek
  orcidid: 0000-0002-3363-980X
  surname: Bouzenada
  fullname: Bouzenada, Abdelmalek
  email: abdelmalekbouzenada@gmail.com
  organization: Laboratory of Theoretical and Applied Physics, Echahid Cheikh Larbi Tebessi University 12001, Algeria
– sequence: 4
  givenname: Allah
  surname: Ditta
  fullname: Ditta, Allah
  email: mradshahid01@gmail.com
  organization: Department of Mathematics, School of Science, University of Management and Technology, Lahore, 54000, Pakistan
– sequence: 5
  givenname: Farruh
  surname: Atamurotov
  fullname: Atamurotov, Farruh
  email: atamurotov@yahoo.com
  organization: Kimyo International University in Tashkent, Shota Rustaveli str. 156, Tashkent 100121, Uzbekistan
– sequence: 6
  givenname: G.
  orcidid: 0000-0003-1409-2009
  surname: Mustafa
  fullname: Mustafa, G.
  email: gmustafa3828@gmail.com
  organization: Department of Physics, Zhejiang Normal University, Jinhua 321004, People's Republic of China
BookMark eNqFkM1OYzEMhbNgpCnMPAN5gXby0-TeLhGCAQnBhllHTuLbpkqTKglFfXvSKWKLJctHlv3JPpfkIuWEhFxztuCM6z_bRXpzcb85VrsQTKgF5wNj4wWZMaXYXAouf5LLWresh5bjjOyf8Z0WjNDCIdQWHG0FDlgq2Ij0PZfdJkesFJKnmLCsj9TlVPtQSK3SkGjbIC1QG8RIG0bcQ-kSI113UGgdnBNEemr7sN79Ij8miBV_f9Yr8u_-7vX2Yf708vfx9uZp7uQwtjl6xgVXarQIdsUQmBitlz3dkgNqIfTKokSrpFoOXDNY6eUwcuWE7JLLK_J45voMW7MvYQflaDIE87-Ry9pA6f9GNGi9tl64aXRiqaap60F7K7kcAaTTnTWcWa7kWgtOXzzOzMl4szVfxpuT8eZsfN-8OW9if_UQsJjqAiaHPhR0rd8SvmV8AFd1mGA
Cites_doi 10.1142/S0219887819501433
10.1140/epjp/s13360-024-05385-8
10.1088/1475-7516/2021/07/004
10.1140/epjc/s10052-018-6410-z
10.1016/j.physletb.2008.11.064
10.1103/PhysRevD.98.124004
10.1016/j.dark.2020.100464
10.1016/j.physletb.2018.05.028
10.1007/s10208-022-09597-1
10.1088/1361-6382/aa7830
10.1007/s41884-019-00018-x
10.1103/PhysRevD.107.046021
10.1142/S0218271815500030
10.1103/PhysRev.128.919
10.1142/S2010194512008227
10.1103/PhysRevLett.55.2656
10.1134/S0202289319040030
10.1103/PhysRevLett.61.1446
10.1142/S0217732308027497
10.1088/1361-6633/ac9cef
10.1016/j.physletb.2017.05.064
10.1007/s10714-023-03093-9
10.1103/PhysRevD.80.104012
10.1088/1361-6382/ac129d
10.1016/j.aop.2019.168062
10.1088/0034-4885/79/10/106901
10.1103/PhysRevD.86.127504
10.1103/PhysRevD.72.103005
10.1140/epjp/s13360-020-00508-3
10.1088/1674-1137/ac7f22
10.1139/cjp-2017-0040
10.1016/j.physletb.2022.137572
10.1103/RevModPhys.36.463
10.1140/epjc/s10052-016-4066-0
10.1140/epjc/s10052-021-09854-7
10.1016/j.dark.2025.101977
10.1103/PhysRevD.6.3357
10.1119/1.15620
10.1142/S0219887823500147
10.1063/1.1665613
10.1103/PhysRevD.85.084008
10.2307/1968467
10.12942/lrr-2009-4
10.1103/PhysRevD.19.3524
10.1140/epjp/s13360-021-01104-9
10.1134/S0202289315040027
10.1103/PhysRevLett.90.201102
10.1002/andp.202300178
10.1088/1361-6382/ab2e1f
10.1142/S0219887823500585
10.1016/j.cjph.2023.12.033
10.1016/j.dark.2025.101963
10.1140/epjc/s10052-017-5502-5
10.1103/PhysRevD.98.084043
10.1142/S0219887821500419
10.1103/PhysRevD.78.124019
10.1016/0370-2693(85)91616-8
10.1103/PhysRevD.81.127301
10.1103/PhysRevD.79.124019
10.1140/epjc/s10052-023-11466-2
10.1088/1475-7516/2023/10/038
10.1016/j.physletb.2021.136612
10.1016/j.aop.2018.01.010
10.1142/S0218271816500875
10.1016/j.dark.2023.101411
10.1103/PhysRev.48.73
10.1103/PhysRevD.98.044048
10.1002/prop.201800077
10.1103/PhysRevD.75.084031
10.1002/andp.201200272
10.1142/S0219887820501030
10.1016/j.dark.2024.101438
10.1139/cjp-2017-0254
10.1103/PhysRevD.91.084004
10.1139/p76-008
10.1016/j.cjph.2024.03.036
10.1103/PhysRevD.101.024053
10.1142/S0219887820501467
10.1140/epjp/i2018-12083-1
10.1016/j.physletb.2016.03.047
10.1016/S0375-9601(02)00705-3
10.1016/j.aop.2021.168575
10.1140/epjp/s13360-020-00927-2
10.1142/S0218271819500391
10.1103/PhysRevD.46.2464
10.1016/j.jheap.2025.01.006
10.3390/universe8100510
10.3390/sym12050774
10.1016/0003-4916(57)90049-0
10.1140/epjc/s10052-021-09668-7
10.1063/1.1666069
10.1103/PhysRevD.85.044007
10.1016/0003-4916(57)90050-7
10.1016/j.cjph.2022.03.004
10.1088/1402-4896/ad3e36
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.nuclphysb.2025.117008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID oai_doaj_org_article_ebd6bd2cf8c245ffbd276db3138aa3c6
10_1016_j_nuclphysb_2025_117008
S0550321325002172
GroupedDBID --K
--M
-~X
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
6I.
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABFNM
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACKIV
ACNCT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADIYS
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AETEA
AEUPX
AEXQZ
AFPKN
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIBLX
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
ER.
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HME
HVGLF
HZ~
IHE
IPNFZ
IXB
J1W
KOM
KQ8
LZ4
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SSQ
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
YYP
~G-
AAYXX
CITATION
EFLBG
ID FETCH-LOGICAL-c378t-ed0121558beab90ea028bd38bdc41ae62269be3eb53547160a9647815c23a9613
IEDL.DBID DOA
ISSN 0550-3213
IngestDate Wed Aug 27 01:24:03 EDT 2025
Wed Sep 03 16:36:56 EDT 2025
Sat Aug 09 17:30:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Traversable wormholes
Energy conditions
Rastall teleparallel gravity
Exotic matter
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-ed0121558beab90ea028bd38bdc41ae62269be3eb53547160a9647815c23a9613
ORCID 0000-0003-1409-2009
0000-0002-3363-980X
0009-0004-0824-7929
0000-0003-1137-0253
0000-0001-8857-4970
0000-0001-7758-8736
OpenAccessLink https://doaj.org/article/ebd6bd2cf8c245ffbd276db3138aa3c6
ParticipantIDs doaj_primary_oai_doaj_org_article_ebd6bd2cf8c245ffbd276db3138aa3c6
crossref_primary_10_1016_j_nuclphysb_2025_117008
elsevier_sciencedirect_doi_10_1016_j_nuclphysb_2025_117008
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Nuclear physics. B
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Garraffo, Giribet (br0170) 2008; 23
Behboodi, Akhshabi, Nozari (br1200) 2016; 25
Ditta, Hussain, Mustafa, Errehymy, Daoud (br0190) 2021; 81
Visser (br0710) 2018; 782
Misner, Wheeler (br0730) 1957; 2
Flamm (br0040) 1916; 17
Majernik, Richterek (br0620) 2006
Mustafa (br0820) 2019; 16
Banerjee (br1010) 2021; 433
Mustafa (br1290) 2021; 821
Hussain, Mustafa, Yasir, Ditta (br0200) 2022; 77
Beltran Jimenez, Koivisto (br0590) 2016; 756
Rahman (br1090) 2016; 76
Moradpour, Sadeghnezhad, Hendi (br0420) 2017; 95
Kumar, Singh, Ali, Ghosh (br0400) 2021; 34
Da Silva, Santos, Barros (br0280) 2021; 38
Capozziello, Pincak, Bartos (br0900) 2020; 12
Sciama (br1110) 1964; 36
Heydarzade, Moradpour, Darabi (br0680) 2016
da Silva, Santos, Mota, da Costa, Fabris (br0270) 2023; 83
Morris, Thorne (br0750) 1988; 56
Lawrence (br1230) 2021; 18
Bronnikov, Galiakhmetov (br0950) 2015; 21
Fuller, Wheeler (br0740) 1962; 128
Darabi, Moradpour, Licata, Heydarzade, Corda (br0700) 2018; 78
Mustafa, Xia (br0880) 2020; 17
Garattini, Lobo (br1080) 2009; 671
Hayashi, Shirafuji (br1120) 1979; 19
Berchenko-Kogan, Gawlik (br1210) 2024; 24
Ferraro, Fiorini (br0480) 2008; 78
Nashed (br0380) 2022; 8
Jimenez, Heisenberg, Koivisto (br0540) 2018; 98
Ashraf, Ditta, Sofuoğlu, Ma, Javed, Atamurotov, Mahmood (br0370) 2024; 99
Huang, Lin (br1190) 2002; 299
Flamm (br0720) 1916; 17
Aslam, Malik (br0240) 2024; 139
Sciama (br0340) 1964; 36
Ditta, Mustafa, Mahmood (br0210) 2025; 45
Ashraf, Zhang (br0840) 2021; 18
Aldrovandi, Pereira (br0430) 2012
Bengochea, Ferraro (br0470) 2009; 79
Rastall (br0610) 1976; 54
Capozziello, Pincak, Saridakis (br0890) 2018; 390
Hohmann, Krššák, Pfeifer, Ualikhanova (br1250) 2018; 98
Conroy, Koivisto (br0570) 2018; 78
Mustafa (br0830) 2020; 17
Battista, Steinacker (br1220) 2023; 107
Maluf (br0440) 2013; 525
Godani, Samanta (br0960) 2019; 28
Mehdizadeh, Kord Zangeneh, Lobo (br0080) 2015; 91
Fabris, Piattella, Rodrigues, Batista, Daouda (br0650) 2012; 18
Bini, Mashhoon (br1180) 2015; 91
Shahzad, Abbas (br0330) 2020; 135
Rastall (br0600) 1972; 6
Darabi, Atazadeh, Heydarzade (br0640) 2018; 133
Lovelock (br0140) 1971; 12
Harada (br1240) 2020; 101
Batista, Daouda, Fabris, Piattella, Rodrigues (br0630) 2012; 85
Harko (br0550) 2018; 98
Errehymy (br0980) 2024; 44
Ashraf (br0850) 2023; 20
Lobo, Moradpour, Morais Graça, Salako (br0690) 2017; 95
Capozziello, Harko, Koivisto (br0930) 2012; 86
Ghosh, Dey, Das, Chanda, Paul (br0300) 2021; 2021
Visser, Kar, Dadhich (br0780) 2003; 90
Clifton, Barrow (br1130) 2005; 72
Lovelock (br0150) 1972; 13
Ferraro, Fiorini (br0460) 2007; 75
Kord Zangeneh, Lobo, Dehghani (br0120) 2015; 92
Linder (br0490) 2010; 81
Visser (br0020) 1995
Bahamonde (br1260) 2023; 86
Malik, Shafaq, Manzoor, Yousaf, Ali (br0390) 2024; 89
Capozziello, Godani (br0940) 2022; 835
Hayashi, Shirafuji (br0510) 1979; 19
Boulware, Deser (br0180) 1985; 55
Lanczos (br0130) 1938; 39
Bhattacharjee, Chattopadhyay, Paul (br0260) 2024; 43
Petrov (br0530) 2017
Ziaie, Moradpour, Shabani (br0320) 2020; 135
Golovnev (br0580) 2017; 34
Capozziello, Luongo, Mauro (br0910) 2021; 136
Cai (br0500) 2016; 79
Ashraf (br0860) 2024; 21
Bronnikov (br1280) 2019; 25
Capozziello, Godani (br0920) 2022; 835
Kanti, Kleihaus, Kunz (br0090) 2012; 85
Saaidi, Nazavari (br0230) 2020; 28
Sharif, Rani (br0810) 2013; 88
Lemos, Lobo, Quinet de Oliveira (br0030) 2003; 68
Errehymy, Maurya, Hansraj, Daoud, Alrebdi, Abdel-Aty (br0970) 2023; 535
Maurya, Errehymy, Umbetova, Myrzakulov, Ibragimov, Dauletov, Rayimbaev (br1050) 2025; 47
Zwiebach (br0160) 1985; 156
Nazavari, Saaidi, Mohammadi (br0250) 2023; 55
Sheikh, Aziz, Bhatti, Pincak (br0310) 2023; 20
Ilyas, Bamba (br1270) 2023; 2023
Sakti, Suroso, Zen (br0360) 2020; 413
Sharif, Ikram (br1000) 2015; 24
Farasat Shamir (br0870) 2020; 17
Bhar (br0410) 2024; 87
Fuller, Wheeler (br0070) 1962; 128
Lobo (br0760) 2008
Morris, Thorne, Yurtsever (br0770) 1988; 61
Maurya, Errehymy, Saginayev, Myrzakulov, Ibragimov, Dauletov, Rayimbaev (br1040) 2025; 49
Nester, Yo (br0560) 1999; 37
Einstein, Rosen (br0050) 1935; 48
Visser (br0290) 2018; 782
Szabados (br0520) 2009; 12
Hobson, Efstathiou, Lasenby (br1140) 2006
Channuie, Ditta, Kaewkhao, Övgün (br0220) 2025; 48
Morris, Thorne (br0010) 1988; 56
Clifton, Barrow (br0350) 2005; 72
Zhang, Khan (br1170) 2019; 2
Penas (br1150) 2019; 67
Wheeler (br0060) 1957; 2
Harko, Lobo, Mak, Sushkov (br0800) 2013; 87
Bhawal, Kar (br0790) 1992; 46
Tayde, Hassan, Sahoo, Gutti (br1030) 2022; 46
Dehghani, Dayyani (br0110) 2009; 79
Lobo, Oliveira (br0990) 2009; 80
Golovnev (br1160) 2023; 20
Fabris, Piattella, Rodrigues, Daouda (br0660) 2015; 1647
Maeda, Nozawa (br0100) 2008; 78
Capozziello, Luongo, Mauro (br1100) 2021; 136
Heydarzade, Darabi (br0670) 2017; 771
Banerjee (br1020) 2021; 81
Koussour, Myrzakulov, Muminov, Ibragimov, Rayimbaev, Dauletov (br1060) 2025; 2550157
Krššák (br0450) 2019; 36
Jimenez (10.1016/j.nuclphysb.2025.117008_br0540) 2018; 98
Mehdizadeh (10.1016/j.nuclphysb.2025.117008_br0080) 2015; 91
Petrov (10.1016/j.nuclphysb.2025.117008_br0530) 2017
Darabi (10.1016/j.nuclphysb.2025.117008_br0700) 2018; 78
Lovelock (10.1016/j.nuclphysb.2025.117008_br0140) 1971; 12
Dehghani (10.1016/j.nuclphysb.2025.117008_br0110) 2009; 79
Capozziello (10.1016/j.nuclphysb.2025.117008_br0940) 2022; 835
Maurya (10.1016/j.nuclphysb.2025.117008_br1050) 2025; 47
Heydarzade (10.1016/j.nuclphysb.2025.117008_br0670) 2017; 771
Godani (10.1016/j.nuclphysb.2025.117008_br0960) 2019; 28
Aldrovandi (10.1016/j.nuclphysb.2025.117008_br0430) 2012
Capozziello (10.1016/j.nuclphysb.2025.117008_br0920) 2022; 835
Misner (10.1016/j.nuclphysb.2025.117008_br0730) 1957; 2
Einstein (10.1016/j.nuclphysb.2025.117008_br0050) 1935; 48
Flamm (10.1016/j.nuclphysb.2025.117008_br0040) 1916; 17
Battista (10.1016/j.nuclphysb.2025.117008_br1220) 2023; 107
Lovelock (10.1016/j.nuclphysb.2025.117008_br0150) 1972; 13
Conroy (10.1016/j.nuclphysb.2025.117008_br0570) 2018; 78
da Silva (10.1016/j.nuclphysb.2025.117008_br0270) 2023; 83
Fuller (10.1016/j.nuclphysb.2025.117008_br0070) 1962; 128
Behboodi (10.1016/j.nuclphysb.2025.117008_br1200) 2016; 25
Maluf (10.1016/j.nuclphysb.2025.117008_br0440) 2013; 525
Lobo (10.1016/j.nuclphysb.2025.117008_br0990) 2009; 80
Lemos (10.1016/j.nuclphysb.2025.117008_br0030) 2003; 68
Ashraf (10.1016/j.nuclphysb.2025.117008_br0370) 2024; 99
Sharif (10.1016/j.nuclphysb.2025.117008_br1000) 2015; 24
Boulware (10.1016/j.nuclphysb.2025.117008_br0180) 1985; 55
Bengochea (10.1016/j.nuclphysb.2025.117008_br0470) 2009; 79
Capozziello (10.1016/j.nuclphysb.2025.117008_br0910) 2021; 136
Capozziello (10.1016/j.nuclphysb.2025.117008_br0890) 2018; 390
Wheeler (10.1016/j.nuclphysb.2025.117008_br0060) 1957; 2
Hussain (10.1016/j.nuclphysb.2025.117008_br0200) 2022; 77
Golovnev (10.1016/j.nuclphysb.2025.117008_br1160) 2023; 20
Bhar (10.1016/j.nuclphysb.2025.117008_br0410) 2024; 87
Lawrence (10.1016/j.nuclphysb.2025.117008_br1230) 2021; 18
Clifton (10.1016/j.nuclphysb.2025.117008_br1130) 2005; 72
Maurya (10.1016/j.nuclphysb.2025.117008_br1040) 2025; 49
Kanti (10.1016/j.nuclphysb.2025.117008_br0090) 2012; 85
Mustafa (10.1016/j.nuclphysb.2025.117008_br0830) 2020; 17
Heydarzade (10.1016/j.nuclphysb.2025.117008_br0680)
Capozziello (10.1016/j.nuclphysb.2025.117008_br0930) 2012; 86
Koussour (10.1016/j.nuclphysb.2025.117008_br1060) 2025; 2550157
Bronnikov (10.1016/j.nuclphysb.2025.117008_br1280) 2019; 25
Batista (10.1016/j.nuclphysb.2025.117008_br0630) 2012; 85
Hohmann (10.1016/j.nuclphysb.2025.117008_br1250) 2018; 98
Flamm (10.1016/j.nuclphysb.2025.117008_br0720) 1916; 17
Mustafa (10.1016/j.nuclphysb.2025.117008_br0880) 2020; 17
Hobson (10.1016/j.nuclphysb.2025.117008_br1140) 2006
Clifton (10.1016/j.nuclphysb.2025.117008_br0350) 2005; 72
Berchenko-Kogan (10.1016/j.nuclphysb.2025.117008_br1210) 2024; 24
Darabi (10.1016/j.nuclphysb.2025.117008_br0640) 2018; 133
Lobo (10.1016/j.nuclphysb.2025.117008_br0760) 2008
Kumar (10.1016/j.nuclphysb.2025.117008_br0400) 2021; 34
Harko (10.1016/j.nuclphysb.2025.117008_br0800) 2013; 87
Krššák (10.1016/j.nuclphysb.2025.117008_br0450) 2019; 36
Hayashi (10.1016/j.nuclphysb.2025.117008_br0510) 1979; 19
Rahman (10.1016/j.nuclphysb.2025.117008_br1090) 2016; 76
Garraffo (10.1016/j.nuclphysb.2025.117008_br0170) 2008; 23
Banerjee (10.1016/j.nuclphysb.2025.117008_br1010) 2021; 433
Morris (10.1016/j.nuclphysb.2025.117008_br0750) 1988; 56
Ferraro (10.1016/j.nuclphysb.2025.117008_br0480) 2008; 78
Nester (10.1016/j.nuclphysb.2025.117008_br0560) 1999; 37
Nashed (10.1016/j.nuclphysb.2025.117008_br0380) 2022; 8
Moradpour (10.1016/j.nuclphysb.2025.117008_br0420) 2017; 95
Maeda (10.1016/j.nuclphysb.2025.117008_br0100) 2008; 78
Sciama (10.1016/j.nuclphysb.2025.117008_br1110) 1964; 36
Golovnev (10.1016/j.nuclphysb.2025.117008_br0580) 2017; 34
Penas (10.1016/j.nuclphysb.2025.117008_br1150) 2019; 67
Zwiebach (10.1016/j.nuclphysb.2025.117008_br0160) 1985; 156
Malik (10.1016/j.nuclphysb.2025.117008_br0390) 2024; 89
Fabris (10.1016/j.nuclphysb.2025.117008_br0650) 2012; 18
Ashraf (10.1016/j.nuclphysb.2025.117008_br0850) 2023; 20
Bhattacharjee (10.1016/j.nuclphysb.2025.117008_br0260) 2024; 43
Mustafa (10.1016/j.nuclphysb.2025.117008_br1290) 2021; 821
Fuller (10.1016/j.nuclphysb.2025.117008_br0740) 1962; 128
Bini (10.1016/j.nuclphysb.2025.117008_br1180) 2015; 91
Sakti (10.1016/j.nuclphysb.2025.117008_br0360) 2020; 413
Ilyas (10.1016/j.nuclphysb.2025.117008_br1270) 2023; 2023
Morris (10.1016/j.nuclphysb.2025.117008_br0010) 1988; 56
Zhang (10.1016/j.nuclphysb.2025.117008_br1170) 2019; 2
Nazavari (10.1016/j.nuclphysb.2025.117008_br0250) 2023; 55
Rastall (10.1016/j.nuclphysb.2025.117008_br0600) 1972; 6
Errehymy (10.1016/j.nuclphysb.2025.117008_br0970) 2023; 535
Ashraf (10.1016/j.nuclphysb.2025.117008_br0860) 2024; 21
Capozziello (10.1016/j.nuclphysb.2025.117008_br0900) 2020; 12
Visser (10.1016/j.nuclphysb.2025.117008_br0290) 2018; 782
Visser (10.1016/j.nuclphysb.2025.117008_br0780) 2003; 90
Ziaie (10.1016/j.nuclphysb.2025.117008_br0320) 2020; 135
Sciama (10.1016/j.nuclphysb.2025.117008_br0340) 1964; 36
Ditta (10.1016/j.nuclphysb.2025.117008_br0210) 2025; 45
Szabados (10.1016/j.nuclphysb.2025.117008_br0520) 2009; 12
Kord Zangeneh (10.1016/j.nuclphysb.2025.117008_br0120) 2015; 92
Morris (10.1016/j.nuclphysb.2025.117008_br0770) 1988; 61
Channuie (10.1016/j.nuclphysb.2025.117008_br0220) 2025; 48
Ferraro (10.1016/j.nuclphysb.2025.117008_br0460) 2007; 75
Linder (10.1016/j.nuclphysb.2025.117008_br0490) 2010; 81
Harko (10.1016/j.nuclphysb.2025.117008_br0550) 2018; 98
Farasat Shamir (10.1016/j.nuclphysb.2025.117008_br0870) 2020; 17
Ditta (10.1016/j.nuclphysb.2025.117008_br0190) 2021; 81
Errehymy (10.1016/j.nuclphysb.2025.117008_br0980) 2024; 44
Mustafa (10.1016/j.nuclphysb.2025.117008_br0820) 2019; 16
Rastall (10.1016/j.nuclphysb.2025.117008_br0610) 1976; 54
Harada (10.1016/j.nuclphysb.2025.117008_br1240) 2020; 101
Aslam (10.1016/j.nuclphysb.2025.117008_br0240) 2024; 139
Visser (10.1016/j.nuclphysb.2025.117008_br0020) 1995
Saaidi (10.1016/j.nuclphysb.2025.117008_br0230) 2020; 28
Ashraf (10.1016/j.nuclphysb.2025.117008_br0840) 2021; 18
Bahamonde (10.1016/j.nuclphysb.2025.117008_br1260) 2023; 86
Banerjee (10.1016/j.nuclphysb.2025.117008_br1020) 2021; 81
Garattini (10.1016/j.nuclphysb.2025.117008_br1080) 2009; 671
Bronnikov (10.1016/j.nuclphysb.2025.117008_br0950) 2015; 21
Bhawal (10.1016/j.nuclphysb.2025.117008_br0790) 1992; 46
Majernik (10.1016/j.nuclphysb.2025.117008_br0620)
Shahzad (10.1016/j.nuclphysb.2025.117008_br0330) 2020; 135
Fabris (10.1016/j.nuclphysb.2025.117008_br0660) 2015; 1647
Sharif (10.1016/j.nuclphysb.2025.117008_br0810) 2013; 88
Hayashi (10.1016/j.nuclphysb.2025.117008_br1120) 1979; 19
Capozziello (10.1016/j.nuclphysb.2025.117008_br1100) 2021; 136
Ghosh (10.1016/j.nuclphysb.2025.117008_br0300) 2021; 2021
Sheikh (10.1016/j.nuclphysb.2025.117008_br0310) 2023; 20
Beltran Jimenez (10.1016/j.nuclphysb.2025.117008_br0590) 2016; 756
Visser (10.1016/j.nuclphysb.2025.117008_br0710) 2018; 782
Tayde (10.1016/j.nuclphysb.2025.117008_br1030) 2022; 46
Huang (10.1016/j.nuclphysb.2025.117008_br1190) 2002; 299
Lanczos (10.1016/j.nuclphysb.2025.117008_br0130) 1938; 39
Cai (10.1016/j.nuclphysb.2025.117008_br0500) 2016; 79
Da Silva (10.1016/j.nuclphysb.2025.117008_br0280) 2021; 38
Lobo (10.1016/j.nuclphysb.2025.117008_br0690) 2017; 95
References_xml – volume: 128
  start-page: 919
  year: 1962
  ident: br0070
  publication-title: Phys. Rev.
– volume: 36
  year: 2019
  ident: br0450
  publication-title: Class. Quantum Gravity
– volume: 12
  start-page: 4
  year: 2009
  ident: br0520
  publication-title: Living Rev. Relativ.
– volume: 95
  start-page: 1253
  year: 2017
  end-page: 1256
  ident: br0690
  publication-title: Can. J. Phys.
– volume: 136
  start-page: 167
  year: 2021
  ident: br0910
  publication-title: Eur. Phys. J. Plus
– volume: 2023
  year: 2023
  ident: br1270
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 79
  year: 2016
  ident: br0500
  publication-title: Rep. Prog. Phys.
– volume: 17
  year: 2020
  ident: br0830
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 8
  start-page: 510
  year: 2022
  ident: br0380
  publication-title: Universe
– volume: 6
  start-page: 3357
  year: 1972
  ident: br0600
  publication-title: Phys. Rev. D
– volume: 12
  start-page: 774
  year: 2020
  ident: br0900
  publication-title: Symmetry
– volume: 87
  year: 2013
  ident: br0800
  publication-title: Phys. Rev. D
– volume: 25
  start-page: 331
  year: 2019
  end-page: 341
  ident: br1280
  publication-title: Gravit. Cosmol.
– volume: 78
  year: 2008
  ident: br0100
  publication-title: Phys. Rev. D
– volume: 36
  start-page: 463
  year: 1964
  ident: br0340
  publication-title: Rev. Mod. Phys.
– volume: 91
  year: 2015
  ident: br1180
  publication-title: Phys. Rev. D
– volume: 525
  start-page: 339
  year: 2013
  end-page: 357
  ident: br0440
  publication-title: Ann. Phys.
– volume: 107
  year: 2023
  ident: br1220
  publication-title: Phys. Rev. D
– volume: 24
  year: 2015
  ident: br1000
  publication-title: Int. J. Mod. Phys. D
– volume: 61
  start-page: 1446
  year: 1988
  ident: br0770
  publication-title: Phys. Rev. Lett.
– volume: 18
  year: 2021
  ident: br0840
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 20
  year: 2023
  ident: br1160
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 78
  start-page: 1
  year: 2018
  end-page: 4
  ident: br0700
  publication-title: Eur. Phys. J. C
– volume: 45
  start-page: 350
  year: 2025
  end-page: 358
  ident: br0210
  publication-title: J. High Energy Astrophys.
– volume: 101
  year: 2020
  ident: br1240
  publication-title: Phys. Rev. D
– volume: 95
  start-page: 1257
  year: 2017
  end-page: 1266
  ident: br0420
  publication-title: Can. J. Phys.
– volume: 47
  year: 2025
  ident: br1050
  publication-title: J. High Energy Astrophys.
– volume: 433
  year: 2021
  ident: br1010
  publication-title: Ann. Phys.
– volume: 46
  start-page: 2464
  year: 1992
  ident: br0790
  publication-title: Phys. Rev. D
– volume: 782
  start-page: 83
  year: 2018
  end-page: 86
  ident: br0290
  publication-title: Phys. Lett. B
– volume: 44
  year: 2024
  ident: br0980
  publication-title: Phys. Dark Universe
– year: 2006
  ident: br1140
  article-title: General Relativity: An Introduction for Physicists
– volume: 771
  start-page: 365
  year: 2017
  ident: br0670
  publication-title: Phys. Lett. B
– volume: 98
  year: 2018
  ident: br1250
  publication-title: Phys. Rev. D
– volume: 87
  start-page: 782
  year: 2024
  end-page: 796
  ident: br0410
  publication-title: Chin. J. Phys.
– volume: 19
  start-page: 3524
  year: 1979
  ident: br1120
  publication-title: Phys. Rev. D
– volume: 37
  start-page: 113
  year: 1999
  ident: br0560
  publication-title: Chin. J. Phys.
– year: 2012
  ident: br0430
  article-title: Teleparallel Gravity: An Introduction
– volume: 43
  year: 2024
  ident: br0260
  publication-title: Phys. Dark Universe
– volume: 76
  start-page: 246
  year: 2016
  ident: br1090
  publication-title: Eur. Phys. J. C
– volume: 18
  start-page: 67
  year: 2012
  ident: br0650
  publication-title: Int. J. Mod. Phys. Conf. Ser.
– volume: 38
  year: 2021
  ident: br0280
  publication-title: Class. Quantum Gravity
– volume: 36
  start-page: 463
  year: 1964
  ident: br1110
  publication-title: Rev. Mod. Phys.
– year: 2006
  ident: br0620
– volume: 671
  start-page: 146
  year: 2009
  end-page: 152
  ident: br1080
  publication-title: Phys. Lett. B
– volume: 782
  start-page: 83
  year: 2018
  end-page: 86
  ident: br0710
  publication-title: Phys. Lett. B
– volume: 2
  start-page: 604
  year: 1957
  ident: br0060
  publication-title: Ann. Phys.
– volume: 55
  start-page: 2656
  year: 1985
  ident: br0180
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 880
  year: 2021
  ident: br0190
  publication-title: Eur. Phys. J. C
– volume: 79
  year: 2009
  ident: br0470
  publication-title: Phys. Rev. D
– start-page: 1
  year: 2008
  end-page: 78
  ident: br0760
  publication-title: Class. Quantum Gravity Res.
– volume: 24
  start-page: 587
  year: 2024
  end-page: 637
  ident: br1210
  publication-title: Found. Comput. Math.
– volume: 68
  year: 2003
  ident: br0030
  publication-title: Phys. Rev. D
– volume: 49
  year: 2025
  ident: br1040
  publication-title: Phys. Dark Universe
– volume: 83
  start-page: 295
  year: 2023
  ident: br0270
  publication-title: Eur. Phys. J. C
– volume: 48
  year: 2025
  ident: br0220
  publication-title: Phys. Dark Universe
– volume: 88
  year: 2013
  ident: br0810
  publication-title: Phys. Rev. D
– volume: 86
  year: 2012
  ident: br0930
  publication-title: Phys. Rev. D
– volume: 85
  year: 2012
  ident: br0090
  publication-title: Phys. Rev. D
– volume: 20
  year: 2023
  ident: br0310
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 98
  year: 2018
  ident: br0540
  publication-title: Phys. Rev. D
– volume: 2021
  year: 2021
  ident: br0300
  publication-title: J. Cosmol. Astropart. Phys.
– volume: 135
  start-page: 916
  year: 2020
  ident: br0320
  publication-title: Eur. Phys. J. Plus
– volume: 2
  start-page: 77
  year: 2019
  end-page: 98
  ident: br1170
  publication-title: Inf. Geom.
– volume: 17
  year: 2020
  ident: br0870
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 835
  year: 2022
  ident: br0940
  publication-title: Phys. Lett. B
– volume: 34
  year: 2017
  ident: br0580
  publication-title: Class. Quantum Gravity
– volume: 39
  start-page: 842
  year: 1938
  ident: br0130
  publication-title: Ann. Math.
– volume: 17
  year: 2020
  ident: br0880
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 77
  start-page: 1253
  year: 2022
  end-page: 1268
  ident: br0200
  publication-title: Chin. J. Phys.
– volume: 390
  start-page: 303
  year: 2018
  ident: br0890
  publication-title: Ann. Phys.
– volume: 156
  start-page: 315
  year: 1985
  ident: br0160
  publication-title: Phys. Lett. B
– year: 2016
  ident: br0680
– volume: 86
  year: 2023
  ident: br1260
  publication-title: Rep. Prog. Phys.
– volume: 136
  start-page: 167
  year: 2021
  ident: br1100
  publication-title: Eur. Phys. J. Plus
– volume: 17
  start-page: 448
  year: 1916
  ident: br0720
  publication-title: Phys. Z.
– volume: 535
  year: 2023
  ident: br0970
  publication-title: Ann. Phys.
– volume: 72
  year: 2005
  ident: br1130
  publication-title: Phys. Rev. D
– volume: 17
  start-page: 448
  year: 1916
  ident: br0040
  publication-title: Phys. Z.
– volume: 90
  year: 2003
  ident: br0780
  publication-title: Phys. Rev. Lett.
– volume: 78
  start-page: 1
  year: 2018
  end-page: 6
  ident: br0570
  publication-title: Eur. Phys. J. C
– volume: 81
  year: 2010
  ident: br0490
  publication-title: Phys. Rev. D
– volume: 139
  start-page: 1
  year: 2024
  end-page: 14
  ident: br0240
  publication-title: Eur. Phys. J. Plus
– volume: 75
  year: 2007
  ident: br0460
  publication-title: Phys. Rev. D
– year: 1995
  ident: br0020
  article-title: Lorentzian Wormholes: From Einstein to Hawking
– volume: 72
  year: 2005
  ident: br0350
  publication-title: Phys. Rev. D
– volume: 821
  year: 2021
  ident: br1290
  publication-title: Phys. Lett. B
– volume: 23
  start-page: 1801
  year: 2008
  ident: br0170
  publication-title: Mod. Phys. Lett. A
– volume: 835
  year: 2022
  ident: br0920
  publication-title: Phys. Lett. B
– volume: 56
  start-page: 395
  year: 1988
  ident: br0010
  publication-title: Am. J. Phys.
– volume: 20
  year: 2023
  ident: br0850
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 135
  start-page: 1
  year: 2020
  end-page: 17
  ident: br0330
  publication-title: Eur. Phys. J. Plus
– volume: 80
  year: 2009
  ident: br0990
  publication-title: Phys. Rev. D
– volume: 81
  start-page: 1031
  year: 2021
  ident: br1020
  publication-title: Eur. Phys. J. C
– volume: 34
  year: 2021
  ident: br0400
  publication-title: Phys. Dark Universe
– volume: 133
  start-page: 249
  year: 2018
  ident: br0640
  publication-title: Eur. Phys. J. Plus
– volume: 28
  year: 2019
  ident: br0960
  publication-title: Int. J. Mod. Phys. D
– volume: 89
  start-page: 613
  year: 2024
  end-page: 627
  ident: br0390
  publication-title: Chin. J. Phys.
– volume: 56
  start-page: 395
  year: 1988
  ident: br0750
  publication-title: Am. J. Phys.
– volume: 91
  year: 2015
  ident: br0080
  publication-title: Phys. Rev. D
– volume: 2550157
  year: 2025
  ident: br1060
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 128
  start-page: 919
  year: 1962
  end-page: 929
  ident: br0740
  publication-title: Phys. Rev.
– volume: 85
  year: 2012
  ident: br0630
  publication-title: Phys. Rev. D
– volume: 98
  year: 2018
  ident: br0550
  publication-title: Phys. Rev. D
– volume: 46
  year: 2022
  ident: br1030
  publication-title: Chin. Phys. C
– volume: 413
  year: 2020
  ident: br0360
  publication-title: Ann. Phys.
– volume: 16
  year: 2019
  ident: br0820
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 21
  start-page: 283
  year: 2015
  ident: br0950
  publication-title: Gravit. Cosmol.
– year: 2017
  ident: br0530
  article-title: Metric Theories of Gravity: Perturbations and Conservation Laws
– volume: 299
  start-page: 644
  year: 2002
  end-page: 649
  ident: br1190
  publication-title: Phys. Lett. A
– volume: 48
  start-page: 73
  year: 1935
  ident: br0050
  publication-title: Phys. Rev.
– volume: 54
  start-page: 66
  year: 1976
  ident: br0610
  publication-title: Can. J. Phys.
– volume: 25
  year: 2016
  ident: br1200
  publication-title: Int. J. Mod. Phys. D
– volume: 1647
  start-page: 50
  year: 2015
  ident: br0660
  publication-title: Am. Inst. Phys. Conf. Ser.
– volume: 12
  start-page: 498
  year: 1971
  ident: br0140
  publication-title: J. Math. Phys.
– volume: 28
  year: 2020
  ident: br0230
  publication-title: Phys. Dark Universe
– volume: 67
  year: 2019
  ident: br1150
  publication-title: Fortschr. Phys.
– volume: 18
  year: 2021
  ident: br1230
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 78
  year: 2008
  ident: br0480
  publication-title: Phys. Rev. D
– volume: 2
  start-page: 525
  year: 1957
  end-page: 603
  ident: br0730
  publication-title: Ann. Phys.
– volume: 756
  start-page: 400
  year: 2016
  ident: br0590
  publication-title: Phys. Lett. B
– volume: 79
  year: 2009
  ident: br0110
  publication-title: Phys. Rev. D
– volume: 21
  year: 2024
  ident: br0860
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 19
  start-page: 3524
  year: 1979
  end-page: 3553
  ident: br0510
  publication-title: Phys. Rev. D
– volume: 92
  year: 2015
  ident: br0120
  publication-title: Phys. Rev. D
– volume: 13
  start-page: 874
  year: 1972
  ident: br0150
  publication-title: J. Math. Phys.
– volume: 55
  start-page: 45
  year: 2023
  ident: br0250
  publication-title: Gen. Relativ. Gravit.
– volume: 99
  year: 2024
  ident: br0370
  publication-title: Phys. Scr.
– volume: 16
  issue: 9
  year: 2019
  ident: 10.1016/j.nuclphysb.2025.117008_br0820
  publication-title: Int. J. Geom. Methods Mod. Phys.
  doi: 10.1142/S0219887819501433
– volume: 139
  start-page: 1
  issue: 7
  year: 2024
  ident: 10.1016/j.nuclphysb.2025.117008_br0240
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-024-05385-8
– volume: 2021
  issue: 07
  year: 2021
  ident: 10.1016/j.nuclphysb.2025.117008_br0300
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/07/004
– volume: 78
  start-page: 1
  year: 2018
  ident: 10.1016/j.nuclphysb.2025.117008_br0570
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6410-z
– volume: 671
  start-page: 146
  year: 2009
  ident: 10.1016/j.nuclphysb.2025.117008_br1080
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2008.11.064
– volume: 98
  issue: 12
  year: 2018
  ident: 10.1016/j.nuclphysb.2025.117008_br1250
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.124004
– volume: 28
  year: 2020
  ident: 10.1016/j.nuclphysb.2025.117008_br0230
  publication-title: Phys. Dark Universe
  doi: 10.1016/j.dark.2020.100464
– volume: 782
  start-page: 83
  year: 2018
  ident: 10.1016/j.nuclphysb.2025.117008_br0710
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.05.028
– volume: 24
  start-page: 587
  issue: 2
  year: 2024
  ident: 10.1016/j.nuclphysb.2025.117008_br1210
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-022-09597-1
– volume: 37
  start-page: 113
  year: 1999
  ident: 10.1016/j.nuclphysb.2025.117008_br0560
  publication-title: Chin. J. Phys.
– volume: 34
  issue: 14
  year: 2017
  ident: 10.1016/j.nuclphysb.2025.117008_br0580
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/aa7830
– volume: 2
  start-page: 77
  year: 2019
  ident: 10.1016/j.nuclphysb.2025.117008_br1170
  publication-title: Inf. Geom.
  doi: 10.1007/s41884-019-00018-x
– volume: 107
  issue: 4
  year: 2023
  ident: 10.1016/j.nuclphysb.2025.117008_br1220
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.046021
– volume: 24
  issue: 01
  year: 2015
  ident: 10.1016/j.nuclphysb.2025.117008_br1000
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271815500030
– volume: 128
  start-page: 919
  year: 1962
  ident: 10.1016/j.nuclphysb.2025.117008_br0070
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.128.919
– volume: 79
  year: 2009
  ident: 10.1016/j.nuclphysb.2025.117008_br0110
  publication-title: Phys. Rev. D
– volume: 18
  start-page: 67
  year: 2012
  ident: 10.1016/j.nuclphysb.2025.117008_br0650
  publication-title: Int. J. Mod. Phys. Conf. Ser.
  doi: 10.1142/S2010194512008227
– volume: 55
  start-page: 2656
  year: 1985
  ident: 10.1016/j.nuclphysb.2025.117008_br0180
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.2656
– volume: 25
  start-page: 331
  issue: 4
  year: 2019
  ident: 10.1016/j.nuclphysb.2025.117008_br1280
  publication-title: Gravit. Cosmol.
  doi: 10.1134/S0202289319040030
– volume: 61
  start-page: 1446
  year: 1988
  ident: 10.1016/j.nuclphysb.2025.117008_br0770
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.1446
– volume: 23
  start-page: 1801
  year: 2008
  ident: 10.1016/j.nuclphysb.2025.117008_br0170
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732308027497
– volume: 47
  year: 2025
  ident: 10.1016/j.nuclphysb.2025.117008_br1050
  publication-title: J. High Energy Astrophys.
– volume: 86
  issue: 2
  year: 2023
  ident: 10.1016/j.nuclphysb.2025.117008_br1260
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ac9cef
– volume: 771
  start-page: 365
  year: 2017
  ident: 10.1016/j.nuclphysb.2025.117008_br0670
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.05.064
– volume: 55
  start-page: 45
  issue: 3
  year: 2023
  ident: 10.1016/j.nuclphysb.2025.117008_br0250
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-023-03093-9
– volume: 80
  year: 2009
  ident: 10.1016/j.nuclphysb.2025.117008_br0990
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.104012
– volume: 38
  issue: 16
  year: 2021
  ident: 10.1016/j.nuclphysb.2025.117008_br0280
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/ac129d
– volume: 413
  year: 2020
  ident: 10.1016/j.nuclphysb.2025.117008_br0360
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2019.168062
– volume: 79
  issue: 10
  year: 2016
  ident: 10.1016/j.nuclphysb.2025.117008_br0500
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/79/10/106901
– volume: 86
  year: 2012
  ident: 10.1016/j.nuclphysb.2025.117008_br0930
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.127504
– volume: 72
  issue: 10
  year: 2005
  ident: 10.1016/j.nuclphysb.2025.117008_br1130
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.103005
– volume: 135
  start-page: 1
  year: 2020
  ident: 10.1016/j.nuclphysb.2025.117008_br0330
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00508-3
– volume: 72
  issue: 10
  year: 2005
  ident: 10.1016/j.nuclphysb.2025.117008_br0350
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.103005
– year: 2017
  ident: 10.1016/j.nuclphysb.2025.117008_br0530
– volume: 46
  year: 2022
  ident: 10.1016/j.nuclphysb.2025.117008_br1030
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/ac7f22
– volume: 95
  start-page: 1257
  issue: 12
  year: 2017
  ident: 10.1016/j.nuclphysb.2025.117008_br0420
  publication-title: Can. J. Phys.
  doi: 10.1139/cjp-2017-0040
– year: 2006
  ident: 10.1016/j.nuclphysb.2025.117008_br1140
– volume: 835
  year: 2022
  ident: 10.1016/j.nuclphysb.2025.117008_br0940
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137572
– volume: 36
  start-page: 463
  issue: 1
  year: 1964
  ident: 10.1016/j.nuclphysb.2025.117008_br1110
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.36.463
– volume: 782
  start-page: 83
  year: 2018
  ident: 10.1016/j.nuclphysb.2025.117008_br0290
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.05.028
– volume: 128
  start-page: 919
  year: 1962
  ident: 10.1016/j.nuclphysb.2025.117008_br0740
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.128.919
– volume: 76
  start-page: 246
  year: 2016
  ident: 10.1016/j.nuclphysb.2025.117008_br1090
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-016-4066-0
– volume: 81
  start-page: 1031
  year: 2021
  ident: 10.1016/j.nuclphysb.2025.117008_br1020
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09854-7
– volume: 49
  year: 2025
  ident: 10.1016/j.nuclphysb.2025.117008_br1040
  publication-title: Phys. Dark Universe
  doi: 10.1016/j.dark.2025.101977
– volume: 6
  start-page: 3357
  year: 1972
  ident: 10.1016/j.nuclphysb.2025.117008_br0600
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.6.3357
– volume: 56
  start-page: 395
  year: 1988
  ident: 10.1016/j.nuclphysb.2025.117008_br0010
  publication-title: Am. J. Phys.
  doi: 10.1119/1.15620
– volume: 20
  issue: 1
  year: 2023
  ident: 10.1016/j.nuclphysb.2025.117008_br0850
  publication-title: Int. J. Geom. Methods Mod. Phys.
  doi: 10.1142/S0219887823500147
– volume: 12
  start-page: 498
  year: 1971
  ident: 10.1016/j.nuclphysb.2025.117008_br0140
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1665613
– volume: 85
  year: 2012
  ident: 10.1016/j.nuclphysb.2025.117008_br0630
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.084008
– volume: 88
  year: 2013
  ident: 10.1016/j.nuclphysb.2025.117008_br0810
  publication-title: Phys. Rev. D
– volume: 17
  issue: 9
  year: 2020
  ident: 10.1016/j.nuclphysb.2025.117008_br0870
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 39
  start-page: 842
  year: 1938
  ident: 10.1016/j.nuclphysb.2025.117008_br0130
  publication-title: Ann. Math.
  doi: 10.2307/1968467
– volume: 21
  issue: 12
  year: 2024
  ident: 10.1016/j.nuclphysb.2025.117008_br0860
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 12
  start-page: 4
  year: 2009
  ident: 10.1016/j.nuclphysb.2025.117008_br0520
  publication-title: Living Rev. Relativ.
  doi: 10.12942/lrr-2009-4
– volume: 19
  start-page: 3524
  year: 1979
  ident: 10.1016/j.nuclphysb.2025.117008_br0510
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.19.3524
– volume: 835
  year: 2022
  ident: 10.1016/j.nuclphysb.2025.117008_br0920
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137572
– volume: 19
  start-page: 3524
  issue: 12
  year: 1979
  ident: 10.1016/j.nuclphysb.2025.117008_br1120
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.19.3524
– volume: 136
  start-page: 167
  year: 2021
  ident: 10.1016/j.nuclphysb.2025.117008_br0910
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-01104-9
– volume: 21
  start-page: 283
  year: 2015
  ident: 10.1016/j.nuclphysb.2025.117008_br0950
  publication-title: Gravit. Cosmol.
  doi: 10.1134/S0202289315040027
– volume: 90
  year: 2003
  ident: 10.1016/j.nuclphysb.2025.117008_br0780
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.201102
– volume: 535
  issue: 8
  year: 2023
  ident: 10.1016/j.nuclphysb.2025.117008_br0970
  publication-title: Ann. Phys.
  doi: 10.1002/andp.202300178
– volume: 36
  issue: 18
  year: 2019
  ident: 10.1016/j.nuclphysb.2025.117008_br0450
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/ab2e1f
– volume: 36
  start-page: 463
  issue: 1
  year: 1964
  ident: 10.1016/j.nuclphysb.2025.117008_br0340
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.36.463
– volume: 34
  year: 2021
  ident: 10.1016/j.nuclphysb.2025.117008_br0400
  publication-title: Phys. Dark Universe
– year: 1995
  ident: 10.1016/j.nuclphysb.2025.117008_br0020
– volume: 20
  issue: 04
  year: 2023
  ident: 10.1016/j.nuclphysb.2025.117008_br0310
  publication-title: Int. J. Geom. Methods Mod. Phys.
  doi: 10.1142/S0219887823500585
– volume: 92
  year: 2015
  ident: 10.1016/j.nuclphysb.2025.117008_br0120
  publication-title: Phys. Rev. D
– volume: 87
  start-page: 782
  year: 2024
  ident: 10.1016/j.nuclphysb.2025.117008_br0410
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2023.12.033
– volume: 48
  year: 2025
  ident: 10.1016/j.nuclphysb.2025.117008_br0220
  publication-title: Phys. Dark Universe
  doi: 10.1016/j.dark.2025.101963
– volume: 78
  start-page: 1
  year: 2018
  ident: 10.1016/j.nuclphysb.2025.117008_br0700
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-017-5502-5
– year: 2012
  ident: 10.1016/j.nuclphysb.2025.117008_br0430
– volume: 98
  issue: 8
  year: 2018
  ident: 10.1016/j.nuclphysb.2025.117008_br0550
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.084043
– volume: 18
  issue: 3
  year: 2021
  ident: 10.1016/j.nuclphysb.2025.117008_br0840
  publication-title: Int. J. Geom. Methods Mod. Phys.
  doi: 10.1142/S0219887821500419
– volume: 78
  year: 2008
  ident: 10.1016/j.nuclphysb.2025.117008_br0480
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.124019
– volume: 156
  start-page: 315
  year: 1985
  ident: 10.1016/j.nuclphysb.2025.117008_br0160
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(85)91616-8
– volume: 81
  year: 2010
  ident: 10.1016/j.nuclphysb.2025.117008_br0490
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.81.127301
– volume: 79
  year: 2009
  ident: 10.1016/j.nuclphysb.2025.117008_br0470
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.124019
– volume: 78
  year: 2008
  ident: 10.1016/j.nuclphysb.2025.117008_br0100
  publication-title: Phys. Rev. D
– volume: 91
  issue: 8
  year: 2015
  ident: 10.1016/j.nuclphysb.2025.117008_br1180
  publication-title: Phys. Rev. D
– volume: 83
  start-page: 295
  issue: 4
  year: 2023
  ident: 10.1016/j.nuclphysb.2025.117008_br0270
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-023-11466-2
– volume: 87
  year: 2013
  ident: 10.1016/j.nuclphysb.2025.117008_br0800
  publication-title: Phys. Rev. D
– volume: 20
  issue: 01
  year: 2023
  ident: 10.1016/j.nuclphysb.2025.117008_br1160
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 2023
  issue: 10
  year: 2023
  ident: 10.1016/j.nuclphysb.2025.117008_br1270
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2023/10/038
– volume: 821
  year: 2021
  ident: 10.1016/j.nuclphysb.2025.117008_br1290
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2021.136612
– volume: 56
  start-page: 395
  year: 1988
  ident: 10.1016/j.nuclphysb.2025.117008_br0750
  publication-title: Am. J. Phys.
  doi: 10.1119/1.15620
– volume: 18
  issue: 01
  year: 2021
  ident: 10.1016/j.nuclphysb.2025.117008_br1230
  publication-title: Int. J. Geom. Methods Mod. Phys.
– ident: 10.1016/j.nuclphysb.2025.117008_br0680
– volume: 390
  start-page: 303
  year: 2018
  ident: 10.1016/j.nuclphysb.2025.117008_br0890
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2018.01.010
– volume: 25
  issue: 07
  year: 2016
  ident: 10.1016/j.nuclphysb.2025.117008_br1200
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271816500875
– volume: 43
  year: 2024
  ident: 10.1016/j.nuclphysb.2025.117008_br0260
  publication-title: Phys. Dark Universe
  doi: 10.1016/j.dark.2023.101411
– volume: 48
  start-page: 73
  year: 1935
  ident: 10.1016/j.nuclphysb.2025.117008_br0050
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.48.73
– volume: 98
  issue: 4
  year: 2018
  ident: 10.1016/j.nuclphysb.2025.117008_br0540
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.044048
– volume: 1647
  start-page: 50
  year: 2015
  ident: 10.1016/j.nuclphysb.2025.117008_br0660
  publication-title: Am. Inst. Phys. Conf. Ser.
– volume: 67
  issue: 3
  year: 2019
  ident: 10.1016/j.nuclphysb.2025.117008_br1150
  publication-title: Fortschr. Phys.
  doi: 10.1002/prop.201800077
– volume: 75
  year: 2007
  ident: 10.1016/j.nuclphysb.2025.117008_br0460
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.75.084031
– volume: 525
  start-page: 339
  year: 2013
  ident: 10.1016/j.nuclphysb.2025.117008_br0440
  publication-title: Ann. Phys.
  doi: 10.1002/andp.201200272
– volume: 17
  start-page: 448
  year: 1916
  ident: 10.1016/j.nuclphysb.2025.117008_br0720
  publication-title: Phys. Z.
– volume: 17
  issue: 7
  year: 2020
  ident: 10.1016/j.nuclphysb.2025.117008_br0830
  publication-title: Int. J. Geom. Methods Mod. Phys.
  doi: 10.1142/S0219887820501030
– volume: 68
  year: 2003
  ident: 10.1016/j.nuclphysb.2025.117008_br0030
  publication-title: Phys. Rev. D
– volume: 44
  year: 2024
  ident: 10.1016/j.nuclphysb.2025.117008_br0980
  publication-title: Phys. Dark Universe
  doi: 10.1016/j.dark.2024.101438
– volume: 17
  start-page: 448
  year: 1916
  ident: 10.1016/j.nuclphysb.2025.117008_br0040
  publication-title: Phys. Z.
– volume: 95
  start-page: 1253
  issue: 12
  year: 2017
  ident: 10.1016/j.nuclphysb.2025.117008_br0690
  publication-title: Can. J. Phys.
  doi: 10.1139/cjp-2017-0254
– volume: 91
  year: 2015
  ident: 10.1016/j.nuclphysb.2025.117008_br0080
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.084004
– volume: 54
  start-page: 66
  year: 1976
  ident: 10.1016/j.nuclphysb.2025.117008_br0610
  publication-title: Can. J. Phys.
  doi: 10.1139/p76-008
– volume: 89
  start-page: 613
  year: 2024
  ident: 10.1016/j.nuclphysb.2025.117008_br0390
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2024.03.036
– volume: 101
  issue: 2
  year: 2020
  ident: 10.1016/j.nuclphysb.2025.117008_br1240
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.024053
– volume: 17
  issue: 10
  year: 2020
  ident: 10.1016/j.nuclphysb.2025.117008_br0880
  publication-title: Int. J. Geom. Methods Mod. Phys.
  doi: 10.1142/S0219887820501467
– start-page: 1
  year: 2008
  ident: 10.1016/j.nuclphysb.2025.117008_br0760
  publication-title: Class. Quantum Gravity Res.
– volume: 2550157
  year: 2025
  ident: 10.1016/j.nuclphysb.2025.117008_br1060
  publication-title: Int. J. Geom. Methods Mod. Phys.
– volume: 133
  start-page: 249
  issue: 7
  year: 2018
  ident: 10.1016/j.nuclphysb.2025.117008_br0640
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-12083-1
– ident: 10.1016/j.nuclphysb.2025.117008_br0620
– volume: 756
  start-page: 400
  year: 2016
  ident: 10.1016/j.nuclphysb.2025.117008_br0590
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2016.03.047
– volume: 299
  start-page: 644
  issue: 6
  year: 2002
  ident: 10.1016/j.nuclphysb.2025.117008_br1190
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)00705-3
– volume: 433
  year: 2021
  ident: 10.1016/j.nuclphysb.2025.117008_br1010
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2021.168575
– volume: 135
  start-page: 916
  issue: 11
  year: 2020
  ident: 10.1016/j.nuclphysb.2025.117008_br0320
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-020-00927-2
– volume: 28
  year: 2019
  ident: 10.1016/j.nuclphysb.2025.117008_br0960
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271819500391
– volume: 46
  start-page: 2464
  year: 1992
  ident: 10.1016/j.nuclphysb.2025.117008_br0790
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.46.2464
– volume: 45
  start-page: 350
  year: 2025
  ident: 10.1016/j.nuclphysb.2025.117008_br0210
  publication-title: J. High Energy Astrophys.
  doi: 10.1016/j.jheap.2025.01.006
– volume: 8
  start-page: 510
  issue: 10
  year: 2022
  ident: 10.1016/j.nuclphysb.2025.117008_br0380
  publication-title: Universe
  doi: 10.3390/universe8100510
– volume: 136
  start-page: 167
  issue: 2
  year: 2021
  ident: 10.1016/j.nuclphysb.2025.117008_br1100
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-021-01104-9
– volume: 12
  start-page: 774
  year: 2020
  ident: 10.1016/j.nuclphysb.2025.117008_br0900
  publication-title: Symmetry
  doi: 10.3390/sym12050774
– volume: 2
  start-page: 525
  year: 1957
  ident: 10.1016/j.nuclphysb.2025.117008_br0730
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(57)90049-0
– volume: 81
  start-page: 880
  year: 2021
  ident: 10.1016/j.nuclphysb.2025.117008_br0190
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09668-7
– volume: 13
  start-page: 874
  year: 1972
  ident: 10.1016/j.nuclphysb.2025.117008_br0150
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1666069
– volume: 85
  year: 2012
  ident: 10.1016/j.nuclphysb.2025.117008_br0090
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.85.044007
– volume: 2
  start-page: 604
  year: 1957
  ident: 10.1016/j.nuclphysb.2025.117008_br0060
  publication-title: Ann. Phys.
  doi: 10.1016/0003-4916(57)90050-7
– volume: 77
  start-page: 1253
  year: 2022
  ident: 10.1016/j.nuclphysb.2025.117008_br0200
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2022.03.004
– volume: 99
  issue: 6
  year: 2024
  ident: 10.1016/j.nuclphysb.2025.117008_br0370
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad3e36
SSID ssj0000638
Score 2.4838145
Snippet This study investigates the existence and stability of traversable wormhole (WH) solutions within the framework of Rastall Teleparallel Gravity. In this...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 117008
SubjectTerms Energy conditions
Exotic matter
Rastall teleparallel gravity
Traversable wormholes
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEB1Sm0AvoUkT4rQJe-hVWNJoJau3NDQ4LfUlDfgm9ktGQVGMraR_vzMr2dinHHIQrJaVWGaWmTfSzDyAb04TBkCFgZMOgyTTEdlBYwOTYWyU1Sr1PGR_Zun0Ifk1l_MDuNnUwnBaZW_7O5vurXU_M-6lOV5W1fg-JHCNMUVTsqNZ-gDDGPNUDmB4ffd7OtsxyJ7QmtcH_MBemlfzYmr-iKApVowl_8MMmWpyx0n5Xv47vmrH_9x-gqMeOIrrbm_HcOCaEzj0CZxm_RmWZK1EV5jy6nsvi5aJhVZrLo0S_wiZMhHuWqjGCufr_YRhaMgMEe1aVI0gJChWisBiXYuWnBE3Ba9rVwtmKOo7edMGeNpWi6dTeLj9-fdmGvRsCoHBbNIGznL7Nikn2imdh04RstAW6TJJpFxKOCzXDkl5KMljpaHKfR2qNDHSMMIzGDTPjTsHQTFGZhOSZCmRwsmS9O3yRLkIbVyaMhxBuBFfseyaZhSbbLLHYivxgiVedBIfwQ8W83Y5d732E8-rRdGrvXDaptrGppyYOJFlSeMstRojnCiFJh3B942Sir1DRK-q3trBxXse_gIf-a5LPvsKg3b14i4JrbT6qj-N_wGs3ux-
  priority: 102
  providerName: Elsevier
Title New relativistic traversable wormholes and energy constraints in the rastall teleparallel gravitational paradigm
URI https://dx.doi.org/10.1016/j.nuclphysb.2025.117008
https://doaj.org/article/ebd6bd2cf8c245ffbd276db3138aa3c6
Volume 1018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60IngRn1gfZQ9eo0kmmzTerChVsScLvYV9RSoxlibqzd_uzCYt9eTFQ8KyhGWZCTvfJDPfx9i5VYgBQIJnhQUvSlSA56A2nk4g1NIoGTsdsqdRPBxHDxMxWZH6opqwhh64MdylVSZWJtR5X4eRyHMcJ7FREEBfStCObNtP_UUytTyDnYa1j_jbgzCAX5Vd5Ycu6LuBwvQwFPTb0id1yZW45Oj7V8LTSsi522HbLVbk180ed9maLffYpqvZ1NU-m-EBxZtelE9Ht8xr0hKaV9QNxb8QjJL2bcVlabh1LX5cExokUYi64tOSI_jjc4n4sCh4jfGHeMCLwhacRIla8m7cAE2b6cvbARvf3T7fDL1WQMHTkPRrzxpibBOir6xUqW8lggllAC8dBdLGCL1SZQH9BQKDVOzL1LWeCh0CDgM4ZJ3yvbRHjGNakZgILZkLwAwyRxfbNJI2ABPmOve7zF-YL5s1PBnZooDsNVtaPCOLZ43Fu2xAZl4-TkTXbgLdn7Xuz_5yf5ddLZyUtZihwQK41PSvHRz_xw5O2BYt2dSdnbJOPf-wZwhUatVj6xffQY9tXN8_Dkc994bi_X4y-AGEUe5R
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CMEF8RTjmQPXam3TtBs3QKDxvADSblFeRUWlm7YCfx877dA4ceBQKUrTKrIj-3Nr-wM4dRoxAFc8cMLxIMl0hHbQ2MBkPDbKapV6HrKHx3TwktwOxXABLme1MJRW2dr-xqZ7a93OdFtpdsdF0X0KEVzzGKMp0dAsLcIyooGUGujfDC_mzLGns6bVAS3_leRVfZiSPiFojBRjQX8wQyKanHNRvpP_nKea8z7XG7DewkZ23uxsExZctQUrPn3TTLdhjLaKNWUpn77zMquJVmgypcIo9oW4lGhwp0xVljlf7ccMAUPih6inrKgY4kA2UQgVy5LV6IqoJXhZupIRP1Hbxxs3QNO2eH3fgZfrq-fLQdByKQSGZ706cJaatwnR007pfugU4gptOV4miZRLEYX1teOoOi7QX6Wh6vsqVGFijsOI78JSNarcHjCMMDKboCRzwTGYzFHbrp8oF3Eb5yYPOxDOxCfHTcsMOcsle5M_EpckcdlIvAMXJOaf5dTz2k-MJq-yVbp02qbaxibvmTgReY7jLLWaR7ynFDdpB85mSpK_jhC-qvhrB_v_efgEVgfPD_fy_ubx7gDW6E6ThnYIS_Xkwx0hbqn1sT-X31NK7lQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+relativistic+traversable+wormholes+and+energy+constraints+in+the+rastall+teleparallel+gravitational+paradigm&rft.jtitle=Nuclear+physics.+B&rft.au=Saleem%2C+Amna&rft.au=Ali%2C+Zulfiqar&rft.au=Bouzenada%2C+Abdelmalek&rft.au=Ditta%2C+Allah&rft.date=2025-09-01&rft.issn=0550-3213&rft.volume=1018&rft.spage=117008&rft_id=info:doi/10.1016%2Fj.nuclphysb.2025.117008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nuclphysb_2025_117008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0550-3213&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0550-3213&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0550-3213&client=summon