DNA substrate recognition and processing by the full-length human UPF1 helicase

UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for nuclear DNA replication. While loss of NMD is tolerated, loss of hUPF1 induces a DNA damage response and cell cycle arrest. We have analysed nucle...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 45; no. 12; pp. 7354 - 7366
Main Authors Dehghani-Tafti, Saba, Sanders, Cyril M
Format Journal Article
LanguageEnglish
Published England Oxford University Press 07.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for nuclear DNA replication. While loss of NMD is tolerated, loss of hUPF1 induces a DNA damage response and cell cycle arrest. We have analysed nucleic acid (NA) binding and processing by full-length hUPF1. hUPF1 unwinds non-B and B-form DNA and RNA substrates in vitro. Unlike many helicases involved in genome stability no hUPF1 binding to DNA structures stabilized by inter-base-pair hydrogen bonding was observed. Alternatively, hUPF1 binds to single-stranded NAs (ssNA) with apparent affinity increasing with substrate length and with no preference for binding RNA or DNA or purine compared to pyrimidine polynucleotides. However, the data show a pronounced nucleobase bias with a preference for binding poly (U) or d(T) while d(A) polymers bind with low affinity. Although the data indicate that hUPF1 must bind a ssNA segments to initiate unwinding they also raise the possibility that hUPF1 has significantly reduced affinity for ssNA structures with stacked bases. Overall, the NA processing activities of hUPF1 are consistent with its function in mRNA regulation and suggest that roles in DNA replication could also be influenced by base sequence.
AbstractList UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for nuclear DNA replication. While loss of NMD is tolerated, loss of hUPF1 induces a DNA damage response and cell cycle arrest. We have analysed nucleic acid (NA) binding and processing by full-length hUPF1. hUPF1 unwinds non-B and B-form DNA and RNA substrates in vitro. Unlike many helicases involved in genome stability no hUPF1 binding to DNA structures stabilized by inter-base-pair hydrogen bonding was observed. Alternatively, hUPF1 binds to single-stranded NAs (ssNA) with apparent affinity increasing with substrate length and with no preference for binding RNA or DNA or purine compared to pyrimidine polynucleotides. However, the data show a pronounced nucleobase bias with a preference for binding poly (U) or d(T) while d(A) polymers bind with low affinity. Although the data indicate that hUPF1 must bind a ssNA segments to initiate unwinding they also raise the possibility that hUPF1 has significantly reduced affinity for ssNA structures with stacked bases. Overall, the NA processing activities of hUPF1 are consistent with its function in mRNA regulation and suggest that roles in DNA replication could also be influenced by base sequence.
UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for nuclear DNA replication. While loss of NMD is tolerated, loss of hUPF1 induces a DNA damage response and cell cycle arrest. We have analysed nucleic acid (NA) binding and processing by full-length hUPF1. hUPF1 unwinds non-B and B-form DNA and RNA substrates in vitro . Unlike many helicases involved in genome stability no hUPF1 binding to DNA structures stabilized by inter-base-pair hydrogen bonding was observed. Alternatively, hUPF1 binds to single-stranded NAs (ssNA) with apparent affinity increasing with substrate length and with no preference for binding RNA or DNA or purine compared to pyrimidine polynucleotides. However, the data show a pronounced nucleobase bias with a preference for binding poly (U) or d(T) while d(A) polymers bind with low affinity. Although the data indicate that hUPF1 must bind a ssNA segments to initiate unwinding they also raise the possibility that hUPF1 has significantly reduced affinity for ssNA structures with stacked bases. Overall, the NA processing activities of hUPF1 are consistent with its function in mRNA regulation and suggest that roles in DNA replication could also be influenced by base sequence.
Author Dehghani-Tafti, Saba
Sanders, Cyril M
AuthorAffiliation Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
AuthorAffiliation_xml – name: Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
Author_xml – sequence: 1
  givenname: Saba
  surname: Dehghani-Tafti
  fullname: Dehghani-Tafti, Saba
  organization: Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
– sequence: 2
  givenname: Cyril M
  surname: Sanders
  fullname: Sanders, Cyril M
  organization: Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28541562$$D View this record in MEDLINE/PubMed
BookMark eNpVkU1LJDEQhoOM6Ix68QcsOS5Cr_nqTHJZEN1xhUE96Dkk6eqP3Z5kNukW_ffbMip6KKqgHt76eBdoFmIAhE4p-UGJ5ufBpvPm77NYqj00p1yyQmjJZmhOOCkLSoQ6RIuc_xBCBS3FATpkqpwqyebo7ur2AufR5SHZAXACH5vQDV0M2IYKb1P0kHMXGuxe8NACrse-L3oIzdDidtzYgB_vVxS30HfeZjhG-7XtM5y85SP0uPr1cPm7WN9d31xerAvPl2ooQBFNNVfc19JKTiUlrqoqLZWsLWdKOUFqrjnz3invxdIrVvrSgquYc97yI_Rzp7sd3QYqD2E6oDfb1G1sejHRduZrJ3StaeKTKYXWU0wC398EUvw3Qh7Mpsse-t4GiGM2VBMmFJOcT-jZDvUp5pyg_hhDiXl1wEwOmJ0DE_zt82If6PvL-X8FAYXr
CitedBy_id crossref_primary_10_1038_s41598_020_61432_1
crossref_primary_10_1002_bies_201700170
crossref_primary_10_1093_bib_bbaa114
crossref_primary_10_1158_0008_5472_CAN_21_4339
crossref_primary_10_1038_s41467_021_24201_w
Cites_doi 10.1128/MCB.19.9.5943
10.1038/sj.emboj.7601464
10.1093/nar/25.2.297
10.1126/science.1147182
10.1038/emboj.2011.280
10.1073/pnas.0602400103
10.1074/jbc.M809019200
10.1093/nar/gku812
10.1093/nar/gki1012
10.1016/j.sbi.2010.08.009
10.1021/bi100795m
10.1017/S1355838200000546
10.1074/jbc.M702136200
10.1073/pnas.0702315104
10.1016/j.cell.2004.11.050
10.1038/nsmb972
10.1128/MCB.26.4.1272-1287.2006
10.1371/journal.pone.0030189
10.1103/PhysRevLett.98.158103
10.1016/j.cub.2006.01.018
10.1038/nsmb.2635
10.1016/j.cbpa.2011.08.003
10.1093/hmg/10.2.99
10.1146/annurev.biophys.37.032807.125908
10.1101/gad.245506.114
10.1146/annurev.biochem.76.052305.115300
10.1038/ncomms8581
10.1073/pnas.0405116101
10.1038/nsmb.2089
10.1093/nar/25.4.814
10.1093/nar/gkg595
10.1101/gad.5.12a.2303
10.1038/nrm4063
10.1128/MCB.12.5.2165
10.1016/S0168-9525(98)01658-8
10.1038/nrg3296
10.1074/jbc.M100253200
10.1073/pnas.1219908110
10.1016/j.molcel.2011.02.010
10.1042/BJ20100612
10.1101/gr.157354.113
10.1074/jbc.M006784200
10.1128/MCB.21.1.209-223.2001
10.1261/rna.177606
10.1002/smll.200700049
10.1093/nar/23.8.1292
10.1128/MCB.16.10.5491
10.1101/gad.1566807
10.1103/PhysRevLett.93.118102
10.1016/j.cell.2010.11.043
10.1038/nsmb1330
10.1074/jbc.M114.634923
10.1074/jbc.M109.088559
10.1128/MCB.16.10.5477
10.7554/eLife.00334
10.1016/j.molcel.2007.06.030
10.1016/j.cell.2010.10.005
10.1016/j.molcel.2014.03.017
10.1128/MMBR.00020-08
10.1074/jbc.M004481200
10.1093/nar/30.10.2232
ContentType Journal Article
Copyright The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017
Copyright_xml – notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/nar/gkx478
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 7366
ExternalDocumentID 10_1093_nar_gkx478
28541562
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFRAH
AFULF
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAWUL
BAYMD
BCNDV
BTTYL
CAG
CGR
CIDKT
CS3
CUY
CVF
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
ECM
EIF
EJD
EMOBN
ESTFP
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M49
M~E
NPM
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROX
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
ABEJV
CITATION
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c378t-e80919383cf6a631610bddd9686fa3288b40f3932ccb8cc47c825c5aebd2bbca3
IEDL.DBID RPM
ISSN 0305-1048
IngestDate Tue Sep 17 21:17:31 EDT 2024
Tue Dec 03 23:21:12 EST 2024
Fri Dec 06 05:44:47 EST 2024
Wed Oct 16 01:00:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
http://creativecommons.org/licenses/by/4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-e80919383cf6a631610bddd9686fa3288b40f3932ccb8cc47c825c5aebd2bbca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499549/
PMID 28541562
PQID 1902482633
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499549
proquest_miscellaneous_1902482633
crossref_primary_10_1093_nar_gkx478
pubmed_primary_28541562
PublicationCentury 2000
PublicationDate 2017-07-07
PublicationDateYYYYMMDD 2017-07-07
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 1748286 - Genes Dev. 1991 Dec;5(12A):2303-14
17501388 - Phys Rev Lett. 2007 Apr 13;98(15):158103
18573084 - Annu Rev Biophys. 2008;37:317-36
16798881 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10236-41
1569946 - Mol Cell Biol. 1992 May;12(5):2165-77
8816461 - Mol Cell Biol. 1996 Oct;16(10):5477-90
15447383 - Phys Rev Lett. 2004 Sep 10;93(11):118102
15680326 - Cell. 2005 Jan 28;120(2):195-208
17504766 - J Biol Chem. 2007 Jul 20;282(29):21116-23
10098411 - Trends Genet. 1999 Feb;15(2):74-80
16931876 - RNA. 2006 Oct;12(10):1817-24
20110368 - J Biol Chem. 2010 Apr 9;285(15):11692-703
18066079 - Nat Struct Mol Biol. 2008 Jan;15(1):85-93
17506634 - Annu Rev Biochem. 2007;76:23-50
25561740 - J Biol Chem. 2015 Feb 20;290(8):5174-89
17520590 - Small. 2007 Jul;3(7):1204-8
21029861 - Cell. 2010 Oct 29;143(3):379-89
17916692 - Science. 2007 Nov 2;318(5851):798-801
17671086 - Genes Dev. 2007 Aug 1;21(15):1833-56
23741615 - Elife. 2013 May 28;2:e00334
20870402 - Curr Opin Struct Biol. 2010 Dec;20(6):756-62
23032257 - Nat Rev Genet. 2012 Nov;13(11):770-80
26138914 - Nat Commun. 2015 Jul 03;6:7581
15342911 - Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13448-53
21419344 - Mol Cell. 2011 Mar 18;41(6):693-703
12824337 - Nucleic Acids Res. 2003 Jul 1;31(13):3406-15
21829167 - EMBO J. 2011 Aug 09;30(19):4047-58
8816462 - Mol Cell Biol. 1996 Oct;16(10):5491-506
11152657 - Hum Mol Genet. 2001 Jan 15;10(2):99-105
21865075 - Curr Opin Chem Biol. 2011 Oct;15(5):595-605
24726324 - Mol Cell. 2014 May 22;54(4):573-85
7489520 - RNA. 1995 Aug;1(6):610-23
20524933 - Biochem J. 2010 Aug 15;430(1):119-28
9064659 - Nucleic Acids Res. 1997 Feb 15;25(4):814-21
25184677 - Genes Dev. 2014 Sep 1;28(17):1900-16
17803942 - Mol Cell. 2007 Sep 7;27(5):780-92
16391004 - Nucleic Acids Res. 2006 Jan 03;33(22):7138-50
10999600 - RNA. 2000 Sep;6(9):1226-35
25223789 - Nucleic Acids Res. 2014 Oct;42(18):11668-86
21725294 - Nat Struct Mol Biol. 2011 Jul 03;18(8):950-5
10454541 - Mol Cell Biol. 1999 Sep;19(9):5943-51
23766421 - Genome Res. 2013 Oct;23(10):1636-50
9570320 - RNA. 1998 Feb;4(2):205-14
26397022 - Nat Rev Mol Cell Biol. 2015 Nov;16(11):665-77
16449641 - Mol Cell Biol. 2006 Feb;26(4):1272-87
20669935 - Biochemistry. 2010 Aug 24;49(33):6992-9
12000843 - Nucleic Acids Res. 2002 May 15;30(10):2232-43
16086026 - Nat Struct Mol Biol. 2005 Sep;12(9):794-800
17709749 - Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13954-9
17159905 - EMBO J. 2007 Jan 10;26(1):253-64
23832275 - Nat Struct Mol Biol. 2013 Aug;20(8):936-43
19150983 - J Biol Chem. 2009 Mar 20;284(12):7505-17
19052323 - Microbiol Mol Biol Rev. 2008 Dec;72(4):642-71, Table of Contents
7753619 - Nucleic Acids Res. 1995 Apr 25;23(8):1292-9
23275559 - Nucleic Acids Res. 2013 Feb 1;41(4):2404-15
21145460 - Cell. 2010 Dec 10;143(6):938-50
11279038 - J Biol Chem. 2001 May 11;276(19):16439-46
11113196 - Mol Cell Biol. 2001 Jan;21(1):209-23
21977309 - J Nucleic Acids. 2011;2011:724215
23404710 - Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3357-62
11038348 - J Biol Chem. 2001 Jan 12;276(2):1634-42
22272300 - PLoS One. 2012;7(1):e30189
11110789 - J Biol Chem. 2001 Feb 2;276(5):3024-30
9016557 - Nucleic Acids Res. 1997 Jan 15;25(2):297-303
16488880 - Curr Biol. 2006 Feb 21;16(4):433-9
( key 20170706092013_B20) 2013; 25
( key 20170706092013_B18) 2006; 12
( key 20170706092013_B37) 2007; 282
( key 20170706092013_B65) 2011; 15
( key 20170706092013_B11) 1997; 25
( key 20170706092013_B22) 2006; 16
( key 20170706092013_B44) 2007; 3
( key 20170706092013_B8) 1995; 1
( key 20170706092013_B33) 2003; 31
( key 20170706092013_B10) 1996; 16
( key 20170706092013_B42) 2004; 93
( key 20170706092013_B50) 2010; 143
( key 20170706092013_B39) 2010; 20
( key 20170706092013_B1) 1999; 15
( key 20170706092013_B45) 2010; 285
( key 20170706092013_B25) 1999; 19
( key 20170706092013_B36) 2007; 104
( key 20170706092013_B9) 1996; 16
( key 20170706092013_B28) 2007; 318
( key 20170706092013_B34) 2015; 6
( key 20170706092013_B24) 2006; 26
( key 20170706092013_B23) 2001; 10
( key 20170706092013_B51) 2013; 20
( key 20170706092013_B5) 2005; 12
( key 20170706092013_B60) 2001; 276
( key 20170706092013_B19) 2011; 41
( key 20170706092013_B48) 1998; 4
( key 20170706092013_B55) 2004; 101
( key 20170706092013_B31) 1982
( key 20170706092013_B35) 2008; 37
( key 20170706092013_B56) 2011; 18
( key 20170706092013_B3) 2007; 21
( key 20170706092013_B46) 2014; 42
( key 20170706092013_B49) 2005; 33
( key 20170706092013_B41) 2001; 276
( key 20170706092013_B4) 2005; 120
( key 20170706092013_B29) 2011; 30
( key 20170706092013_B59) 1995; 23
( key 20170706092013_B16) 2007; 76
( key 20170706092013_B58) 1997; 25
( key 20170706092013_B2) 2015; 16
( key 20170706092013_B43) 2007; 98
( key 20170706092013_B27) 2002; 30
( key 20170706092013_B21) 2007; 27
( key 20170706092013_B40) 2008; 72
( key 20170706092013_B61) 2009; 284
( key 20170706092013_B63) 2012; 13
( key 20170706092013_B13) 2007; 26
( key 20170706092013_B66) 2001; 276
( key 20170706092013_B6) 2001; 21
( key 20170706092013_B52) 2013; 110
( key 20170706092013_B12) 2000; 6
( key 20170706092013_B32) 2010; 49
( key 20170706092013_B54) 2014; 54
( key 20170706092013_B57) 2006; 103
( key 20170706092013_B47) 2014; 28
( key 20170706092013_B64) 2012; 7
( key 20170706092013_B53) 2013; 23
( key 20170706092013_B30) 2010; 430
( key 20170706092013_B15) 2008; 15
( key 20170706092013_B26) 1991; 5
( key 20170706092013_B14) 2010; 143
( key 20170706092013_B17) 2011
( key 20170706092013_B7) 1992; 12
( key 20170706092013_B62) 2015; 290
( key 20170706092013_B38) 2013; 2
References_xml – volume: 19
  start-page: 5943
  year: 1999
  ident: key 20170706092013_B25
  article-title: SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.19.9.5943
– volume: 26
  start-page: 253
  year: 2007
  ident: key 20170706092013_B13
  article-title: Structural and functional insights into the human Upf1 helicase core
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601464
– volume: 25
  start-page: 297
  year: 1997
  ident: key 20170706092013_B58
  article-title: The SV40 large T-antigen helicase can unwind four stranded DNA structures linked by G-quartets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.2.297
– volume: 318
  start-page: 798
  year: 2007
  ident: key 20170706092013_B28
  article-title: Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends
  publication-title: Science
  doi: 10.1126/science.1147182
– volume: 30
  start-page: 4047
  year: 2011
  ident: key 20170706092013_B29
  article-title: Human UPF1 interacts with TPP1 and telomerase and sustains telomere leading-strand replication
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.280
– volume: 103
  start-page: 10236
  year: 2006
  ident: key 20170706092013_B57
  article-title: Isolation of the Cdc45/Mcm2–7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0602400103
– volume: 284
  start-page: 7505
  year: 2009
  ident: key 20170706092013_B61
  article-title: FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M809019200
– volume: 42
  start-page: 11668
  year: 2014
  ident: key 20170706092013_B46
  article-title: Monomeric nature of dengue virus NS3 helicase and thermodynamic analysis of the interaction with single-stranded RNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku812
– volume: 33
  start-page: 7138
  year: 2005
  ident: key 20170706092013_B49
  article-title: AU-rich elements and associated factors: are there unifying principles
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki1012
– volume: 20
  start-page: 756
  year: 2010
  ident: key 20170706092013_B39
  article-title: Origin DNA melting and unwinding in DNA replication
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2010.08.009
– volume: 49
  start-page: 6992
  year: 2010
  ident: key 20170706092013_B32
  article-title: Human DHX9 helicase unwinds triple-helical DNA structures
  publication-title: Biochemistry
  doi: 10.1021/bi100795m
– volume: 6
  start-page: 1226
  year: 2000
  ident: key 20170706092013_B12
  article-title: Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay
  publication-title: RNA
  doi: 10.1017/S1355838200000546
– volume: 25
  start-page: 814
  year: 2013
  ident: key 20170706092013_B20
  article-title: Tight intramolecular regulation of the human Upf1 helicase by its N- and C-terminal domains
  publication-title: Nucleic Acids Res.
– volume: 282
  start-page: 21116
  year: 2007
  ident: key 20170706092013_B37
  article-title: Nucleic acid unwinding by hepatitis C virus and bacteriophage T7 helicases is sensitive to base pair stability
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702136200
– volume: 104
  start-page: 13954
  year: 2007
  ident: key 20170706092013_B36
  article-title: NS3 helicase actively separates RNA strands and senses sequence barriers ahead of the opening fork
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0702315104
– volume: 120
  start-page: 195
  year: 2005
  ident: key 20170706092013_B4
  article-title: Mammalian Staufen1 recruits Upf1 to specific mRNA 3΄UTRs so as to elicit mRNA decay
  publication-title: Cell
  doi: 10.1016/j.cell.2004.11.050
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 1982
  ident: key 20170706092013_B31
– volume: 12
  start-page: 794
  year: 2005
  ident: key 20170706092013_B5
  article-title: Regulated degradation of replication-dependent histone mRNA requires both ATR and Upf1
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb972
– volume: 26
  start-page: 1272
  year: 2006
  ident: key 20170706092013_B24
  article-title: hUPF2 silencing identifies physiologic substrates of mammalian nonsense-mediated mRNA decay
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.4.1272-1287.2006
– volume: 7
  start-page: e30189
  year: 2012
  ident: key 20170706092013_B64
  article-title: The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030189
– volume: 98
  start-page: 158103
  year: 2007
  ident: key 20170706092013_B43
  article-title: Stretching of homopolymeric RNA reveals single-stranded helices and base stacking
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.158103
– volume: 16
  start-page: 433
  year: 2006
  ident: key 20170706092013_B22
  article-title: The human RNA surveillance factor UPF1 is required for S phase progression and genome stability
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.01.018
– volume: 20
  start-page: 936
  year: 2013
  ident: key 20170706092013_B51
  article-title: Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3΄ UTRs
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2635
– volume: 15
  start-page: 595
  year: 2011
  ident: key 20170706092013_B65
  article-title: Dynamic coupling between the motors of DNA replication: hexamer helicase, DNA polymerase, and primase
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2011.08.003
– volume: 10
  start-page: 99
  year: 2001
  ident: key 20170706092013_B23
  article-title: Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/10.2.99
– volume: 37
  start-page: 317
  year: 2008
  ident: key 20170706092013_B35
  article-title: Translocation and unwinding mechanisms of RNA and DNA helicases
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev.biophys.37.032807.125908
– volume: 28
  start-page: 1900
  year: 2014
  ident: key 20170706092013_B47
  article-title: A post-translational regulatory switch on UPF1 controls targeted mRNA degradation
  publication-title: Genes Dev.
  doi: 10.1101/gad.245506.114
– volume: 76
  start-page: 23
  year: 2007
  ident: key 20170706092013_B16
  article-title: Structure and mechanism of helicases and nucleic acid translocases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052305.115300
– volume: 6
  start-page: 7581
  year: 2015
  ident: key 20170706092013_B34
  article-title: Human Upf1 is a highly processive RNA helicase and translocates with RNP remodeling activities
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8581
– volume: 101
  start-page: 13448
  year: 2004
  ident: key 20170706092013_B55
  article-title: Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0405116101
– volume: 18
  start-page: 950
  year: 2011
  ident: key 20170706092013_B56
  article-title: DNA secondary structures and epigenetic determinants of cancer genome evolution
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2089
– volume: 25
  start-page: 814
  year: 1997
  ident: key 20170706092013_B11
  article-title: Cloning and characterization of HUPF1, a human homolog of Saccharomyces cerevisiae nonsense mRNA-reducing UPF1 protein
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.4.814
– volume: 31
  start-page: 3406
  year: 2003
  ident: key 20170706092013_B33
  article-title: Mfold web server for nucleic acid folding and hybridization prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg595
– volume: 5
  start-page: 2303
  year: 1991
  ident: key 20170706092013_B26
  article-title: The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon
  publication-title: Genes Dev.
  doi: 10.1101/gad.5.12a.2303
– volume: 16
  start-page: 665
  year: 2015
  ident: key 20170706092013_B2
  article-title: Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm4063
– volume: 12
  start-page: 2165
  year: 1992
  ident: key 20170706092013_B7
  article-title: Gene products that promote mRNA turnover in Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.12.5.2165
– volume: 15
  start-page: 74
  year: 1999
  ident: key 20170706092013_B1
  article-title: RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(98)01658-8
– volume: 13
  start-page: 770
  year: 2012
  ident: key 20170706092013_B63
  article-title: DNA secondary structures: stability and function of G-quadruplex structures
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3296
– volume: 276
  start-page: 16439
  year: 2001
  ident: key 20170706092013_B66
  article-title: Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M100253200
– volume: 110
  start-page: 3357
  year: 2013
  ident: key 20170706092013_B52
  article-title: Rules that govern UPF1 binding to mRNA 3΄ UTRs
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1219908110
– volume: 41
  start-page: 693
  year: 2011
  ident: key 20170706092013_B19
  article-title: Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.02.010
– volume: 430
  start-page: 119
  year: 2010
  ident: key 20170706092013_B30
  article-title: Human Pif1 helicase is a G-quadruplex DNA binding protein with G-quadruplex DNA unwinding activity
  publication-title: Biochem. J.
  doi: 10.1042/BJ20100612
– volume: 23
  start-page: 1636
  year: 2013
  ident: key 20170706092013_B53
  article-title: Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay
  publication-title: Genome Res.
  doi: 10.1101/gr.157354.113
– volume: 276
  start-page: 3024
  year: 2001
  ident: key 20170706092013_B60
  article-title: Unwinding of a DNA triple helix by the Werner and Bloom syndrome helicases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M006784200
– volume: 21
  start-page: 209
  year: 2001
  ident: key 20170706092013_B6
  article-title: Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4)
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.1.209-223.2001
– volume: 12
  start-page: 1817
  year: 2006
  ident: key 20170706092013_B18
  article-title: Crystal structure of the UPF2-interacting domain of nonsense-mediated mRNA decay factor UPF1
  publication-title: RNA
  doi: 10.1261/rna.177606
– volume: 3
  start-page: 1204
  year: 2007
  ident: key 20170706092013_B44
  article-title: Nanopore unstacking of single-stranded DNA helices
  publication-title: Small
  doi: 10.1002/smll.200700049
– volume: 23
  start-page: 1292
  year: 1995
  ident: key 20170706092013_B59
  article-title: Formation of DNA triple helices inhibits DNA unwinding by the SV40 large T-antigen helicase
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/23.8.1292
– volume: 16
  start-page: 5491
  year: 1996
  ident: key 20170706092013_B9
  article-title: Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.10.5491
– volume: 21
  start-page: 1833
  year: 2007
  ident: key 20170706092013_B3
  article-title: Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function
  publication-title: Genes Dev.
  doi: 10.1101/gad.1566807
– volume: 93
  start-page: 118102
  year: 2004
  ident: key 20170706092013_B42
  article-title: Elastic properties of a single-stranded charged homopolymeric ribonucleotide
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.118102
– volume: 143
  start-page: 938
  year: 2010
  ident: key 20170706092013_B14
  article-title: Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense-mediated mRNA decay
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.043
– volume: 15
  start-page: 85
  year: 2008
  ident: key 20170706092013_B15
  article-title: NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1330
– start-page: 724215
  year: 2011
  ident: key 20170706092013_B17
  article-title: Non-B DNA secondary structures and their resolution by RecQ helicases
  publication-title: J. Nucleic Acids
– volume: 290
  start-page: 5174
  year: 2015
  ident: key 20170706092013_B62
  article-title: A distinct triplex DNA unwinding activity of ChlR1 helicase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.634923
– volume: 4
  start-page: 205
  year: 1998
  ident: key 20170706092013_B48
  article-title: ATP is a cofactor of the Upf1 protein that modulates its translation termination and RNA binding activities
  publication-title: RNA.
– volume: 285
  start-page: 11692
  year: 2010
  ident: key 20170706092013_B45
  article-title: The NPH-II helicase displays efficient DNA•RNA helicase activity and a pronounced purine sequence bias
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.088559
– volume: 16
  start-page: 5477
  year: 1996
  ident: key 20170706092013_B10
  article-title: Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.10.5477
– volume: 2
  start-page: e00334
  year: 2013
  ident: key 20170706092013_B38
  article-title: Sequence-dependent base pair stepping dynamics in XPD helicase unwinding
  publication-title: Elife
  doi: 10.7554/eLife.00334
– volume: 27
  start-page: 780
  year: 2007
  ident: key 20170706092013_B21
  article-title: Communication with the exon-junction complex and activation of nonsense-mediated decay by hUpf proteins occur in the cytoplasm
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.06.030
– volume: 143
  start-page: 379
  year: 2010
  ident: key 20170706092013_B50
  article-title: Upf1 senses 3΄UTR length to potentiate mRNA decay
  publication-title: Cell
  doi: 10.1016/j.cell.2010.10.005
– volume: 54
  start-page: 573
  year: 2014
  ident: key 20170706092013_B54
  article-title: MOV10 Is a 5΄ to 3΄ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3΄ UTRs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.03.017
– volume: 1
  start-page: 610
  year: 1995
  ident: key 20170706092013_B8
  article-title: Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation
  publication-title: RNA
– volume: 72
  start-page: 642
  year: 2008
  ident: key 20170706092013_B40
  article-title: RecBCD enzyme and the repair of double-stranded DNA breaks
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00020-08
– volume: 276
  start-page: 1634
  year: 2001
  ident: key 20170706092013_B41
  article-title: Sequence-specific DNA binding activity of RNA helicase A to the p16INK4a promoter
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M004481200
– volume: 30
  start-page: 2232
  year: 2002
  ident: key 20170706092013_B27
  article-title: Identification of delta helicase as the bovine homolog of HUPF1: demonstration of an interaction with the third subunit of DNA polymerase delta
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.10.2232
SSID ssj0014154
Score 2.317859
Snippet UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 7354
SubjectTerms Base Sequence
Cloning, Molecular
DNA - chemistry
DNA - genetics
DNA - metabolism
DNA Replication
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Expression
Humans
Nonsense Mediated mRNA Decay
Nucleic Acid Conformation
Nucleic Acid Enzymes
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
RNA Stability
RNA, Messenger - chemistry
RNA, Messenger - genetics
RNA, Messenger - metabolism
Substrate Specificity
Trans-Activators - genetics
Trans-Activators - metabolism
Title DNA substrate recognition and processing by the full-length human UPF1 helicase
URI https://www.ncbi.nlm.nih.gov/pubmed/28541562
https://search.proquest.com/docview/1902482633
https://pubmed.ncbi.nlm.nih.gov/PMC5499549
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BF7hUJRSaUqJFVL05dryb3c0xCkQIicchkXKz9mWC2mwiEiT4951dx1EDNw72xQ9ZsyPP983OfAPwS2ZK55m0iZMijDBDuqN1bpOeQKyfGSc6Lqp93vHrMbuZdCc70K17YWLRvtFPbf931vZP01hbuZiZtK4TSx9uB4HT4JHuwi6G35qir7cOMCJVmlFRYpPJWpO0R1OvntPHP69MhCl9oXUQyUu-HZA-oMz3xZL_RZ_hV_iyho2kX33eIew434CjvkfKPHsjv0ks5IwZ8gbsD-ohbkdwf3nXJ0v8OUQRWrIpF5p7orwli6pNAMMX0W8EsSAJ6fgkTFdZTUmc30fGD8MOmbqQ3Fu6bzAeXo0G18l6hkJiqJArXAIEBD2koabkilPEd5m21va45KWiuZSaZSVFEGeMlsYwYZAymq5y2uZaG0WPYc_PvfsOhPNSOuRnSnDNOOtoS3WJCEA4qZXNWBMuakMWi0oqo6i2uGmBli8qyzfhvLZxgbYI2xPKu_nLskBokjNkO5Q24aSy-eY99WI1QWytxuaGoJK9fQWdJ6plr53lx6efPIWDPMTymNP9CXur5xd3hkhkpVuRwbei_-F5dD_5B8Sy4jY
link.rule.ids 230,314,727,780,784,864,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5ReqAXxKMtgUK3atWbsePd7K6PUdoobSFwIBI3a18mCLKJSJDg33d2HUek3HrwyV7Lml15vm8e3wB8k5nSeSZt4qQII8yQ7mid26QQiPUz40TbRbXPIR-M2O_rzvUGdJpemFi0b_Ttqb-fnPrbcaytnE1M2tSJpZfnvcBp8ErfwNsOFUW7IenL5AH6pFo1KopsMtmokhY09eohvbl7YiLM6QvNg0hf8nWX9Apn_lsu-cL_9HdgewkcSbf-wF3YcH4P9rseSfPkmXwnsZQzxsj3YKvXjHHbh4sfwy6Z4-8hytCSVcHQ1BPlLZnVjQLowIh-JogGSQjIJ2G-ymJM4gQ_Mrrst8nYhfDe3L2HUf_nVW-QLKcoJIYKucBNQEhQIBE1FVecIsLLtLW24JJXiuZSapZVFGGcMVoaw4RB0mg6ymmba20U_QCbfurdARDOK-mQoSnBNeOsrS3VFWIA4aRWNmMt-NoYspzVYhllneSmJVq-rC3fgi-NjUu0RUhQKO-mj_MSwUnOkO9Q2oKPtc1X72k2qwVibTdWDwSd7PU7eHyiXvbyuBz-98rPsDW4Oj8rz34N_xzBuzx49hjh_QSbi4dHd4y4ZKFP4in8CylY43o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5RkFouiEdbwqNd1Ko3Y8e72d0co0AEBdIcGombtS8TVLKJSJDg3zO7jiPS3nrwyQ9ZsyPP982Ovw_gu8yUzjNpEydFsDBDuqN1bpO2QKyfGSeaLqp99vnFkP28bd2-sfqKQ_tG35_6h_Gpvx_F2crp2KT1nFg6uOkGToNHOrVl-g42WhSTrCbqiw0ErEuVclQU2mSyViZt09Srx_TuzzMTwasv_ECIFCZfLUv_YM2_Rybf1KDeNmwtwCPpVC-5A2vO78JexyNxHr-QHySOc8Y--S586NZWbnvw66zfITP8REQpWrIcGpp4orwl0-pnASxiRL8QRIQkNOWT4LEyH5Ho4keGg16TjFxo8c3cRxj2zn93L5KFk0JiqJBzXAiEBW0ko6bkilNEeZm21ra55KWiuZSaZSVFKGeMlsYwYZA4mpZy2uZaG0U_wbqfeLcPhPNSOmRpSnDNOGtqS3WJOEA4qZXNWAO-1YEsppVgRlFtdNMCI19UkW_ASR3jAmMRNimUd5OnWYEAJWfIeShtwOcq5svn1IvVALGyGssLglb26hlMoaiZvUiZg_--8yu8H5z1iuvL_tUhbOahuMcm7xGszx-f3DFCk7n-EpPwFW-d5I0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+substrate+recognition+and+processing+by+the+full-length+human+UPF1+helicase&rft.jtitle=Nucleic+acids+research&rft.au=Dehghani-Tafti%2C+Saba&rft.au=Sanders%2C+Cyril+M&rft.date=2017-07-07&rft.eissn=1362-4962&rft.volume=45&rft.issue=12&rft.spage=7354&rft.epage=7366&rft_id=info:doi/10.1093%2Fnar%2Fgkx478&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon