Inclusion relations of $ q $-Bessel functions associated with generalized conic domain

In this paper, we investigate the geometric properties of Jackson and Hahn-Exton q-Bessel functions and perform their normalization for the analyticity in open unit disk E. By applying normalized Jackson and Hahn-Exton q-Bessel functions and idea of convolution we introduce a new operator and define...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 4; pp. 3624 - 3640
Main Authors Khan, Shahid, Hussain, Saqib, Darus, Maslina
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we investigate the geometric properties of Jackson and Hahn-Exton q-Bessel functions and perform their normalization for the analyticity in open unit disk E. By applying normalized Jackson and Hahn-Exton q-Bessel functions and idea of convolution we introduce a new operator and define new family of subclasses of analytic functions related with generalized conic domain. For these subclasses of analytic functions, we investigate inclusion relations and integral preserving properties. Also we will use q-Bernardi integral operator to discuss some applications of our main results.
AbstractList In this paper, we investigate the geometric properties of Jackson and Hahn-Exton q-Bessel functions and perform their normalization for the analyticity in open unit disk E. By applying normalized Jackson and Hahn-Exton q-Bessel functions and idea of convolution we introduce a new operator and define new family of subclasses of analytic functions related with generalized conic domain. For these subclasses of analytic functions, we investigate inclusion relations and integral preserving properties. Also we will use q-Bernardi integral operator to discuss some applications of our main results.
Author Hussain, Saqib
Darus, Maslina
Khan, Shahid
Author_xml – sequence: 1
  givenname: Shahid
  surname: Khan
  fullname: Khan, Shahid
– sequence: 2
  givenname: Saqib
  surname: Hussain
  fullname: Hussain, Saqib
– sequence: 3
  givenname: Maslina
  surname: Darus
  fullname: Darus, Maslina
BookMark eNptkM1LAzEQxYMoWGtv_gE59OjWfHV3c9TiR6HgRb2G2WS2TdluNNki-te7bRVEPM1j5r3H8Dsjx21okZALziZSS3W1gW41EUxwwfMjMhCqkFmuy_L4lz4lo5TWjO1cShRqQF7mrW22yYeWRmyg60WioaZj-kbH2Q2mhA2tt609XCClYD106Oi771Z0iS1GaPxnv7Ch9Za6sAHfnpOTGpqEo-85JM93t0-zh2zxeD-fXS8yK4uyy9CCRssqWdi6QlGjEMCUYzrXUFunpUOGdeUqmDpW9BZWVI5LqW2lNWAph2R-6HUB1uY1-g3EDxPAm_0ixKWB2HnboJkKUK7s81NZKVtCmXNZKs6VsjKXyPouceiyMaQUsTbWd3siXQTfGM7MDrTZgTbfoPvQ5Z_QzxP_2r8AfdeDew
CitedBy_id crossref_primary_10_1155_2022_6996639
crossref_primary_10_1016_j_heliyon_2024_e38960
crossref_primary_10_3934_math_2022042
crossref_primary_10_3934_math_2022606
crossref_primary_10_3390_sym14102188
crossref_primary_10_3390_axioms11110595
crossref_primary_10_3390_math9151812
crossref_primary_10_3390_sym15030652
crossref_primary_10_3390_fractalfract7050411
crossref_primary_10_3390_sym15061192
Cites_doi 10.1090/S0002-9947-1969-0232920-2
10.7153/mia-21-14
10.1186/s13660-019-2020-z
10.3390/math8081334
10.1016/S0377-0427(99)00018-7
10.18576/amis/110119
10.7153/jmi-2020-14-05
10.1016/0022-0396(87)90146-X
10.1080/10652460008819249
10.2298/FIL1911385A
10.1142/1628
10.2478/s12175-014-0268-9
10.1155/2016/1896154
10.1007/s40995-019-00815-0
10.3390/sym11050719
10.2298/FIL1909613S
10.1007/978-3-0348-6290-5_26
10.1186/1687-1847-2014-288
10.24193/subbmath.2018.4.01
10.14492/hokmj/1562810517
10.1216/RMJ-2019-49-7-2325
10.3390/math8091470
10.1080/17476939008814407
10.1186/s13660-018-1888-3
10.3390/sym11020292
10.3934/math.2020028
10.3390/math7020181
10.1307/mmj/1029002507
10.3390/math7080670
10.1090/S0002-9947-1992-1069750-0
10.3390/sym11030347
10.1006/jmaa.1994.1327
10.1017/S0080456800002751
10.2307/1968451
10.1016/0022-247X(88)90148-5
10.1016/j.amc.2015.12.008
10.3934/Math.2017.2.260
ContentType Journal Article
CorporateAuthor Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
Department of Mathematics, Riphah International University Islamabad 44000, Pakistan
CorporateAuthor_xml – name: Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
– name: Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
– name: Department of Mathematics, Riphah International University Islamabad 44000, Pakistan
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021216
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 3640
ExternalDocumentID oai_doaj_org_article_52a4d87bd53b4c8a8613841144c363e0
10_3934_math_2021216
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-eca9ec0b37cfbe2fe22a04d0969afcd93de0efbdba5d07fbe07bd1339cb99ae83
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:09:36 EDT 2025
Tue Jul 01 03:56:47 EDT 2025
Thu Apr 24 23:08:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-eca9ec0b37cfbe2fe22a04d0969afcd93de0efbdba5d07fbe07bd1339cb99ae83
OpenAccessLink https://doaj.org/article/52a4d87bd53b4c8a8613841144c363e0
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_52a4d87bd53b4c8a8613841144c363e0
crossref_citationtrail_10_3934_math_2021216
crossref_primary_10_3934_math_2021216
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021216-18
key-10.3934/math.2021216-17
key-10.3934/math.2021216-39
key-10.3934/math.2021216-19
key-10.3934/math.2021216-14
key-10.3934/math.2021216-36
key-10.3934/math.2021216-13
key-10.3934/math.2021216-35
key-10.3934/math.2021216-16
key-10.3934/math.2021216-38
key-10.3934/math.2021216-15
key-10.3934/math.2021216-37
key-10.3934/math.2021216-10
key-10.3934/math.2021216-32
key-10.3934/math.2021216-1
key-10.3934/math.2021216-31
key-10.3934/math.2021216-12
key-10.3934/math.2021216-34
key-10.3934/math.2021216-11
key-10.3934/math.2021216-33
key-10.3934/math.2021216-30
key-10.3934/math.2021216-29
key-10.3934/math.2021216-28
key-10.3934/math.2021216-25
key-10.3934/math.2021216-24
key-10.3934/math.2021216-46
key-10.3934/math.2021216-27
key-10.3934/math.2021216-26
key-10.3934/math.2021216-21
key-10.3934/math.2021216-43
key-10.3934/math.2021216-20
key-10.3934/math.2021216-42
key-10.3934/math.2021216-23
key-10.3934/math.2021216-45
key-10.3934/math.2021216-22
key-10.3934/math.2021216-44
key-10.3934/math.2021216-4
key-10.3934/math.2021216-5
key-10.3934/math.2021216-2
key-10.3934/math.2021216-41
key-10.3934/math.2021216-3
key-10.3934/math.2021216-40
key-10.3934/math.2021216-8
key-10.3934/math.2021216-9
key-10.3934/math.2021216-6
key-10.3934/math.2021216-7
References_xml – ident: key-10.3934/math.2021216-2
  doi: 10.1090/S0002-9947-1969-0232920-2
– ident: key-10.3934/math.2021216-9
  doi: 10.7153/mia-21-14
– ident: key-10.3934/math.2021216-22
  doi: 10.1186/s13660-019-2020-z
– ident: key-10.3934/math.2021216-18
  doi: 10.3390/math8081334
– ident: key-10.3934/math.2021216-31
– ident: key-10.3934/math.2021216-33
– ident: key-10.3934/math.2021216-12
– ident: key-10.3934/math.2021216-35
– ident: key-10.3934/math.2021216-13
  doi: 10.1016/S0377-0427(99)00018-7
– ident: key-10.3934/math.2021216-14
– ident: key-10.3934/math.2021216-28
  doi: 10.18576/amis/110119
– ident: key-10.3934/math.2021216-17
  doi: 10.7153/jmi-2020-14-05
– ident: key-10.3934/math.2021216-27
  doi: 10.1016/0022-0396(87)90146-X
– ident: key-10.3934/math.2021216-11
  doi: 10.1080/10652460008819249
– ident: key-10.3934/math.2021216-1
  doi: 10.2298/FIL1911385A
– ident: key-10.3934/math.2021216-43
  doi: 10.1142/1628
– ident: key-10.3934/math.2021216-8
– ident: key-10.3934/math.2021216-10
  doi: 10.2478/s12175-014-0268-9
– ident: key-10.3934/math.2021216-19
– ident: key-10.3934/math.2021216-30
  doi: 10.1155/2016/1896154
– ident: key-10.3934/math.2021216-38
  doi: 10.1007/s40995-019-00815-0
– ident: key-10.3934/math.2021216-24
  doi: 10.3390/sym11050719
– ident: key-10.3934/math.2021216-45
  doi: 10.2298/FIL1909613S
– ident: key-10.3934/math.2021216-3
  doi: 10.1007/978-3-0348-6290-5_26
– ident: key-10.3934/math.2021216-29
  doi: 10.1186/1687-1847-2014-288
– ident: key-10.3934/math.2021216-40
  doi: 10.24193/subbmath.2018.4.01
– ident: key-10.3934/math.2021216-41
  doi: 10.14492/hokmj/1562810517
– ident: key-10.3934/math.2021216-42
  doi: 10.1216/RMJ-2019-49-7-2325
– ident: key-10.3934/math.2021216-16
  doi: 10.3390/math8091470
– ident: key-10.3934/math.2021216-5
  doi: 10.1080/17476939008814407
– ident: key-10.3934/math.2021216-4
  doi: 10.1186/s13660-018-1888-3
– ident: key-10.3934/math.2021216-44
  doi: 10.3390/sym11020292
– ident: key-10.3934/math.2021216-32
  doi: 10.3934/math.2020028
– ident: key-10.3934/math.2021216-39
  doi: 10.3390/math7020181
– ident: key-10.3934/math.2021216-26
  doi: 10.1307/mmj/1029002507
– ident: key-10.3934/math.2021216-36
  doi: 10.3390/math7080670
– ident: key-10.3934/math.2021216-21
  doi: 10.1090/S0002-9947-1992-1069750-0
– ident: key-10.3934/math.2021216-25
  doi: 10.3390/sym11030347
– ident: key-10.3934/math.2021216-20
  doi: 10.1006/jmaa.1994.1327
– ident: key-10.3934/math.2021216-7
  doi: 10.1017/S0080456800002751
– ident: key-10.3934/math.2021216-37
– ident: key-10.3934/math.2021216-34
  doi: 10.2307/1968451
– ident: key-10.3934/math.2021216-6
  doi: 10.1016/0022-247X(88)90148-5
– ident: key-10.3934/math.2021216-23
– ident: key-10.3934/math.2021216-46
  doi: 10.1016/j.amc.2015.12.008
– ident: key-10.3934/math.2021216-15
  doi: 10.3934/Math.2017.2.260
SSID ssj0002124274
Score 2.1997461
Snippet In this paper, we investigate the geometric properties of Jackson and Hahn-Exton q-Bessel functions and perform their normalization for the analyticity in open...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 3624
SubjectTerms analytic functions
generalized conic domain ωk,q
q-bessel functions
q-calculus
q-convex functions
q-derivative
q-starlike functions
Title Inclusion relations of $ q $-Bessel functions associated with generalized conic domain
URI https://doaj.org/article/52a4d87bd53b4c8a8613841144c363e0
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qAnCQ3ZzSZ7tGIpQj2Ihd7CPmalUFut7cVf70w2LbmIF6-TISzfJPvN7A7fMHZDtO6QGZNgrE5kEUKiTUZtUz4oJb1S9Y3u6FkNx_Jpkk9ao76oJyzKA0fgenlmpC8L63NhpStNifxTSszipRNKQF2tI-e1iinag3FDllhvxU53oYXsYf5Hdw_4gEabtzioJdVfc8rggO03ySC_j4s4ZDswP2J7o62S6tcxe8EfeLamIy2-3PSt8UXgn0mfVL9nnIgpWk2DNHhOp6v8LSpKT7_R4EgBl_vFu5nOT9h48Pj6MEyaOQiJE0W5SsAZDS61onDBQhYgy0wqPRYf2gTntfCQQrDemtynBbqkCBfWntpZrQ2U4pR15os5nDGuVY4pBIjSSLqiFVYLwIgUDjMFFSDtsrsNMpVrRMJpVsWswmKBcKwIx6rBsctut94fURzjF78-gbz1IUnr2oCBrppAV38F-vw_XnLBdmlN8QzlknVWyzVcYVaxstf1B_QDiIPLXA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inclusion+relations+of+%24+q+%24-Bessel+functions+associated+with+generalized+conic+domain&rft.jtitle=AIMS+mathematics&rft.au=Khan%2C+Shahid&rft.au=Hussain%2C+Saqib&rft.au=Darus%2C+Maslina&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=4&rft.spage=3624&rft.epage=3640&rft_id=info:doi/10.3934%2Fmath.2021216&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon