New relativistic traversable wormholes and energy constraints in the rastall teleparallel gravitational paradigm
This study investigates the existence and stability of traversable wormhole (WH) solutions within the framework of Rastall Teleparallel Gravity. In this context, we focus on the impact of geometric constraints and energy conditions. Utilizing the class I embedding technique under the Karmarkar condi...
Saved in:
Published in | Nuclear physics. B Vol. 1018; p. 117008 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2025
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0550-3213 |
DOI | 10.1016/j.nuclphysb.2025.117008 |
Cover
Abstract | This study investigates the existence and stability of traversable wormhole (WH) solutions within the framework of Rastall Teleparallel Gravity. In this context, we focus on the impact of geometric constraints and energy conditions. Utilizing the class I embedding technique under the Karmarkar condition, we derive two novel static spherically symmetric WH solutions. In addition, these solutions are illustrated with distinct redshift functions, leading to corresponding shape functions that satisfy the Morris-Thorne criteria, ensuring asymptotic flatness and necessary throat conditions. The field equations, constructed within an anisotropic stress-energy tensor framework, are analyzed to evaluate the energy density, radial pressure, and tangential pressure distributions. A comprehensive graphical analysis tested the energy conditions, i.e., the null energy condition (NEC), weak energy condition (WEC), strong energy condition (SEC), and dominant energy condition (DEC). This shows the violations of the Null Energy Condition (NEC), confirming the presence of exotic matter necessary for sustaining WH structures. Both models exhibit regions where the energy density remains positive, while radial and tangential pressures violate classical energy conditions, reinforcing the theoretical expectations for the stability of the WH. Also, these results illustrated the compatibility of Rastall Teleparallel Gravity with traversable WH subjects and tested the intricate matter-geometry interplay in exotic spacetimes. |
---|---|
AbstractList | This study investigates the existence and stability of traversable wormhole (WH) solutions within the framework of Rastall Teleparallel Gravity. In this context, we focus on the impact of geometric constraints and energy conditions. Utilizing the class I embedding technique under the Karmarkar condition, we derive two novel static spherically symmetric WH solutions. In addition, these solutions are illustrated with distinct redshift functions, leading to corresponding shape functions that satisfy the Morris-Thorne criteria, ensuring asymptotic flatness and necessary throat conditions. The field equations, constructed within an anisotropic stress-energy tensor framework, are analyzed to evaluate the energy density, radial pressure, and tangential pressure distributions. A comprehensive graphical analysis tested the energy conditions, i.e., the null energy condition (NEC), weak energy condition (WEC), strong energy condition (SEC), and dominant energy condition (DEC). This shows the violations of the Null Energy Condition (NEC), confirming the presence of exotic matter necessary for sustaining WH structures. Both models exhibit regions where the energy density remains positive, while radial and tangential pressures violate classical energy conditions, reinforcing the theoretical expectations for the stability of the WH. Also, these results illustrated the compatibility of Rastall Teleparallel Gravity with traversable WH subjects and tested the intricate matter-geometry interplay in exotic spacetimes. |
ArticleNumber | 117008 |
Author | Mustafa, G. Atamurotov, Farruh Saleem, Amna Bouzenada, Abdelmalek Ditta, Allah Ali, Zulfiqar |
Author_xml | – sequence: 1 givenname: Amna surname: Saleem fullname: Saleem, Amna email: a.saleemintel@gmail.com organization: Department of Mathematics, Riphah International University, Faisalabad Campus, 38000, Punjab, Pakistan – sequence: 2 givenname: Zulfiqar surname: Ali fullname: Ali, Zulfiqar email: zulfiqar.ali@riphahfsd.edu.pk organization: Department of Mathematics, Riphah International University, Faisalabad Campus, 38000, Punjab, Pakistan – sequence: 3 givenname: Abdelmalek orcidid: 0000-0002-3363-980X surname: Bouzenada fullname: Bouzenada, Abdelmalek email: abdelmalekbouzenada@gmail.com organization: Laboratory of Theoretical and Applied Physics, Echahid Cheikh Larbi Tebessi University 12001, Algeria – sequence: 4 givenname: Allah surname: Ditta fullname: Ditta, Allah email: mradshahid01@gmail.com organization: Department of Mathematics, School of Science, University of Management and Technology, Lahore, 54000, Pakistan – sequence: 5 givenname: Farruh surname: Atamurotov fullname: Atamurotov, Farruh email: atamurotov@yahoo.com organization: Kimyo International University in Tashkent, Shota Rustaveli str. 156, Tashkent 100121, Uzbekistan – sequence: 6 givenname: G. orcidid: 0000-0003-1409-2009 surname: Mustafa fullname: Mustafa, G. email: gmustafa3828@gmail.com organization: Department of Physics, Zhejiang Normal University, Jinhua 321004, People's Republic of China |
BookMark | eNqFkM1OYzEMhbNgpCnMPAN5gXby0-TeLhGCAQnBhllHTuLbpkqTKglFfXvSKWKLJctHlv3JPpfkIuWEhFxztuCM6z_bRXpzcb85VrsQTKgF5wNj4wWZMaXYXAouf5LLWresh5bjjOyf8Z0WjNDCIdQWHG0FDlgq2Ij0PZfdJkesFJKnmLCsj9TlVPtQSK3SkGjbIC1QG8RIG0bcQ-kSI113UGgdnBNEemr7sN79Ij8miBV_f9Yr8u_-7vX2Yf708vfx9uZp7uQwtjl6xgVXarQIdsUQmBitlz3dkgNqIfTKokSrpFoOXDNY6eUwcuWE7JLLK_J45voMW7MvYQflaDIE87-Ry9pA6f9GNGi9tl64aXRiqaap60F7K7kcAaTTnTWcWa7kWgtOXzzOzMl4szVfxpuT8eZsfN-8OW9if_UQsJjqAiaHPhR0rd8SvmV8AFd1mGA |
Cites_doi | 10.1142/S0219887819501433 10.1140/epjp/s13360-024-05385-8 10.1088/1475-7516/2021/07/004 10.1140/epjc/s10052-018-6410-z 10.1016/j.physletb.2008.11.064 10.1103/PhysRevD.98.124004 10.1016/j.dark.2020.100464 10.1016/j.physletb.2018.05.028 10.1007/s10208-022-09597-1 10.1088/1361-6382/aa7830 10.1007/s41884-019-00018-x 10.1103/PhysRevD.107.046021 10.1142/S0218271815500030 10.1103/PhysRev.128.919 10.1142/S2010194512008227 10.1103/PhysRevLett.55.2656 10.1134/S0202289319040030 10.1103/PhysRevLett.61.1446 10.1142/S0217732308027497 10.1088/1361-6633/ac9cef 10.1016/j.physletb.2017.05.064 10.1007/s10714-023-03093-9 10.1103/PhysRevD.80.104012 10.1088/1361-6382/ac129d 10.1016/j.aop.2019.168062 10.1088/0034-4885/79/10/106901 10.1103/PhysRevD.86.127504 10.1103/PhysRevD.72.103005 10.1140/epjp/s13360-020-00508-3 10.1088/1674-1137/ac7f22 10.1139/cjp-2017-0040 10.1016/j.physletb.2022.137572 10.1103/RevModPhys.36.463 10.1140/epjc/s10052-016-4066-0 10.1140/epjc/s10052-021-09854-7 10.1016/j.dark.2025.101977 10.1103/PhysRevD.6.3357 10.1119/1.15620 10.1142/S0219887823500147 10.1063/1.1665613 10.1103/PhysRevD.85.084008 10.2307/1968467 10.12942/lrr-2009-4 10.1103/PhysRevD.19.3524 10.1140/epjp/s13360-021-01104-9 10.1134/S0202289315040027 10.1103/PhysRevLett.90.201102 10.1002/andp.202300178 10.1088/1361-6382/ab2e1f 10.1142/S0219887823500585 10.1016/j.cjph.2023.12.033 10.1016/j.dark.2025.101963 10.1140/epjc/s10052-017-5502-5 10.1103/PhysRevD.98.084043 10.1142/S0219887821500419 10.1103/PhysRevD.78.124019 10.1016/0370-2693(85)91616-8 10.1103/PhysRevD.81.127301 10.1103/PhysRevD.79.124019 10.1140/epjc/s10052-023-11466-2 10.1088/1475-7516/2023/10/038 10.1016/j.physletb.2021.136612 10.1016/j.aop.2018.01.010 10.1142/S0218271816500875 10.1016/j.dark.2023.101411 10.1103/PhysRev.48.73 10.1103/PhysRevD.98.044048 10.1002/prop.201800077 10.1103/PhysRevD.75.084031 10.1002/andp.201200272 10.1142/S0219887820501030 10.1016/j.dark.2024.101438 10.1139/cjp-2017-0254 10.1103/PhysRevD.91.084004 10.1139/p76-008 10.1016/j.cjph.2024.03.036 10.1103/PhysRevD.101.024053 10.1142/S0219887820501467 10.1140/epjp/i2018-12083-1 10.1016/j.physletb.2016.03.047 10.1016/S0375-9601(02)00705-3 10.1016/j.aop.2021.168575 10.1140/epjp/s13360-020-00927-2 10.1142/S0218271819500391 10.1103/PhysRevD.46.2464 10.1016/j.jheap.2025.01.006 10.3390/universe8100510 10.3390/sym12050774 10.1016/0003-4916(57)90049-0 10.1140/epjc/s10052-021-09668-7 10.1063/1.1666069 10.1103/PhysRevD.85.044007 10.1016/0003-4916(57)90050-7 10.1016/j.cjph.2022.03.004 10.1088/1402-4896/ad3e36 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.nuclphysb.2025.117008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | oai_doaj_org_article_ebd6bd2cf8c245ffbd276db3138aa3c6 10_1016_j_nuclphysb_2025_117008 S0550321325002172 |
GroupedDBID | --K --M -~X .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 6I. 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AAEDT AAEDW AAFTH AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABAOU ABFNM ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACKIV ACNCT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADGUI ADIYS ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AETEA AEUPX AEXQZ AFPKN AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIBLX AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR ASPBG AVWKF AXJTR AZFZN BCNDV BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 ER. FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HME HVGLF HZ~ IHE IPNFZ IXB J1W KOM KQ8 LZ4 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SHN SPC SPCBC SPD SSQ SSW SSZ T5K TN5 WH7 WUQ XJT XPP YYP ~G- AAYXX CITATION EFLBG |
ID | FETCH-LOGICAL-c378t-ed0121558beab90ea028bd38bdc41ae62269be3eb53547160a9647815c23a9613 |
IEDL.DBID | DOA |
ISSN | 0550-3213 |
IngestDate | Wed Aug 27 01:24:03 EDT 2025 Wed Sep 03 16:36:56 EDT 2025 Sat Aug 09 17:30:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Traversable wormholes Energy conditions Rastall teleparallel gravity Exotic matter |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-ed0121558beab90ea028bd38bdc41ae62269be3eb53547160a9647815c23a9613 |
ORCID | 0000-0003-1409-2009 0000-0002-3363-980X 0009-0004-0824-7929 0000-0003-1137-0253 0000-0001-8857-4970 0000-0001-7758-8736 |
OpenAccessLink | https://doaj.org/article/ebd6bd2cf8c245ffbd276db3138aa3c6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ebd6bd2cf8c245ffbd276db3138aa3c6 crossref_primary_10_1016_j_nuclphysb_2025_117008 elsevier_sciencedirect_doi_10_1016_j_nuclphysb_2025_117008 |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Nuclear physics. B |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Garraffo, Giribet (br0170) 2008; 23 Behboodi, Akhshabi, Nozari (br1200) 2016; 25 Ditta, Hussain, Mustafa, Errehymy, Daoud (br0190) 2021; 81 Visser (br0710) 2018; 782 Misner, Wheeler (br0730) 1957; 2 Flamm (br0040) 1916; 17 Majernik, Richterek (br0620) 2006 Mustafa (br0820) 2019; 16 Banerjee (br1010) 2021; 433 Mustafa (br1290) 2021; 821 Hussain, Mustafa, Yasir, Ditta (br0200) 2022; 77 Beltran Jimenez, Koivisto (br0590) 2016; 756 Rahman (br1090) 2016; 76 Moradpour, Sadeghnezhad, Hendi (br0420) 2017; 95 Kumar, Singh, Ali, Ghosh (br0400) 2021; 34 Da Silva, Santos, Barros (br0280) 2021; 38 Capozziello, Pincak, Bartos (br0900) 2020; 12 Sciama (br1110) 1964; 36 Heydarzade, Moradpour, Darabi (br0680) 2016 da Silva, Santos, Mota, da Costa, Fabris (br0270) 2023; 83 Morris, Thorne (br0750) 1988; 56 Lawrence (br1230) 2021; 18 Bronnikov, Galiakhmetov (br0950) 2015; 21 Fuller, Wheeler (br0740) 1962; 128 Darabi, Moradpour, Licata, Heydarzade, Corda (br0700) 2018; 78 Mustafa, Xia (br0880) 2020; 17 Garattini, Lobo (br1080) 2009; 671 Hayashi, Shirafuji (br1120) 1979; 19 Berchenko-Kogan, Gawlik (br1210) 2024; 24 Ferraro, Fiorini (br0480) 2008; 78 Nashed (br0380) 2022; 8 Jimenez, Heisenberg, Koivisto (br0540) 2018; 98 Ashraf, Ditta, Sofuoğlu, Ma, Javed, Atamurotov, Mahmood (br0370) 2024; 99 Huang, Lin (br1190) 2002; 299 Flamm (br0720) 1916; 17 Aslam, Malik (br0240) 2024; 139 Sciama (br0340) 1964; 36 Ditta, Mustafa, Mahmood (br0210) 2025; 45 Ashraf, Zhang (br0840) 2021; 18 Aldrovandi, Pereira (br0430) 2012 Bengochea, Ferraro (br0470) 2009; 79 Rastall (br0610) 1976; 54 Capozziello, Pincak, Saridakis (br0890) 2018; 390 Hohmann, Krššák, Pfeifer, Ualikhanova (br1250) 2018; 98 Conroy, Koivisto (br0570) 2018; 78 Mustafa (br0830) 2020; 17 Battista, Steinacker (br1220) 2023; 107 Maluf (br0440) 2013; 525 Godani, Samanta (br0960) 2019; 28 Mehdizadeh, Kord Zangeneh, Lobo (br0080) 2015; 91 Fabris, Piattella, Rodrigues, Batista, Daouda (br0650) 2012; 18 Bini, Mashhoon (br1180) 2015; 91 Shahzad, Abbas (br0330) 2020; 135 Rastall (br0600) 1972; 6 Darabi, Atazadeh, Heydarzade (br0640) 2018; 133 Lovelock (br0140) 1971; 12 Harada (br1240) 2020; 101 Batista, Daouda, Fabris, Piattella, Rodrigues (br0630) 2012; 85 Harko (br0550) 2018; 98 Errehymy (br0980) 2024; 44 Ashraf (br0850) 2023; 20 Lobo, Moradpour, Morais Graça, Salako (br0690) 2017; 95 Capozziello, Harko, Koivisto (br0930) 2012; 86 Ghosh, Dey, Das, Chanda, Paul (br0300) 2021; 2021 Visser, Kar, Dadhich (br0780) 2003; 90 Clifton, Barrow (br1130) 2005; 72 Lovelock (br0150) 1972; 13 Ferraro, Fiorini (br0460) 2007; 75 Kord Zangeneh, Lobo, Dehghani (br0120) 2015; 92 Linder (br0490) 2010; 81 Visser (br0020) 1995 Bahamonde (br1260) 2023; 86 Malik, Shafaq, Manzoor, Yousaf, Ali (br0390) 2024; 89 Capozziello, Godani (br0940) 2022; 835 Hayashi, Shirafuji (br0510) 1979; 19 Boulware, Deser (br0180) 1985; 55 Lanczos (br0130) 1938; 39 Bhattacharjee, Chattopadhyay, Paul (br0260) 2024; 43 Petrov (br0530) 2017 Ziaie, Moradpour, Shabani (br0320) 2020; 135 Golovnev (br0580) 2017; 34 Capozziello, Luongo, Mauro (br0910) 2021; 136 Cai (br0500) 2016; 79 Ashraf (br0860) 2024; 21 Bronnikov (br1280) 2019; 25 Capozziello, Godani (br0920) 2022; 835 Kanti, Kleihaus, Kunz (br0090) 2012; 85 Saaidi, Nazavari (br0230) 2020; 28 Sharif, Rani (br0810) 2013; 88 Lemos, Lobo, Quinet de Oliveira (br0030) 2003; 68 Errehymy, Maurya, Hansraj, Daoud, Alrebdi, Abdel-Aty (br0970) 2023; 535 Maurya, Errehymy, Umbetova, Myrzakulov, Ibragimov, Dauletov, Rayimbaev (br1050) 2025; 47 Zwiebach (br0160) 1985; 156 Nazavari, Saaidi, Mohammadi (br0250) 2023; 55 Sheikh, Aziz, Bhatti, Pincak (br0310) 2023; 20 Ilyas, Bamba (br1270) 2023; 2023 Sakti, Suroso, Zen (br0360) 2020; 413 Sharif, Ikram (br1000) 2015; 24 Farasat Shamir (br0870) 2020; 17 Bhar (br0410) 2024; 87 Fuller, Wheeler (br0070) 1962; 128 Lobo (br0760) 2008 Morris, Thorne, Yurtsever (br0770) 1988; 61 Maurya, Errehymy, Saginayev, Myrzakulov, Ibragimov, Dauletov, Rayimbaev (br1040) 2025; 49 Nester, Yo (br0560) 1999; 37 Einstein, Rosen (br0050) 1935; 48 Visser (br0290) 2018; 782 Szabados (br0520) 2009; 12 Hobson, Efstathiou, Lasenby (br1140) 2006 Channuie, Ditta, Kaewkhao, Övgün (br0220) 2025; 48 Morris, Thorne (br0010) 1988; 56 Clifton, Barrow (br0350) 2005; 72 Zhang, Khan (br1170) 2019; 2 Penas (br1150) 2019; 67 Wheeler (br0060) 1957; 2 Harko, Lobo, Mak, Sushkov (br0800) 2013; 87 Bhawal, Kar (br0790) 1992; 46 Tayde, Hassan, Sahoo, Gutti (br1030) 2022; 46 Dehghani, Dayyani (br0110) 2009; 79 Lobo, Oliveira (br0990) 2009; 80 Golovnev (br1160) 2023; 20 Fabris, Piattella, Rodrigues, Daouda (br0660) 2015; 1647 Maeda, Nozawa (br0100) 2008; 78 Capozziello, Luongo, Mauro (br1100) 2021; 136 Heydarzade, Darabi (br0670) 2017; 771 Banerjee (br1020) 2021; 81 Koussour, Myrzakulov, Muminov, Ibragimov, Rayimbaev, Dauletov (br1060) 2025; 2550157 Krššák (br0450) 2019; 36 Jimenez (10.1016/j.nuclphysb.2025.117008_br0540) 2018; 98 Mehdizadeh (10.1016/j.nuclphysb.2025.117008_br0080) 2015; 91 Petrov (10.1016/j.nuclphysb.2025.117008_br0530) 2017 Darabi (10.1016/j.nuclphysb.2025.117008_br0700) 2018; 78 Lovelock (10.1016/j.nuclphysb.2025.117008_br0140) 1971; 12 Dehghani (10.1016/j.nuclphysb.2025.117008_br0110) 2009; 79 Capozziello (10.1016/j.nuclphysb.2025.117008_br0940) 2022; 835 Maurya (10.1016/j.nuclphysb.2025.117008_br1050) 2025; 47 Heydarzade (10.1016/j.nuclphysb.2025.117008_br0670) 2017; 771 Godani (10.1016/j.nuclphysb.2025.117008_br0960) 2019; 28 Aldrovandi (10.1016/j.nuclphysb.2025.117008_br0430) 2012 Capozziello (10.1016/j.nuclphysb.2025.117008_br0920) 2022; 835 Misner (10.1016/j.nuclphysb.2025.117008_br0730) 1957; 2 Einstein (10.1016/j.nuclphysb.2025.117008_br0050) 1935; 48 Flamm (10.1016/j.nuclphysb.2025.117008_br0040) 1916; 17 Battista (10.1016/j.nuclphysb.2025.117008_br1220) 2023; 107 Lovelock (10.1016/j.nuclphysb.2025.117008_br0150) 1972; 13 Conroy (10.1016/j.nuclphysb.2025.117008_br0570) 2018; 78 da Silva (10.1016/j.nuclphysb.2025.117008_br0270) 2023; 83 Fuller (10.1016/j.nuclphysb.2025.117008_br0070) 1962; 128 Behboodi (10.1016/j.nuclphysb.2025.117008_br1200) 2016; 25 Maluf (10.1016/j.nuclphysb.2025.117008_br0440) 2013; 525 Lobo (10.1016/j.nuclphysb.2025.117008_br0990) 2009; 80 Lemos (10.1016/j.nuclphysb.2025.117008_br0030) 2003; 68 Ashraf (10.1016/j.nuclphysb.2025.117008_br0370) 2024; 99 Sharif (10.1016/j.nuclphysb.2025.117008_br1000) 2015; 24 Boulware (10.1016/j.nuclphysb.2025.117008_br0180) 1985; 55 Bengochea (10.1016/j.nuclphysb.2025.117008_br0470) 2009; 79 Capozziello (10.1016/j.nuclphysb.2025.117008_br0910) 2021; 136 Capozziello (10.1016/j.nuclphysb.2025.117008_br0890) 2018; 390 Wheeler (10.1016/j.nuclphysb.2025.117008_br0060) 1957; 2 Hussain (10.1016/j.nuclphysb.2025.117008_br0200) 2022; 77 Golovnev (10.1016/j.nuclphysb.2025.117008_br1160) 2023; 20 Bhar (10.1016/j.nuclphysb.2025.117008_br0410) 2024; 87 Lawrence (10.1016/j.nuclphysb.2025.117008_br1230) 2021; 18 Clifton (10.1016/j.nuclphysb.2025.117008_br1130) 2005; 72 Maurya (10.1016/j.nuclphysb.2025.117008_br1040) 2025; 49 Kanti (10.1016/j.nuclphysb.2025.117008_br0090) 2012; 85 Mustafa (10.1016/j.nuclphysb.2025.117008_br0830) 2020; 17 Heydarzade (10.1016/j.nuclphysb.2025.117008_br0680) Capozziello (10.1016/j.nuclphysb.2025.117008_br0930) 2012; 86 Koussour (10.1016/j.nuclphysb.2025.117008_br1060) 2025; 2550157 Bronnikov (10.1016/j.nuclphysb.2025.117008_br1280) 2019; 25 Batista (10.1016/j.nuclphysb.2025.117008_br0630) 2012; 85 Hohmann (10.1016/j.nuclphysb.2025.117008_br1250) 2018; 98 Flamm (10.1016/j.nuclphysb.2025.117008_br0720) 1916; 17 Mustafa (10.1016/j.nuclphysb.2025.117008_br0880) 2020; 17 Hobson (10.1016/j.nuclphysb.2025.117008_br1140) 2006 Clifton (10.1016/j.nuclphysb.2025.117008_br0350) 2005; 72 Berchenko-Kogan (10.1016/j.nuclphysb.2025.117008_br1210) 2024; 24 Darabi (10.1016/j.nuclphysb.2025.117008_br0640) 2018; 133 Lobo (10.1016/j.nuclphysb.2025.117008_br0760) 2008 Kumar (10.1016/j.nuclphysb.2025.117008_br0400) 2021; 34 Harko (10.1016/j.nuclphysb.2025.117008_br0800) 2013; 87 Krššák (10.1016/j.nuclphysb.2025.117008_br0450) 2019; 36 Hayashi (10.1016/j.nuclphysb.2025.117008_br0510) 1979; 19 Rahman (10.1016/j.nuclphysb.2025.117008_br1090) 2016; 76 Garraffo (10.1016/j.nuclphysb.2025.117008_br0170) 2008; 23 Banerjee (10.1016/j.nuclphysb.2025.117008_br1010) 2021; 433 Morris (10.1016/j.nuclphysb.2025.117008_br0750) 1988; 56 Ferraro (10.1016/j.nuclphysb.2025.117008_br0480) 2008; 78 Nester (10.1016/j.nuclphysb.2025.117008_br0560) 1999; 37 Nashed (10.1016/j.nuclphysb.2025.117008_br0380) 2022; 8 Moradpour (10.1016/j.nuclphysb.2025.117008_br0420) 2017; 95 Maeda (10.1016/j.nuclphysb.2025.117008_br0100) 2008; 78 Sciama (10.1016/j.nuclphysb.2025.117008_br1110) 1964; 36 Golovnev (10.1016/j.nuclphysb.2025.117008_br0580) 2017; 34 Penas (10.1016/j.nuclphysb.2025.117008_br1150) 2019; 67 Zwiebach (10.1016/j.nuclphysb.2025.117008_br0160) 1985; 156 Malik (10.1016/j.nuclphysb.2025.117008_br0390) 2024; 89 Fabris (10.1016/j.nuclphysb.2025.117008_br0650) 2012; 18 Ashraf (10.1016/j.nuclphysb.2025.117008_br0850) 2023; 20 Bhattacharjee (10.1016/j.nuclphysb.2025.117008_br0260) 2024; 43 Mustafa (10.1016/j.nuclphysb.2025.117008_br1290) 2021; 821 Fuller (10.1016/j.nuclphysb.2025.117008_br0740) 1962; 128 Bini (10.1016/j.nuclphysb.2025.117008_br1180) 2015; 91 Sakti (10.1016/j.nuclphysb.2025.117008_br0360) 2020; 413 Ilyas (10.1016/j.nuclphysb.2025.117008_br1270) 2023; 2023 Morris (10.1016/j.nuclphysb.2025.117008_br0010) 1988; 56 Zhang (10.1016/j.nuclphysb.2025.117008_br1170) 2019; 2 Nazavari (10.1016/j.nuclphysb.2025.117008_br0250) 2023; 55 Rastall (10.1016/j.nuclphysb.2025.117008_br0600) 1972; 6 Errehymy (10.1016/j.nuclphysb.2025.117008_br0970) 2023; 535 Ashraf (10.1016/j.nuclphysb.2025.117008_br0860) 2024; 21 Capozziello (10.1016/j.nuclphysb.2025.117008_br0900) 2020; 12 Visser (10.1016/j.nuclphysb.2025.117008_br0290) 2018; 782 Visser (10.1016/j.nuclphysb.2025.117008_br0780) 2003; 90 Ziaie (10.1016/j.nuclphysb.2025.117008_br0320) 2020; 135 Sciama (10.1016/j.nuclphysb.2025.117008_br0340) 1964; 36 Ditta (10.1016/j.nuclphysb.2025.117008_br0210) 2025; 45 Szabados (10.1016/j.nuclphysb.2025.117008_br0520) 2009; 12 Kord Zangeneh (10.1016/j.nuclphysb.2025.117008_br0120) 2015; 92 Morris (10.1016/j.nuclphysb.2025.117008_br0770) 1988; 61 Channuie (10.1016/j.nuclphysb.2025.117008_br0220) 2025; 48 Ferraro (10.1016/j.nuclphysb.2025.117008_br0460) 2007; 75 Linder (10.1016/j.nuclphysb.2025.117008_br0490) 2010; 81 Harko (10.1016/j.nuclphysb.2025.117008_br0550) 2018; 98 Farasat Shamir (10.1016/j.nuclphysb.2025.117008_br0870) 2020; 17 Ditta (10.1016/j.nuclphysb.2025.117008_br0190) 2021; 81 Errehymy (10.1016/j.nuclphysb.2025.117008_br0980) 2024; 44 Mustafa (10.1016/j.nuclphysb.2025.117008_br0820) 2019; 16 Rastall (10.1016/j.nuclphysb.2025.117008_br0610) 1976; 54 Harada (10.1016/j.nuclphysb.2025.117008_br1240) 2020; 101 Aslam (10.1016/j.nuclphysb.2025.117008_br0240) 2024; 139 Visser (10.1016/j.nuclphysb.2025.117008_br0020) 1995 Saaidi (10.1016/j.nuclphysb.2025.117008_br0230) 2020; 28 Ashraf (10.1016/j.nuclphysb.2025.117008_br0840) 2021; 18 Bahamonde (10.1016/j.nuclphysb.2025.117008_br1260) 2023; 86 Banerjee (10.1016/j.nuclphysb.2025.117008_br1020) 2021; 81 Garattini (10.1016/j.nuclphysb.2025.117008_br1080) 2009; 671 Bronnikov (10.1016/j.nuclphysb.2025.117008_br0950) 2015; 21 Bhawal (10.1016/j.nuclphysb.2025.117008_br0790) 1992; 46 Majernik (10.1016/j.nuclphysb.2025.117008_br0620) Shahzad (10.1016/j.nuclphysb.2025.117008_br0330) 2020; 135 Fabris (10.1016/j.nuclphysb.2025.117008_br0660) 2015; 1647 Sharif (10.1016/j.nuclphysb.2025.117008_br0810) 2013; 88 Hayashi (10.1016/j.nuclphysb.2025.117008_br1120) 1979; 19 Capozziello (10.1016/j.nuclphysb.2025.117008_br1100) 2021; 136 Ghosh (10.1016/j.nuclphysb.2025.117008_br0300) 2021; 2021 Sheikh (10.1016/j.nuclphysb.2025.117008_br0310) 2023; 20 Beltran Jimenez (10.1016/j.nuclphysb.2025.117008_br0590) 2016; 756 Visser (10.1016/j.nuclphysb.2025.117008_br0710) 2018; 782 Tayde (10.1016/j.nuclphysb.2025.117008_br1030) 2022; 46 Huang (10.1016/j.nuclphysb.2025.117008_br1190) 2002; 299 Lanczos (10.1016/j.nuclphysb.2025.117008_br0130) 1938; 39 Cai (10.1016/j.nuclphysb.2025.117008_br0500) 2016; 79 Da Silva (10.1016/j.nuclphysb.2025.117008_br0280) 2021; 38 Lobo (10.1016/j.nuclphysb.2025.117008_br0690) 2017; 95 |
References_xml | – volume: 128 start-page: 919 year: 1962 ident: br0070 publication-title: Phys. Rev. – volume: 36 year: 2019 ident: br0450 publication-title: Class. Quantum Gravity – volume: 12 start-page: 4 year: 2009 ident: br0520 publication-title: Living Rev. Relativ. – volume: 95 start-page: 1253 year: 2017 end-page: 1256 ident: br0690 publication-title: Can. J. Phys. – volume: 136 start-page: 167 year: 2021 ident: br0910 publication-title: Eur. Phys. J. Plus – volume: 2023 year: 2023 ident: br1270 publication-title: J. Cosmol. Astropart. Phys. – volume: 79 year: 2016 ident: br0500 publication-title: Rep. Prog. Phys. – volume: 17 year: 2020 ident: br0830 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 8 start-page: 510 year: 2022 ident: br0380 publication-title: Universe – volume: 6 start-page: 3357 year: 1972 ident: br0600 publication-title: Phys. Rev. D – volume: 12 start-page: 774 year: 2020 ident: br0900 publication-title: Symmetry – volume: 87 year: 2013 ident: br0800 publication-title: Phys. Rev. D – volume: 25 start-page: 331 year: 2019 end-page: 341 ident: br1280 publication-title: Gravit. Cosmol. – volume: 78 year: 2008 ident: br0100 publication-title: Phys. Rev. D – volume: 36 start-page: 463 year: 1964 ident: br0340 publication-title: Rev. Mod. Phys. – volume: 91 year: 2015 ident: br1180 publication-title: Phys. Rev. D – volume: 525 start-page: 339 year: 2013 end-page: 357 ident: br0440 publication-title: Ann. Phys. – volume: 107 year: 2023 ident: br1220 publication-title: Phys. Rev. D – volume: 24 year: 2015 ident: br1000 publication-title: Int. J. Mod. Phys. D – volume: 61 start-page: 1446 year: 1988 ident: br0770 publication-title: Phys. Rev. Lett. – volume: 18 year: 2021 ident: br0840 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 20 year: 2023 ident: br1160 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 78 start-page: 1 year: 2018 end-page: 4 ident: br0700 publication-title: Eur. Phys. J. C – volume: 45 start-page: 350 year: 2025 end-page: 358 ident: br0210 publication-title: J. High Energy Astrophys. – volume: 101 year: 2020 ident: br1240 publication-title: Phys. Rev. D – volume: 95 start-page: 1257 year: 2017 end-page: 1266 ident: br0420 publication-title: Can. J. Phys. – volume: 47 year: 2025 ident: br1050 publication-title: J. High Energy Astrophys. – volume: 433 year: 2021 ident: br1010 publication-title: Ann. Phys. – volume: 46 start-page: 2464 year: 1992 ident: br0790 publication-title: Phys. Rev. D – volume: 782 start-page: 83 year: 2018 end-page: 86 ident: br0290 publication-title: Phys. Lett. B – volume: 44 year: 2024 ident: br0980 publication-title: Phys. Dark Universe – year: 2006 ident: br1140 article-title: General Relativity: An Introduction for Physicists – volume: 771 start-page: 365 year: 2017 ident: br0670 publication-title: Phys. Lett. B – volume: 98 year: 2018 ident: br1250 publication-title: Phys. Rev. D – volume: 87 start-page: 782 year: 2024 end-page: 796 ident: br0410 publication-title: Chin. J. Phys. – volume: 19 start-page: 3524 year: 1979 ident: br1120 publication-title: Phys. Rev. D – volume: 37 start-page: 113 year: 1999 ident: br0560 publication-title: Chin. J. Phys. – year: 2012 ident: br0430 article-title: Teleparallel Gravity: An Introduction – volume: 43 year: 2024 ident: br0260 publication-title: Phys. Dark Universe – volume: 76 start-page: 246 year: 2016 ident: br1090 publication-title: Eur. Phys. J. C – volume: 18 start-page: 67 year: 2012 ident: br0650 publication-title: Int. J. Mod. Phys. Conf. Ser. – volume: 38 year: 2021 ident: br0280 publication-title: Class. Quantum Gravity – volume: 36 start-page: 463 year: 1964 ident: br1110 publication-title: Rev. Mod. Phys. – year: 2006 ident: br0620 – volume: 671 start-page: 146 year: 2009 end-page: 152 ident: br1080 publication-title: Phys. Lett. B – volume: 782 start-page: 83 year: 2018 end-page: 86 ident: br0710 publication-title: Phys. Lett. B – volume: 2 start-page: 604 year: 1957 ident: br0060 publication-title: Ann. Phys. – volume: 55 start-page: 2656 year: 1985 ident: br0180 publication-title: Phys. Rev. Lett. – volume: 81 start-page: 880 year: 2021 ident: br0190 publication-title: Eur. Phys. J. C – volume: 79 year: 2009 ident: br0470 publication-title: Phys. Rev. D – start-page: 1 year: 2008 end-page: 78 ident: br0760 publication-title: Class. Quantum Gravity Res. – volume: 24 start-page: 587 year: 2024 end-page: 637 ident: br1210 publication-title: Found. Comput. Math. – volume: 68 year: 2003 ident: br0030 publication-title: Phys. Rev. D – volume: 49 year: 2025 ident: br1040 publication-title: Phys. Dark Universe – volume: 83 start-page: 295 year: 2023 ident: br0270 publication-title: Eur. Phys. J. C – volume: 48 year: 2025 ident: br0220 publication-title: Phys. Dark Universe – volume: 88 year: 2013 ident: br0810 publication-title: Phys. Rev. D – volume: 86 year: 2012 ident: br0930 publication-title: Phys. Rev. D – volume: 85 year: 2012 ident: br0090 publication-title: Phys. Rev. D – volume: 20 year: 2023 ident: br0310 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 98 year: 2018 ident: br0540 publication-title: Phys. Rev. D – volume: 2021 year: 2021 ident: br0300 publication-title: J. Cosmol. Astropart. Phys. – volume: 135 start-page: 916 year: 2020 ident: br0320 publication-title: Eur. Phys. J. Plus – volume: 2 start-page: 77 year: 2019 end-page: 98 ident: br1170 publication-title: Inf. Geom. – volume: 17 year: 2020 ident: br0870 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 835 year: 2022 ident: br0940 publication-title: Phys. Lett. B – volume: 34 year: 2017 ident: br0580 publication-title: Class. Quantum Gravity – volume: 39 start-page: 842 year: 1938 ident: br0130 publication-title: Ann. Math. – volume: 17 year: 2020 ident: br0880 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 77 start-page: 1253 year: 2022 end-page: 1268 ident: br0200 publication-title: Chin. J. Phys. – volume: 390 start-page: 303 year: 2018 ident: br0890 publication-title: Ann. Phys. – volume: 156 start-page: 315 year: 1985 ident: br0160 publication-title: Phys. Lett. B – year: 2016 ident: br0680 – volume: 86 year: 2023 ident: br1260 publication-title: Rep. Prog. Phys. – volume: 136 start-page: 167 year: 2021 ident: br1100 publication-title: Eur. Phys. J. Plus – volume: 17 start-page: 448 year: 1916 ident: br0720 publication-title: Phys. Z. – volume: 535 year: 2023 ident: br0970 publication-title: Ann. Phys. – volume: 72 year: 2005 ident: br1130 publication-title: Phys. Rev. D – volume: 17 start-page: 448 year: 1916 ident: br0040 publication-title: Phys. Z. – volume: 90 year: 2003 ident: br0780 publication-title: Phys. Rev. Lett. – volume: 78 start-page: 1 year: 2018 end-page: 6 ident: br0570 publication-title: Eur. Phys. J. C – volume: 81 year: 2010 ident: br0490 publication-title: Phys. Rev. D – volume: 139 start-page: 1 year: 2024 end-page: 14 ident: br0240 publication-title: Eur. Phys. J. Plus – volume: 75 year: 2007 ident: br0460 publication-title: Phys. Rev. D – year: 1995 ident: br0020 article-title: Lorentzian Wormholes: From Einstein to Hawking – volume: 72 year: 2005 ident: br0350 publication-title: Phys. Rev. D – volume: 821 year: 2021 ident: br1290 publication-title: Phys. Lett. B – volume: 23 start-page: 1801 year: 2008 ident: br0170 publication-title: Mod. Phys. Lett. A – volume: 835 year: 2022 ident: br0920 publication-title: Phys. Lett. B – volume: 56 start-page: 395 year: 1988 ident: br0010 publication-title: Am. J. Phys. – volume: 20 year: 2023 ident: br0850 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 135 start-page: 1 year: 2020 end-page: 17 ident: br0330 publication-title: Eur. Phys. J. Plus – volume: 80 year: 2009 ident: br0990 publication-title: Phys. Rev. D – volume: 81 start-page: 1031 year: 2021 ident: br1020 publication-title: Eur. Phys. J. C – volume: 34 year: 2021 ident: br0400 publication-title: Phys. Dark Universe – volume: 133 start-page: 249 year: 2018 ident: br0640 publication-title: Eur. Phys. J. Plus – volume: 28 year: 2019 ident: br0960 publication-title: Int. J. Mod. Phys. D – volume: 89 start-page: 613 year: 2024 end-page: 627 ident: br0390 publication-title: Chin. J. Phys. – volume: 56 start-page: 395 year: 1988 ident: br0750 publication-title: Am. J. Phys. – volume: 91 year: 2015 ident: br0080 publication-title: Phys. Rev. D – volume: 2550157 year: 2025 ident: br1060 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 128 start-page: 919 year: 1962 end-page: 929 ident: br0740 publication-title: Phys. Rev. – volume: 85 year: 2012 ident: br0630 publication-title: Phys. Rev. D – volume: 98 year: 2018 ident: br0550 publication-title: Phys. Rev. D – volume: 46 year: 2022 ident: br1030 publication-title: Chin. Phys. C – volume: 413 year: 2020 ident: br0360 publication-title: Ann. Phys. – volume: 16 year: 2019 ident: br0820 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 21 start-page: 283 year: 2015 ident: br0950 publication-title: Gravit. Cosmol. – year: 2017 ident: br0530 article-title: Metric Theories of Gravity: Perturbations and Conservation Laws – volume: 299 start-page: 644 year: 2002 end-page: 649 ident: br1190 publication-title: Phys. Lett. A – volume: 48 start-page: 73 year: 1935 ident: br0050 publication-title: Phys. Rev. – volume: 54 start-page: 66 year: 1976 ident: br0610 publication-title: Can. J. Phys. – volume: 25 year: 2016 ident: br1200 publication-title: Int. J. Mod. Phys. D – volume: 1647 start-page: 50 year: 2015 ident: br0660 publication-title: Am. Inst. Phys. Conf. Ser. – volume: 12 start-page: 498 year: 1971 ident: br0140 publication-title: J. Math. Phys. – volume: 28 year: 2020 ident: br0230 publication-title: Phys. Dark Universe – volume: 67 year: 2019 ident: br1150 publication-title: Fortschr. Phys. – volume: 18 year: 2021 ident: br1230 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 78 year: 2008 ident: br0480 publication-title: Phys. Rev. D – volume: 2 start-page: 525 year: 1957 end-page: 603 ident: br0730 publication-title: Ann. Phys. – volume: 756 start-page: 400 year: 2016 ident: br0590 publication-title: Phys. Lett. B – volume: 79 year: 2009 ident: br0110 publication-title: Phys. Rev. D – volume: 21 year: 2024 ident: br0860 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 19 start-page: 3524 year: 1979 end-page: 3553 ident: br0510 publication-title: Phys. Rev. D – volume: 92 year: 2015 ident: br0120 publication-title: Phys. Rev. D – volume: 13 start-page: 874 year: 1972 ident: br0150 publication-title: J. Math. Phys. – volume: 55 start-page: 45 year: 2023 ident: br0250 publication-title: Gen. Relativ. Gravit. – volume: 99 year: 2024 ident: br0370 publication-title: Phys. Scr. – volume: 16 issue: 9 year: 2019 ident: 10.1016/j.nuclphysb.2025.117008_br0820 publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887819501433 – volume: 139 start-page: 1 issue: 7 year: 2024 ident: 10.1016/j.nuclphysb.2025.117008_br0240 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-024-05385-8 – volume: 2021 issue: 07 year: 2021 ident: 10.1016/j.nuclphysb.2025.117008_br0300 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2021/07/004 – volume: 78 start-page: 1 year: 2018 ident: 10.1016/j.nuclphysb.2025.117008_br0570 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6410-z – volume: 671 start-page: 146 year: 2009 ident: 10.1016/j.nuclphysb.2025.117008_br1080 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2008.11.064 – volume: 98 issue: 12 year: 2018 ident: 10.1016/j.nuclphysb.2025.117008_br1250 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.124004 – volume: 28 year: 2020 ident: 10.1016/j.nuclphysb.2025.117008_br0230 publication-title: Phys. Dark Universe doi: 10.1016/j.dark.2020.100464 – volume: 782 start-page: 83 year: 2018 ident: 10.1016/j.nuclphysb.2025.117008_br0710 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.05.028 – volume: 24 start-page: 587 issue: 2 year: 2024 ident: 10.1016/j.nuclphysb.2025.117008_br1210 publication-title: Found. Comput. Math. doi: 10.1007/s10208-022-09597-1 – volume: 37 start-page: 113 year: 1999 ident: 10.1016/j.nuclphysb.2025.117008_br0560 publication-title: Chin. J. Phys. – volume: 34 issue: 14 year: 2017 ident: 10.1016/j.nuclphysb.2025.117008_br0580 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/aa7830 – volume: 2 start-page: 77 year: 2019 ident: 10.1016/j.nuclphysb.2025.117008_br1170 publication-title: Inf. Geom. doi: 10.1007/s41884-019-00018-x – volume: 107 issue: 4 year: 2023 ident: 10.1016/j.nuclphysb.2025.117008_br1220 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.046021 – volume: 24 issue: 01 year: 2015 ident: 10.1016/j.nuclphysb.2025.117008_br1000 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271815500030 – volume: 128 start-page: 919 year: 1962 ident: 10.1016/j.nuclphysb.2025.117008_br0070 publication-title: Phys. Rev. doi: 10.1103/PhysRev.128.919 – volume: 79 year: 2009 ident: 10.1016/j.nuclphysb.2025.117008_br0110 publication-title: Phys. Rev. D – volume: 18 start-page: 67 year: 2012 ident: 10.1016/j.nuclphysb.2025.117008_br0650 publication-title: Int. J. Mod. Phys. Conf. Ser. doi: 10.1142/S2010194512008227 – volume: 55 start-page: 2656 year: 1985 ident: 10.1016/j.nuclphysb.2025.117008_br0180 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.2656 – volume: 25 start-page: 331 issue: 4 year: 2019 ident: 10.1016/j.nuclphysb.2025.117008_br1280 publication-title: Gravit. Cosmol. doi: 10.1134/S0202289319040030 – volume: 61 start-page: 1446 year: 1988 ident: 10.1016/j.nuclphysb.2025.117008_br0770 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.1446 – volume: 23 start-page: 1801 year: 2008 ident: 10.1016/j.nuclphysb.2025.117008_br0170 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732308027497 – volume: 47 year: 2025 ident: 10.1016/j.nuclphysb.2025.117008_br1050 publication-title: J. High Energy Astrophys. – volume: 86 issue: 2 year: 2023 ident: 10.1016/j.nuclphysb.2025.117008_br1260 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ac9cef – volume: 771 start-page: 365 year: 2017 ident: 10.1016/j.nuclphysb.2025.117008_br0670 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.05.064 – volume: 55 start-page: 45 issue: 3 year: 2023 ident: 10.1016/j.nuclphysb.2025.117008_br0250 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-023-03093-9 – volume: 80 year: 2009 ident: 10.1016/j.nuclphysb.2025.117008_br0990 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.80.104012 – volume: 38 issue: 16 year: 2021 ident: 10.1016/j.nuclphysb.2025.117008_br0280 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/ac129d – volume: 413 year: 2020 ident: 10.1016/j.nuclphysb.2025.117008_br0360 publication-title: Ann. Phys. doi: 10.1016/j.aop.2019.168062 – volume: 79 issue: 10 year: 2016 ident: 10.1016/j.nuclphysb.2025.117008_br0500 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/79/10/106901 – volume: 86 year: 2012 ident: 10.1016/j.nuclphysb.2025.117008_br0930 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.127504 – volume: 72 issue: 10 year: 2005 ident: 10.1016/j.nuclphysb.2025.117008_br1130 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.72.103005 – volume: 135 start-page: 1 year: 2020 ident: 10.1016/j.nuclphysb.2025.117008_br0330 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00508-3 – volume: 72 issue: 10 year: 2005 ident: 10.1016/j.nuclphysb.2025.117008_br0350 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.72.103005 – year: 2017 ident: 10.1016/j.nuclphysb.2025.117008_br0530 – volume: 46 year: 2022 ident: 10.1016/j.nuclphysb.2025.117008_br1030 publication-title: Chin. Phys. C doi: 10.1088/1674-1137/ac7f22 – volume: 95 start-page: 1257 issue: 12 year: 2017 ident: 10.1016/j.nuclphysb.2025.117008_br0420 publication-title: Can. J. Phys. doi: 10.1139/cjp-2017-0040 – year: 2006 ident: 10.1016/j.nuclphysb.2025.117008_br1140 – volume: 835 year: 2022 ident: 10.1016/j.nuclphysb.2025.117008_br0940 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2022.137572 – volume: 36 start-page: 463 issue: 1 year: 1964 ident: 10.1016/j.nuclphysb.2025.117008_br1110 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.36.463 – volume: 782 start-page: 83 year: 2018 ident: 10.1016/j.nuclphysb.2025.117008_br0290 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.05.028 – volume: 128 start-page: 919 year: 1962 ident: 10.1016/j.nuclphysb.2025.117008_br0740 publication-title: Phys. Rev. doi: 10.1103/PhysRev.128.919 – volume: 76 start-page: 246 year: 2016 ident: 10.1016/j.nuclphysb.2025.117008_br1090 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4066-0 – volume: 81 start-page: 1031 year: 2021 ident: 10.1016/j.nuclphysb.2025.117008_br1020 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09854-7 – volume: 49 year: 2025 ident: 10.1016/j.nuclphysb.2025.117008_br1040 publication-title: Phys. Dark Universe doi: 10.1016/j.dark.2025.101977 – volume: 6 start-page: 3357 year: 1972 ident: 10.1016/j.nuclphysb.2025.117008_br0600 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.6.3357 – volume: 56 start-page: 395 year: 1988 ident: 10.1016/j.nuclphysb.2025.117008_br0010 publication-title: Am. J. Phys. doi: 10.1119/1.15620 – volume: 20 issue: 1 year: 2023 ident: 10.1016/j.nuclphysb.2025.117008_br0850 publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887823500147 – volume: 12 start-page: 498 year: 1971 ident: 10.1016/j.nuclphysb.2025.117008_br0140 publication-title: J. Math. Phys. doi: 10.1063/1.1665613 – volume: 85 year: 2012 ident: 10.1016/j.nuclphysb.2025.117008_br0630 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.084008 – volume: 88 year: 2013 ident: 10.1016/j.nuclphysb.2025.117008_br0810 publication-title: Phys. Rev. D – volume: 17 issue: 9 year: 2020 ident: 10.1016/j.nuclphysb.2025.117008_br0870 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 39 start-page: 842 year: 1938 ident: 10.1016/j.nuclphysb.2025.117008_br0130 publication-title: Ann. Math. doi: 10.2307/1968467 – volume: 21 issue: 12 year: 2024 ident: 10.1016/j.nuclphysb.2025.117008_br0860 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 12 start-page: 4 year: 2009 ident: 10.1016/j.nuclphysb.2025.117008_br0520 publication-title: Living Rev. Relativ. doi: 10.12942/lrr-2009-4 – volume: 19 start-page: 3524 year: 1979 ident: 10.1016/j.nuclphysb.2025.117008_br0510 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.19.3524 – volume: 835 year: 2022 ident: 10.1016/j.nuclphysb.2025.117008_br0920 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2022.137572 – volume: 19 start-page: 3524 issue: 12 year: 1979 ident: 10.1016/j.nuclphysb.2025.117008_br1120 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.19.3524 – volume: 136 start-page: 167 year: 2021 ident: 10.1016/j.nuclphysb.2025.117008_br0910 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-021-01104-9 – volume: 21 start-page: 283 year: 2015 ident: 10.1016/j.nuclphysb.2025.117008_br0950 publication-title: Gravit. Cosmol. doi: 10.1134/S0202289315040027 – volume: 90 year: 2003 ident: 10.1016/j.nuclphysb.2025.117008_br0780 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.201102 – volume: 535 issue: 8 year: 2023 ident: 10.1016/j.nuclphysb.2025.117008_br0970 publication-title: Ann. Phys. doi: 10.1002/andp.202300178 – volume: 36 issue: 18 year: 2019 ident: 10.1016/j.nuclphysb.2025.117008_br0450 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/ab2e1f – volume: 36 start-page: 463 issue: 1 year: 1964 ident: 10.1016/j.nuclphysb.2025.117008_br0340 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.36.463 – volume: 34 year: 2021 ident: 10.1016/j.nuclphysb.2025.117008_br0400 publication-title: Phys. Dark Universe – year: 1995 ident: 10.1016/j.nuclphysb.2025.117008_br0020 – volume: 20 issue: 04 year: 2023 ident: 10.1016/j.nuclphysb.2025.117008_br0310 publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887823500585 – volume: 92 year: 2015 ident: 10.1016/j.nuclphysb.2025.117008_br0120 publication-title: Phys. Rev. D – volume: 87 start-page: 782 year: 2024 ident: 10.1016/j.nuclphysb.2025.117008_br0410 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2023.12.033 – volume: 48 year: 2025 ident: 10.1016/j.nuclphysb.2025.117008_br0220 publication-title: Phys. Dark Universe doi: 10.1016/j.dark.2025.101963 – volume: 78 start-page: 1 year: 2018 ident: 10.1016/j.nuclphysb.2025.117008_br0700 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-5502-5 – year: 2012 ident: 10.1016/j.nuclphysb.2025.117008_br0430 – volume: 98 issue: 8 year: 2018 ident: 10.1016/j.nuclphysb.2025.117008_br0550 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.084043 – volume: 18 issue: 3 year: 2021 ident: 10.1016/j.nuclphysb.2025.117008_br0840 publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887821500419 – volume: 78 year: 2008 ident: 10.1016/j.nuclphysb.2025.117008_br0480 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.124019 – volume: 156 start-page: 315 year: 1985 ident: 10.1016/j.nuclphysb.2025.117008_br0160 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(85)91616-8 – volume: 81 year: 2010 ident: 10.1016/j.nuclphysb.2025.117008_br0490 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.81.127301 – volume: 79 year: 2009 ident: 10.1016/j.nuclphysb.2025.117008_br0470 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.124019 – volume: 78 year: 2008 ident: 10.1016/j.nuclphysb.2025.117008_br0100 publication-title: Phys. Rev. D – volume: 91 issue: 8 year: 2015 ident: 10.1016/j.nuclphysb.2025.117008_br1180 publication-title: Phys. Rev. D – volume: 83 start-page: 295 issue: 4 year: 2023 ident: 10.1016/j.nuclphysb.2025.117008_br0270 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-023-11466-2 – volume: 87 year: 2013 ident: 10.1016/j.nuclphysb.2025.117008_br0800 publication-title: Phys. Rev. D – volume: 20 issue: 01 year: 2023 ident: 10.1016/j.nuclphysb.2025.117008_br1160 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 2023 issue: 10 year: 2023 ident: 10.1016/j.nuclphysb.2025.117008_br1270 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2023/10/038 – volume: 821 year: 2021 ident: 10.1016/j.nuclphysb.2025.117008_br1290 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2021.136612 – volume: 56 start-page: 395 year: 1988 ident: 10.1016/j.nuclphysb.2025.117008_br0750 publication-title: Am. J. Phys. doi: 10.1119/1.15620 – volume: 18 issue: 01 year: 2021 ident: 10.1016/j.nuclphysb.2025.117008_br1230 publication-title: Int. J. Geom. Methods Mod. Phys. – ident: 10.1016/j.nuclphysb.2025.117008_br0680 – volume: 390 start-page: 303 year: 2018 ident: 10.1016/j.nuclphysb.2025.117008_br0890 publication-title: Ann. Phys. doi: 10.1016/j.aop.2018.01.010 – volume: 25 issue: 07 year: 2016 ident: 10.1016/j.nuclphysb.2025.117008_br1200 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271816500875 – volume: 43 year: 2024 ident: 10.1016/j.nuclphysb.2025.117008_br0260 publication-title: Phys. Dark Universe doi: 10.1016/j.dark.2023.101411 – volume: 48 start-page: 73 year: 1935 ident: 10.1016/j.nuclphysb.2025.117008_br0050 publication-title: Phys. Rev. doi: 10.1103/PhysRev.48.73 – volume: 98 issue: 4 year: 2018 ident: 10.1016/j.nuclphysb.2025.117008_br0540 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.98.044048 – volume: 1647 start-page: 50 year: 2015 ident: 10.1016/j.nuclphysb.2025.117008_br0660 publication-title: Am. Inst. Phys. Conf. Ser. – volume: 67 issue: 3 year: 2019 ident: 10.1016/j.nuclphysb.2025.117008_br1150 publication-title: Fortschr. Phys. doi: 10.1002/prop.201800077 – volume: 75 year: 2007 ident: 10.1016/j.nuclphysb.2025.117008_br0460 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.75.084031 – volume: 525 start-page: 339 year: 2013 ident: 10.1016/j.nuclphysb.2025.117008_br0440 publication-title: Ann. Phys. doi: 10.1002/andp.201200272 – volume: 17 start-page: 448 year: 1916 ident: 10.1016/j.nuclphysb.2025.117008_br0720 publication-title: Phys. Z. – volume: 17 issue: 7 year: 2020 ident: 10.1016/j.nuclphysb.2025.117008_br0830 publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887820501030 – volume: 68 year: 2003 ident: 10.1016/j.nuclphysb.2025.117008_br0030 publication-title: Phys. Rev. D – volume: 44 year: 2024 ident: 10.1016/j.nuclphysb.2025.117008_br0980 publication-title: Phys. Dark Universe doi: 10.1016/j.dark.2024.101438 – volume: 17 start-page: 448 year: 1916 ident: 10.1016/j.nuclphysb.2025.117008_br0040 publication-title: Phys. Z. – volume: 95 start-page: 1253 issue: 12 year: 2017 ident: 10.1016/j.nuclphysb.2025.117008_br0690 publication-title: Can. J. Phys. doi: 10.1139/cjp-2017-0254 – volume: 91 year: 2015 ident: 10.1016/j.nuclphysb.2025.117008_br0080 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.084004 – volume: 54 start-page: 66 year: 1976 ident: 10.1016/j.nuclphysb.2025.117008_br0610 publication-title: Can. J. Phys. doi: 10.1139/p76-008 – volume: 89 start-page: 613 year: 2024 ident: 10.1016/j.nuclphysb.2025.117008_br0390 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2024.03.036 – volume: 101 issue: 2 year: 2020 ident: 10.1016/j.nuclphysb.2025.117008_br1240 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.024053 – volume: 17 issue: 10 year: 2020 ident: 10.1016/j.nuclphysb.2025.117008_br0880 publication-title: Int. J. Geom. Methods Mod. Phys. doi: 10.1142/S0219887820501467 – start-page: 1 year: 2008 ident: 10.1016/j.nuclphysb.2025.117008_br0760 publication-title: Class. Quantum Gravity Res. – volume: 2550157 year: 2025 ident: 10.1016/j.nuclphysb.2025.117008_br1060 publication-title: Int. J. Geom. Methods Mod. Phys. – volume: 133 start-page: 249 issue: 7 year: 2018 ident: 10.1016/j.nuclphysb.2025.117008_br0640 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-12083-1 – ident: 10.1016/j.nuclphysb.2025.117008_br0620 – volume: 756 start-page: 400 year: 2016 ident: 10.1016/j.nuclphysb.2025.117008_br0590 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2016.03.047 – volume: 299 start-page: 644 issue: 6 year: 2002 ident: 10.1016/j.nuclphysb.2025.117008_br1190 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(02)00705-3 – volume: 433 year: 2021 ident: 10.1016/j.nuclphysb.2025.117008_br1010 publication-title: Ann. Phys. doi: 10.1016/j.aop.2021.168575 – volume: 135 start-page: 916 issue: 11 year: 2020 ident: 10.1016/j.nuclphysb.2025.117008_br0320 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-020-00927-2 – volume: 28 year: 2019 ident: 10.1016/j.nuclphysb.2025.117008_br0960 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271819500391 – volume: 46 start-page: 2464 year: 1992 ident: 10.1016/j.nuclphysb.2025.117008_br0790 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.46.2464 – volume: 45 start-page: 350 year: 2025 ident: 10.1016/j.nuclphysb.2025.117008_br0210 publication-title: J. High Energy Astrophys. doi: 10.1016/j.jheap.2025.01.006 – volume: 8 start-page: 510 issue: 10 year: 2022 ident: 10.1016/j.nuclphysb.2025.117008_br0380 publication-title: Universe doi: 10.3390/universe8100510 – volume: 136 start-page: 167 issue: 2 year: 2021 ident: 10.1016/j.nuclphysb.2025.117008_br1100 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-021-01104-9 – volume: 12 start-page: 774 year: 2020 ident: 10.1016/j.nuclphysb.2025.117008_br0900 publication-title: Symmetry doi: 10.3390/sym12050774 – volume: 2 start-page: 525 year: 1957 ident: 10.1016/j.nuclphysb.2025.117008_br0730 publication-title: Ann. Phys. doi: 10.1016/0003-4916(57)90049-0 – volume: 81 start-page: 880 year: 2021 ident: 10.1016/j.nuclphysb.2025.117008_br0190 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09668-7 – volume: 13 start-page: 874 year: 1972 ident: 10.1016/j.nuclphysb.2025.117008_br0150 publication-title: J. Math. Phys. doi: 10.1063/1.1666069 – volume: 85 year: 2012 ident: 10.1016/j.nuclphysb.2025.117008_br0090 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.85.044007 – volume: 2 start-page: 604 year: 1957 ident: 10.1016/j.nuclphysb.2025.117008_br0060 publication-title: Ann. Phys. doi: 10.1016/0003-4916(57)90050-7 – volume: 77 start-page: 1253 year: 2022 ident: 10.1016/j.nuclphysb.2025.117008_br0200 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2022.03.004 – volume: 99 issue: 6 year: 2024 ident: 10.1016/j.nuclphysb.2025.117008_br0370 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad3e36 |
SSID | ssj0000638 |
Score | 2.4838145 |
Snippet | This study investigates the existence and stability of traversable wormhole (WH) solutions within the framework of Rastall Teleparallel Gravity. In this... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 117008 |
SubjectTerms | Energy conditions Exotic matter Rastall teleparallel gravity Traversable wormholes |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEB1Sm0AvoUkT4rQJe-hVWNJoJau3NDQ4LfUlDfgm9ktGQVGMraR_vzMr2dinHHIQrJaVWGaWmTfSzDyAb04TBkCFgZMOgyTTEdlBYwOTYWyU1Sr1PGR_Zun0Ifk1l_MDuNnUwnBaZW_7O5vurXU_M-6lOV5W1fg-JHCNMUVTsqNZ-gDDGPNUDmB4ffd7OtsxyJ7QmtcH_MBemlfzYmr-iKApVowl_8MMmWpyx0n5Xv47vmrH_9x-gqMeOIrrbm_HcOCaEzj0CZxm_RmWZK1EV5jy6nsvi5aJhVZrLo0S_wiZMhHuWqjGCufr_YRhaMgMEe1aVI0gJChWisBiXYuWnBE3Ba9rVwtmKOo7edMGeNpWi6dTeLj9-fdmGvRsCoHBbNIGznL7Nikn2imdh04RstAW6TJJpFxKOCzXDkl5KMljpaHKfR2qNDHSMMIzGDTPjTsHQTFGZhOSZCmRwsmS9O3yRLkIbVyaMhxBuBFfseyaZhSbbLLHYivxgiVedBIfwQ8W83Y5d732E8-rRdGrvXDaptrGppyYOJFlSeMstRojnCiFJh3B942Sir1DRK-q3trBxXse_gIf-a5LPvsKg3b14i4JrbT6qj-N_wGs3ux- priority: 102 providerName: Elsevier |
Title | New relativistic traversable wormholes and energy constraints in the rastall teleparallel gravitational paradigm |
URI | https://dx.doi.org/10.1016/j.nuclphysb.2025.117008 https://doaj.org/article/ebd6bd2cf8c245ffbd276db3138aa3c6 |
Volume | 1018 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60IngRn1gfZQ9eo0kmmzTerChVsScLvYV9RSoxlibqzd_uzCYt9eTFQ8KyhGWZCTvfJDPfx9i5VYgBQIJnhQUvSlSA56A2nk4g1NIoGTsdsqdRPBxHDxMxWZH6opqwhh64MdylVSZWJtR5X4eRyHMcJ7FREEBfStCObNtP_UUytTyDnYa1j_jbgzCAX5Vd5Ycu6LuBwvQwFPTb0id1yZW45Oj7V8LTSsi522HbLVbk180ed9maLffYpqvZ1NU-m-EBxZtelE9Ht8xr0hKaV9QNxb8QjJL2bcVlabh1LX5cExokUYi64tOSI_jjc4n4sCh4jfGHeMCLwhacRIla8m7cAE2b6cvbARvf3T7fDL1WQMHTkPRrzxpibBOir6xUqW8lggllAC8dBdLGCL1SZQH9BQKDVOzL1LWeCh0CDgM4ZJ3yvbRHjGNakZgILZkLwAwyRxfbNJI2ABPmOve7zF-YL5s1PBnZooDsNVtaPCOLZ43Fu2xAZl4-TkTXbgLdn7Xuz_5yf5ddLZyUtZihwQK41PSvHRz_xw5O2BYt2dSdnbJOPf-wZwhUatVj6xffQY9tXN8_Dkc994bi_X4y-AGEUe5R |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CMEF8RTjmQPXam3TtBs3QKDxvADSblFeRUWlm7YCfx877dA4ceBQKUrTKrIj-3Nr-wM4dRoxAFc8cMLxIMl0hHbQ2MBkPDbKapV6HrKHx3TwktwOxXABLme1MJRW2dr-xqZ7a93OdFtpdsdF0X0KEVzzGKMp0dAsLcIyooGUGujfDC_mzLGns6bVAS3_leRVfZiSPiFojBRjQX8wQyKanHNRvpP_nKea8z7XG7DewkZ23uxsExZctQUrPn3TTLdhjLaKNWUpn77zMquJVmgypcIo9oW4lGhwp0xVljlf7ccMAUPih6inrKgY4kA2UQgVy5LV6IqoJXhZupIRP1Hbxxs3QNO2eH3fgZfrq-fLQdByKQSGZ706cJaatwnR007pfugU4gptOV4miZRLEYX1teOoOi7QX6Wh6vsqVGFijsOI78JSNarcHjCMMDKboCRzwTGYzFHbrp8oF3Eb5yYPOxDOxCfHTcsMOcsle5M_EpckcdlIvAMXJOaf5dTz2k-MJq-yVbp02qbaxibvmTgReY7jLLWaR7ynFDdpB85mSpK_jhC-qvhrB_v_efgEVgfPD_fy_ubx7gDW6E6ThnYIS_Xkwx0hbqn1sT-X31NK7lQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+relativistic+traversable+wormholes+and+energy+constraints+in+the+rastall+teleparallel+gravitational+paradigm&rft.jtitle=Nuclear+physics.+B&rft.au=Saleem%2C+Amna&rft.au=Ali%2C+Zulfiqar&rft.au=Bouzenada%2C+Abdelmalek&rft.au=Ditta%2C+Allah&rft.date=2025-09-01&rft.issn=0550-3213&rft.volume=1018&rft.spage=117008&rft_id=info:doi/10.1016%2Fj.nuclphysb.2025.117008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nuclphysb_2025_117008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0550-3213&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0550-3213&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0550-3213&client=summon |