Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals

In this paper, we establish a new integral identity involving local fractional integral on Yang's fractal sets. Using this integral identity, some new generalized Hermite-Hadamard type inequalities whose function is monotonically increasing and generalized harmonically convex are obtained. Fina...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 10; pp. 10679 - 10695
Main Authors Sun, Wenbing, Xu, Rui
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we establish a new integral identity involving local fractional integral on Yang's fractal sets. Using this integral identity, some new generalized Hermite-Hadamard type inequalities whose function is monotonically increasing and generalized harmonically convex are obtained. Finally, we construct some generalized special means to explain the applications of these inequalities.
AbstractList In this paper, we establish a new integral identity involving local fractional integral on Yang's fractal sets. Using this integral identity, some new generalized Hermite-Hadamard type inequalities whose function is monotonically increasing and generalized harmonically convex are obtained. Finally, we construct some generalized special means to explain the applications of these inequalities.
Author Sun, Wenbing
Xu, Rui
Author_xml – sequence: 1
  givenname: Wenbing
  surname: Sun
  fullname: Sun, Wenbing
– sequence: 2
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
BookMark eNptkctKBDEQRYMo-Nz5AfkAW_Pq11JEnQHBhbpuqpPKGOlONB1Hx4XfbkZFRFzdourWgaq7SzZ98EjIIWfHspXqZIR0fyyY4JVgG2RHqFoWVds0m7_qbXIwTQ-MZZdQolY75P0mjEg9vtAZxtElLGZgYIRoaFo9InUen55hcMnhRG2IdIEeY268oaH3EMfgnYZhWFEd_BJfqX32Orngp7y6DMPS-QUdQrZQG-FzkkvnEy4yZdonWzYLHnzrHrm7OL89mxVX15fzs9OrQsu6SQVWhqu6LlWvrZGgTMl7JnRZm5b3RkDLuOYttk0JFSBUpuob2yqBlWKqtyj3yPyLawI8dI_R5QtXXQDXfTZCXHQQk9MDdlyCNLosZa-MKoXqJTJpLKCp0TalyayjL5aOYZoi2h8eZ906im4dRfcdRbaLP3btEqwfkSK44f-lD6Glk8E
CitedBy_id crossref_primary_10_1142_S0218348X22501596
crossref_primary_10_1142_S0218348X22501705
crossref_primary_10_1142_S0218348X22501936
crossref_primary_10_3390_sym14020313
crossref_primary_10_3934_math_2021805
crossref_primary_10_1142_S0218348X23500032
crossref_primary_10_3390_fractalfract7090689
Cites_doi 10.1142/S0218348X17400060
10.1090/proc/13488
10.1016/j.mcm.2011.12.048
10.1142/S0218348X19500713
10.1142/S0218348X17400023
10.1016/j.joems.2014.06.006
10.20852/ntmsci.2016320378
10.1016/j.fss.2018.11.008
10.1016/j.amc.2015.11.012
10.1142/S0218348X20500589
10.7153/jmi-11-23
10.22436/jnsa.010.11.24
10.1186/1029-242X-2013-333
10.1016/j.amc.2014.04.020
10.1186/1029-242X-2013-325
10.1090/S0025-5718-03-01622-3
10.1186/1029-242X-2013-158
10.1155/2014/346305
10.1142/S0218348X21500444
10.1137/S0036142903435958
10.1006/jath.2001.3658
10.7153/jmi-2017-11-33
10.1142/S0218348X20501108
10.1155/2014/636751
10.1155/2014/832802
10.1080/00036811.2019.1616083
ContentType Journal Article
CorporateAuthor School of Science, Shaoyang University, Shaoyang 422000, China
CorporateAuthor_xml – name: School of Science, Shaoyang University, Shaoyang 422000, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021620
DatabaseName CrossRef
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 10695
ExternalDocumentID oai_doaj_org_article_13a3dc553b4d4524b3e03dfaed7ef85d
10_3934_math_2021620
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-e6d147754bcfd3a4d51b02c57d91bd2a901c19e985a6aea6d6b8f942e6404bfe3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:30:09 EDT 2025
Tue Jul 01 03:56:49 EDT 2025
Thu Apr 24 23:08:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-e6d147754bcfd3a4d51b02c57d91bd2a901c19e985a6aea6d6b8f942e6404bfe3
OpenAccessLink https://doaj.org/article/13a3dc553b4d4524b3e03dfaed7ef85d
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_13a3dc553b4d4524b3e03dfaed7ef85d
crossref_primary_10_3934_math_2021620
crossref_citationtrail_10_3934_math_2021620
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021620-28
key-10.3934/math.2021620-27
key-10.3934/math.2021620-26
key-10.3934/math.2021620-25
key-10.3934/math.2021620-29
key-10.3934/math.2021620-8
key-10.3934/math.2021620-20
key-10.3934/math.2021620-7
key-10.3934/math.2021620-6
key-10.3934/math.2021620-5
key-10.3934/math.2021620-24
key-10.3934/math.2021620-23
key-10.3934/math.2021620-22
key-10.3934/math.2021620-9
key-10.3934/math.2021620-21
key-10.3934/math.2021620-17
key-10.3934/math.2021620-16
key-10.3934/math.2021620-15
key-10.3934/math.2021620-14
key-10.3934/math.2021620-19
key-10.3934/math.2021620-18
key-10.3934/math.2021620-30
key-10.3934/math.2021620-13
key-10.3934/math.2021620-12
key-10.3934/math.2021620-11
key-10.3934/math.2021620-10
key-10.3934/math.2021620-4
key-10.3934/math.2021620-3
key-10.3934/math.2021620-2
key-10.3934/math.2021620-1
References_xml – ident: key-10.3934/math.2021620-18
– ident: key-10.3934/math.2021620-26
  doi: 10.1142/S0218348X17400060
– ident: key-10.3934/math.2021620-27
  doi: 10.1090/proc/13488
– ident: key-10.3934/math.2021620-13
  doi: 10.1016/j.mcm.2011.12.048
– ident: key-10.3934/math.2021620-21
  doi: 10.1142/S0218348X19500713
– ident: key-10.3934/math.2021620-1
– ident: key-10.3934/math.2021620-25
  doi: 10.1142/S0218348X17400023
– ident: key-10.3934/math.2021620-5
  doi: 10.1016/j.joems.2014.06.006
– ident: key-10.3934/math.2021620-14
  doi: 10.20852/ntmsci.2016320378
– ident: key-10.3934/math.2021620-6
  doi: 10.1016/j.fss.2018.11.008
– ident: key-10.3934/math.2021620-23
  doi: 10.1016/j.amc.2015.11.012
– ident: key-10.3934/math.2021620-29
  doi: 10.1142/S0218348X20500589
– ident: key-10.3934/math.2021620-17
– ident: key-10.3934/math.2021620-19
– ident: key-10.3934/math.2021620-10
  doi: 10.7153/jmi-11-23
– ident: key-10.3934/math.2021620-22
  doi: 10.22436/jnsa.010.11.24
– ident: key-10.3934/math.2021620-7
  doi: 10.1186/1029-242X-2013-333
– ident: key-10.3934/math.2021620-16
  doi: 10.1016/j.amc.2014.04.020
– ident: key-10.3934/math.2021620-15
  doi: 10.1186/1029-242X-2013-325
– ident: key-10.3934/math.2021620-3
  doi: 10.1090/S0025-5718-03-01622-3
– ident: key-10.3934/math.2021620-8
  doi: 10.1186/1029-242X-2013-158
– ident: key-10.3934/math.2021620-11
  doi: 10.1155/2014/346305
– ident: key-10.3934/math.2021620-28
  doi: 10.1142/S0218348X21500444
– ident: key-10.3934/math.2021620-2
  doi: 10.1137/S0036142903435958
– ident: key-10.3934/math.2021620-12
  doi: 10.1006/jath.2001.3658
– ident: key-10.3934/math.2021620-9
  doi: 10.7153/jmi-2017-11-33
– ident: key-10.3934/math.2021620-24
  doi: 10.1142/S0218348X20501108
– ident: key-10.3934/math.2021620-20
  doi: 10.1155/2014/636751
– ident: key-10.3934/math.2021620-30
  doi: 10.1155/2014/832802
– ident: key-10.3934/math.2021620-4
  doi: 10.1080/00036811.2019.1616083
SSID ssj0002124274
Score 2.1808455
Snippet In this paper, we establish a new integral identity involving local fractional integral on Yang's fractal sets. Using this integral identity, some new...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 10679
SubjectTerms generalized harmonically convex function
hermite-hadamard type inequality
local fractional integral
yang's fractal sets
Title Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals
URI https://doaj.org/article/13a3dc553b4d4524b3e03dfaed7ef85d
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9_koCcpts0k2x5VlEXQiy7sreQxEWHdFV1BPfjbnWnqshfx4q2UNITJZL6ZdOYbIY6YAwzRA8UmeZVBoCNllaENAZOHHuqYR65Gvrk1_QFcD_VwrtUX54QleuAkuNNCWRW81spBAF2CU5irEC3STLHSga0vYd5cMMU2mAwyULyVMt1VreCU_D_-91AWhlt7z2HQHFV_iylXq2KlcwblWVrEmljA8bpYvpkxqb5uiK-7yRNK8n1ln9NWppiRrbBPtK-Sb08lOYmpLpIiXkkOqHxIPNKPnxgk01JP2sLH0Yds88vfJQNZq2v0KZkmvk-QLaDJ-JKKHOixI5EYvW6KwdXl_UU_63omZF71qmmGJhTArHbOx6AsBF24vPS6F-rChdIS_PuixrrS1li0JhhXxRpKNJCDi6i2xOJ4MsZtIaGOSHBu62ABYlE6ii3A06FXuQ-xynfEyY8UG98RinNfi1FDgQXLvGGZN53Md8TxbPRzItL4Zdw5b8hsDNNfty9IKZpOKZq_lGL3PybZE0u8pnTfsi8Wpy9veEAeyNQdtsr2DS0w3uc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+new+Hermite-Hadamard+type+inequalities+for+generalized+harmonically+convex+functions+involving+local+fractional+integrals&rft.jtitle=AIMS+mathematics&rft.au=Sun%2C+Wenbing&rft.au=Xu%2C+Rui&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=10&rft.spage=10679&rft.epage=10695&rft_id=info:doi/10.3934%2Fmath.2021620&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon