DNA substrate recognition and processing by the full-length human UPF1 helicase
UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for nuclear DNA replication. While loss of NMD is tolerated, loss of hUPF1 induces a DNA damage response and cell cycle arrest. We have analysed nucle...
Saved in:
Published in | Nucleic acids research Vol. 45; no. 12; pp. 7354 - 7366 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
07.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for nuclear DNA replication. While loss of NMD is tolerated, loss of hUPF1 induces a DNA damage response and cell cycle arrest. We have analysed nucleic acid (NA) binding and processing by full-length hUPF1. hUPF1 unwinds non-B and B-form DNA and RNA substrates in vitro. Unlike many helicases involved in genome stability no hUPF1 binding to DNA structures stabilized by inter-base-pair hydrogen bonding was observed. Alternatively, hUPF1 binds to single-stranded NAs (ssNA) with apparent affinity increasing with substrate length and with no preference for binding RNA or DNA or purine compared to pyrimidine polynucleotides. However, the data show a pronounced nucleobase bias with a preference for binding poly (U) or d(T) while d(A) polymers bind with low affinity. Although the data indicate that hUPF1 must bind a ssNA segments to initiate unwinding they also raise the possibility that hUPF1 has significantly reduced affinity for ssNA structures with stacked bases. Overall, the NA processing activities of hUPF1 are consistent with its function in mRNA regulation and suggest that roles in DNA replication could also be influenced by base sequence. |
---|---|
AbstractList | UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for nuclear DNA replication. While loss of NMD is tolerated, loss of hUPF1 induces a DNA damage response and cell cycle arrest. We have analysed nucleic acid (NA) binding and processing by full-length hUPF1. hUPF1 unwinds non-B and B-form DNA and RNA substrates in vitro. Unlike many helicases involved in genome stability no hUPF1 binding to DNA structures stabilized by inter-base-pair hydrogen bonding was observed. Alternatively, hUPF1 binds to single-stranded NAs (ssNA) with apparent affinity increasing with substrate length and with no preference for binding RNA or DNA or purine compared to pyrimidine polynucleotides. However, the data show a pronounced nucleobase bias with a preference for binding poly (U) or d(T) while d(A) polymers bind with low affinity. Although the data indicate that hUPF1 must bind a ssNA segments to initiate unwinding they also raise the possibility that hUPF1 has significantly reduced affinity for ssNA structures with stacked bases. Overall, the NA processing activities of hUPF1 are consistent with its function in mRNA regulation and suggest that roles in DNA replication could also be influenced by base sequence. UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for nuclear DNA replication. While loss of NMD is tolerated, loss of hUPF1 induces a DNA damage response and cell cycle arrest. We have analysed nucleic acid (NA) binding and processing by full-length hUPF1. hUPF1 unwinds non-B and B-form DNA and RNA substrates in vitro . Unlike many helicases involved in genome stability no hUPF1 binding to DNA structures stabilized by inter-base-pair hydrogen bonding was observed. Alternatively, hUPF1 binds to single-stranded NAs (ssNA) with apparent affinity increasing with substrate length and with no preference for binding RNA or DNA or purine compared to pyrimidine polynucleotides. However, the data show a pronounced nucleobase bias with a preference for binding poly (U) or d(T) while d(A) polymers bind with low affinity. Although the data indicate that hUPF1 must bind a ssNA segments to initiate unwinding they also raise the possibility that hUPF1 has significantly reduced affinity for ssNA structures with stacked bases. Overall, the NA processing activities of hUPF1 are consistent with its function in mRNA regulation and suggest that roles in DNA replication could also be influenced by base sequence. |
Author | Dehghani-Tafti, Saba Sanders, Cyril M |
AuthorAffiliation | Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK |
AuthorAffiliation_xml | – name: Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK |
Author_xml | – sequence: 1 givenname: Saba surname: Dehghani-Tafti fullname: Dehghani-Tafti, Saba organization: Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK – sequence: 2 givenname: Cyril M surname: Sanders fullname: Sanders, Cyril M organization: Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28541562$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU1LJDEQhoOM6Ix68QcsOS5Cr_nqTHJZEN1xhUE96Dkk6eqP3Z5kNukW_ffbMip6KKqgHt76eBdoFmIAhE4p-UGJ5ufBpvPm77NYqj00p1yyQmjJZmhOOCkLSoQ6RIuc_xBCBS3FATpkqpwqyebo7ur2AufR5SHZAXACH5vQDV0M2IYKb1P0kHMXGuxe8NACrse-L3oIzdDidtzYgB_vVxS30HfeZjhG-7XtM5y85SP0uPr1cPm7WN9d31xerAvPl2ooQBFNNVfc19JKTiUlrqoqLZWsLWdKOUFqrjnz3invxdIrVvrSgquYc97yI_Rzp7sd3QYqD2E6oDfb1G1sejHRduZrJ3StaeKTKYXWU0wC398EUvw3Qh7Mpsse-t4GiGM2VBMmFJOcT-jZDvUp5pyg_hhDiXl1wEwOmJ0DE_zt82If6PvL-X8FAYXr |
CitedBy_id | crossref_primary_10_1038_s41598_020_61432_1 crossref_primary_10_1002_bies_201700170 crossref_primary_10_1093_bib_bbaa114 crossref_primary_10_1158_0008_5472_CAN_21_4339 crossref_primary_10_1038_s41467_021_24201_w |
Cites_doi | 10.1128/MCB.19.9.5943 10.1038/sj.emboj.7601464 10.1093/nar/25.2.297 10.1126/science.1147182 10.1038/emboj.2011.280 10.1073/pnas.0602400103 10.1074/jbc.M809019200 10.1093/nar/gku812 10.1093/nar/gki1012 10.1016/j.sbi.2010.08.009 10.1021/bi100795m 10.1017/S1355838200000546 10.1074/jbc.M702136200 10.1073/pnas.0702315104 10.1016/j.cell.2004.11.050 10.1038/nsmb972 10.1128/MCB.26.4.1272-1287.2006 10.1371/journal.pone.0030189 10.1103/PhysRevLett.98.158103 10.1016/j.cub.2006.01.018 10.1038/nsmb.2635 10.1016/j.cbpa.2011.08.003 10.1093/hmg/10.2.99 10.1146/annurev.biophys.37.032807.125908 10.1101/gad.245506.114 10.1146/annurev.biochem.76.052305.115300 10.1038/ncomms8581 10.1073/pnas.0405116101 10.1038/nsmb.2089 10.1093/nar/25.4.814 10.1093/nar/gkg595 10.1101/gad.5.12a.2303 10.1038/nrm4063 10.1128/MCB.12.5.2165 10.1016/S0168-9525(98)01658-8 10.1038/nrg3296 10.1074/jbc.M100253200 10.1073/pnas.1219908110 10.1016/j.molcel.2011.02.010 10.1042/BJ20100612 10.1101/gr.157354.113 10.1074/jbc.M006784200 10.1128/MCB.21.1.209-223.2001 10.1261/rna.177606 10.1002/smll.200700049 10.1093/nar/23.8.1292 10.1128/MCB.16.10.5491 10.1101/gad.1566807 10.1103/PhysRevLett.93.118102 10.1016/j.cell.2010.11.043 10.1038/nsmb1330 10.1074/jbc.M114.634923 10.1074/jbc.M109.088559 10.1128/MCB.16.10.5477 10.7554/eLife.00334 10.1016/j.molcel.2007.06.030 10.1016/j.cell.2010.10.005 10.1016/j.molcel.2014.03.017 10.1128/MMBR.00020-08 10.1074/jbc.M004481200 10.1093/nar/30.10.2232 |
ContentType | Journal Article |
Copyright | The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017 |
Copyright_xml | – notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1093/nar/gkx478 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 7366 |
ExternalDocumentID | 10_1093_nar_gkx478 28541562 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFRAH AFULF AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AOIJS BAWUL BAYMD BCNDV BTTYL CAG CGR CIDKT CS3 CUY CVF CZ4 DIK DU5 D~K E3Z EBD EBS ECM EIF EJD EMOBN ESTFP F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI M49 M~E NPM NU- OAWHX OBC OBS OEB OES OJQWA P2P PEELM PQQKQ R44 RD5 RNS ROL ROX ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAYXX ABEJV CITATION 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c378t-e80919383cf6a631610bddd9686fa3288b40f3932ccb8cc47c825c5aebd2bbca3 |
IEDL.DBID | RPM |
ISSN | 0305-1048 |
IngestDate | Tue Sep 17 21:17:31 EDT 2024 Tue Dec 03 23:21:12 EST 2024 Fri Dec 06 05:44:47 EST 2024 Wed Oct 16 01:00:02 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-e80919383cf6a631610bddd9686fa3288b40f3932ccb8cc47c825c5aebd2bbca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5499549/ |
PMID | 28541562 |
PQID | 1902482633 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5499549 proquest_miscellaneous_1902482633 crossref_primary_10_1093_nar_gkx478 pubmed_primary_28541562 |
PublicationCentury | 2000 |
PublicationDate | 2017-07-07 |
PublicationDateYYYYMMDD | 2017-07-07 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 1748286 - Genes Dev. 1991 Dec;5(12A):2303-14 17501388 - Phys Rev Lett. 2007 Apr 13;98(15):158103 18573084 - Annu Rev Biophys. 2008;37:317-36 16798881 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10236-41 1569946 - Mol Cell Biol. 1992 May;12(5):2165-77 8816461 - Mol Cell Biol. 1996 Oct;16(10):5477-90 15447383 - Phys Rev Lett. 2004 Sep 10;93(11):118102 15680326 - Cell. 2005 Jan 28;120(2):195-208 17504766 - J Biol Chem. 2007 Jul 20;282(29):21116-23 10098411 - Trends Genet. 1999 Feb;15(2):74-80 16931876 - RNA. 2006 Oct;12(10):1817-24 20110368 - J Biol Chem. 2010 Apr 9;285(15):11692-703 18066079 - Nat Struct Mol Biol. 2008 Jan;15(1):85-93 17506634 - Annu Rev Biochem. 2007;76:23-50 25561740 - J Biol Chem. 2015 Feb 20;290(8):5174-89 17520590 - Small. 2007 Jul;3(7):1204-8 21029861 - Cell. 2010 Oct 29;143(3):379-89 17916692 - Science. 2007 Nov 2;318(5851):798-801 17671086 - Genes Dev. 2007 Aug 1;21(15):1833-56 23741615 - Elife. 2013 May 28;2:e00334 20870402 - Curr Opin Struct Biol. 2010 Dec;20(6):756-62 23032257 - Nat Rev Genet. 2012 Nov;13(11):770-80 26138914 - Nat Commun. 2015 Jul 03;6:7581 15342911 - Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13448-53 21419344 - Mol Cell. 2011 Mar 18;41(6):693-703 12824337 - Nucleic Acids Res. 2003 Jul 1;31(13):3406-15 21829167 - EMBO J. 2011 Aug 09;30(19):4047-58 8816462 - Mol Cell Biol. 1996 Oct;16(10):5491-506 11152657 - Hum Mol Genet. 2001 Jan 15;10(2):99-105 21865075 - Curr Opin Chem Biol. 2011 Oct;15(5):595-605 24726324 - Mol Cell. 2014 May 22;54(4):573-85 7489520 - RNA. 1995 Aug;1(6):610-23 20524933 - Biochem J. 2010 Aug 15;430(1):119-28 9064659 - Nucleic Acids Res. 1997 Feb 15;25(4):814-21 25184677 - Genes Dev. 2014 Sep 1;28(17):1900-16 17803942 - Mol Cell. 2007 Sep 7;27(5):780-92 16391004 - Nucleic Acids Res. 2006 Jan 03;33(22):7138-50 10999600 - RNA. 2000 Sep;6(9):1226-35 25223789 - Nucleic Acids Res. 2014 Oct;42(18):11668-86 21725294 - Nat Struct Mol Biol. 2011 Jul 03;18(8):950-5 10454541 - Mol Cell Biol. 1999 Sep;19(9):5943-51 23766421 - Genome Res. 2013 Oct;23(10):1636-50 9570320 - RNA. 1998 Feb;4(2):205-14 26397022 - Nat Rev Mol Cell Biol. 2015 Nov;16(11):665-77 16449641 - Mol Cell Biol. 2006 Feb;26(4):1272-87 20669935 - Biochemistry. 2010 Aug 24;49(33):6992-9 12000843 - Nucleic Acids Res. 2002 May 15;30(10):2232-43 16086026 - Nat Struct Mol Biol. 2005 Sep;12(9):794-800 17709749 - Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13954-9 17159905 - EMBO J. 2007 Jan 10;26(1):253-64 23832275 - Nat Struct Mol Biol. 2013 Aug;20(8):936-43 19150983 - J Biol Chem. 2009 Mar 20;284(12):7505-17 19052323 - Microbiol Mol Biol Rev. 2008 Dec;72(4):642-71, Table of Contents 7753619 - Nucleic Acids Res. 1995 Apr 25;23(8):1292-9 23275559 - Nucleic Acids Res. 2013 Feb 1;41(4):2404-15 21145460 - Cell. 2010 Dec 10;143(6):938-50 11279038 - J Biol Chem. 2001 May 11;276(19):16439-46 11113196 - Mol Cell Biol. 2001 Jan;21(1):209-23 21977309 - J Nucleic Acids. 2011;2011:724215 23404710 - Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3357-62 11038348 - J Biol Chem. 2001 Jan 12;276(2):1634-42 22272300 - PLoS One. 2012;7(1):e30189 11110789 - J Biol Chem. 2001 Feb 2;276(5):3024-30 9016557 - Nucleic Acids Res. 1997 Jan 15;25(2):297-303 16488880 - Curr Biol. 2006 Feb 21;16(4):433-9 ( key 20170706092013_B20) 2013; 25 ( key 20170706092013_B18) 2006; 12 ( key 20170706092013_B37) 2007; 282 ( key 20170706092013_B65) 2011; 15 ( key 20170706092013_B11) 1997; 25 ( key 20170706092013_B22) 2006; 16 ( key 20170706092013_B44) 2007; 3 ( key 20170706092013_B8) 1995; 1 ( key 20170706092013_B33) 2003; 31 ( key 20170706092013_B10) 1996; 16 ( key 20170706092013_B42) 2004; 93 ( key 20170706092013_B50) 2010; 143 ( key 20170706092013_B39) 2010; 20 ( key 20170706092013_B1) 1999; 15 ( key 20170706092013_B45) 2010; 285 ( key 20170706092013_B25) 1999; 19 ( key 20170706092013_B36) 2007; 104 ( key 20170706092013_B9) 1996; 16 ( key 20170706092013_B28) 2007; 318 ( key 20170706092013_B34) 2015; 6 ( key 20170706092013_B24) 2006; 26 ( key 20170706092013_B23) 2001; 10 ( key 20170706092013_B51) 2013; 20 ( key 20170706092013_B5) 2005; 12 ( key 20170706092013_B60) 2001; 276 ( key 20170706092013_B19) 2011; 41 ( key 20170706092013_B48) 1998; 4 ( key 20170706092013_B55) 2004; 101 ( key 20170706092013_B31) 1982 ( key 20170706092013_B35) 2008; 37 ( key 20170706092013_B56) 2011; 18 ( key 20170706092013_B3) 2007; 21 ( key 20170706092013_B46) 2014; 42 ( key 20170706092013_B49) 2005; 33 ( key 20170706092013_B41) 2001; 276 ( key 20170706092013_B4) 2005; 120 ( key 20170706092013_B29) 2011; 30 ( key 20170706092013_B59) 1995; 23 ( key 20170706092013_B16) 2007; 76 ( key 20170706092013_B58) 1997; 25 ( key 20170706092013_B2) 2015; 16 ( key 20170706092013_B43) 2007; 98 ( key 20170706092013_B27) 2002; 30 ( key 20170706092013_B21) 2007; 27 ( key 20170706092013_B40) 2008; 72 ( key 20170706092013_B61) 2009; 284 ( key 20170706092013_B63) 2012; 13 ( key 20170706092013_B13) 2007; 26 ( key 20170706092013_B66) 2001; 276 ( key 20170706092013_B6) 2001; 21 ( key 20170706092013_B52) 2013; 110 ( key 20170706092013_B12) 2000; 6 ( key 20170706092013_B32) 2010; 49 ( key 20170706092013_B54) 2014; 54 ( key 20170706092013_B57) 2006; 103 ( key 20170706092013_B47) 2014; 28 ( key 20170706092013_B64) 2012; 7 ( key 20170706092013_B53) 2013; 23 ( key 20170706092013_B30) 2010; 430 ( key 20170706092013_B15) 2008; 15 ( key 20170706092013_B26) 1991; 5 ( key 20170706092013_B14) 2010; 143 ( key 20170706092013_B17) 2011 ( key 20170706092013_B7) 1992; 12 ( key 20170706092013_B62) 2015; 290 ( key 20170706092013_B38) 2013; 2 |
References_xml | – volume: 19 start-page: 5943 year: 1999 ident: key 20170706092013_B25 article-title: SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.9.5943 – volume: 26 start-page: 253 year: 2007 ident: key 20170706092013_B13 article-title: Structural and functional insights into the human Upf1 helicase core publication-title: EMBO J. doi: 10.1038/sj.emboj.7601464 – volume: 25 start-page: 297 year: 1997 ident: key 20170706092013_B58 article-title: The SV40 large T-antigen helicase can unwind four stranded DNA structures linked by G-quartets publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.2.297 – volume: 318 start-page: 798 year: 2007 ident: key 20170706092013_B28 article-title: Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends publication-title: Science doi: 10.1126/science.1147182 – volume: 30 start-page: 4047 year: 2011 ident: key 20170706092013_B29 article-title: Human UPF1 interacts with TPP1 and telomerase and sustains telomere leading-strand replication publication-title: EMBO J. doi: 10.1038/emboj.2011.280 – volume: 103 start-page: 10236 year: 2006 ident: key 20170706092013_B57 article-title: Isolation of the Cdc45/Mcm2–7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0602400103 – volume: 284 start-page: 7505 year: 2009 ident: key 20170706092013_B61 article-title: FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange publication-title: J. Biol. Chem. doi: 10.1074/jbc.M809019200 – volume: 42 start-page: 11668 year: 2014 ident: key 20170706092013_B46 article-title: Monomeric nature of dengue virus NS3 helicase and thermodynamic analysis of the interaction with single-stranded RNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku812 – volume: 33 start-page: 7138 year: 2005 ident: key 20170706092013_B49 article-title: AU-rich elements and associated factors: are there unifying principles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki1012 – volume: 20 start-page: 756 year: 2010 ident: key 20170706092013_B39 article-title: Origin DNA melting and unwinding in DNA replication publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2010.08.009 – volume: 49 start-page: 6992 year: 2010 ident: key 20170706092013_B32 article-title: Human DHX9 helicase unwinds triple-helical DNA structures publication-title: Biochemistry doi: 10.1021/bi100795m – volume: 6 start-page: 1226 year: 2000 ident: key 20170706092013_B12 article-title: Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay publication-title: RNA doi: 10.1017/S1355838200000546 – volume: 25 start-page: 814 year: 2013 ident: key 20170706092013_B20 article-title: Tight intramolecular regulation of the human Upf1 helicase by its N- and C-terminal domains publication-title: Nucleic Acids Res. – volume: 282 start-page: 21116 year: 2007 ident: key 20170706092013_B37 article-title: Nucleic acid unwinding by hepatitis C virus and bacteriophage T7 helicases is sensitive to base pair stability publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702136200 – volume: 104 start-page: 13954 year: 2007 ident: key 20170706092013_B36 article-title: NS3 helicase actively separates RNA strands and senses sequence barriers ahead of the opening fork publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0702315104 – volume: 120 start-page: 195 year: 2005 ident: key 20170706092013_B4 article-title: Mammalian Staufen1 recruits Upf1 to specific mRNA 3΄UTRs so as to elicit mRNA decay publication-title: Cell doi: 10.1016/j.cell.2004.11.050 – volume-title: Molecular Cloning: A Laboratory Manual year: 1982 ident: key 20170706092013_B31 – volume: 12 start-page: 794 year: 2005 ident: key 20170706092013_B5 article-title: Regulated degradation of replication-dependent histone mRNA requires both ATR and Upf1 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb972 – volume: 26 start-page: 1272 year: 2006 ident: key 20170706092013_B24 article-title: hUPF2 silencing identifies physiologic substrates of mammalian nonsense-mediated mRNA decay publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.26.4.1272-1287.2006 – volume: 7 start-page: e30189 year: 2012 ident: key 20170706092013_B64 article-title: The Werner syndrome protein is distinguished from the Bloom syndrome protein by its capacity to tightly bind diverse DNA structures publication-title: PLoS One doi: 10.1371/journal.pone.0030189 – volume: 98 start-page: 158103 year: 2007 ident: key 20170706092013_B43 article-title: Stretching of homopolymeric RNA reveals single-stranded helices and base stacking publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.158103 – volume: 16 start-page: 433 year: 2006 ident: key 20170706092013_B22 article-title: The human RNA surveillance factor UPF1 is required for S phase progression and genome stability publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.01.018 – volume: 20 start-page: 936 year: 2013 ident: key 20170706092013_B51 article-title: Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3΄ UTRs publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2635 – volume: 15 start-page: 595 year: 2011 ident: key 20170706092013_B65 article-title: Dynamic coupling between the motors of DNA replication: hexamer helicase, DNA polymerase, and primase publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2011.08.003 – volume: 10 start-page: 99 year: 2001 ident: key 20170706092013_B23 article-title: Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/10.2.99 – volume: 37 start-page: 317 year: 2008 ident: key 20170706092013_B35 article-title: Translocation and unwinding mechanisms of RNA and DNA helicases publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev.biophys.37.032807.125908 – volume: 28 start-page: 1900 year: 2014 ident: key 20170706092013_B47 article-title: A post-translational regulatory switch on UPF1 controls targeted mRNA degradation publication-title: Genes Dev. doi: 10.1101/gad.245506.114 – volume: 76 start-page: 23 year: 2007 ident: key 20170706092013_B16 article-title: Structure and mechanism of helicases and nucleic acid translocases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.052305.115300 – volume: 6 start-page: 7581 year: 2015 ident: key 20170706092013_B34 article-title: Human Upf1 is a highly processive RNA helicase and translocates with RNP remodeling activities publication-title: Nat. Commun. doi: 10.1038/ncomms8581 – volume: 101 start-page: 13448 year: 2004 ident: key 20170706092013_B55 article-title: Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0405116101 – volume: 18 start-page: 950 year: 2011 ident: key 20170706092013_B56 article-title: DNA secondary structures and epigenetic determinants of cancer genome evolution publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2089 – volume: 25 start-page: 814 year: 1997 ident: key 20170706092013_B11 article-title: Cloning and characterization of HUPF1, a human homolog of Saccharomyces cerevisiae nonsense mRNA-reducing UPF1 protein publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.4.814 – volume: 31 start-page: 3406 year: 2003 ident: key 20170706092013_B33 article-title: Mfold web server for nucleic acid folding and hybridization prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg595 – volume: 5 start-page: 2303 year: 1991 ident: key 20170706092013_B26 article-title: The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon publication-title: Genes Dev. doi: 10.1101/gad.5.12a.2303 – volume: 16 start-page: 665 year: 2015 ident: key 20170706092013_B2 article-title: Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4063 – volume: 12 start-page: 2165 year: 1992 ident: key 20170706092013_B7 article-title: Gene products that promote mRNA turnover in Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.12.5.2165 – volume: 15 start-page: 74 year: 1999 ident: key 20170706092013_B1 article-title: RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer publication-title: Trends Genet. doi: 10.1016/S0168-9525(98)01658-8 – volume: 13 start-page: 770 year: 2012 ident: key 20170706092013_B63 article-title: DNA secondary structures: stability and function of G-quadruplex structures publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3296 – volume: 276 start-page: 16439 year: 2001 ident: key 20170706092013_B66 article-title: Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence publication-title: J. Biol. Chem. doi: 10.1074/jbc.M100253200 – volume: 110 start-page: 3357 year: 2013 ident: key 20170706092013_B52 article-title: Rules that govern UPF1 binding to mRNA 3΄ UTRs publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1219908110 – volume: 41 start-page: 693 year: 2011 ident: key 20170706092013_B19 article-title: Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.02.010 – volume: 430 start-page: 119 year: 2010 ident: key 20170706092013_B30 article-title: Human Pif1 helicase is a G-quadruplex DNA binding protein with G-quadruplex DNA unwinding activity publication-title: Biochem. J. doi: 10.1042/BJ20100612 – volume: 23 start-page: 1636 year: 2013 ident: key 20170706092013_B53 article-title: Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay publication-title: Genome Res. doi: 10.1101/gr.157354.113 – volume: 276 start-page: 3024 year: 2001 ident: key 20170706092013_B60 article-title: Unwinding of a DNA triple helix by the Werner and Bloom syndrome helicases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M006784200 – volume: 21 start-page: 209 year: 2001 ident: key 20170706092013_B6 article-title: Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4) publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.1.209-223.2001 – volume: 12 start-page: 1817 year: 2006 ident: key 20170706092013_B18 article-title: Crystal structure of the UPF2-interacting domain of nonsense-mediated mRNA decay factor UPF1 publication-title: RNA doi: 10.1261/rna.177606 – volume: 3 start-page: 1204 year: 2007 ident: key 20170706092013_B44 article-title: Nanopore unstacking of single-stranded DNA helices publication-title: Small doi: 10.1002/smll.200700049 – volume: 23 start-page: 1292 year: 1995 ident: key 20170706092013_B59 article-title: Formation of DNA triple helices inhibits DNA unwinding by the SV40 large T-antigen helicase publication-title: Nucleic Acids Res. doi: 10.1093/nar/23.8.1292 – volume: 16 start-page: 5491 year: 1996 ident: key 20170706092013_B9 article-title: Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.10.5491 – volume: 21 start-page: 1833 year: 2007 ident: key 20170706092013_B3 article-title: Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function publication-title: Genes Dev. doi: 10.1101/gad.1566807 – volume: 93 start-page: 118102 year: 2004 ident: key 20170706092013_B42 article-title: Elastic properties of a single-stranded charged homopolymeric ribonucleotide publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.118102 – volume: 143 start-page: 938 year: 2010 ident: key 20170706092013_B14 article-title: Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense-mediated mRNA decay publication-title: Cell doi: 10.1016/j.cell.2010.11.043 – volume: 15 start-page: 85 year: 2008 ident: key 20170706092013_B15 article-title: NMD factors UPF2 and UPF3 bridge UPF1 to the exon junction complex and stimulate its RNA helicase activity publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1330 – start-page: 724215 year: 2011 ident: key 20170706092013_B17 article-title: Non-B DNA secondary structures and their resolution by RecQ helicases publication-title: J. Nucleic Acids – volume: 290 start-page: 5174 year: 2015 ident: key 20170706092013_B62 article-title: A distinct triplex DNA unwinding activity of ChlR1 helicase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.634923 – volume: 4 start-page: 205 year: 1998 ident: key 20170706092013_B48 article-title: ATP is a cofactor of the Upf1 protein that modulates its translation termination and RNA binding activities publication-title: RNA. – volume: 285 start-page: 11692 year: 2010 ident: key 20170706092013_B45 article-title: The NPH-II helicase displays efficient DNA•RNA helicase activity and a pronounced purine sequence bias publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.088559 – volume: 16 start-page: 5477 year: 1996 ident: key 20170706092013_B10 article-title: Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.10.5477 – volume: 2 start-page: e00334 year: 2013 ident: key 20170706092013_B38 article-title: Sequence-dependent base pair stepping dynamics in XPD helicase unwinding publication-title: Elife doi: 10.7554/eLife.00334 – volume: 27 start-page: 780 year: 2007 ident: key 20170706092013_B21 article-title: Communication with the exon-junction complex and activation of nonsense-mediated decay by hUpf proteins occur in the cytoplasm publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.06.030 – volume: 143 start-page: 379 year: 2010 ident: key 20170706092013_B50 article-title: Upf1 senses 3΄UTR length to potentiate mRNA decay publication-title: Cell doi: 10.1016/j.cell.2010.10.005 – volume: 54 start-page: 573 year: 2014 ident: key 20170706092013_B54 article-title: MOV10 Is a 5΄ to 3΄ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3΄ UTRs publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.03.017 – volume: 1 start-page: 610 year: 1995 ident: key 20170706092013_B8 article-title: Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation publication-title: RNA – volume: 72 start-page: 642 year: 2008 ident: key 20170706092013_B40 article-title: RecBCD enzyme and the repair of double-stranded DNA breaks publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00020-08 – volume: 276 start-page: 1634 year: 2001 ident: key 20170706092013_B41 article-title: Sequence-specific DNA binding activity of RNA helicase A to the p16INK4a promoter publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004481200 – volume: 30 start-page: 2232 year: 2002 ident: key 20170706092013_B27 article-title: Identification of delta helicase as the bovine homolog of HUPF1: demonstration of an interaction with the third subunit of DNA polymerase delta publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.10.2232 |
SSID | ssj0014154 |
Score | 2.317859 |
Snippet | UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 7354 |
SubjectTerms | Base Sequence Cloning, Molecular DNA - chemistry DNA - genetics DNA - metabolism DNA Replication Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Humans Nonsense Mediated mRNA Decay Nucleic Acid Conformation Nucleic Acid Enzymes Recombinant Proteins - genetics Recombinant Proteins - metabolism RNA Stability RNA, Messenger - chemistry RNA, Messenger - genetics RNA, Messenger - metabolism Substrate Specificity Trans-Activators - genetics Trans-Activators - metabolism |
Title | DNA substrate recognition and processing by the full-length human UPF1 helicase |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28541562 https://search.proquest.com/docview/1902482633 https://pubmed.ncbi.nlm.nih.gov/PMC5499549 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4BF7hUJRSaUqJFVL05dryb3c0xCkQIicchkXKz9mWC2mwiEiT4951dx1EDNw72xQ9ZsyPP983OfAPwS2ZK55m0iZMijDBDuqN1bpOeQKyfGSc6Lqp93vHrMbuZdCc70K17YWLRvtFPbf931vZP01hbuZiZtK4TSx9uB4HT4JHuwi6G35qir7cOMCJVmlFRYpPJWpO0R1OvntPHP69MhCl9oXUQyUu-HZA-oMz3xZL_RZ_hV_iyho2kX33eIew434CjvkfKPHsjv0ks5IwZ8gbsD-ohbkdwf3nXJ0v8OUQRWrIpF5p7orwli6pNAMMX0W8EsSAJ6fgkTFdZTUmc30fGD8MOmbqQ3Fu6bzAeXo0G18l6hkJiqJArXAIEBD2koabkilPEd5m21va45KWiuZSaZSVFEGeMlsYwYZAymq5y2uZaG0WPYc_PvfsOhPNSOuRnSnDNOOtoS3WJCEA4qZXNWBMuakMWi0oqo6i2uGmBli8qyzfhvLZxgbYI2xPKu_nLskBokjNkO5Q24aSy-eY99WI1QWytxuaGoJK9fQWdJ6plr53lx6efPIWDPMTymNP9CXur5xd3hkhkpVuRwbei_-F5dD_5B8Sy4jY |
link.rule.ids | 230,314,727,780,784,864,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5ReqAXxKMtgUK3atWbsePd7K6PUdoobSFwIBI3a18mCLKJSJDg33d2HUek3HrwyV7Lml15vm8e3wB8k5nSeSZt4qQII8yQ7mid26QQiPUz40TbRbXPIR-M2O_rzvUGdJpemFi0b_Ttqb-fnPrbcaytnE1M2tSJpZfnvcBp8ErfwNsOFUW7IenL5AH6pFo1KopsMtmokhY09eohvbl7YiLM6QvNg0hf8nWX9Apn_lsu-cL_9HdgewkcSbf-wF3YcH4P9rseSfPkmXwnsZQzxsj3YKvXjHHbh4sfwy6Z4-8hytCSVcHQ1BPlLZnVjQLowIh-JogGSQjIJ2G-ymJM4gQ_Mrrst8nYhfDe3L2HUf_nVW-QLKcoJIYKucBNQEhQIBE1FVecIsLLtLW24JJXiuZSapZVFGGcMVoaw4RB0mg6ymmba20U_QCbfurdARDOK-mQoSnBNeOsrS3VFWIA4aRWNmMt-NoYspzVYhllneSmJVq-rC3fgi-NjUu0RUhQKO-mj_MSwUnOkO9Q2oKPtc1X72k2qwVibTdWDwSd7PU7eHyiXvbyuBz-98rPsDW4Oj8rz34N_xzBuzx49hjh_QSbi4dHd4y4ZKFP4in8CylY43o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB5RkFouiEdbwqNd1Ko3Y8e72d0co0AEBdIcGombtS8TVLKJSJDg3zO7jiPS3nrwyQ9ZsyPP982Ovw_gu8yUzjNpEydFsDBDuqN1bpO2QKyfGSeaLqp99vnFkP28bd2-sfqKQ_tG35_6h_Gpvx_F2crp2KT1nFg6uOkGToNHOrVl-g42WhSTrCbqiw0ErEuVclQU2mSyViZt09Srx_TuzzMTwasv_ECIFCZfLUv_YM2_Rybf1KDeNmwtwCPpVC-5A2vO78JexyNxHr-QHySOc8Y--S586NZWbnvw66zfITP8REQpWrIcGpp4orwl0-pnASxiRL8QRIQkNOWT4LEyH5Ho4keGg16TjFxo8c3cRxj2zn93L5KFk0JiqJBzXAiEBW0ko6bkilNEeZm21ra55KWiuZSaZSVFKGeMlsYwYZA4mpZy2uZaG0U_wbqfeLcPhPNSOmRpSnDNOGtqS3WJOEA4qZXNWAO-1YEsppVgRlFtdNMCI19UkW_ASR3jAmMRNimUd5OnWYEAJWfIeShtwOcq5svn1IvVALGyGssLglb26hlMoaiZvUiZg_--8yu8H5z1iuvL_tUhbOahuMcm7xGszx-f3DFCk7n-EpPwFW-d5I0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+substrate+recognition+and+processing+by+the+full-length+human+UPF1+helicase&rft.jtitle=Nucleic+acids+research&rft.au=Dehghani-Tafti%2C+Saba&rft.au=Sanders%2C+Cyril+M&rft.date=2017-07-07&rft.eissn=1362-4962&rft.volume=45&rft.issue=12&rft.spage=7354&rft.epage=7366&rft_id=info:doi/10.1093%2Fnar%2Fgkx478&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |