Inclusion relations of $ q $-Bessel functions associated with generalized conic domain
In this paper, we investigate the geometric properties of Jackson and Hahn-Exton q-Bessel functions and perform their normalization for the analyticity in open unit disk E. By applying normalized Jackson and Hahn-Exton q-Bessel functions and idea of convolution we introduce a new operator and define...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 4; pp. 3624 - 3640 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we investigate the geometric properties of Jackson and Hahn-Exton q-Bessel functions and perform their normalization for the analyticity in open unit disk E. By applying normalized Jackson and Hahn-Exton q-Bessel functions and idea of convolution we introduce a new operator and define new family of subclasses of analytic functions related with generalized conic domain. For these subclasses of analytic functions, we investigate inclusion relations and integral preserving properties. Also we will use q-Bernardi integral operator to discuss some applications of our main results. |
---|---|
AbstractList | In this paper, we investigate the geometric properties of Jackson and Hahn-Exton q-Bessel functions and perform their normalization for the analyticity in open unit disk E. By applying normalized Jackson and Hahn-Exton q-Bessel functions and idea of convolution we introduce a new operator and define new family of subclasses of analytic functions related with generalized conic domain. For these subclasses of analytic functions, we investigate inclusion relations and integral preserving properties. Also we will use q-Bernardi integral operator to discuss some applications of our main results. |
Author | Hussain, Saqib Darus, Maslina Khan, Shahid |
Author_xml | – sequence: 1 givenname: Shahid surname: Khan fullname: Khan, Shahid – sequence: 2 givenname: Saqib surname: Hussain fullname: Hussain, Saqib – sequence: 3 givenname: Maslina surname: Darus fullname: Darus, Maslina |
BookMark | eNptkM1LAzEQxYMoWGtv_gE59OjWfHV3c9TiR6HgRb2G2WS2TdluNNki-te7bRVEPM1j5r3H8Dsjx21okZALziZSS3W1gW41EUxwwfMjMhCqkFmuy_L4lz4lo5TWjO1cShRqQF7mrW22yYeWRmyg60WioaZj-kbH2Q2mhA2tt609XCClYD106Oi771Z0iS1GaPxnv7Ch9Za6sAHfnpOTGpqEo-85JM93t0-zh2zxeD-fXS8yK4uyy9CCRssqWdi6QlGjEMCUYzrXUFunpUOGdeUqmDpW9BZWVI5LqW2lNWAph2R-6HUB1uY1-g3EDxPAm_0ixKWB2HnboJkKUK7s81NZKVtCmXNZKs6VsjKXyPouceiyMaQUsTbWd3siXQTfGM7MDrTZgTbfoPvQ5Z_QzxP_2r8AfdeDew |
CitedBy_id | crossref_primary_10_1155_2022_6996639 crossref_primary_10_1016_j_heliyon_2024_e38960 crossref_primary_10_3934_math_2022042 crossref_primary_10_3934_math_2022606 crossref_primary_10_3390_sym14102188 crossref_primary_10_3390_axioms11110595 crossref_primary_10_3390_math9151812 crossref_primary_10_3390_sym15030652 crossref_primary_10_3390_fractalfract7050411 crossref_primary_10_3390_sym15061192 |
Cites_doi | 10.1090/S0002-9947-1969-0232920-2 10.7153/mia-21-14 10.1186/s13660-019-2020-z 10.3390/math8081334 10.1016/S0377-0427(99)00018-7 10.18576/amis/110119 10.7153/jmi-2020-14-05 10.1016/0022-0396(87)90146-X 10.1080/10652460008819249 10.2298/FIL1911385A 10.1142/1628 10.2478/s12175-014-0268-9 10.1155/2016/1896154 10.1007/s40995-019-00815-0 10.3390/sym11050719 10.2298/FIL1909613S 10.1007/978-3-0348-6290-5_26 10.1186/1687-1847-2014-288 10.24193/subbmath.2018.4.01 10.14492/hokmj/1562810517 10.1216/RMJ-2019-49-7-2325 10.3390/math8091470 10.1080/17476939008814407 10.1186/s13660-018-1888-3 10.3390/sym11020292 10.3934/math.2020028 10.3390/math7020181 10.1307/mmj/1029002507 10.3390/math7080670 10.1090/S0002-9947-1992-1069750-0 10.3390/sym11030347 10.1006/jmaa.1994.1327 10.1017/S0080456800002751 10.2307/1968451 10.1016/0022-247X(88)90148-5 10.1016/j.amc.2015.12.008 10.3934/Math.2017.2.260 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan Department of Mathematics, Riphah International University Islamabad 44000, Pakistan |
CorporateAuthor_xml | – name: Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan – name: Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia – name: Department of Mathematics, Riphah International University Islamabad 44000, Pakistan |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021216 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 3640 |
ExternalDocumentID | oai_doaj_org_article_52a4d87bd53b4c8a8613841144c363e0 10_3934_math_2021216 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-eca9ec0b37cfbe2fe22a04d0969afcd93de0efbdba5d07fbe07bd1339cb99ae83 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:09:36 EDT 2025 Tue Jul 01 03:56:47 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-eca9ec0b37cfbe2fe22a04d0969afcd93de0efbdba5d07fbe07bd1339cb99ae83 |
OpenAccessLink | https://doaj.org/article/52a4d87bd53b4c8a8613841144c363e0 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_52a4d87bd53b4c8a8613841144c363e0 crossref_citationtrail_10_3934_math_2021216 crossref_primary_10_3934_math_2021216 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021216-18 key-10.3934/math.2021216-17 key-10.3934/math.2021216-39 key-10.3934/math.2021216-19 key-10.3934/math.2021216-14 key-10.3934/math.2021216-36 key-10.3934/math.2021216-13 key-10.3934/math.2021216-35 key-10.3934/math.2021216-16 key-10.3934/math.2021216-38 key-10.3934/math.2021216-15 key-10.3934/math.2021216-37 key-10.3934/math.2021216-10 key-10.3934/math.2021216-32 key-10.3934/math.2021216-1 key-10.3934/math.2021216-31 key-10.3934/math.2021216-12 key-10.3934/math.2021216-34 key-10.3934/math.2021216-11 key-10.3934/math.2021216-33 key-10.3934/math.2021216-30 key-10.3934/math.2021216-29 key-10.3934/math.2021216-28 key-10.3934/math.2021216-25 key-10.3934/math.2021216-24 key-10.3934/math.2021216-46 key-10.3934/math.2021216-27 key-10.3934/math.2021216-26 key-10.3934/math.2021216-21 key-10.3934/math.2021216-43 key-10.3934/math.2021216-20 key-10.3934/math.2021216-42 key-10.3934/math.2021216-23 key-10.3934/math.2021216-45 key-10.3934/math.2021216-22 key-10.3934/math.2021216-44 key-10.3934/math.2021216-4 key-10.3934/math.2021216-5 key-10.3934/math.2021216-2 key-10.3934/math.2021216-41 key-10.3934/math.2021216-3 key-10.3934/math.2021216-40 key-10.3934/math.2021216-8 key-10.3934/math.2021216-9 key-10.3934/math.2021216-6 key-10.3934/math.2021216-7 |
References_xml | – ident: key-10.3934/math.2021216-2 doi: 10.1090/S0002-9947-1969-0232920-2 – ident: key-10.3934/math.2021216-9 doi: 10.7153/mia-21-14 – ident: key-10.3934/math.2021216-22 doi: 10.1186/s13660-019-2020-z – ident: key-10.3934/math.2021216-18 doi: 10.3390/math8081334 – ident: key-10.3934/math.2021216-31 – ident: key-10.3934/math.2021216-33 – ident: key-10.3934/math.2021216-12 – ident: key-10.3934/math.2021216-35 – ident: key-10.3934/math.2021216-13 doi: 10.1016/S0377-0427(99)00018-7 – ident: key-10.3934/math.2021216-14 – ident: key-10.3934/math.2021216-28 doi: 10.18576/amis/110119 – ident: key-10.3934/math.2021216-17 doi: 10.7153/jmi-2020-14-05 – ident: key-10.3934/math.2021216-27 doi: 10.1016/0022-0396(87)90146-X – ident: key-10.3934/math.2021216-11 doi: 10.1080/10652460008819249 – ident: key-10.3934/math.2021216-1 doi: 10.2298/FIL1911385A – ident: key-10.3934/math.2021216-43 doi: 10.1142/1628 – ident: key-10.3934/math.2021216-8 – ident: key-10.3934/math.2021216-10 doi: 10.2478/s12175-014-0268-9 – ident: key-10.3934/math.2021216-19 – ident: key-10.3934/math.2021216-30 doi: 10.1155/2016/1896154 – ident: key-10.3934/math.2021216-38 doi: 10.1007/s40995-019-00815-0 – ident: key-10.3934/math.2021216-24 doi: 10.3390/sym11050719 – ident: key-10.3934/math.2021216-45 doi: 10.2298/FIL1909613S – ident: key-10.3934/math.2021216-3 doi: 10.1007/978-3-0348-6290-5_26 – ident: key-10.3934/math.2021216-29 doi: 10.1186/1687-1847-2014-288 – ident: key-10.3934/math.2021216-40 doi: 10.24193/subbmath.2018.4.01 – ident: key-10.3934/math.2021216-41 doi: 10.14492/hokmj/1562810517 – ident: key-10.3934/math.2021216-42 doi: 10.1216/RMJ-2019-49-7-2325 – ident: key-10.3934/math.2021216-16 doi: 10.3390/math8091470 – ident: key-10.3934/math.2021216-5 doi: 10.1080/17476939008814407 – ident: key-10.3934/math.2021216-4 doi: 10.1186/s13660-018-1888-3 – ident: key-10.3934/math.2021216-44 doi: 10.3390/sym11020292 – ident: key-10.3934/math.2021216-32 doi: 10.3934/math.2020028 – ident: key-10.3934/math.2021216-39 doi: 10.3390/math7020181 – ident: key-10.3934/math.2021216-26 doi: 10.1307/mmj/1029002507 – ident: key-10.3934/math.2021216-36 doi: 10.3390/math7080670 – ident: key-10.3934/math.2021216-21 doi: 10.1090/S0002-9947-1992-1069750-0 – ident: key-10.3934/math.2021216-25 doi: 10.3390/sym11030347 – ident: key-10.3934/math.2021216-20 doi: 10.1006/jmaa.1994.1327 – ident: key-10.3934/math.2021216-7 doi: 10.1017/S0080456800002751 – ident: key-10.3934/math.2021216-37 – ident: key-10.3934/math.2021216-34 doi: 10.2307/1968451 – ident: key-10.3934/math.2021216-6 doi: 10.1016/0022-247X(88)90148-5 – ident: key-10.3934/math.2021216-23 – ident: key-10.3934/math.2021216-46 doi: 10.1016/j.amc.2015.12.008 – ident: key-10.3934/math.2021216-15 doi: 10.3934/Math.2017.2.260 |
SSID | ssj0002124274 |
Score | 2.1997461 |
Snippet | In this paper, we investigate the geometric properties of Jackson and Hahn-Exton q-Bessel functions and perform their normalization for the analyticity in open... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 3624 |
SubjectTerms | analytic functions generalized conic domain ωk,q q-bessel functions q-calculus q-convex functions q-derivative q-starlike functions |
Title | Inclusion relations of $ q $-Bessel functions associated with generalized conic domain |
URI | https://doaj.org/article/52a4d87bd53b4c8a8613841144c363e0 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9qAnCQ3ZzSZ7tGIpQj2Ihd7CPmalUFut7cVf70w2LbmIF6-TISzfJPvN7A7fMHZDtO6QGZNgrE5kEUKiTUZtUz4oJb1S9Y3u6FkNx_Jpkk9ao76oJyzKA0fgenlmpC8L63NhpStNifxTSszipRNKQF2tI-e1iinag3FDllhvxU53oYXsYf5Hdw_4gEabtzioJdVfc8rggO03ySC_j4s4ZDswP2J7o62S6tcxe8EfeLamIy2-3PSt8UXgn0mfVL9nnIgpWk2DNHhOp6v8LSpKT7_R4EgBl_vFu5nOT9h48Pj6MEyaOQiJE0W5SsAZDS61onDBQhYgy0wqPRYf2gTntfCQQrDemtynBbqkCBfWntpZrQ2U4pR15os5nDGuVY4pBIjSSLqiFVYLwIgUDjMFFSDtsrsNMpVrRMJpVsWswmKBcKwIx6rBsctut94fURzjF78-gbz1IUnr2oCBrppAV38F-vw_XnLBdmlN8QzlknVWyzVcYVaxstf1B_QDiIPLXA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inclusion+relations+of+%24+q+%24-Bessel+functions+associated+with+generalized+conic+domain&rft.jtitle=AIMS+mathematics&rft.au=Khan%2C+Shahid&rft.au=Hussain%2C+Saqib&rft.au=Darus%2C+Maslina&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=4&rft.spage=3624&rft.epage=3640&rft_id=info:doi/10.3934%2Fmath.2021216&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021216 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |