Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals
In this paper, we establish a new integral identity involving local fractional integral on Yang's fractal sets. Using this integral identity, some new generalized Hermite-Hadamard type inequalities whose function is monotonically increasing and generalized harmonically convex are obtained. Fina...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 10; pp. 10679 - 10695 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we establish a new integral identity involving local fractional integral on Yang's fractal sets. Using this integral identity, some new generalized Hermite-Hadamard type inequalities whose function is monotonically increasing and generalized harmonically convex are obtained. Finally, we construct some generalized special means to explain the applications of these inequalities. |
---|---|
AbstractList | In this paper, we establish a new integral identity involving local fractional integral on Yang's fractal sets. Using this integral identity, some new generalized Hermite-Hadamard type inequalities whose function is monotonically increasing and generalized harmonically convex are obtained. Finally, we construct some generalized special means to explain the applications of these inequalities. |
Author | Sun, Wenbing Xu, Rui |
Author_xml | – sequence: 1 givenname: Wenbing surname: Sun fullname: Sun, Wenbing – sequence: 2 givenname: Rui surname: Xu fullname: Xu, Rui |
BookMark | eNptkctKBDEQRYMo-Nz5AfkAW_Pq11JEnQHBhbpuqpPKGOlONB1Hx4XfbkZFRFzdourWgaq7SzZ98EjIIWfHspXqZIR0fyyY4JVgG2RHqFoWVds0m7_qbXIwTQ-MZZdQolY75P0mjEg9vtAZxtElLGZgYIRoaFo9InUen55hcMnhRG2IdIEeY268oaH3EMfgnYZhWFEd_BJfqX32Orngp7y6DMPS-QUdQrZQG-FzkkvnEy4yZdonWzYLHnzrHrm7OL89mxVX15fzs9OrQsu6SQVWhqu6LlWvrZGgTMl7JnRZm5b3RkDLuOYttk0JFSBUpuob2yqBlWKqtyj3yPyLawI8dI_R5QtXXQDXfTZCXHQQk9MDdlyCNLosZa-MKoXqJTJpLKCp0TalyayjL5aOYZoi2h8eZ906im4dRfcdRbaLP3btEqwfkSK44f-lD6Glk8E |
CitedBy_id | crossref_primary_10_1142_S0218348X22501596 crossref_primary_10_1142_S0218348X22501705 crossref_primary_10_1142_S0218348X22501936 crossref_primary_10_3390_sym14020313 crossref_primary_10_3934_math_2021805 crossref_primary_10_1142_S0218348X23500032 crossref_primary_10_3390_fractalfract7090689 |
Cites_doi | 10.1142/S0218348X17400060 10.1090/proc/13488 10.1016/j.mcm.2011.12.048 10.1142/S0218348X19500713 10.1142/S0218348X17400023 10.1016/j.joems.2014.06.006 10.20852/ntmsci.2016320378 10.1016/j.fss.2018.11.008 10.1016/j.amc.2015.11.012 10.1142/S0218348X20500589 10.7153/jmi-11-23 10.22436/jnsa.010.11.24 10.1186/1029-242X-2013-333 10.1016/j.amc.2014.04.020 10.1186/1029-242X-2013-325 10.1090/S0025-5718-03-01622-3 10.1186/1029-242X-2013-158 10.1155/2014/346305 10.1142/S0218348X21500444 10.1137/S0036142903435958 10.1006/jath.2001.3658 10.7153/jmi-2017-11-33 10.1142/S0218348X20501108 10.1155/2014/636751 10.1155/2014/832802 10.1080/00036811.2019.1616083 |
ContentType | Journal Article |
CorporateAuthor | School of Science, Shaoyang University, Shaoyang 422000, China |
CorporateAuthor_xml | – name: School of Science, Shaoyang University, Shaoyang 422000, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021620 |
DatabaseName | CrossRef DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 10695 |
ExternalDocumentID | oai_doaj_org_article_13a3dc553b4d4524b3e03dfaed7ef85d 10_3934_math_2021620 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-e6d147754bcfd3a4d51b02c57d91bd2a901c19e985a6aea6d6b8f942e6404bfe3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:30:09 EDT 2025 Tue Jul 01 03:56:49 EDT 2025 Thu Apr 24 23:08:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-e6d147754bcfd3a4d51b02c57d91bd2a901c19e985a6aea6d6b8f942e6404bfe3 |
OpenAccessLink | https://doaj.org/article/13a3dc553b4d4524b3e03dfaed7ef85d |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_13a3dc553b4d4524b3e03dfaed7ef85d crossref_primary_10_3934_math_2021620 crossref_citationtrail_10_3934_math_2021620 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021620-28 key-10.3934/math.2021620-27 key-10.3934/math.2021620-26 key-10.3934/math.2021620-25 key-10.3934/math.2021620-29 key-10.3934/math.2021620-8 key-10.3934/math.2021620-20 key-10.3934/math.2021620-7 key-10.3934/math.2021620-6 key-10.3934/math.2021620-5 key-10.3934/math.2021620-24 key-10.3934/math.2021620-23 key-10.3934/math.2021620-22 key-10.3934/math.2021620-9 key-10.3934/math.2021620-21 key-10.3934/math.2021620-17 key-10.3934/math.2021620-16 key-10.3934/math.2021620-15 key-10.3934/math.2021620-14 key-10.3934/math.2021620-19 key-10.3934/math.2021620-18 key-10.3934/math.2021620-30 key-10.3934/math.2021620-13 key-10.3934/math.2021620-12 key-10.3934/math.2021620-11 key-10.3934/math.2021620-10 key-10.3934/math.2021620-4 key-10.3934/math.2021620-3 key-10.3934/math.2021620-2 key-10.3934/math.2021620-1 |
References_xml | – ident: key-10.3934/math.2021620-18 – ident: key-10.3934/math.2021620-26 doi: 10.1142/S0218348X17400060 – ident: key-10.3934/math.2021620-27 doi: 10.1090/proc/13488 – ident: key-10.3934/math.2021620-13 doi: 10.1016/j.mcm.2011.12.048 – ident: key-10.3934/math.2021620-21 doi: 10.1142/S0218348X19500713 – ident: key-10.3934/math.2021620-1 – ident: key-10.3934/math.2021620-25 doi: 10.1142/S0218348X17400023 – ident: key-10.3934/math.2021620-5 doi: 10.1016/j.joems.2014.06.006 – ident: key-10.3934/math.2021620-14 doi: 10.20852/ntmsci.2016320378 – ident: key-10.3934/math.2021620-6 doi: 10.1016/j.fss.2018.11.008 – ident: key-10.3934/math.2021620-23 doi: 10.1016/j.amc.2015.11.012 – ident: key-10.3934/math.2021620-29 doi: 10.1142/S0218348X20500589 – ident: key-10.3934/math.2021620-17 – ident: key-10.3934/math.2021620-19 – ident: key-10.3934/math.2021620-10 doi: 10.7153/jmi-11-23 – ident: key-10.3934/math.2021620-22 doi: 10.22436/jnsa.010.11.24 – ident: key-10.3934/math.2021620-7 doi: 10.1186/1029-242X-2013-333 – ident: key-10.3934/math.2021620-16 doi: 10.1016/j.amc.2014.04.020 – ident: key-10.3934/math.2021620-15 doi: 10.1186/1029-242X-2013-325 – ident: key-10.3934/math.2021620-3 doi: 10.1090/S0025-5718-03-01622-3 – ident: key-10.3934/math.2021620-8 doi: 10.1186/1029-242X-2013-158 – ident: key-10.3934/math.2021620-11 doi: 10.1155/2014/346305 – ident: key-10.3934/math.2021620-28 doi: 10.1142/S0218348X21500444 – ident: key-10.3934/math.2021620-2 doi: 10.1137/S0036142903435958 – ident: key-10.3934/math.2021620-12 doi: 10.1006/jath.2001.3658 – ident: key-10.3934/math.2021620-9 doi: 10.7153/jmi-2017-11-33 – ident: key-10.3934/math.2021620-24 doi: 10.1142/S0218348X20501108 – ident: key-10.3934/math.2021620-20 doi: 10.1155/2014/636751 – ident: key-10.3934/math.2021620-30 doi: 10.1155/2014/832802 – ident: key-10.3934/math.2021620-4 doi: 10.1080/00036811.2019.1616083 |
SSID | ssj0002124274 |
Score | 2.1808455 |
Snippet | In this paper, we establish a new integral identity involving local fractional integral on Yang's fractal sets. Using this integral identity, some new... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 10679 |
SubjectTerms | generalized harmonically convex function hermite-hadamard type inequality local fractional integral yang's fractal sets |
Title | Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals |
URI | https://doaj.org/article/13a3dc553b4d4524b3e03dfaed7ef85d |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9_koCcpts0k2x5VlEXQiy7sreQxEWHdFV1BPfjbnWnqshfx4q2UNITJZL6ZdOYbIY6YAwzRA8UmeZVBoCNllaENAZOHHuqYR65Gvrk1_QFcD_VwrtUX54QleuAkuNNCWRW81spBAF2CU5irEC3STLHSga0vYd5cMMU2mAwyULyVMt1VreCU_D_-91AWhlt7z2HQHFV_iylXq2KlcwblWVrEmljA8bpYvpkxqb5uiK-7yRNK8n1ln9NWppiRrbBPtK-Sb08lOYmpLpIiXkkOqHxIPNKPnxgk01JP2sLH0Yds88vfJQNZq2v0KZkmvk-QLaDJ-JKKHOixI5EYvW6KwdXl_UU_63omZF71qmmGJhTArHbOx6AsBF24vPS6F-rChdIS_PuixrrS1li0JhhXxRpKNJCDi6i2xOJ4MsZtIaGOSHBu62ABYlE6ii3A06FXuQ-xynfEyY8UG98RinNfi1FDgQXLvGGZN53Md8TxbPRzItL4Zdw5b8hsDNNfty9IKZpOKZq_lGL3PybZE0u8pnTfsi8Wpy9veEAeyNQdtsr2DS0w3uc |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+new+Hermite-Hadamard+type+inequalities+for+generalized+harmonically+convex+functions+involving+local+fractional+integrals&rft.jtitle=AIMS+mathematics&rft.au=Sun%2C+Wenbing&rft.au=Xu%2C+Rui&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=10&rft.spage=10679&rft.epage=10695&rft_id=info:doi/10.3934%2Fmath.2021620&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021620 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |